

Computing and the **Developing World**

CSEP 590B, Spring 2008 Lecture 6 - Mobile Devices and Healthcare Richard Anderson, Brian DeRenzi

Administration

- Next week, MONDAY, May 12
- Yaw Anokwa (Open MRS)
- David Edelstein, Grameen Technology Foundation
 Joyojeet Pal, UC Berkeley
- Classroom Presenter Video
- Upcoming Lectures
 - May 12, Multiple topics
 - · Anokwa, Edelstein, Pal - May 21, Education
 - May 28, Data Collection
 - Tapan Parikh
 - June 4, Non-literate Uis
- sydney2.dyn.cs.washington.edu

Highlights from Lecture 5

- · Sardine Fishing in Kerala Mobile phones transform
- agricultural market • Warana SMS Project

Digital Green

farmers

- Agricultural education based on locally produced content

Other agricultural domains

- TV and Radio based agricultural information
- Question and answer systems - eSagu, IIIT Hyderabad
- Agricultural cooperative management
- · Sensor networks

What role does ICT have in addressing agricultural problems of the poor?

- · What is the most compelling application of ICT in agriculture?
- · Are there other applications that were missed?

What role does ICT have in addressing health problems of the poor?

• Needs and resources are large, but role of computing is not clear

Delivery of medical services

• Improve health care delivery to individuals

Public health / disease eradication

• Systematic health improvements with broad benefits

Medical Study

- Understanding global health status
- Evaluation of treatment options

P

- Mobile Devices in Health Care
- Case studies
 - $-\,\mathrm{HIV}$
 - e-IMCI
 - Ifakara Health Survey
 - Apple 1997, India Healthcare Project
 - Health Metrics Network

Electronic Pill boxes

• What do they do, and why are they useful?

Brian DeRenzi

bderenzi@cs.washington.edu

D-Tree International

- Non-profit based in Boston, MA
- Medical algorithms on mobile devices
- Help over-burdened health workers
- Gather data from the field

Motivation

- This year almost **10 million** children will **die** before reaching the age of 5
- Most live in low-income countries
- Almost 2/3 could be **saved** by the correct application of affordable interventions
- Every 6 seconds a child dies from a preventable cause

IMCI

- UNICEF, WHO and others develop medical protocols
- Integrated Management of Childhood Illness (IMCI)
- Address most common childhood illness
- Easy to use for lowly-trained health workers

IMCI

- Originally developed in 1992 by WHO and UNICEF
- Adopted by over 80 countries worldwide
- Integrated most common causes of childhood illness into a single approach

SIGNS	CLASSIFY AS	TREATMENT (Urgent pre-referral treatments are in bold print.)
Any general danger sign or Chest indrawing or Stridor in calm child.	SEVERE PNEUMONIA OR VERY SEVERE DISEASE	> Give first dose of an appropriate antibiotic. > Refer URGENTLY to hospital.*
 Fast breathing. 	PNEUMONIA	 Give an appropriate antibiotic for 5 days. Soothe the throat and relieve the cough with a safe remedy. Advise mother when to return immediately. Follow-up in 2 days.
No signs of pneumonia or very severe disease.	NO PNEUMONIA: COUGH OR COLD	 If coughing more than 30 days, refer for assessment. Soothe the throat and relieve the cough with a safe remedy. Advise mother when to return immediately. Follow-up in 5 days if not improving.

Give a	n Approp	oriate Ora	Antibio	otic	
> FOR PNEUMO	NIA, ACUTE EAR I	NECTION OR VERY	SEVERE DISEAS	E:	
FIRST-LINE A SECOND-LINE					
	(trim) > Give two times daily	COTRIMOXAZOLE Immethoprim + subhamethoxazole) sak for 5 dava		AMOXYCILLIN > Give time times daily for 5 days	
AGE or WEIGHT	ADULT TABLET 80 mg trinethoprim + 400 mg sulphamethoxazole	PEDIATRIC TABLET 20 mg trimethoprim +100 mg sulphamethoxazole	SYRUP 40 mg trimethoprim •200 mg sulphamethosazole per 5 mi	TABLET 250 mg	5YRUP 125 mg per 5 ml
	1/2	2	5.0 ml	1/2	5 mi
2 months up to 12 months (4 - <10 kg)					

IMCI Barriers

- Expense of training (\$1150 -\$1450)
- Not sufficient supervision
- · Chart booklet
 - Takes a long time to use
 - Natural tendency to be less rigorous
 - Social pressure

e-IMCI

- Put IMCI protocol on PDA
- Guide health workers step-by-step through the protocol
- Data collection is a byproduct of care
- Can handle more complex protocols
- Interface with other devices and EMR

e-IMCI

- Code based on South Africa HUPA project
- Windows Mobile 5.0 – PDA/SmartPhone
- Contains cough, diarrhea, fever and ear pain questions and treatment
- First visit, ages 2 weeks to 5 years

Study Design

- · Started with 5 clinicians
- · Four clinicians completed study
- Goals:
 - Discover usability issues
 - Discover if e-IMCI helped adherence
 - Determine how e-IMCI effects patient visit

Study Design

- Started with some pre-trials to fix major bugs
- · Semi-structured interview of all clinicians
- Observed 24 current practice IMCI sessions
- 31 e-IMCI sessions
- Exit interview for each clinician

Clinician Reaction

- Unanimously cited e-IMCI as easier to use and faster than following the chart booklet
- Wanted to use the system for Care Treatment Clinic
- · Liked being able to review answers to questions
- Asked to be in future studies
- "Sometimes since I have experience [with IMCI] I will skip things, but with the PDA I can't skip."

e-IMCI for Training

- Current training lasts 11-16 days
- Costs \$1150 -\$1450 per person
- Using e-IMCI to train, could reduce time and cost

User-Driven Model

- "Expert" mode
- Allow users to decide what investigations to perform
- Flexibility will encourage long-term use
- Merge with current system-driven approach to ensure correct care

Community Outreach

- Take e-IMCI outside of the health facility
- Travel village-to-village to collect health census information and deliver care

Current Status

- HIV Screening Project
 - Moving to Tanzania with a grant from the CDC
- e-IMCI project
 - Continuing in Tanzania
 - More formal study with funding from Rockefeller

Motivation for PDAs for surveys

- · Increase accuracy and reduce cost
 - Data validation
 - Skip logic
 - Avoid double entry of data
 - Handling of paper
 - Transcription errors
 - Time in processing
 - Delayed error detection
- · Opportunity for integration with GPS
- More sophisticated survey logic

Concerns					
1)	5)				
2)	6)				
3)	7)				
4)	8)				

Hardware / Software

- Palm m130, \$100, 160 x 160 passive matrix colored touch sensitive screen, 4.8 x 3.1 x 0.9 inches, 5.4 oz, 8 MB memory, 16 MB expansion card
- Rechargeable lithium ion battery - two full working days between recharges
- Pendragon Forms 4.0 - Forms, validation, database, synchronization

Survey details

- After survey was delivered, some respondents were invited to weighing station
- Questions delivered in Swahili, recorded in English · Pilot before main survey
- · Data security
 - Data copied to SD cards - Interviewers could not update records after data copied
 - Daily backups to laptop
 - Secondary validation

Deployment

- Training of survey team
 - Two weeks, starting with PDAs and continuing to pilot surveys
- · 13 teams of 7 interviewers each with supervisor
- Two support vehicles
 - Daily synchronization of PDAs

Results

- No problems
 - No lost data
 - No hardware failures in spite of harsh environment
 - Solar chargers worked fine
 - Community and interviewer acceptance of PDAs
- · Initial survey data available two days after completion of surveys
- · Cost per survey
 - \$0.85 per household
 - \$1.25 for similar paper based survey

Discussion

- High acceptance of PDAs
 - Interviews showed interviewees PDAs during consent procedure
- PDA Approach
 - More pre-training preparation than paper based
 - Survey needed to include logical consistency checks - Upfront costs reduced time later on
- Easier to modify PDA surveys that paper forms
- Possible extensions
- Design of survey logic for PDA delivery
 - Integration with GPS

Apple Study: CHI 1997

- Develop mobile computing device to be used by Auxiliary Nurse Midwives (ANMs) in rural India
- Apple Research Labs and Government of India
- 1994-1997
- Target device: Apple Newton
- Ajmer district, Rajasthan

Auxiliary Nurse Midwives

- 350,000 ANMs in India
- 2 years training in basic health care
- Treat minor ailments, hospital referrals, pre and post natal care, vaccinations, malaria testing, promotion of contraception
- Home visits by foot/bicycle/moped – About 9 house calls a day, 45 people

- Operations

Apple field study

- "Something we noticed immediately was that the records she kept about her activities had little bearing on the events which actually took place"
- "Nor did there appear to be any incentive for the ANM to complete the records accurately"

Paper work

- ANM adept at filling out forms and ledgers
- Forms arose from continual introductions of new programs (with distinct reporting structures)
- Multiple mistakes made in filling out forms
- Villager data suspect

Design goals

- Project was NOT to redesign the health care system
- · Goals
 - Reduce time on paperwork
 - Increase time spent with people
 - Improve quality of welfare of community
 - Increase reliability of data
 - Enable timely distribution of data

Interaction Design Approach (1994)

- Understanding / representing existing approach
- · Challenge: Household records vs. individual records
 - Multigenerational households
 - Records based on head of household
 - Problem made worse since names are often the same
 - Shift to individual records

Results

- ANMs were not intimidated or hesitant about the device
- Authors suggested prototype too general Focus on family planning, immunization of children under one, malaria screening (85% of population participate in one of these programs).
- Wide variety of practices by users
- Pen based UI contributed to ease of use
- Apple Newton
 - Primitive pen based computer - Emphasis on handwriting recognition
 - Hindi not available on the device
- UI Issues
- Will revisit for non-literate UI discussion

PDAs for bacteriology collection

- PIH, Multidrug-resistant TB treatment in Peru
- Data collection problem
 - Patients leave sample at local health center
 - Health workers collect results and take data to **PIH** headquarters
 - · 2000 monthly results from 120 health centers - Data collected on paper, copied to two other
 - forms, then taken to central office for data entry

PDA solution

- Collect data from health centers by data entry on PDA
- · Low end Palm-OS devices with Pendragon software
- · Data validation and cross checking on entry
- · Pilot study
 - Usability and acceptability by users
 - Processing time
 - Frequency of discrepancies
 - Cost effectiveness

Results

- Usability
 - 2-5 days training
 - Favorable response for reduced paper shuffling and quick verification
- Processing delays
 - Reduced from 54 days to 6 days
- Error rates
 - Reduced from 10% to 3% (samples with at least one error)
- Cost effectiveness
- Cost per device: \$300
- Significant reduction on data entry time

Survey Participant Study

- Question: Does the use of technology (PDA vs. paper) influence participants survey answers?
- Survey of risk behaviors for HIV/AIDS
- Study in Luanda, Angola, 2005
- Paper: Chi 2008, Cheng et al.

Study methodology

- · 10 minute interview on sexual behavior
- · Results recorded on PDA or paper
- 231 participants split roughly evenly between PDA and paper groups
- Sample from three different neighborhoods
 Questions
- Personal characteristics
- Comfort with interview
- Sexual Behavior
- Partners, condom use, sex for money, HIV testing, forced sex, use of alcohol and sex

Result

- Interviewees gave more socially desirable answers in the PDA condition than the paper condition
- Nine questions relating to behavior
 - -+1: Socially desirable answer
 - 0: Question not asked
- --1: Undesirable answer
- Paper: 1.4, PDA 2.4
- t(221) = -2.8, p < 0.01

WHO Health Metrics Network

• Global Partnership that facilitates better health information

HMN Framework

Goal

- Increase the availability and use of timely and accurate health information at sub-national, national, and global levels by catalyzing the joint funding and development of core country health information systems.
- Objective 1
- Establish the Health Information System Framework Objective 2
- Strengthen Health Information Systems
- Objective 3
 - Improve global access and use of health information

Evidence based decisions

- Does treatment X help?
 - What is the appropriate target A1C for type 2 diabetics?
- · Spending choices
 - Is it more cost effective to spend money on bed nets or spraying to reduce malaria?
- Policy decisions
 - Is the incidence of childhood obesity high enough to warrant a ban on french fries

Challenge problem: counting the dead

• Age, cause of death of everyone in the country

Lecture Summary

- Mobile devices are successfully supporting medical delivery, public health, and studies
- Cell phone vs. PDA
- What would a broader platform, environment, set of services look like to support medical workers?

What role does ICT have in addressing health problems of the poor?

- What is the most compelling application of ICT in health?
- Are there other applications that were missed?

