He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

-- Chinese Proverb
Lecture:
Instructor: Larry Ruzzo, ruzzo at cs TBA
Course Email: cse527a_wu09@u.washington.edu. Use this list to ask and/or answer questions that are not general interest. You are subscribed to this list. All messages are automatically archived. Questions not of general interest may be directed to your subscription options.
Catalog Description: Introduces computational methods for understanding biological systems at the molecular level. Focuses on sequence, sequencing, sequence analysis, structure prediction, phylogenetic inference, regulatory analysis. Techniques such as dynamic programming, expectation-maximization, local search.
Prerequisite: Prerequisite: graduate standing in biological, computer, mathematical or statistical science, or permission of instructor.
Credits: 3
Learning Objectives: The availability of the complete genome sequences of humans and other organisms is one of the landmark achievements of science. Understanding this enormous volume of data is a problem that will challenge scientists for decades to come, and the nature and scope of the problem means that computer scientists will play a vital role. The primary objective of the course is for students to understand the variety of computational problems and solutions that arise in this interdisciplinary field. Students will learn enough of the basic concepts of molecular biology to understand the context for the computational problems presented in the rest of the course. They will learn how some of the computational methods they have encountered in other courses can be applied to solve problems in modern molecular biology. An important component is to learn the nature and capabilities of some of the key public databases available for the solution of these problems, as well as publicly available computational analysis tools and the algorithmic principles underlying them.
References: See Schedule & Reading
Tonight

Admin

Why Comp Bio?

The world’s shortest Intro. to Mol. Bio.
Admin Stuff
Course Mechanics & Grading

Web http://www.cs.washington.edu/csep590b

Reading

In class discussion

Homeworks

 reading blogs
 paper exercises
 programming

No exams, but possible oversized last homework in lieu of final

Check web for 1st, soon
Background & Motivation
Source: http://www.intel.com/research/silicon/mooreslaw.htm
Growth of GenBank (Base Pairs)

Excludes “short-read archive,” > 7 terabases by mid-2009

The Human Genome Project

1 gagcccggcc cgggggacgg gcggcggttt agcgggaccc cggcgcggcg gtgcgcttca
 61 gggcgcagcg gcggccgcag accgagcccc gcggccggca agaggcggcgg ggagccgggtg
 121 gcggctcggc atcatgcgtc gaggccgtct gctggagatc gccctgggat ttaccgctgct
 181 tttagcgtcc tacacgagcc aatgggccgga cgccaatttg gaggctggga acgtgaagga
 241 aaccagagcc agtcgggcca agagaagagg cgggagagga cacgacgcgc ttaaaggacc
 301 caatgtctgt ggatcacgtt ataattgctta ctggtgccct gatgggaaat ccttactttg
 361 cggaatatcg tgggttgggt ccattttgct gcgttctgtc gggatgtggat tttgttcgag
 421 gcggctcggc atcatgcgtc gaggccgtct gctggagatc gccctgggat ttaccgctgct
 481 aaccagagcc agtcgggcca agagaagagg cgggagagga cacgacgcgc ttaaaggacc
 541 ccagaaagga tacataggga ctcactgtgg acaacctgtt tgtgaaagtg gctgtctcaa
 601 tggaggaagg tgtgttggggc cagactcgtt ttgacgccct tcgctatggt tttttcggcat
 661 gtgtaaacgga gattacagga cagggccatg ttttactgtg atcagcaacc agatgtgcaa
 721 gggacaacttc agcggggattg tctgcaaaaa acagctctgc tggccttctc cccggtggacg
 781 ctggggtcgc cctgctcggc tggtggtcgtg ccagccctac ccttgcgcccc gtggcctcctc
 841 tccaaatattc cgccaggggag cttggtcgac cggcggcca cagctctctg tccccgggct
 901 ctggtcaggga ggaattgtca ttaatactgt tgggttctttt gatgtcgaat gcccttctgtg
 961 acaacacacttt aatgaagtgt cacaaaaatg tgaagatatt gatgaatgca gcaccattccc
 1021 ...

...
The sea urchin *Strongylocentrotus purpuratus*
Goals

Basic biology
Disease diagnosis/prognosis/treatment
Drug discovery, validation & development
Individualized medicine

...
“High-Throughput BioTech”

Sensors
- DNA sequencing
- Microarrays/Gene expression
- Mass Spectrometry/Proteomics
- Protein/protein & DNA/protein interaction

Controls
- Cloning
- Gene knock out/knock in
- RNAi

“Floids of data”

“Grand Challenge” problems
What’s all the fuss?

The human genome is “finished”…
Even if it were, that’s only the beginning
Explosive growth in biological data is revolutionizing biology & medicine

“All pre-genomic lab techniques are obsolete”

(and computation and mathematics are crucial to post-genomic analysis)
CS Points of Contact & Opportunities

Scientific visualization
 Gene expression patterns

Databases
 Integration of disparate, overlapping data sources
 Distributed genome annotation in face of shifting underlying genomic coordinates, individual variation, ...

AI/NLP/Text Mining
 Information extraction from text with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models, ...

Machine learning
 System level synthesis of cell behavior from low-level heterogeneous data (DNA seq, gene expression, protein interaction, mass spec,...)

...

Algorithms
Computers in biology: Then & now

Sequence alignment by word processor

D. Ross Boswell

Department of Haematological Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QH, UK
null
An Algorithm Example: ncRNAs

The “Central Dogma”:
 DNA -> messenger RNA -> Protein

Last ~5 years:
 100s – 1000s of examples of functionally important ncRNAs

Much harder to find than protein-coding genes

Main method - Covariance Models
 ≈ stochastic context free grammars

Main problem - Sloooow
 \(O(nm^4) \)
“Rigorous Filtering” - Z. Weinberg

Convert CM to HMM
(AKA: stochastic CFG to stochastic regular grammar)
Do it so HMM score always \geq CM score
Optimize for most aggressive filtering subject to constraint that score bound maintained
A large convex optimization problem
Filter genome sequence with (fast) HMM, run (slow) CM only on sequences above desired CM threshold; guaranteed not to miss anything
Newer, more elaborate techniques pulling in key secondary structure features for better searching
(uses automata theory, dynamic programming, Dijkstra, more optimization stuff,...)

(But stay tuned...)
Results

Typically 200-fold speedup or more
Finding dozens to hundreds of new ncRNA genes in many families
The computational advance has enabled new biological discoveries

Newer, more elaborate techniques pulling in key secondary structure features for better searching (uses automata theory, dynamic programming, Dijkstra, more optimization stuff, …)
More Admin
Course Focus & Goals

Mainly sequence analysis
Algorithms for alignment, search, & discovery
 Specific sequences, general types (“genes”, etc.)
 Single sequence and comparative analysis
Techniques: HMMs, EM, MLE, Gibbs, Viterbi…
Enough bio to motivate these problems
 including very light intro to modern biotech supporting them
Math/stats/cs underpinnings thereof
Applied to real data
A VERY Quick Intro To Molecular Biology
The Genome

The hereditary info present in every cell

DNA molecule -- a long sequence of nucleotides (A, C, T, G)

Human genome -- about 3×10^9 nucleotides

The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, …
The Double Helix

As shown, the two strands coil about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base A always bonds to T (A and T are comple-

Shown in (b) is an uncoiled fragment of (a) three complementary base pairs. Each chemist's viewpoint, each strand of a polymer made up of four related components called deoxyribonucleotides...
DNA

Discovered 1869
Role as carrier of genetic information - much later
4 “bases”:
 adenine (A), cytosine (C), guanine (G), thymine (T)
The Double Helix - Watson & Crick 1953
Complementarity
 A ←→ T C ←→ G

Visualization:
 http://www.rcsb.org/pdb/explore.do?structureId=123D
Genetics - the study of heredity

A *gene* -- classically, an abstract heritable attribute existing in variant forms (*alleles*)

ABO blood type—1 gene, 3 alleles

Mendel

Each individual two copies of each gene
Each parent contributes one (randomly)
Independent assortment (approx, but useful)

Genotype vs phenotype

I.e., genes vs their outward manifestation

AA or AO genotype → “type A” phenotype
Cells

Chemicals inside a sac - a fatty layer called the *plasma membrane*

Prokaryotes (bacteria, archaea) - little recognizable substructure

Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions
Chromosomes

1 pair of (complementary) DNA molecules (+ protein wrapper)

Most prokaryotes: just 1 chromosome

Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, …
Mitosis/Meiosis

Most “higher” eukaryotes are diploid - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)

Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell

Meiosis - 2 divisions form 4 haploid gametes (egg/sperm)

Recombination/crossover -- exchange maternal/paternal segments
Proteins

Chain of amino acids, of 20 kinds

Proteins: the major functional elements in cells
 Structural/mechanical
 Enzymes (catalyze chemical reactions)
 Receptors (for hormones, other signaling molecules, odorants,…)
 Transcription factors

3-D Structure is crucial: the protein folding problem
The “Central Dogma”

Genes encode proteins
DNA transcribed into messenger RNA
mRNA translated into proteins
Triplet code (codons)
Transcription: DNA → RNA

RNA polymerase
Codons & The Genetic Code

<table>
<thead>
<tr>
<th>First Base</th>
<th>Second Base</th>
<th>Third Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>U</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>U</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>U</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>C</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>A</td>
<td>Met/Start</td>
<td>Thr</td>
</tr>
<tr>
<td>G</td>
<td>Val</td>
<td>Ala</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>Gln</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>Met</td>
<td>Methionine</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophane</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Val</td>
<td>Valine</td>
</tr>
</tbody>
</table>
Translation: mRNA \rightarrow Protein

Watson, Gilman, Witkowski, & Zoller, 1992
Ribosomes

Watson, Gilman, Witkowski, & Zoller, 1992
Gene Structure

Transcribed 5’ to 3’

Promoter region and transcription factor binding sites (usually) precede 5’ end

Transcribed region includes 5’ and 3’ untranslated regions

In eukaryotes, most genes also include introns, spliced out before export from nucleus, hence before translation
Genome Sizes

<table>
<thead>
<tr>
<th>Organism</th>
<th>Base Pairs</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma genitalium</td>
<td>580,073</td>
<td>483</td>
</tr>
<tr>
<td>MimiVirus</td>
<td>1,200,000</td>
<td>1,260</td>
</tr>
<tr>
<td>E. coli</td>
<td>4,639,221</td>
<td>4,290</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>12,495,682</td>
<td>5,726</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>95,500,000</td>
<td>19,820</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>115,409,949</td>
<td>25,498</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>122,653,977</td>
<td>13,472</td>
</tr>
<tr>
<td>Humans</td>
<td>3.3 x 10^9</td>
<td>~25,000</td>
</tr>
</tbody>
</table>
Genome Surprises

Humans have < 1/3 as many genes as expected
But perhaps more proteins than expected, due to alternative splicing, alt start, alt end
Protein-wise, all mammals are just about the same
But more individual variation than expected
And many more non-coding RNAs -- more than protein-coding genes, by some estimates
Many other non-coding regions are highly conserved, e.g., across all vertebrates
Subset of DNA being transcribed is >> 2% coding
Complex, subtle “epigenetic” information
... and much more ...

Read one of the many intro surveys or books for much more info.