# Computing and the **Developing World**

CSEP 590B, Spring 2008 Lecture 5 - ICT and Agriculture Richard Anderson



#### Administration

- LUMS Holiday, May 1
- Schedule Shuffle
  - Apr 30, Agriculture
  - May 7, Handheld devices and Medicine
    Brian DeRenzi
  - May 12, Open Source software
    - Neal Lesh

  - May 21, EducationMay 28, Data Collection
    - Tapan Parikh
  - June 4, Non-literate Uls

#### Highlights from Lecture 4

- Umar Saif
  - umar@lums.edu.pk, umar@mit.edu
  - dritte.org
- Internet realities
  - Many considerations very different from US
- Content distribution problem
- Offline internet browsing
- Inverse multiplexing on cellular networks
- Teleputer

# **Tonight**

- Agricultural Markets
  - Robert Jensen
- SMS Applications
  - Warana Unwired
  - Survey of other agricultural projects
- Digital Green



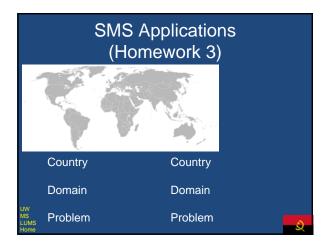




#### Warana Unwired

- High profile kiosk project to support agriculture
- After 7 years, the project had only achieved a fraction of its goals and had very high maintenance cost
- Main application was replaced by a cell phone/SMS application






#### Warana Sugar Cooperative

- At harvest, farmers send sugar cane to cooperative for processing
- Farmers receive reports of the amount of sugar cane processed by factory
- Before kiosk project:
  - Farmers visit central processing office
- After kiosk project
  - Farmers visit kiosk office
  - Kiosk operator places request
  - After one or two days, farmer gets report

#### Warana: Cell Phone Solution

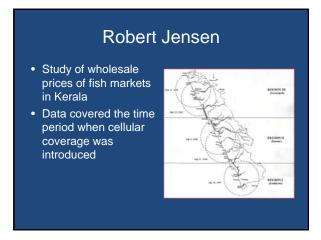
- Low cost mobile phone at the kiosk
- Smart phone running server at processing plant
  - Messages translated into DB query
    - "TON 123456 0807"
  - Answer sent back to calling phone
- Farmers would have kiosk operator place the text message
- Set up as experiment to evaluate cell phone against the PC

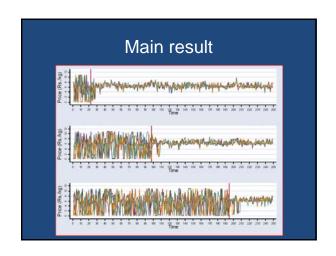


#### Key ideas for SMS Applications

1

2.


3.


## Markets and Development

- The key for solving rural poverty is greater agricultural income
- Improved markets are necessary for increasing income

#### Market Price Info

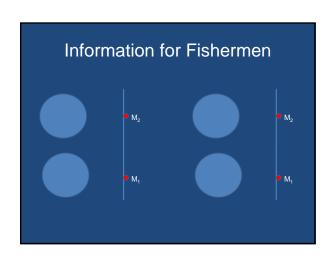
- Agricultural wholesale markets can have large price swings during the day
- Transportation costs and perishability limit producer options
- Advance notice of price information
  - Decision which market to use
  - Decision whether to bring goods to market
  - Decision whether to harvest
- Is there any evidence that this information actually is of value?

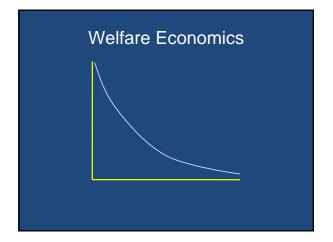


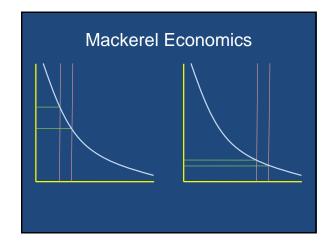


Why did prices stabilize?

32


# Importance of Agricultural Output Markets


- Significant portion of the worlds poor are in agriculture, fisheries, forestry
- Functioning of Markets important for well being of the poor
- Markets
  - coordinate dispersed consumers and producersprice coordinates allocation of goods
- Fundamental theorem of welfare economics


   "Law of one price"

# Information and Market Functioning

- Sigler, Economics of Information
  - Costly search for information leads to price dispersion
  - Especially if infrastructure is poor and markets are dispersed
- Without information, no reason to assume markets are efficient
  - Consumers, Producers, Intermediaries don't adjust to scarcity
- Price dispersion reflects inefficiency. Improved information might improve efficiency and help the poor.







#### **Economics**

- Welfare theory argues for a net gain for produces and consumers
- Gains depend on the shape of the curve
   Price elasticities
- Reduction in waste potentially benefits both groups
- Impact of reduced price variability on consumers not clear

#### Study

- Beach Market Survey (N=15, 15 km apart)
  - Every Tuesday, 7-8 am, 1996-2001
  - All transactions
- Fisherman Survey (weekly, N=15\*20)
- Fishing village survey (monthly, N = 15)
- Consumer price survey (weekly, N = 15)

## Cell phone adoption

- Fishermen quickly adopted cell phones as they became available
- Fishermen would contact a large number of buyers while at see
- Other benefits of cell phones for fishermen documented by Abrahim (ICTD 2006)

# Conclusions (Jensen)

- Poor information limits functioning of markets
- Information makes markets work, and markets help the poor
  - It's the I, not the T
- Fishing in Kerala probably not a special case
- This was not a development project
  - People figured it out on their own

### SMS (Short Message Service)

- Protocol for text messages on GSM phones
  - 1120 bit messages
    - 160 7-bit, 140 8-bit, 70 16-bit characters

#### SMS Costs world wide

| Country     | SMS Cost, Local | SMS Cost USD |  |
|-------------|-----------------|--------------|--|
| USA         |                 | \$0.10       |  |
| Pakistan    | 50 paisa        | \$0.008      |  |
| India       | 10 paisa        | \$0.0025     |  |
| China       | 0.15 yuan       | \$0.02       |  |
| South Korea | 10 won          | \$0.01       |  |
| Namibia     | 0.40 NAD        | \$0.05       |  |
| Bangladesh  | 1 taka          | \$0.015      |  |
| Philippines | 1 peso          | \$0.02       |  |
| Cambodia    | 150 riel        | \$0.03       |  |
| Bhutan      | 1 nu            | \$0.025      |  |
| Botswana    | 0.40 pula       | \$0.06       |  |
|             |                 |              |  |

#### Smart phone vs. Dumb Phone

- Should ICTD work target "Smart Phones" or "Dumb Phones".
- Why?

UW MS LUM: Home



#### Warana Wired Village (1998)

- · Case study of a failed kiosk project
- · Very ambitious goals
- Funding split:
  - Central: 50%, State: 40%, 10% Cooperative
- 54 to 70 Village Kiosks
- Setup
  - Concrete building
  - PC (Pentium, Win95), UPS, Printer
  - Landline, 10 kbps connection

# Planned applications

- · Warana on the Internet
- Database of farmer statistics
- GIS of 70 villages
- · Local language interface
- Land record computerization
- Intranet site about crop pests
- · Agricultural price info
- Personalized sugarcane information
- Internet connectivity

## Warana Experiment

- Question: can the Kiosk functions be replaced by SMS.
- Method: have Kiosk operators use cell phones instead of the PC. Other operations remained the same
- Issues
  - Physical space: kiosks and computers left in place
  - Printouts: handwritten and stamped receipts given by kiosk operator
  - Security and privacy: not a worry for the farmers.
     Access restricted to registered phones

# Warana Results: Cost Savings

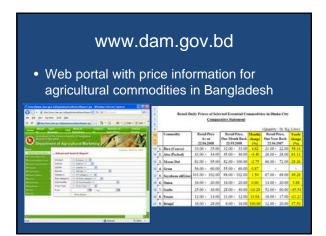
- Compared to what?
  - Existing PC System
  - New PC System
  - Mobile SMS with Kiosk
  - Mobile SMS without Kiosk
  - GPRS with Kiosk
  - GPRS without Kiosk

#### Study results

- 7 village pilot
- Training of kiosk operators on SMS system
- Usage comparable to kiosk
- Query time: 2 minutes
- Favorable response from farmers
  - Requests to expand the pilot
  - Use from phones outside of kiosks

# Other SMS based projects

# Zambian National Farmers Union


- ZNFU
- http://www.farmprices.co.zm/prices.php

# STAGE 1: Setting market prices STEP 2 The top for the form of the form of

#### tradenet.biz

- Agricultural trading in West Africa
- Primarily web based, but supports SMS notifications





### Why things fail literature

- Richard Heeks
  - Information systems and developing countries: Failure, Success, and Local Improvisation

#### **Failures**

- What percentage of startup companies fail?
- Leading cause of failure \_\_\_\_\_\_
- What percentage of IT projects fail?
- Leading cause of failure \_\_\_

#### **Design-Actuality Gaps**

- Components from the designers' own context
- Conceived assumptions about the situation of the user
- "Information systems per se have a tendency to be designed according to models of rationality"

#### Hard vs. Soft Models

| Dimension                         | "Hard" rational design                         | "Soft" political actuality               |  |
|-----------------------------------|------------------------------------------------|------------------------------------------|--|
| Information                       | Standardized, formal, quantitative information | Contingent, informal, qualitative        |  |
| Technology                        | Simple enabling mechanism                      | Complex, value-laden, status-symbol      |  |
| Process                           | Stable, formal; outcomes as optimal solutions  | Flexible, complex, constrained, informal |  |
| Objectives and values             | Formal organizational objectives               | Multiple, informal, personal objectives  |  |
| Staffing and management           | Staff viewed as rational beings                | Staff viewed as political beings         |  |
| Management systems and structures | Formal, objective processes                    | Informal, subjective processes           |  |
| Other resources: time and money   | Used to achieve<br>organizational ends         | Used to achieve personal ends            |  |

# KACE: Kenya Agricultural Commodity Exchange

- Private sector firm collecting and distributing market information to
- Market information to help small holder farmers
  - Reduce power of middleman
  - Marketplace arbitrage

smallholder farmers

Exchange of goods through offers to buy and sell

#### **KACE MIS**

- Rural market based Market Information Points (MIPs)
- District-level Market Information Centers (MICs)
- Mobile Phone Short Messaging Service (SMS)
- Interactive voice Response (IVR) service
- Internet based database system
- Mass media (radio)

#### Mobile Phone

- Branded service with Safaricom
  - 7 Ksh per message (\$ 0.10 )
- Simple SMS interface
- Prices updated daily
- Separate voicemail system
  - Pre-recorded in English and Kiswahili
  - Menu based
  - 20 Ksh

#### **Status**

- 2004 2 MICs, 11 MIPs
- Support from foundations
  - USAID, Rockefeller, etc.
  - Long term model user fees, revenue sharing with phone companies
- Moderate SMS, and website use
  - End of study an upswing in Voice use
- Possible improvements in market conditions

# Mobile phone based market information systems

• How important do you expect these to be?



• Why?

(1)

# Digital Green

- Microsoft Research India Project
- Mediated Video to promote agricultural practices
  - Locally produced video
  - Mediated by villagers





#### Small holder farmers

- Vast majority of rural poor are farmers
- · Farms are generally very small
  - Total production limits possible income
- Many farmers have limited access to inputs
  - Seed
  - Fertilizer
  - Water
- Farmers squeezed by debt and reduced land

# Agricultural Productivity

- Underlying assumption
  - Farm productivity (and sustainability) can be improved through introduction of new agricultural practices
- · Traditional agricultural extension
  - Training & Visit
  - 100,000 extension offers in India
  - Extension office salary: Rs. 4,000 per month

#### **Extension Problem**

- Disseminate agricultural knowledge
- Promote practices that increase yields and preserve environment

| Main source of<br>Agricultural<br>Information | % farm<br>households<br>(n = 51,770) |
|-----------------------------------------------|--------------------------------------|
| Other farmers                                 | 17%                                  |
| Salesmen                                      | 14%                                  |
| Radio                                         | 14%                                  |
| Television                                    | 9%                                   |
| Newspaper                                     | 7%                                   |
| Extension worker                              | 6%                                   |
| Cooperative                                   | 3%                                   |
| Buyer                                         | 2%                                   |
| Government                                    | 2%                                   |
| Other                                         | 8%                                   |

## Digital Green Project

- Green: NGO Promoting sustainable agricultural practices
- Digital Green: Collaboration between MSRI and Green using facilitated Video
- Phase I
  - Figure it out
- Phase II
  - Evaluation
- Phase III
  - Scale and spin out

#### Basic Ideas

- Video record farmers implementing practices
- Extension worker appears in video with local farmers
- Video replay done in public setting with a mediator
- · Pay close attention to costs
- Build archive of agricultural video material
   digitalgreen.org
- · Digital video is the enabling technology

# Example topic: Azolla cultivation

Azolla: Aquatic fern that can be used to augment animal feed

- 1. Dig a hole in the ground
- Line with plastic tarp
- 3. Secure tarp
- 4. Add some cow dung and cow urine
- 5. Add some Azolla
- 6. Wait a few weeks
- 7. Harvest



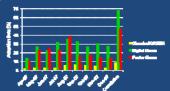
#### **Parameters**

- · Mediated vs. non-mediated
- · Mediator skill level
- Video participants
  - Facilitator
  - Farmer
- Themes
- · Screening locations

#### **Evaluation**

- Experimental study
  - 9 month study
  - 8 villages (Digital Green)
  - 8 control villages (Green extension workers)
- Digital Green
  - TV + DVD Player per village (USD \$225)
  - Mediator: 3 sessions per week
    - USD \$38 per month honorarium
  - 150 local language videos
  - 500 screenings
  - 1000 farmers participated

#### Results


- Participation
- Surveys
- Adoption
  - 280 farmers per month attended a screening
  - Approximately half expressed interest in adopting practices
  - Between 9% and 26% implemented a practice
- · Main result: four month study
  - In Control 8% adopted at least one practice
  - In DSH 55% adopted at least on practice

#### Key aspects of Digital Green

- Sustained local presence
- Mediation
- Repetition (and novelty)
- Integration into existing extension operations
- Social homophily between mediator, actor, and farmer
- Desire to be "on TV"
- Trust built from identities of farmers and villages in videos

#### Poster Green

- Same as Digital Green, with local mediator, but no TV/DVD
- Mediator makes posters and holds regular group sessions



# Cost per adoption

| System          |       | Adoption (%)<br>/Village/Year | Cost / Adoption<br>(USD) |
|-----------------|-------|-------------------------------|--------------------------|
| Classical Green | \$840 | 11%                           | \$38.18                  |
| Digital Green   | \$630 | 85%                           | \$3.70                   |
| Poster Green    | \$490 | 59%                           | \$4.14                   |

#### DigitalStar

- List two other potential applications of the DigitalGreen methodology
- •
- •

# Lecture summary

- Importance of Markets
  - Jensen, Sardine fishing in Kerala
- SMS based applications
  - Agricultural queries for sugar processing
- Other agricultural deployments unclear
- Digital Green: Mediated Video