Attention Mechanism

W



Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designed components
e A lot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 20147
e Neural machine translation (NMT)



Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

 Source language sentence X, target language sentence Y = f(X; 0)

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,,.and f,,.

e Encoderf,, .

e Takes X as input, and output the initial hidden state for decoder

e Can use bidirectional RNN
e Decoder f,,.
e |t takes in the hidden state from f,, . to generate Y

e Can use autoregressive language model



Sequence to Sequence Model

The sequence-to-sequence model

Encoding of the source sentence.

Target sentence (output)
A

4 3\
Provides initial hidden state . . )
for Decoder RNN. he hit me with a pie <END>
\ el € £ gl : £ E‘ E‘
= g po 20 po po 20 po )
Z — [43] m 0] (18] (18] ['rU . m {'D
o O o) o) O o) O o) o 3
L | @ |0 ] O 10 (0] @) @) O o
= 1@ 10 10 10 (0) (@) 0] (o] ®
e (0] @) @) O 0] @) @) (@) =
S L
i “ T T ] \ [ | :
L =
a m’ entarté <START> he hit me with a pie
N J
Y

Source sentence (input)

Encoder RNN produces
an encoding of the
source sentence.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.




Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y' | X) = P(Y | £,,,.(X))

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

—

I
3| =
1~
o

I

Jil+ J2 + 13 #Jal+ Js + Jo6 + J7

t=1 /[ 'y A T A A ]«

1 V2 Vs Ya Vs Ve V7
F ) N N

N

Encoder RNN
I_H
H_J

NNY 13podag

il a m’  entarté <START> he hit me  with a pie
\ J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seq2seq model

Translation
generated
Encoder:
Builds up Decoder
sentence
meaning
Source i Proteste waren am Wochenende eskaliert <E0S> Feedlng In
last word

sentence



Machine Translation

e 2016: Google switched Google Translate from SMT to NMT

45
40
35
30
25
20
15
10

W Phrase-based SMT

M Syntax-based SMT

W Neural MT

2013

2014

2015

2016

— —

2017

2018

2019




Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies

Morgen| | fliege | |ich nach Kanadal||zur Konferenz
Tomorrow| | I| |will fly to the conference||in Canada
3883
The Les The
r ——— pauvres
p00’ P poor
don'’t sont )
have démunis don't
any have

money any

money




Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state 4
e We want each Y, to also focus on some X; that it is aligned with

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A N\
source sentence. he hit me with a pie <END>
Information bottleneck!

Encoder RNN
gxxn
(0000
xxn

i

il a m’  entarte <START> he hit me  with a pie

\ J
Y

Source sentence (input)

NNY 419p023(



Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
e Core idea:

e When decoding Y,, consider both hidden states and alignment:
e Hidden state: i, = f,,.(Y,,)
e Alignment: connect to a portion of X

e When portion of X to focus on?
e Learn a softmax weight over X: attention distribution P _,,
e P_.(X:|h,): how much attention to put on word X;
, Attention output /1, = Zfenc(Xi|Xj<i) -P_(X:|h,_,)

l
e Use i,_; and h,, to compute Y,



Seq2Seq with Attention

dot product

[
O wn
2 ¢
[
@)
£ 3
<
o o Y 0 0 o
= o o o .o J|o
o ) 1@ o 10 10
S o) o) o) o) o)
il a m’  entarté <START>
N J
Y

Source sentence (input)

NNY Japodag



Seq2Seq with Attention

dot product

Attention
scores

Encoder
RNN

il a m’  entarté <START>
I\ J

Source sentence (input)

NNY Japodaq



Seq2Seq with Attention

dot product

Attention
scores

o @ e ) o o
EE o |o| |o| o | O
o £ e |® o |® ’lo
S o) ) o) o 5]
il a m’  entarté <START>
4 J
Y

Source sentence (input)

NNY J9p02aq



Seq2Seq with Attention

dot product

Attention
scores

o o ) ) @ 1)
e o |o o |® | O
O (] 10 (] 10 10
S o) o o) o) o
il a m’  entarté <START>
L J
Y

Source sentence (input)

NNY 12P02a(



Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

RNN

On this decoder timestep, we're

mostly focusing on the first
{ / encoder hidden state ("he”)

Take softmax to turn the scores
— . ape . . -
into a probability distribution
@ ) (] o (0]
@ | @ e | @ JO
@ 1@ (] 1@ 10
(] ] (] ) (@)
il a m’  entarté <START>
\ J
Y

Source sentence (input)

NNY Japo2ag



Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

RNN

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.

Attention
output
| e | | e |

(] ) @ @ (0]
| |O @ O J0
@ 1O @ |10 10
0] @ @ @ (@]
il a m’  entarté <START>
N J

Y
Source sentence (input)

NNY 42p029(



Seq2Seq with Attention

Attention he
output

.
B
.
.
.
.
.
. D
o o
o
.
Y
.
.
.

Attention
distribution

Attention
scores

A——

Concatenate attention output
with decoder hidden state, then
use to compute 4 as before

o 0 o 0 0 o
EE o .o o (o [
O | |10 @ 10 10
5 @ () @ @ (0]
il a m’  entarte <START>
1\ J
Y

Source sentence (input)

NNY 42p029(



Seq2Seq with Attention

Attention

Decoder RNN
—

Y2
A

0000

0000

| — FY Y Y ) —
N

F—— i Y Y Y ) —

. v
.t
o, ‘.
", .,
. e
o,
.
)
s,
..

3

1l 0000 | —

uoiNQLISIp  S3102S NNY
uoIUSY  UOIUANY  Japodul

<START> he

entarté

ml

il

Y

Source sentence (input)




Seq2Seq with Attention

me

Attention

f
V3
N

output

Decoder RNN
—M

uoniNguUISIp
uolju=a1y

{

$9402S
uonuany

~
T

{

NNY
Jopoou]

0000 |c—

0000 |[c—

0000 [c—

0000 <—

0000 <—

0000 [<—

Q000 |<—

hit

<START> he

entarte

ml

il

Y

Source sentence (input)




Seq2Seq with Attention

with

Attention

N

Decoder RNN
\II)IIJ

-------
ann®
e
ant

.
“,
‘u
.
s, N
. N
.
L
‘e
.,

uoiNQUISIP
oIS

fll<||\

S9J102S
uoIuY

0000

0000

0000

0000

&

f&——

N

j&e———

fIIJ\II\

NN
Japoou]

me

hit

<START> he

entarte

ml

il

Y

Source sentence (input)




Seq2Seq with Attention

pie

C
0
-
c
Q
+—
-
<<

Decoder RNN
}

Ve
N

~
—

0000 [¢——

0000 |c—

0000 [¢——

0000

~
r

0000 [e—

0000 [e——

0000 [<—

0000 <—

e
",
“fle
[~

)

0000 <—

~
” |

{

uonINQLIASIp
uouaNY

N

{

Sa2J02S
uonuUANY

0000 |<—

{

NNY
13poou]

a

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)




Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,.
® fono(X) produces hidden states 2", h3", ..., hy'*
e On time step 7, we have decoder hidden state 4,
e Compute attention score ¢; = h,' h?"™
e Compute attention distribution a; = P,_,,(X;) = softmax(e;)
, Attention output: i, = Z a;h;"
i

Y, ~ g(hy, hyy5 0)

e Sample an output using both s, and h5;¢



Attention

e |t significantly improves NMT.
e |t solves the bottleneck problem and the long-term dependency issue.

e Also helps gradient vanishing problem. 2z 25 o 8
e Provides some interpretability ”‘
e Understanding which word the RNN encoder focuses on @

.
e Attention is a general technique entarte :E-

e Given a set of vector values V; and vector query ¢
e Attention computes a weighted sum of values depending on ¢

Other use cases:
e Attention can be viewed as a module.
* In encoder and decoder (more on this later)
e A representation of a set of points
e Pointer network (Vinyals, Forunato, Jaitly '15)
e Deep Sets (Zaheer et al.,’17)
e Convolutional neural networks
e To include non-local information in CNN (Non-local network, '18)



Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from
an arbitrary set of representations { V;}
e Attention distribution: a; = softmax(f(v;, q))
, Attention output: v, = Z a;V;

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, q) = qTWhl-, W is a weight matrix
e Additive attention: f(v;, q) = uTtanh(le,- + W,q)



Key-query-value attention

e Obtain q,, v, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; iV;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KTXT € RTXT

/_/

softmax| xQKTXT | xyv =
output € R7*4



Attention is all you need (Vsawani '17)

e A pure attention-based architecture for sequence modeling
e No RNN at all!

The

didn'’t

e Basic component: self-attention, ¥ = f¢,(X; 0) cross
e X, uses attention on entire X sequence e
e Y, computed from X, and the attention output s
e Computing ¥, e
e Key k,, value v, query g, from X, |
* (ki vingy) = 81X 6) TR S
e Attention distribution @, ; = softmax(g,'k;) seliattention

) ki a1 vi ky g2 v, k3 q3 vs
Attention output out, = Z & ;V; \*/
J

self-attention

Y, = g,(out; 0)

kl'\E;'vl ky a2 v, k3 q3 v3
W1 wy w3

The chef who

The
animal
didn’t
cross
the
street
because

was
too
tired



Issues of Vanilla Self-Attention

e Attention is order-invariant

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
e In generation tasks, the model cannot “look at the future’
e e.g. Text generation:
e Y, canonly depend on X, _,
e But vanilla self-attention requires the entire sequence

)



Position Encoding

¢ Vanilla self-attention

¢ (kp Vp ql‘) — gl(Xta 9)
oy ;= softmax(g,’ k;)

, Attention output out, = Z A iV

J
e |dea: position encoding:

e p;: an embedding vector (feature) of position i
e (k,vinq) = g1([X,, p,); 0)

* In practice: Additive is sufficient: k, < l;t +pnq; < 4, +p,.Vv, <V, +p,;
(k[a ‘7[, g]t) — gl(Xt’ 9)

* p,is only included in the first layer



Position Encoding

p, design 1: Sinusoidal position representation
® Pros:

e simple

e naturally models “relative position”

e Easily applied to long sequences
e Cons:

e Not learnable

e Generalization poorly to sequences longer than training data

EY «
Position

Heatmap of plij

/sin(i/moooz*l/d)\
cos(i/1000021/%)
pi = *

* d
sin(i/10000%*2/%)
Z*E/d
\cos(i/100007 2°7))

Dimension

Index in the sequence



Position Encoding

p, design 2: Learned representation
e Assume maximum length L, learn a matrixp € RXT p;is acolumn of p
¢ Pros:
e Flexible
e Learnable and more powerful
e Cons:
e Need to assume a fixed maximum length L

e Does not work at all for length above L



Combine Self-Attention with Nonlinearity

e Vanilla self-attention
* No element-wise activation (e.g., ReLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
e m; = MLP(out;) = W,ReLU(W,out; + b)) + b,
e Usually do not put activation layer before softmaax

r r»r

FF FF FF
! ! !

self-attention

A S

n
—

FF FF FF FF
r 1 : r
self-attention
. . . LN ] .
wy wy w3 wr

The chef who food



Masked Attention

e In language model decoder: P(Y,| X._,)

e out, cannot look at future X,

* Masked attention
« Compute ¢; ; = ql.Tkj as usuall

e Mask out ¢, ; by setting ¢;,,; = — o0
ceO(l—-M)« —x
e M is a fixed 0/1 mask matrix S '
e Then compute a; = softmax(e;) C . .
e Remarks: /Y
e M = 1 for full self-attention

e Set M for arbitrary dependency ordering

raw attention weights mask

Ur Y2z Ys Y+ Us Y




Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]
t
Transformer

Decoder

[decoder attends t
to encoder states] °

Transformer
Decoder

-‘-

+
[input sequence] [output sequence]




Key-query-value attention

e Obtain q,, v, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; iV;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KTXT € RTXT

/_/

softmax| xQKTXT | xyv =
output € R7*4



Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV K, V! € RF for 1 <?<h

I,]

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

£ ONT 1,6 ‘ _ £ ,C
L= softmax((ql- ) kj ) out; = Z a; iV
J

Multi-head attention
(just two heads here)

X XQ; XQ,
Q102 =




Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV K, V! € R™ffor1 < £ < h

J

£ NTLEN il — 217
, & = softmax((g;) 'k ); out; = Z & Vi
J

Utterance Level Representation

c= EEENGH < |

Attention 3

Wiz Wiz3z Wiz Waz Ws3z  Wes W3

Attention 2

Wiz Wiz Wiy Wiy Wsp; W, W2
,—r' ﬁl\\\ Attention 1
m-m I O -
Wi1 Wa1 W3p Wy Wsqg Weg Wn1
hys Head 3
hy, Head 2
hyq Head 1

h1 h2 h3 h4 h5 h6 hN
\

' Sequence of Encoded Representations or Hidden States




Transformer

Transformer-based sequence-to-sequence model

e Basic building blocks: self-attention
e Position encoding
e Post-processing MLP
e Attention mask

e Enhancements:
e Key-query-value attention
e Multi-headed attention
e Architecture modifications:
e Residual connection
e Layer normalization

Output
Probabilities
~
(| Add & Norm
Feed
Forward
4 1 ~\ | Add & Norm ﬁ
SEE & LEAT Multi-Head
Feed Attention
Forward I ) Nx
| S—
Nix Add & Norm
f-" Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 1t
o J —
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)



Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10"  1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10"® 1.5.10%
MoE [32] 26.03  40.56 2.0-101 1.2.10%0
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 -10%"
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%"  1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-101%  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3.10"




Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
e Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)



Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

s

MLP ]

Vision Transformer (ViT)

MLP \
Head
Transformer Encoder ]
Pa{‘:c:‘l;edpg?;t;on e J @ é

Extra learnable
[class] embedding Linear Projection of Flattened Patches

I I I
B 1 5 g i P

[ Multi-Head
Attention

N

Norm

[ Embedded
Patches

- . — -
=
ﬁ -




Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks

Layer | Layer 1+1
Bl g o
A local window to
perform self-attention
[]
ol s _ M R A patch

segmentation -
classification  detection ... clasm?catlon
0 A

Ly - o ,47/ 71 -

LT T

S A
L ety (i Sy 4% | 16x

Wz of S
L s P

(a) Swin Transformer (ours)

(b) ViT

Figure 2. An illustration of the shifted window approach for com-



CNN vs. RNN vs. Attention

Convolution Recurrence Self-Attention

7T = % & &4 " F 1T -2 " a3 F

The cat sat on the mat The cat sat on the mat The cat sat on the mat




Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios



Other architectures




Graph Neural Networks

Adjacency Feature
matrix nxXn matrix nxd

X
Adjacency Feature
matrix nXn matrix nxd T
PAPT PX

arbitrary ordering of nodes



Graph Neural Networks




Geometric Deep Learning

32

Perceptrons
Function regularity

DeepSets / Transformers
Permutation

( 32
—
32
6

CNNs

Translation

e

GNNs

Permutation

i 0

Group-CNNs

Translation+Rotation

Intrinsic CNNs
Local frame choice



Supervised Learning Process

Collect a dataset
Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples

48



Framework

49



Approximation Theory

UNIVERSITY of WASHINGTON



Expressivity / Representation Power

Expressive: Functions in class can represent
“complicated” functions.



Linear Function

best linear fit



Review: generalized linear regression

Transformed data:

Hypothesis: linear in h

Yi ~ h(ilfi)Tw



Review: Polynomial Regression




Approximation Theory Setup

= Goal: to show there exists a neural network that has small error
on training / test set.

= Set up a natural baseline:

inf L(f) v.s. int L(g)
feF ge continuous functions



Example



Decomposition



Specific Setups

= “Average” approximation: given a distribution u

- gll, = J () — 200 | du(o)

= "Everywhere” approximation

If = gllo = sup [ f(x) — g | = [If —«ll,



Polynomial Approximation

Theorem (Stone-Weierstrass): for any function f, we
can approximate it on any compact set €2 by a
sufficiently high degree polynomial: for any € > 0, there
exists a polynomial p of sufficient high degree, s.t.,

max | f(x) — p(x)| < e.

xeQl

Intuition: Taylor expansion!



Kernel Method

Polynomial kernel

Gaussian Kernel



1D Approximation

Theorem: Let g : [0,1] — R, and p-Lipschitz. For any
e > 0,3 2-layer neural network f with [ﬁ] nodes,
€

threshold activation: 6(z) : z — 1{z > 0} such that

sup |f(x) —g)| < e
x€[0,1]



Proof of 1D Approximation



Multivariate Approximation

Theorem: Let g be a continuous function that satisfies
|x — x|, £ 6= |gx)— gx")| < e (Lipschitzness).
Then there exists a 3-layer ReLU neural network with

1
0(§) nodes that satisfy

[ [ —g)|dx=|f—¢gll; Le
[0,1]4

o [ ] o o o
7
S o
® ® Q{XQ ®
o o o o o

Figure credit to Andrej Risteski



Partition Lemma

Lemma: let g, 0, € be given. For any partition P of (0,114,
P = (Ry, ..., Ry) with all side length smaller than 0,

there exists (ay, ..., ay) € R such that

N
sup | g(x) — h(x)| < e with h(x) := ) a1, ().

x€[0,1]¢ i=1
o o o o [ )
Xi ®
[ ) o [ ) ® X [ )
o o o o o

Figure credit to Andrej Risteski



Proof of Partition Lemma



Proof of Multivariate Approximation Theorem



Proof of Multivariate Approximation Theorem



Proof of Multivariate Approximation Theorem



Universal Approximation

Definition: A class of functions & is universal
approximator over a compact set S (e.g., [0,1]%), if for
every continuous function g and a target accuracy € > 0,

there exists f € & such that
sup | f(x) — g | <€

xeS



Stone-Weierstrass Theorem

Theorem: If F satisfies

1. Each f € & is continuous.

2. Vx,df € &, f(x) #0

3. Vx #x,df € F, f(x) # f(x)

4. F is closed under multiplication and vector space
operations,

Then & is a universal approximator:

Vg:S—> R e>0,3fe F,||f—gll, L€



Example: cos activation



Example: cos activation



Other Examples

Exponential activation

RelLU activation



Curse of Dimensionality

= Unavoidable in the worse case



Barron’s Theory

= Can we avoid the curse of dimensionality for “nice” functions?
= What are nice functions?
= Fast decay of the Fourier coefficients

= Fourier basis functions:
(e (x) = e = cos({w, x)) + isin({w, x)) | w € R9}

Fourier coefficient: f(w) = J f(x)e_i<w’x>dx
Rd

Fourier integral / representation: f(x) = [ f(w)ei<w’x>dw
Rd



Barron’s Theorem

Definition: The Barron constant of a function fis:

o [ [wlly] fow) | dw.
[Rd

Theorem (Barron ‘93): Forany g : B; — R where

B, = {x € R : ||x]|, £ 1} is the unit ball, there exists a
2

3-layer neural network f with O(—) neurons and
€
sigmoid activation function such that

{ (f(x) — g(x))*dx < €.
B

1



Examples

2
X
Gaussian function: f(x) = (27T62)d/2exp B | ||2

. 20?

= Other functions:
= Polynomials
= Function with bounded derivatives




Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite
neural network with cosine-like activation functions.

(Tool: Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.

(Tool: subsampling / probabilistic method.)

Step 3: Show that the cosine function can be approximated by
sigmoid functions.

(Tool: classical approximation theory.)



Simple Infinite Neural Nets

Definition: An infinite-wide neural network is defined by a
signed measure v over neuron weights (w, b)

f(x) = J oc(w'x + b)dv(w, b).

weRI hbeR

Theorem: Suppose g : R — R is differentiable, if
1

x € [0,1], then g(x) = " 1{x > b} - g'(b)db + g(0)
0



Step 1: Infinite Neural Nets

The function can be written as

Jx) = f0) + J | fw) | (cos(b,, + (w, x)) — cos(b,))dw.

Rd



Step 2: Subsampling

Writing the function as the expectation of a random variable:

f(x) = f(0) + J Lfw) [llwll, ( ¢ (cos(b, + (w, x)) — cos(bw))> dw.
Rd C Iwll,
| Fom) [lIwll,

Sample one w € R4 with probability C for r times.



Step 3: Approximating the Cosines

Lemma: Given g (x) = (cos(b,, + (w, x)) — cos(b,)),
[wll

there exists a 2-layer neural network f, of size O(1/¢) with

sigmoid activations, such that sup |f,(y) — A, (y)| Le.
x€[-1,1]



Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.
Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?



A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

A )
B |7 Q
C

)




A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Hastad (’86): parity function cannot be approximated by a small
constant-depth circuit with OR and AND gates.



Modern depth-separation in neural networks

 Related architectures / models of computation
e Sum-product networks [Bengio, Delalleau "11]

 Heuristic measures of complexity

e Bound of number of linear regions for ReLU networks
[Montufar, Pascanu, Cho, Bengio ‘14]

 Approximation error

« A small deep network cannot be approximated by a small
shallow network [Telgarsky '15]



Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every L € N, there exists
a function f : [0,1] — [0,1] representable as a network
of depth O(L?), with O(L?) nodes, and ReLU activation
such that, for every network g : [0,1] — R of depth L
and < 2% nodes, and ReLU activation, we have

1
/() — g(0) [dx = —-.



Intuition

A ReLU network f'is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces (P, P,, ..., Py) such
that in each piece, f'is linear: Vx € P;, f(x) = Ax + b,.

Deeper neural networks can make exponentially more regions
than shallow neural networks.

Make each region has different values, so shallow neural
networks cannot approximate.



Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose f : (0,119 > R has
all partial derivatives of order r with coordinate-wise
bound in [—1,1], and let € > O be given. Then there

€ €

that sup |f(x) —gkx)| <Le.
x€[0,1]¢

0(4)
1 r
exists a O(In —) - depth and (—) -size network so



Remarks

 All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

e The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

* There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

e Depth separation for optimization and generalization is widely
open.



Recent Advances in Representation Power

= Analyses of different architectures
= Graph neural network
= Attention-based neural network

= Separation between transformers and RNNs (especially for
programming tasks)

= Finite data approximation
= |n-context learning for specific tasks
= Chain-of-thought



