
Attention Mechanism



Machine Translation

• Before 2014: Statistical Machine  Translation (SMT)	
• Extremely complex systems that require massive human efforts	
• Separately designed components	
• A lot of feature engineering	
• Lots of linguistic domain knowledge and expertise	

• Before 2016:	
• Google Translate is based on statistical machine learning	

• What happened in 2014?	
• Neural machine translation (NMT)



Sequence to Sequence Model

• Neural Machine Translation (NMT)	
• Learning to translate via a single end-to-end neural network.	
• Source language sentence , target language sentence 	

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)	
• Two RNNs:  and 	
• Encoder :	

• Takes  as input, and output the initial hidden state for decoder	
• Can use bidirectional RNN	

• Decoder :	
• It takes in the hidden state from  to generate 	
• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y



Sequence to Sequence Model



Training Sequence to Sequence Model 

• Collect a huge paired dataset and train it end-to-end via BPTT	
• Loss induced by MLE P(Y |X ) = P(Y | fenc(X ))



Deep Sequence to Sequence Model 

• Stacked seq2seq model



Machine Translation

• 2016: Google switched Google Translate from SMT to NMT



Alignment

• Alignment: the word-level correspondence between X and Y	
• Can have complex long-term dependencies



Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y	
• The information bottleneck due to the hidden state 	
• We want each  to also focus on some  that it is aligned with

h
Yt Xi



Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)	
• Core idea:	

• When decoding , consider both hidden states and alignment:	
• Hidden state: 	
• Alignment: connect to a portion of 	

• When portion of  to focus on?	
• Learn a softmax weight over : attention distribution 	
• : how much attention to put on word 	

• Attention output 	

• Use  and  to compute 

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt
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Seq2Seq with Attention

Summary	
• Input sequence , encoder , and decoder 	
•  produces hidden states 	
• On time step , we have decoder hidden state 	
• Compute attention score 	
• Compute attention distribution 	

• Attention output: 	

• 	
• Sample an output using both  and 

X fenc fdec
fenc(X ) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = softmax(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att



Attention

• It significantly improves NMT.	
• It solves the bottleneck problem and the long-term dependency issue.	
• Also helps gradient vanishing problem.	
• Provides some interpretability	

• Understanding which word the RNN encoder focuses on 	

• Attention is a general technique	
• Given a set of vector values  and vector query 	
• Attention computes a weighted sum of values depending on 	

Other use cases:	
• Attention can be viewed as a module.	
• In encoder and decoder (more on this later)	
• A representation of a set of points	

• Pointer network (Vinyals, Forunato, Jaitly ’15) 	
• Deep Sets (Zaheer et al., ’17)	

• Convolutional neural networks	
• To include non-local information in CNN (Non-local network, ’18)

Vi q
q



Attention

• Representation learning:	
• A method to obtain a fixed representation corresponding to a query  from 
an arbitrary set of representations 	

• Attention distribution: 	

• Attention output: 	

• Attent variant: 	
• Multiplicative attention: ,  is a weight matrix	
• Additive attention: 

q
{Vi}

αi = softmax( f(vi, q))
vatt = ∑

i

αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)



Key-query-value attention

• Obtain  from 	
• ; ;  (position encoding omitted)	

•  are learnable weight matrices	

• 	

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj



Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling	
• No RNN at all!	

• Basic component: self-attention, 	
•  uses attention on entire  sequence	
•  computed from  and the attention output	

• Computing 	
• Key , value , query  from 	

• 	
• Attention distribution 	

• Attention output 	

•  

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = softmax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)



Issues of Vanilla Self-Attention

• Attention is order-invariant	

• Lack of non-linearities	
• All the weights are simple weighted average	

• Capability of autoregressive modeling	
• In generation tasks, the model cannot “look at the future”	
• e.g. Text generation:	

•  can only depend on 	
• But vanilla self-attention requires the entire sequence

Yt Xi<t



Position Encoding

• Vanilla self-attention	
• 	
• 	

• Attention output 	

• Idea: position encoding:	
• : an embedding vector (feature) of position 	
• 	

• In practice: Additive is sufficient: ; 
	

•  is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = softmax(q⊤

t kj)
outt = ∑

j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt
(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt



Position Encoding

 design 1: Sinusoidal position representation	
• Pros: 	

• simple	
• naturally models “relative position”	
• Easily applied to long sequences	

• Cons:	
• Not learnable	
• Generalization poorly to sequences longer than training data

pt



Position Encoding

 design 2: Learned representation	
• Assume maximum length , learn a matrix ,  is a column of 	
• Pros: 	

• Flexible	
• Learnable and more powerful	

• Cons:	
• Need to assume a fixed maximum length 	
• Does not work at all for length above 	

pt
L p ∈ ℝd×T pt p

L
L



Combine Self-Attention with Nonlinearity

• Vanilla self-attention	
• No element-wise activation (e.g., ReLU, tanh)	
• Only weighted average and softmax operator	

• Fix:	
• Add an MLP to process 	
• 	
• Usually do not put activation layer before softmaax	

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2



Masked Attention

• In language model decoder: 	
•   cannot look at future 	

• Masked attention	
• Compute  as usuall	
• Mask out  by setting 	

• 	
•  is a fixed 0/1 mask matrix	

• Then compute 	
• Remarks:	

•  for full self-attention	
• Set  for arbitrary dependency ordering	

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M ) ← − ∞
M

αi = softmax(ei)

M = 1
M



Transformer

Transformer-based sequence-to-sequence modeling	



Key-query-value attention

• Obtain  from 	
• ; ;  (position encoding omitted)	

•  are learnable weight matrices	

• 	

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt
qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj



Multi-headed attention

• Standard attention: single-headed attention	
• , 	
• We only look at a single position  with 
high 	

• What if we want to  look at different  for 
different reasons?	

• Idea: define  separate attention heads	
•  different attention distributions, keys, 
values, and queries	

•  for 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i )⊤kℓ
j ); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j
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• , 	
• We only look at a single position  with 
high 	

• What if we want to  look at different  for 
different reasons?	

• Idea: define  separate attention heads	
•  different attention distributions, keys, 
values, and queries	

•  for 	

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i )⊤kℓ
j ); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j



Transformer

Transformer-based sequence-to-sequence modeling	

• Basic building blocks: self-attention	
• Position encoding	
• Post-processing MLP	
• Attention mask	

• Enhancements:	
• Key-query-value attention	
• Multi-headed attention	
• Architecture modifications:	

• Residual connection	
• Layer normalization	



Transformer

Machine translation with transformer	



Transformer

• Limitations of transformer: Quadratic computation cost	
• Linear for RNNs	
• Large cost for large sequence length, e.g., 	

• Follow-ups:	
• Large-scale training: transformer-XL; XL-net (‘20)	
• Projection tricks to : Linformer ('20)	
• Math tricks to : Performer (‘20)	
• Sparse interactions: Big Bird (‘20)	
• Deeper transformers: DeepNet (’22)	

L > 104

O(L)
O(L)



Transformer for Images

• Vision Transformer (’21)	
• Decompose an image to 16x16 patches and then apply transformer encoder	



Transformer for Images

• Swin Transformer (’21)	
• Build hierachical feature maps at different resolution	

• Self-attention only within each block	
• Shifted block partitions to encode information between blocks	



CNN vs. RNN vs. Attention



Summary

• Language model & sequence to sequence model:	
• Fundamental ideas and methods for sequence modeling	

• Attention mechanism	
• So far the most successful idea for sequence data in deep learning	
• A scale/order-invariant representation	
• Transformer: a fully attention-based architecture for sequence data	
• Transformer + Pretraining: the core idea in today’s NLP tasks	

• LSTM is still useful in lightweight scenarios	



Other architectures



Graph Neural Networks



Graph Neural Networks



Geometric Deep Learning



Supervised Learning Process

Collect a dataset	

Decide on a model 	

Find the function which fits the data best	
Choose a loss function	
Pick the function which minimizes loss 
on data	

Use function to make prediction on new 
examples

48



Framework
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Approximation Theory



Expressivity / Representation Power

Expressive: Functions in class can represent 	
“complicated” functions.



Linear Function

best linear fit



Review: generalized linear regression

Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear in h

yi ⇡ h(xi)
Tw



Review: Polynomial Regression



Approximation Theory Setup

■ Goal: to show there exists a neural network that has small error 
on training / test set. 

■ Set up a natural baseline: 
 v.s. inf

f∈ℱ
L( f ) inf

g∈ continuous functions
L(g)



Example



Decomposition



Specific Setups

■ “Average” approximation: given a distribution  

 

■ “Everywhere” approximation 

μ

∥f − g∥μ = ∫x
| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ



Polynomial Approximation

Theorem (Stone-Weierstrass): for any function , we 
can approximate it on any compact set  by a 
sufficiently high degree polynomial: for any  there 
exists a polynomial  of sufficient high degree, s.t.,  

. 

f
Ω

ϵ > 0,
p

max
x∈Ω

| f(x) − p(x) | ≤ ϵ

Intuition: Taylor expansion!



Kernel Method

Polynomial kernel

Gaussian Kernel



1D Approximation

Theorem: Let and -Lipschitz. For any 

 2-layer neural network  with  nodes, 

threshold activation:  such that 
. 

g : [0,1] → R, ρ
ϵ > 0,∃ f ⌈

ρ
ϵ

⌉

σ(z) : z ↦ 1{z ≥ 0}
sup

x∈[0,1]
| f(x) − g(x) | ≤ ϵ



Proof of 1D Approximation



Multivariate Approximation

Theorem: Let  be a continuous function that satisfies 
 (Lipschitzness). 

Then there exists a 3-layer ReLU neural network with 

 nodes that satisfy  

 

g
∥x − x′￼∥∞ ≤ δ ⇒ |g(x) − g(x′￼) | ≤ ϵ

O(
1
δd

)

∫[0,1]d

| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski



Partition Lemma

Lemma: let  be given. For any partition  of , 
 with all side length smaller than , 

there exists  such that  

 with .

g, δ, ϵ P [0,1]d

P = (R1, …, RN) δ
(α1, …, αN) ∈ ℝN

sup
x∈[0,1]d

|g(x) − h(x) | ≤ ϵ h(x) :=
N

∑
i=1

αi1Ri
(x)

Figure credit to Andrej Risteski



Proof of Partition Lemma



Proof of Multivariate Approximation Theorem



Proof of Multivariate Approximation Theorem



Proof of Multivariate Approximation Theorem



Universal Approximation

Definition: A class of functions  is universal 
approximator over a compact set  (e.g., ), if for 
every continuous function  and a target accuracy , 
there exists  such that  

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ



Stone-Weierstrass Theorem

Theorem: If  satisfies 
1. Each  is continuous. 
2.  
3.  
4.  is closed under multiplication and vector space 

operations, 
Then  is a universal approximator: 

. 

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′￼, ∃f ∈ ℱ, f(x) ≠ f(x′￼)
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ



Example: cos activation



Example: cos activation



Other Examples

Exponential activation

ReLU activation



Curse of Dimensionality

■ Unavoidable in the worse case



Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions? 
■ What are nice functions?  

■ Fast decay of the Fourier coefficients 

■ Fourier basis functions: 
  

■ Fourier coefficient:  

■ Fourier integral / representation:  

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd

f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw



Barron’s Theorem

Theorem (Barron ‘93): For any  where 
 is the unit ball, there exists a 

3-layer neural network   with  neurons and 

sigmoid activation function such that  

.

g : 𝔹1 → ℝ
𝔹1 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O(
C2

ϵ
)

∫𝔹1

( f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function  is: 

.

f

C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw



Examples

■
Gaussian function:  

■ Other functions: 
■ Polynomials 
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (−
∥x∥2

2

2σ2 )



Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite 
neural network with cosine-like activation functions. 
(Tool: Fourier representation.) 

Step 2: Show that a function with small Barron constant can be 
approximated by a convex combination of a small number of 
cosine-like activation functions. 
(Tool: subsampling / probabilistic method.) 

Step 3: Show that the cosine function can be approximated by 
sigmoid functions. 
(Tool: classical approximation theory.)



Simple Infinite Neural Nets

Theorem: Suppose  is differentiable, if 

, then 

g : ℝ → ℝ

x ∈ [0,1] g(x) = ∫
1

0
1{x ≥ b} ⋅ g′￼(b)db + g(0)

Definition: An infinite-wide neural network is defined by a 
signed measure  over neuron weights  

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)



Step 1: Infinite Neural Nets

The function can be written as  

.f(x) = f(0) + ∫ℝd

| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw



Step 2: Subsampling

Writing the function as the expectation of a random variable: 

. 

Sample one  with probability  for  times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2

C ( C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2

C
r



Step 3: Approximating the Cosines

Lemma: Given , 

there exists a 2-layer neural network   of size  with 
sigmoid activations, such that .

gw(x) =
C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))

f0 O(1/ϵ)
sup

x∈[−1,1]
| f0(y) − hw(y) | ≤ ϵ



Depth Separation

So far we only talk about 2-layer or 3-layer neural networks. 

Why we need Deep learning? 

Can we show deep neural networks are strictly better than 
shallow neural networks?



A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors.



A brief history of depth separation

Early results from theoretical computer science 

Boolean circuits: a directed acyclic graph model for computation 
over binary inputs; each node (“gate”) performs an operation (e.g. 
OR, AND, NOT) on the inputs from its predecessors. 

Depth separation: the difference of the computation power: 
shallow vs deep Boolean circuits. 

Håstad (’86): parity function cannot be approximated by a small 
constant-depth circuit with OR and AND gates.



Modern depth-separation in neural networks

• Related architectures / models of computation 
• Sum-product networks [Bengio, Delalleau ’11] 

• Heuristic measures of complexity 
• Bound of number of linear regions for ReLU networks 

[Montufar, Pascanu, Cho, Bengio ‘14] 

• Approximation error 
• A small deep network cannot be approximated by a small 

shallow network [Telgarsky ’15]



Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists 
a function  representable as a network 
of depth , with  nodes, and ReLU activation 
such that, for every network  of depth  
and  nodes, and ReLU activation, we have  

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥

1
32



Intuition

A ReLU network  is piecewise linear, we can subdivide domain 
into a finite number of polyhedral pieces  such 
that in each piece,  is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions 
than shallow neural networks.  
Make each region has different values, so shallow neural 
networks cannot approximate.



Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose  has 
all partial derivatives of order  with coordinate-wise 
bound in , and let  be given. Then there 

exists a  - depth and -size network so 

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln
1
ϵ

) ( 1
ϵ )

O( d
r )

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ



Remarks

• All results discussed are existential: they prove that a good 
approximator exists. Finding one efficiently (e.g., using gradient 
descent) is the next topic (optimization). 

• The choices of non-linearity are usually very flexible: most 
results we saw can be re-proven using different non-linearities. 

• There are other approximation error results: e.g., deep and 
narrow networks are universal approximators. 

• Depth separation for optimization and generalization is widely 
open.



Recent Advances in Representation Power

■ Analyses of different architectures 
■ Graph neural network 
■ Attention-based neural network 

■ Separation between transformers and RNNs (especially for 
programming tasks) 

■ Finite data approximation 
■ In-context learning for specific tasks  
■ Chain-of-thought 
■ …


