Convolutional Neural
Networks

Multi-layer Neural Network

al) = x
-2 = @sM

a® = g (z®)

L+ — @D O
a+) = ¢ (Z(l+1))

5 = a@+D

L(y,y) =ylog(y) + (1 —y)log(l — y)

1 Binary
g(z) = | + e Logistic
€ Regression

Neural Network Arcr)it%cture
op

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.
Wjert pror
)00

s ® ®
257 \"“f"\
SPN= BN

N/ \/
SIS
NN NESEARAN S
XS SEESASAKX
SRR RIC
LS ‘ ZLN a(s)

NRER

Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.

/H O
\Vl{ 9 W@f/ S
éi@foﬁtﬁ%‘}& - \

LN
e
SIS V‘é’é:{(“.
SRR
RN /' \\

a(,“‘V/,A

S
V i\

a(2) a3)

We say a layer is Fully Connected (FC) if all linear mappings from the current
layer to the next layer are permissible.

al**tl) = g(©a™) for any © € Rr+1x7s
A lot of parameters!! 10170 + 12713 + - nrnrii

Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
image.

Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
image.

Similarly, to identify
edges or other local
structure, it makes
sense to only look at
local information

Neural Network Architecture

VS.

A (k) A (E+D)
(O0,0 ©01 Oo2 ©Ops ©Op4] (@00 ©01 O 0 0]
O10 O11 O12 O13 O O10 ©11 O19 0 0
O20 O21 O22 O23 Oy 0 ©21 O35 B33 0
O30 ©O37 O35 O33 O34 0 0 ©Osz2 O33 0Oz4
1©40 O41 Ou2 O43 Ogy | 0 0 0 ©O43 ©Og4]

Parameters: n2 3n — 2
n—1

Neural Network Architecture

Mirror/share local
weights everywhere

VS.
5K (e.g., structure equally
SO
/)ﬁ\ y likely to be anywhere in
image)
(000 ©01 ©o2 O3 Op4) (O ©p1 O 0 0] (0, 0 0 0 O]
10 ©11 O12 O13 Oy ©10 ©11 ©12 0 0 0o 01 62 0 O
@2,0 @2,1 @2,2 @2,3 @2,4 0 @2,1 @2,2 @2,3 0 0 90 91 92 0
O30 ©O31 O32 ©O33 O34 0 0 ©32 O33 O34 0 0 6y 6; 06
1O40 ©Os1 Ou2 Ou3 Oy | 0 0 0 O3 Og4 0 0 0 6y 6]
Parameters: n2 3n — 2 3

Neural Network Architecture

Fully Connected (FC) Layer

0, 6 0 0 O]

0 0 0 6 6]

Convolutional (CONV) Layer (1 filter)

9 6, 6, 0 0 i
0 6, 6, 6, 0| M3
0 0 6y 6, 6

(kﬂ) (Z 0, azﬂ) (16« a®];)

Convolution*

_1) & R™ isreferred to as a “filter”

Example (1d convolution)

1/1/1/0|0

Input x € R”

1|01

Filter 6 € R™

m—1
7=0

Output 0 *x x

Example (1d convolution)

1/1/1/0|0

Input x € R”

m—1
7=0

1|01

Filter 6 € R™

1,(11,‘00/_\2‘

Output 0 *x x

Example (1d convolution)

1/1/1/0|0

Input x € R”

m—1
7=0

1|01

Filter 6 € R™

Output 0 *x x

Example (1d convolution)

1/1/1/0|0

- Input x € R"
(Oxx)i= bz, > & O
=0 1101
()MA JM? Filter § € R™

SEEEEE s (EEET
/UOutput 0 x x

2d Convolution Layer

Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

» Locally-connected, 400,000 hidden units 10x10 fields = 40
million params

» Local connections capture local dependencies

Convolution of images (2d convolution)

[—) X0
ZZIz—I—m]—I—nK(n) ;ii:: 1101
0|0 |1|1]|1 0|1 0
(ZQ ()O‘dd(vl% 0o/o|1]1]0 1101
) ojtf2]0]0 Filter K
:o—rop(u}_) 'r\ﬁ:" tmage 1
" 111100]
1 e i
I 1oj1]11 0] /|4
! Q<1 0><0I Ix:. 10 1'
) o 21 o~
(_|0]0j171]0] t
(_|0]1|1]070
([U LU L TAC lved
0L Mhage onvolve

Feature
I x K

Convolution of images

Operation Filter Convolved
Image
1 0 -1
(I« K)(i E E Ii4+m,j+n)K(m,n) 00 i
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1
[—1 -1 -1]
-1 8§ -1
[-1 -1 -1
[0 -1 0]
Sharpen -1 5 -1
| 0 -1 0
- 1 1 1 1
ox blur 211 11
(normalized)
1 11

Gaussian blur 1
(approximation) 16

Stacking convolved images
,;t Tenso v/

97,)(771 £ /(

32

7

1

0\(!)

27

7%/

Ok__

% (z K (o) % KE“

Tr < .

RTLXTLXT’

Og)

e Filthpy 2
Stacking convolvedﬂmages

m/cw(mﬂ’/ -
f - (D
2 ‘ C ’
32 // i | +: W J
;>O DIOOQP Repeat with d filters! (;/l
— > 7/

Pooling reduces the dimension

and can be interpreted as “This
filter had a high response in

this general region”

27x27x64

Pooling avives!

Single depth slice

()0@[{%2

T11](1]2]4
max pool with 2x2 filters

5|6 |7 |8 | “afdstrdé?2 6
)

3 | 2 i

1 | 2 [

y

14x14x64
pool

Pooling Convolution layer

- 14x14x64
32
6 T
Bt
T ——
6@;>ooeoo
3 27
—
7z
3 64 filters MaxPool with
Convolve

2x2 filters and
with 64 6x6x3 filters stride 2

Flattening

; 14x14x
32

—={0000}

27

Flatten into a single
vector of size

14*14*64=12544

N
|

3

64 filters MaxPool with
Convolve 2x2 filters and
with 64 6x6x3 filters stride 2

Training Convolutional Networks

reshape

CONV hidden layer
pool
/ 27 14x14x6
32
——
c@——;>ooooo \output layer

27

FC hidden layer

|

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some connections
removed.

Train with SGD! e

44
«#’«{

output layer

W
b
o§

hidden layer 1 hidden layer 2

Training Convolutional Networks

reshape _
CONV hidden layer FC hidden layer

pool
/ 2 14x14x6
32
c@§>ooc>oo l ‘ output layer
a/ 27 — _
32 /

|

Real example network: LeNet

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

cat (0.04)
boat (0.94)
bird (0.02)

'I

[TTTTT]
EEEEEEE

Real example network: LeNet

Convolution
+ RelU

Pooling Convolution Pooling

Output
Layer

FC
Layer 2

FC
Layer 1

Fully Fully
Connected Connected

Pooling
Layer 2

EE ==2= Convolution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer

Output Predictions

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Famous CNNs

ImageNet Dataset

~14 million images, 20k classes

ré'-l ““b‘; ““-.;,;'n."""' X ==

= e x'ﬁv'}'!o; it 2 P S
\ h“““;__ 2B 3

Deng et al. “Imagenet: a large scale hierarchical image database” ‘09

AlexNet

Breakthrough on ImageNet: ~the beginning of deep learning era

Max
pocling

T 192 128 2048
27 128 ; S -
N 13 \13 13
f N\ b T
. ¥ 5= dense | [den
FTAE N 3.”..13. 13 dens
4
192 192 128 Max
ling 209
128 Max pooiing
pooling

gag \dense
1000

—

2048

Krizhevsky, Sutskever, Hinton “ImageNet Claasification with Deep

Convolutional Neural Networks”, NIPS 2012.

AlexNet

oA [

8 layers, ~60M parameters /[

Top5 error: 18.2% ‘ﬂ

Softmax Output]

4 —)

. Layer 5: Conv + Pool
Techniques used: W -
ReLU activation, overlapping pooling, [payer4:Comv
SNe——— — L % y
dropout, ensemble (create 10) =& _
patches by cropping and average the | layer3:Conv

W data-augmentation

(inténsity of RGB channels)

[Input Image]

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

[Softmax Output]

i

Remove top fully-connected layer 7
Drop ~16 million parameters

1.1% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet +

[Softmax Output]
N

Remove both fully connected

- | D

Iayers 6and 7 Layer 5: Conv + Pool
e
Drop ~50 million parameters . Layer4:Conv
) ZS _
. Layer 3: Conv
5.7% drop in performance \ J)

[Input Image }

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove upper convolutio / feature
extractor layers (layer 3 and 4)

Drop ~1 million parameters

3% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

[Softmax Output]

| S—

[Layer 5: Conv + Pool]
Z N

AlexNet [Softmax Output]

AN
Remove top fully connected layer
6,7 and upper convolution layers [Layer 5: Conv + Pool]
3,4. AN

33.5% drop in performance.

Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial]

GooglLeNet

Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. "14]

GooglLeNet

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. "14]

Inception Module

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions s ’ B

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. "14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/

vanishing) U((,([/e(/f(’ f@l"ﬂ"’} (/”'f()
- /W -
§ ;\; M
% . *g“ ol 20-layer
= 8
& 20-layer
| LA e

1 1 L
5 6 G0 1 2

1 I 1 I
1 2 5 6

(=]

iter.3 (1e4)4 iter.3 (1&:4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

[He, Zhang, Ren, Sun, '16]

Residual Networks Wi S (U/H-(' /,i([—//i Y ﬁ

w

Idea: identity shortcut, skip one or more layers. m()

Justification: network can easily simulate shallow network (F' ~ 0),
so performance should not degrade by going deeper.

O[/#()\/l)'
(\l/bé(\}/(X)Tr b(oﬁJw/ il
L
Wweight layer
X O{ F(x) l relu .
\/\/(/\/\/1 /\/ O W1‘we|ght layer identity

OJ‘&Q\T\\ N 7\ F(x) +x

[He, Zhang, Ren, Sun, '16]

Residual Networks e s

ey [3acomed |
size; 224

output pock. /2
size: 112
[33conv,128 | [x7conv, 64,2 | 7o, 64,72 |
output oo: n ooo'l n noot 2
® 3.57% top-5 error on ImageNet Vommy O O
| 3x3mzw,256 | iuctzrw,ﬂ 313«:1\1,64_]
° L3 | 3x3conv,256 | 3.3 conv, 64 3x3conv, 64 |
e First deep network with > 100 layers. i i
sxsc:w,sa 33comv, 60 |
. 3uo:w,641

3x3 conv, 64
2

e Widely used in many domains

oot pool, /2 33 conv, 128, /2 3x3 conv, 128, /2
output -
siz0: 28 ¥ ¥ y
| 33conw,512 | 3x3 conv, 128 3G conv, 128 e
AlphaGo (e] : =)
3x3 conv, 512 3x3 conw, 128 3x3 conv, 128
p ¥ v\
[33cow,512 | 3x3 con, 128 3x3 conv, 128
A4
| 33cow,512 | 3x3 conv, 128 33 conv, 128 |
2
7X7 convl 64’ /2 3x3 conw, 128 33 conv, 128 |
2
* 3x3 conv, 128 3x3 conv, 128
I / 2 3x3 conv, 128 3x3 conv, 128
pool, ot pool, /2 33 conv, 256, /2 Ao, 26,2 | .
) 2 Y
3x3 conv, 512 3x3 conw, 256 33 conv, 256 | 3

2
3x3 conv, 512

3x3 conv, 256
2

3x3 conv, 64

\ 4
3x3 conv, 64

3x3 conv, 256

3x3 conv, 256
2

L
[
2
| 3x3conv, 512
[2

3x3 conv, 512 3x3 conv, 256 3x3 conv, 256 I

2
33 conv, 256

33 conv, 256 |
2

3x3 conv, 256

3x3 conw, 256

3x3 conw, 256 3x3 conv, 256

2
3x3 conv, 256 3x3conv, 256 |

3x3 conv, 64 v 7
3x3 conv, 256 3x3 conv, 256
* 3x3 conw, 256 3x3 conv, 256 |
A2

[
[
[
[
[
[
[
L
[
[
[
[
[
[
[
[
2
| 3x3conv, 256
2
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

3x3 conw, 256 3x3conv, 256 |
3x3 conv, 64 , s e — e
outpur pool, 2 33 conv, 512, /2 3dcom, 512,22 |
size: 7 i
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 cony, 512
3x3 conv, 64 ¥ ¥
3x3 conv, 512 3x3 conv, 512
* 3x3 conv, 512 3x3cony, 512 |
2
3x3 conv, 512 343 conv, 512
3x3 conv, 64 ' e orsn |
W'p_“(fc 4096 avg pool avg pool
I — size: 1 * *
ceee~-- [fc 4056] [¢ 1000] [fc 1000]

[He, Zhang, Ren, Sun, '16]

Densely Connected Network

Idea: explicit forward output of layer to all future layers (by
concatenation)

Intuition: helps vanishing gradients,
encourage reuse features (reduce

parameter count)

Issues: network maybe too wide,
need to be careful about memory

consumption

Prediction

Dense Block 3

=l

Dense Block 2

Input
‘ Dense Block 1
& > (W -

[He, Zhang, Ren, Sun, '16]

‘horse”

Buljood
v
Jeaur

| uonnjoauon |
Y
Buljood
LA

| uonnjoauon |
¥
Buljood
Y

| uonnjoauon |

Neural Architecture / Hyper-Parameter Search

Many design choices:
e Number of layers, width, kernel size, pooling, connections, etc.
e Normalization, learning rate, batch size, etc.

Strategies:

e Grid search

e Random search [Bergestra & Bengio "12]
e Bandit-based [Li et al. "16]

e Gradient-based (DARTS) [Liu et al. "19]

e Neural tangent kernel [Xu et al. "21]

Recurrent Neural
Networks

Add ticker

News

vs. Electronic Technology | | B

Sequence Data

1 YEAR CHANGE 76.04%

May

Jan 2020

:1;63"’; 414;)8:8% +0.05%
RMEE =B ox @B v o o (EK) EE BB v
Deep learning is a popular area in Al ® x FEZIEARGR|ITE
Shéndu xuéxi shi Al de rémén lingyu.
=D 38 /5000 L D) [E]

\J

State-Space Model by 7'y.79vwm707 Y e -

e /1, hidden state

e X.:input

e Y.: output

o Y, h,=f(h_y,X;0)
e h_,:initial state =~ ()

“EEERE

X(t) x(n) ﬁ(’(') (ﬂ

t=0 ?

Time

. X T
(U

Recurrent Neural Networ

e /1, hidden state Y(t)

Xy S EENARE.
! i) 1o

e Y: output .—>T - I} T {)AT T :

* Y, h, = f(h_, X 0) X(t) 1§

e /i_;:initial state t=0

Time

Fully-connect NN vs. RNN

e /1,: a vector summarizes all past inputs (a.k.a. “memory”)
e h_, affects the entire dynamics (typically set to zero)

o X, affects all the outputs and states after ¢

e Y. dependson X, ..., X,

Recurrent Neural Network

e /1, hidden state Yt (0

e X.:input A * * * * * *
- Nd) b1

e Y.: output .—» . : ¢ : v : , 1 1

° Yt’ hz =f(ht71,Xt; 0) Xt) Xh

e h_,:initial state

B q (() Time
X¢ €)l <o
h« € B U\/ U') W\Y /
Fully-connect NN vs. RNN b“’ L RY
e RNN can be viewed as repeated applying fully-connected NNs

o h, = (WVX +Wbp _ 4+ b))) v,
o Y = Uz(W(z)h ~+ b(z)) () | d 7(Y / 9 | Ol
* 0, 0, are activation functions (sigm0|d, RelLU, tanh, etc) (‘LD

Recurrent Neural Network

Stack K layers of fully-connected NN
o ht(k): hidden state
e X.:input
e Y.: output
o D) = £, () Y.
,“’Ztac) _ ;%lo((Z’@l’ ,ﬁ’éﬁz. o)
t 1 V=t 0
o ¥, = fo,(h{"); 0)
o hfkl): initial states

Training Recurrent Neural Networ
(]

e h: hidden state mmﬂ

T (76)-K0)
vz |

o Xt: input Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y()
. Yt: output
_ h.
Y, h, =f(h_,X;0) 1
. h |+ initial state
X(O) X(1) X(2) X(T-2) X(T-1) X(T)

e Data: {(X,, Dt)}T_ RNN can handle more general data format)
, Loss L(0) = Z (Y,

e Goal:learn @ by gradient-based method
e Back propagation

Extensions

What if Y, depends on the entire inputs?

e Biredictional RNN:
e AN RNN for forward dependencies: t=0,...,T
* An RNN for backward dependencies: t=T,...0

'Yz=f2(hf ht; 0)

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

L L
- ('F (F ('F S (F <?

X(T-1) X(T)

N NN

X(1) X(2)

e s e |

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

> 1

Extensions

RNN for sequence classification (sentiment analysis)

o Y =maxY,
!
e Cross-entropy loss

Y(0) Y(1) Y(2)

"

Y(T-2) Y(T-1) Y(T)

I

A
n-1)
X(0)

A
X(T-2) <X(T-1) < X(T)

X(1) X(2)
NI NN
e SETE o e
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

> t

Practical issues of RNN »rg) =2

Linear RNN derivation ({ h{ 1{_ W([/ X‘f

he =W A i
B (()X\ﬂ_f le- ((0
h ;\j\ﬁ”xwu/(“/(u/‘”)(MLW ey

0
_ (\/J'”)Tﬁ(— - Z(\JJN) [/\/ X1

‘5'4 \Wm%) j/ 7 hy C¥) /Wf(ﬂ

—) by, exp T
> WW\{) / p,‘l’% jq)p[w//w’

,Jiol/?(ﬁ‘(\/‘y O I ——I

Practical issues of RNN: training

R
Gradient explosion and gradient vanishing (L — !
(///) () § [4%/
=9

7/ o dift OA (W

Techniques for avoiding gradient explosion

e Gradient clipping
e |dentity initialization

e Truncated backprop through time
e Only backprop for a few stens

\J

AVI
y

Preserve Long-Term Memory

e Difficult for RNN to preserve long-term memory

e The hidden state A, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory

& ® &)
t | t
|

A R

| I

&) ® &)
& ®)
Memory ¢; t % 1

gm‘%%)
Long Short-Term Memory Network vt

Dint nile

& '°
0V ER
LSTM (Hochreitcher & Schmidhuber, '97) 4% b V0 0,

e RNN architecture for learning long-term dependencies .
e 0. layer with sigmoid activation (0‘) - (@) -
nm

| | |
e N\ N ~N
— — O . > -
A | Lot A
\, I’CF)’\ /-’

Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, '97)
e Core idea: maintain separate state /1, and cell ¢, (memory)
° I, full update every step
* c,: only partially update through gates
-ﬂayer outputs importance ([0,1]) for each entry and only modify those

entries of ¢, — 7&‘(&4}
e o o

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Long Short-Term
(t € R

o
Forget gate f; (=

Memory Network

A o
7L{(77 £ éo/ /j

()- T
e f, outputs whether we want to “forget” things in c, (f'/ / t
e Compute ¢,_; © f, (element-wise) | (1
. ° (. . -
e f(i) = 0: morget c,(1) ‘b), h
e f(i) = 1: we want to keep the information in c,(i) (
¢ snp— V0Nt

ft=0Ws-[he—1,2¢] + by)

Long Short-Term Memory Network

Input gate 1,
e [, extracts useful information from X, to update memory

e ¢,: information from X, to update memory

e i.: which dimension in the memory should be updated by X,
e () — l:we want to use the information in ¢,(j) to update memory
e ;(f) = 0:¢,(j) should not contribute to memory

N\

®
!

IEEl

®

Pointwise Vector
eration Transfer Concatenate Copy

Jet* C
— ,_) —
»]S-g G st it =0 (Wi-lhe—1, 2] + b;)
C, = tanh(We-[hi—1,x¢] + bo)

O

Long Short-Term Memory Network

Memory update

ec,=f0c_+10C¢,

o f, forget gate; i, input date

e f, © c¢,_i: drop useless information in old memory

e [, © C,: add selected new information from current input

Long Short-Term Memory Network
Iy a bt 6[9 c{
Output gate o, é

V\—____\
e Next hidden state i, = 0, © tanh(c,)

: 2 . : :
e tanh(c,): non-linear transformat r all past information
*-0,: choose important dimensions for the next state -
° 0(j) = 1 :tanh(c,())) is important for the next state

* 0(j) = 0 :tanh(c,())) is not important

I T

Canh> Ot = O’(WO [ht_l,xt] + bo)
oy

Ot (X D
) h; = o4 * tanh (Cy)

ht—l ht

I

Long Short-Term Memory Network
& ® 6

e i, = 0, © tanh(c,) 1 1
ec,=f,0c_;+1i,0C¢, f blo—e ANE IR
e V. = o(h vy
e 1 op ewlt & E!ﬂ A
qm(('f.‘ /ffme — ()P(’ \I J> UAAN g

&) Q) &)
[
Remarks: {vf(@v\‘ W() b-{

1. No more matrix multiplications for ¢,

2. LSTM does not have guarantees for gradient explosion/vanishing

3. LSTM is the dominant architecture for sequence modeling from 13 - "16.
4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00)
 Allow gates to take in ¢, information

® ®)
(T\ (" A\ 4 T\
\I o J ’\I o>
&) © &)

LSTM Variant

Simplified LSTM
e Assumei, =1 —f,
e Only two gates are needed: fewer parameters

"y
. A o* ELJ’\ A o*
© ® ©

P‘@" Ct=ft*Ct—1+(1—ft)*ét

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. '14)
e Merge h, and ¢,;: much fewer parameters

~)
— > >
anh
e A
[tanh] [O |
> -»

Zt = O (Wz . [ht_l,CUt]) '\"/)Pf
Tt = U(Wr ' [ht—laxt]) ,{,,0.,?‘ =
h; = tanh (W - [ry « hy_1,24])

ht:(l—zt)*ht_l—FZt*iLt

LSTM application: language model K- XU

e Autoregressive language model: P(X;0) = P(X | X.; 0)

e X: asentence - —_—

e Sequential generation P (X/)(0/0))(XL Y"/)(’ i
e LSTM language model .

e X.: word at position . @U\(l/ 7/) y D

e Y.: softmax over all words 2
e Data: a collection of texts: D@/ ‘H, \/

(I B

4 5) Euy wwi]

P(WI1"The") P(WI"...quick") P(WI"..brown") P(W]I"..fox")

Softmax Softmax Softmax Softmax

A v

—h RNN | —hy— " RNN l—z—-l |~ 4| RNN |>h4_.

"The" "quick" "brown" "fox"

LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

‘ SPAM

E CLASSIFIER
S

INBOX

SoE

SPAM FOLDER

=

Y(O) Y(1) Y(2) Y(T 2) Y(T 1) Y(T)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
; E h,(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

>t

