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Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) = 1
1 + e−z

Binary	
Logistic	
Regression



Neural Network Architecture
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The	neural	network	architecture	is	defined	by	the	number	of	layers,	and	the	
number	of	nodes	in	each	layer,	but	also	by	allowable	edges.	



Neural Network Architecture

5

The	neural	network	architecture	is	defined	by	the	number	of	layers,	and	the	
number	of	nodes	in	each	layer,	but	also	by	allowable	edges.	

We	say	a	layer	is	Fully	Connected	(FC)	if	all	linear	mappings	from	the	current	
layer	to	the	next	layer	are	permissible.	

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A	lot	of	parameters!! n1n2 + n2n3 + · · ·+ nLnL+1



Neural Network Architecture
Objects	are	often	localized	
in	space	so	to	find	the	faces	
in	an	image,	not	every	pixel	
is	important	for	
classification—makes	sense	
to	drag	a	window	across	an	
image.



Neural Network Architecture
Objects	are	often	localized	
in	space	so	to	find	the	faces	
in	an	image,	not	every	pixel	
is	important	for	
classification—makes	sense	
to	drag	a	window	across	an	
image.

Similarly,	to	identify	
edges	or	other	local	
structure,	it	makes	
sense	to	only	look	at	
local	information	

vs.



Neural Network Architecture
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Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share	local	
weights	everywhere	
(e.g.,	structure	equally	
likely	to	be	anywhere	in	
image)	
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Neural Network Architecture

Convolution*

Fully	Connected	(FC)	Layer Convolutional	(CONV)	Layer	(1	filter)

m=3

is	referred	to	as	a	“filter”

= g([✓ ⇤ a(k)]i)
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



2d	Convolution	Layer



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Convolution of images
K

Image I

I ⇤K



Stacking	convolved	images

6

6

3

27

27

1

x 2 Rn⇥n⇥r



Stacking	convolved	images

d	filters

6

6

3 27

27

Repeat	with	d	filters!



Pooling

Pooling	reduces	the	dimension	
and	can	be	interpreted	as	“This	
filter	had	a	high	response	in	
this	general	region”

27x27x64

14x14x64



Pooling Convolution layer

14x14x64

64	filters

6

6

3 27

27

MaxPool	with	
2x2	filters	and	
stride	2

Convolve	
with	64	6x6x3	filters



Flattening

14x14x64

64	filters

6

6

3 27

27

Convolve	
with	64	6x6x3	filters

MaxPool	with	
2x2	filters	and	
stride	2

Flatten	into	a	single	
vector	of	size	
14*14*64=12544



Training Convolutional Networks

14x14x64

6

6

3 27

27

Recall:	Convolutional	neural	
networks	(CNN)	are	just	regular	
fully	connected	(FC)	neural	
networks	with	some	connections	
removed.		
Train	with	SGD!

reshape

output	layer

pool
CONV	hidden	layer

FC	hidden	layer



Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output	layer

pool
CONV	hidden	layer

FC	hidden	layer

Real	example	network:	LeNet



Training	Convolutional	Networks

Real	example	network:	LeNet

Real	example	network:	LeNet



Famous CNNs



ImageNet Dataset

Deng	et	al.	“Imagenet:	a	large	scale	hierarchical	image	database”	‘09

~14	million	images,	20k	classes



AlexNet

Krizhevsky,	Sutskever,	Hinton	“ImageNet	Claasification	with	Deep	
Convolutional	Neural	Networks”,	NIPS	2012.

Breakthrough	on	ImageNet:	~the	beginning	of	deep	learning	era



AlexNet

8	layers,	~60M	parameters	

Top5	error:	18.2%	

Techniques	used:	
ReLU	activation,	overlapping	pooling,	
dropout,	ensemble	(create	10	
patches	by	cropping	and	average	the	
predictions),	data-augmentation	
(intensity	of	RGB	channels)

[From	Rob	Fergus’	CIFAR	2016	tutorial]



AlexNet

Remove	top	fully-connected	layer	7	

Drop	~16	million	parameters	

1.1%	drop	in	performance

[From	Rob	Fergus’	CIFAR	2016	tutorial]



AlexNet

Remove	both	fully	connected	
layers	6	and	7	

Drop	~50	million	parameters	

5.7%	drop	in	performance

[From	Rob	Fergus’	CIFAR	2016	tutorial]



AlexNet

Remove	upper	convolutio	/	feature	
extractor	layers	(layer	3	and	4)	

Drop	~1	million	parameters	

3%	drop	in	performance

[From	Rob	Fergus’	CIFAR	2016	tutorial]



AlexNet

Remove	top	fully	connected	layer	
6,7	and	upper	convolution	layers	
3,4.	

33.5%	drop	in	performance.	

Depth	of	the	network	is	the	key.

[From	Rob	Fergus’	CIFAR	2016	tutorial]



GoogLeNet

Motivation:	multiscale	nature	of	images

Large	kernel	for	global	features,	and	smaller	kernel	for	local	features.	

Idea:	have	multiple	different-size	kernels	at	any	layer.

[Going	Deep	with	Convolutions,	Szegedy	et	al.	’14]



GoogLeNet

Large	kernel	for	global	features,	and	smaller	kernel	for	local	features.	

Idea:	have	multiple	different-size	kernels	at	any	layer.

[Going	Deep	with	Convolutions,	Szegedy	et	al.	’14]



Inception Module

Multiple	filter	scales	at	each	layer	

Dimensionality	reduction	to	keep	computational	requirements	down

[Going	Deep	with	Convolutions,	Szegedy	et	al.	’14]



Residual Networks

Motivation:	extremely	deep	nets	are	hard	to	train	(gradient	explosion/
vanishing)

[He,	Zhang,	Ren,	Sun,	’16]



Residual Networks

Idea:	identity	shortcut,	skip	one	or	more	layers.	

Justification:	network	can	easily	simulate	shallow	network	( ),	
so	performance	should	not	degrade	by	going	deeper.	

F ≈ 0

[He,	Zhang,	Ren,	Sun,	’16]



Residual Networks

• 3.57%	top-5	error	on	ImageNet	
• First	deep	network	with	>	100	layers.	
• Widely	used	in	many	domains	
(AlphaGo)	

[He,	Zhang,	Ren,	Sun,	’16]



Densely Connected Network

[He,	Zhang,	Ren,	Sun,	’16]

Idea:	explicit	forward	output	of	layer	to	all	future	layers	(by	
concatenation)

Intuition:	helps	vanishing	gradients,	
encourage	reuse	features	(reduce	
parameter	count)	

Issues:	network	maybe	too	wide,	
need	to	be	careful	about	memory	
consumption



Neural Architecture / Hyper-Parameter Search

Strategies:	
• Grid	search	
• Random	search	[Bergestra	&	Bengio	’12]	
• Bandit-based	[Li	et	al.	’16]	
• Gradient-based	(DARTS)	[Liu	et	al.	’19]	
• Neural	tangent	kernel	[Xu	et	al.	’21]	
• …

Many	design	choices:	
• Number	of	layers,	width,	kernel	size,	pooling,	connections,	etc.	
• Normalization,	learning	rate,	batch	size,	etc.



Recurrent Neural 
Networks



Sequence Data



State-Space Model

• :	hidden	state	
• :	input	
• :	output	
• 	
• :	initial	state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1



Recurrent Neural Network

• :	hidden	state	
• :	input	
• :	output	
• 	
• :	initial	state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect	NN	vs.	RNN	
• :	a	vector	summarizes	all	past	inputs	(a.k.a.	“memory”)	
• 	affects	the	entire	dynamics	(typically	set	to	zero)	
• 	affects	all	the	outputs	and	states	after	 	
• 	depends	on	

ht
h−1
Xt t
Yt X0, …, Xt



Recurrent Neural Network

• :	hidden	state	
• :	input	
• :	output	
• 	
• :	initial	state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect	NN	vs.	RNN	
• RNN	can	be	viewed	as	repeated	applying	fully-connected	NNs	
• 	
• 	
• 	are	activation	functions	(sigmoid,	ReLU,	tanh,	etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2



Recurrent Neural Network

Stack	K	layers	of	fully-connected	NN	
• :	hidden	state	

• :	input	
• :	output	

• 	

• 	

• 	

• :	initial	states

h(k)
t

Xt
Yt
h(1)

t = f (1)
1 (h(1)

t−1, Xt; θ)
h(k)

t = f (k)
1 (h(k)

t−1, h(k−1)
t ; θ)

Yt = f2(h(K)
t ; θ)

h(k)
−1



Training Recurrent Neural Network

• :	hidden	state	
• :	input	
• :	output	
• 	
• :	initial	state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

• Data:	 	(RNN	can	handle	more	general	data	format)	

• Loss	 	

• Goal:	learn	 	by	gradient-based	method	
• Back	propagation

{(Xt, Dt)}T
t=1

L(θ) =
T

∑
t=1

ℓ(Yt, Dt)

θ



Back Propagation Through Time

• 	
• 	

• :	pre-activation	of	hidden	state	

( )	

• 	pre-activation	of	output	

( )	

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
Z(1)

t
ht = σ1(Z(1)

t )
Z(2)

t :
Yt = σ2(Z(2)

t )



Back Propagation Through Time



Back Propagation Through Time



Extensions

What	if	 	depends	on	the	entire	inputs?	
• Biredictional	RNN:	

• AN	RNN	for	forward	dependencies:	t=	0,…,T	
• An	RNN	for	backward	dependencies:	t=	T,…0	
• 	

Yt

Yt = f2(hf
t , hb

t ; θ)



Extensions

RNN	for	sequence	classification	(sentiment	analysis)	

• 	

• Cross-entropy	loss	

Y = max
t

Yt



Practical issues of RNN

Linear	RNN	derivation	



Practical issues of RNN: training

Gradient	explosion	and	gradient	vanishing	



Techniques for avoiding gradient explosion

• Gradient	clipping	

• Identity	initialization	

• Truncated	backprop	through	time	
• Only	backprop	for	a	few	steps	



Preserve Long-Term Memory

• Difficult	for	RNN	to	preserve	long-term	memory	
• The	hidden	state	 	is	constantly	being	written	(short-term	memory)	
• Use	a	separate	cell	to	maintain	long-term	memory	

ht



Long Short-Term Memory Network

LSTM	(Hochreitcher	&	Schmidhuber,	’97)	
• RNN	architecture	for	learning	long-term	dependencies	
• :	layer	with	sigmoid	activation	σ



Long Short-Term Memory Network

LSTM	(Hochreitcher	&	Schmidhuber,	’97)	
• Core	idea:	maintain	separate	state	 	and	cell	 	(memory)	
• :	full	update	every	step	
• :	only	partially	update	through	gates	

• 	layer	outputs	importance	( )	for	each	entry	and	only	modify	those	
entries	of	 	

ht ct
ht
ct

σ [0,1]
ct



Long Short-Term Memory Network

Forget	gate	 	
• 	outputs	whether	we	want	to	“forget”	things	in	 	

• Compute	 	(element-wise)	
• :	want	to	forget	 	
• :	we	want	to	keep	the	information	in	 	

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)



Long Short-Term Memory Network

Input	gate	 	
• 	extracts	useful	information	from	 	to	update	memory	

• :	information	from	 	to	update	memory	
• :	which	dimension	in	the	memory	should	be	updated	by	 	

• :	we	want	to	use	the	information	in	 	to	update	memory	
• :	 	should	not	contribute	to	memory	

it
it Xt

c̃t Xt
it Xt

it( j) → 1 c̃t( j)
it(t) → 0 c̃t( j)



Long Short-Term Memory Network

Memory	update	
• 	
• 	forget	gate;	 	input	date	
• :	drop	useless	information	in	old	memory	
• :	add	selected	new	information	from	current	input	

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t



Long Short-Term Memory Network

Output	gate	 	
• Next	hidden	state	 	

• :	non-linear	transformation	over	all	past	information	
• :	choose	important	dimensions	for	the	next	state	

• 	is	important	for	the	next	state	
• 	is	not	important	

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot( j) → 1 : tanh(ct( j))
ot( j) → 0 : tanh(ct( j))



Long Short-Term Memory Network

• 	
• 	
• 	

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks:	
1. No	more	matrix	multiplications	for	 	
2. LSTM	does	not	have	guarantees	for	gradient	explosion/vanishing	
3. LSTM	is	the	dominant	architecture	for	sequence	modeling	from	’13	-	’16.	
4. Why	tanh	

ct



LSTM Variant

Peephold	Connections	(Gers	&	Schmidhuber	’00)	
• Allow	gates	to	take	in	 	information	ct



LSTM Variant

Simplified	LSTM	
• Assume	 	
• Only	two	gates	are	needed:	fewer	parameters	

it = 1 − ft



LSTM Variant

Gated	Recurrent	Unit	(GRU,	Cho	et	al.	’14)	
• Merge	 	and	 :	much	fewer	parameters	ht ct



LSTM application: language model

• Autoregressive	language	model:	 	

• :	a	sentence	
• Sequential	generation	

• LSTM	language	model	
• :	word	at	position	 .	
• :	softmax	over	all	words	

• Data:	a	collection	of	texts:	
• Wiki	

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt



LSTM application: text classification

Bi-dreictional	LSTM	and	them	run	softmax	on	the	final	hidden	state.	


