Convolutional Neural
Networks

Multi-layer Neural Network

a) = x
,@ — @y

a® = g (z@)

Z(l+1) — D40
al+h) = g (Z(l+1)>

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 Binary
g(2) = | + o2 Logistic
Regression

Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, but also by allowable edges.

SN O
SOSEXIIAON
SN KT =

%
XX ‘

SN JERK

S
\"\" ":AO\
s wr= ok

Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each Iayer but also by allowable edges.

Q("
/'

4»
w
,

2(2) 2(3)

We say a layer is Fully Connected (FC) if all linear mappings from the current
layer to the next layer are permissible.

al**tl) = g(@al®)) for any © € R7+1x7
A lot of parameters!! 101 T9 + MoN3 + *+* + nrmnyr i1

Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
Image.

Neural Network Architecture

Objects are often localized
in space so to find the faces
in an image, not every pixel
is important for
classification—makes sense
to drag a window across an
Image.

Similarly, to identify
edges or other local
structure, it makes
sense to only look at
local information

Neural Network Architecture

VS.
(@00 ©01 ©02 Ops Ooa) (@00 ©01 O 0 0]
O©10 ©11 O12 613 O14 O10 ©11 ©12 0 0
O20 O21 B2 O3 O3y 0 O21 B2 Og3 0
O30 ©31 O35 Oz3 O34 0 0 ©32 Os33 O34
O©s0 ©41 Oz Os3 O4y | 0 0 0 ©O43 O4y4
2
Parameters: n 3% — 2

Parameters:

Neural Network Architecture

VS.
Qo1 ©02 ©o3 Opu] (00,0
11 O12 613 O14 O1,0
O21 B2 O3 O34 0
O31 Oz2 O3z3 O34 0
O41 Ou2 Os3 O4y | 0
2
n

Mirror/share local
weights everywhere
(e.g., structure equally
likely to be anywhere in

image)
0 | _91 92 0 0 0]
0 6o 61 62 0 O
0 0 6y 6,1 62 O
@3,4 0 0 (90 01 92
@4,4_ i 0 0 0 '90 91_

Neural Network Architecture

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

(©00 ©01 ©o2 O3 Op4 9, 6, 0 0 0]

Q10 O©11 O12 O13 O14 b 67 65 0 O _

O20 O21 ©O22 O3 Oy 0 6, 0, 6, 0 m=3

O30 ©31 O32 Oz3 O34 0 0 6, 6, 06y

1O40 O41 ©Ou2 O3 Og4 0 0 0 69 01
n—1 (k—l—l (%)

k+1 k _

a,g) — (g Z @%]ag) Z 0; az—I—] _ [9 *a])

Jj=0

Convolution*®

0= (0y,...,0m_1) € R™ isreferred to as a “filter”

Example (1d convolution)

1/1/1/00

Input x € R"

1|01

Filter 6 € R™

m—1
7=0

Output 0 x x

Example (1d convolution)

1/1/1/00

Input x € R”

m—1
7=0

1[0 |1

Filter 6 € R™

1,‘11,‘00/—\2‘

Output 0 x x

Example (1d convolution)

1/1/1/00

Input x € R”

m—1
7=0

1[0 |1

Filter 6 € R™

1{1]1]0 0/2\;

Output 0 x x

Example (1d convolution)

1/1/1/00

Input x € R”

1[0 |1

Filter 6 € R™

1110"0|0/2_1\?—

Output 0 x x

2d Convolution Layer

Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

» Locally-connected, 400,000 hidden units 10x10 fields = 40
million params

» Local connections capture local dependencies

Convolution of images (2d convolution)

(I *K)(ZZIz+my+nK(mn) :;1:2 1(0]1
0(0|1 (1|1 0 1 0
0|01 |1 |0 1 0 1
0j1]1]0]0 Filter K
Image 1
1x; 1| 1,‘; 0|0
0, 1x; 1110 4
0xL 0| 1x; 1|1
0([0(1]|1]|0
0O[1(1|0]|0
| Convolved
mage Feature

I+« K

Convolution of images

Operation
(I K)(i,5) = Y > I(i+m,j+n)K(m,n)
m n
Image [
- . Edge detection
e
Sharpen
Box blur

(normalized)

Gaussian blur

(approximation)

Filter

o
I O -
o O O

K

Convolved
Image

I+« K

Stacking convolved images

Stacking convolved images

"/’>O COO00D Repeat with d filters!

27

d filters

Pooling

A

Pooling reduces the dimension
and can be interpreted as “This
filter had a high response in

this general region”

27x27x64

Single depth slice

11112 | 4
max pool with 2x2 filters

oalmon 7 | 8 and stride 2
3 | 2 []
1 | 2 S

7 >

14x14x64

pool

1A

Pooling Convolution layer

. 14x14x64
32

—={0000}

27

N
|

3

64 filters MaxPool with

2x2 filters and
with 64 6x6x3 filters stride 2

Convolve

Flattening

- 14x14x
32

—=00000}

27

N
|

3

64 filters MaxPool with

2x2 filters and
with 64 6x6x3 filters stride 2

Convolve

Flatten into a single
vector of size

14*14*64=12544

Training Convolutional Networks

reshape _
CONV hidden layer FC hidden layer
pool
/ % 14x14x6
32
‘@;>OOOOO output layer
27 — N

w|

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some connections
removed.

Train with SGD! e

\
®

X
X/
X
;‘;

output layer

X
ota
}\452'
PR
:

hidden layer 1 hidden layer 2

Training Convolutional Networks

reshape .
CONV hidden layer N
pool
/ 27 R
32
c@7>OOOOO I W output layer
27 '&

\|

w|

Real example network: LeNet

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Real example network: LeNet

Convolution
+ RelU

Pooling

Convolution

Pooling

Output
Layer

FC
Layer 2
FC
Layer 1

Pooling
Layer 2

Convolution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer

Fully Fully
Connected Connected

Output Predictions

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Famous CNNs

ImageNet Dataset

~14 million images, 20k classes

:':‘f!

4
.

| T
mj

A
e R

T ‘lnl“""

P \uﬂ v"‘-.

i

i

=
- = v 1 ‘,rﬂg'

(=)
i
- T
=
»

'’

bt ¥ Mol ¥ A
B (T MY TSy
- - -—
el "‘;r" mv h :

Deng et al. “Imagenet: a large scale hierarchical image database” ‘09

AlexNet

Breakthrough on ImageNet: ~the beginning of deep learning era

Max
pooling

128

192

Max
pooling

192

192

128 2048 2048

13 dense |dens
128 Max -
pooling 2538 2048

dense

Krizhevsky, Sutskever, Hinton “ImageNet Claasification with Deep

Convolutional Neural Networks”, NIPS 2012.

AlexNet

—

[Softmax Output

8 layers, “60M parameters

Top5 error: 18.2%

: —)

Layer 5: Conv + Pool

Techniques used: \ -)
ReLU activation, overlapping pooling, | Layer#:conv
dropout, ensemble (create 10) S j

patches by cropping and average the | layer3:iConv
predictions), data-augmentation
(intensity of RGB channels)

—

Input Image

|

|

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

[Softmax Output]

Remove top fully-connected layer 7
Drop ~16 million parameters

1.1% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

[Softmax Output J
N

Remove both fully connected

(S R

Iayers 6and 7/ Layer 5: Conv + Pool
e —
Drop ~50 million parameters | Layer&:Conv
e 4|_} N
. Layer 3: Conv
5.7% drop in performance | i)

[Input Image }

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet

Remove upper convolutio / feature
extractor layers (layer 3 and 4)

Drop ~1 million parameters

3% drop in performance

[From Rob Fergus’ CIFAR 2016 tutorial]

[Softmax Output]

| S

[Layer 5: Conv + Pool]
N

I S

Input Image

AlexNet [Softmax Output]

AN
Remove top fully connected layer B
6,7 and upper convolution layers [Layer 5: Conv + Pool]
3,4. 7\

33.5% drop in performance.

Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial]

GooglLeNet

Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. ’14]

GooglLeNet

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions s 4 B

wﬁons 1x1 convolutions 3x3 max pooling

Previous layer

Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/

vanishing)
20r 201
< -
\‘5-/ S 56-layer
5 w0 g ok 20-layer
_%D 56-layer 2
g 3
‘c R
& 20-layer
. ,

5 6 00 1 2

1 2

o

5 6

iter.3 (le4)4 iter.3 (1e4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

[He, Zhang, Ren, Sun, "16]

Residual Networks

Idea: identity shortcut, skip one or more layers.

Justification: network can easily simulate shallow network (£ =~ 0),
so performance should not degrade by going deeper.

X
weight layer
F(x) l relu <
weight layer identity

[He, Zhang, Ren, Sun, "16]

Residual Networks

e 3.57% top-5 error on ImageNet
e First deep network with > 100 layers.
e Widely used in many domains

(AlphaGo) v

7x7 conv, 64, /2

v

pool, /2

3x3 conv, 64

\ /

3x3 conv, 64

3x3 cony, 64

\ /
3x3 conv, 64

3x3 conv, 64

\ 4
3x3 conv, 64
*--.-..--- .

[He, Zhang, Ren, Sun, '16]

output

size: 224

output

size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19 34-layer plain 34-layer residual
image image image
[33w |
[336t |
pool, /2
[3»3conv,128 | [7dconv.64,2 | [7o 64,2 |
v v v
pool, /2 pool, /2 pooal, /2
[33cov, 256 | [3aconv 64 | [
A2
[33cow, 256 | [3dconv64 | [
A2 2
[33conv,256 | [3aconv,64 | [
2
3x3 conv, 256 | 3aconv64 | [
2
[3a3conves | [
¥
[3a3conv,64 | [
¥ o
pool, /2 | 33conv,128,/2 | [33cov 1282 | e,
v y
[33cow,512 | [33conv,128 | [33conv, 128
¥ 2
[33com,s512 | [33comw,128 | | 3x3conv,128 |
2 2 2
[33comw,512 | | 33cow,128 | | 3x3conv, 128
A2 A2
[33cow,512 | [33comw,128 | [33conv, 128 |
Y
[33cow128 | | 3x3conv, 128
I [3oy, 128 |
2 Y
[33cow, 128 | [3a3conv,128 |
2 Y
pool, /2 [3x3conv,256,/2 | | 3a3comv,256,2 | T,
2 2 Y
| 33conv.512 | [33com256 | | 3x3conv, 256
i 2. 2 =
[33cow,512 | [33conv, 256 | | 33conv, 256 |
2 ¥ 2
[33cow,512 | | 33conv,256 | | 33 conv, 256
2 2
| 33conv.512 | | 3x3conv,256 | | 33conv,256 |
¥ A4
[33conv,256 | [33 conv, 256
A2
[33comv256 | | 3x3conv,256 |
A2 A2
[33cow, 256 | [33conv, 256
A2
[33conv,256 | [33conv,256 |
A A
| 3x3conv,256 | | 3x3conv, 256
A2
[33cow,256 | [33conv,256 |
2
[3x3comw256 | | 3x3conv, 256
v Yy e
pool, /2 [3a3cony, 512,72 | [[33comv, 512,72 | T,
¥ y
[33,512 | [33cony, 512
L 2,
[33comw,s512 | [33conv,512 |
A2
[33cow,512 | [33cony, 512
[33comws512 | [33conv,512 |
A 2 ¥
[33com,s512 | [33conv,512 |
Y A
fc 4096 avg pool avg pool
| fc 4096 | [fe 1000] [fc 1000 |

Densely Connected Network

Idea: explicit forward output of layer to all future layers (by
concatenation)

Intuition: helps vanishing gradients,
encourage reuse features (reduce

parameter count)

Issues: network maybe too wide,
need to be careful about memory

consumption

Prediction

Dense Block 3

o
g—% - ; a

Dense Block 2

S

Input
: Dense Block 1

[He, Zhang, Ren, Sun, '16]

‘horse”

Y

Jeaur

\
| uonnjoauon |
Buijood

| uonnjoauopy |
Y
Buijood
Y

| uonnjoauos |

Neural Architecture / Hyper-Parameter Search

Many design choices:
e Number of layers, width, kernel size, pooling, connections, etc.
e Normalization, learning rate, batch size, etc.

Strategies:

e Grid search

e Random search [Bergestra & Bengio '12]
e Bandit-based [Li et al. '16]

e Gradient-based (DARTS) [Liu et al. "19]

e Neural tangent kernel [Xu et al. "21]

Recurrent Neural
Networks

Sequence Data

News | Add ticker

1year a U | vs. Electronic Technology I L B
1 YEAR CHANGE 76.04%
fay 2019 Sep 2019 Jan 2020 May
+16.63% +40.68% +0.05%
=g Hig v

g iz (iEK)

RIEE =5 Xz =8 v <

Deep learning is a popular area in Al | ® x FEZIZABIRIMNIE. w
Shéndu xuéxi shi Al de rémén lingyu.

38 / 5000 L D) 0D 72 <

& o

State-Space Model

e /i, hidden state

e X,:input

e Y.: output

* Y, h=fh_1, X;0)
e /i_;:initial state

Y(t)

Rl

Time

Recurrent Neural Network

e /i, hidden state Y(t)
L S BB E

e Y.: output S ,
t P |] + 4

¢ Yt’ ht :f(ht—la Xta 6) X(t)

e h_,:initial state t=0

Time

Fully-connect NN vs. RNN

e /1,: a vector summarizes all past inputs (a.k.a. “memory”)
e h_, affects the entire dynamics (typically set to zero)

X, affects all the outputs and states after ¢

e Y, dependson X, ..., X,

Recurrent Neural Network

e /i, hidden state Y(t)
L S BB E

e Y.: output S ,
t P |] + 4

¢ Yt’ ht :f(ht—la Xta 6) X(t)

e h_,:initial state t=0

Time

Fully-connect NN vs. RNN
e RNN can be viewed as repeated applying fully-connected NNs

° h, = O'I(W(I)Xt + W(“)ht_l + b(l))
o Y = o0,(WPh, + b?)
* 0, 0, are activation functions (sigmoid, ReLU, tanh, etc)

Recurrent Neural Network

Y(t)

Time

Stack K layers of fully-connected NN
° ht(k): hidden state
e X.:input
e Y.: output
1) — WD) y.
. ht(k) _ f%k) (h%l’ X(tk 91))
1 =B 1 0)
o ¥, = fo(h%); 0)
o hfkl): initial states

Training Recurrent Neural Network

e J: hidden state mﬂ)m)
° Xt: input Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y()

e Y. output
¢ Yt’ ht =f(h[_19Xt; 9) h_l XXX
e h_,:initial state

X(0) X(1) X(2) X(T-2) X(T-1) X()

e Data: {(X,, Dt)}tT=1 (RNN can handle more general data format)
T

, Loss L(0) = 2 £(Y,D,)
=1
e Goal: learn @ by gradient-based method
e Back propagation

Back Propagation Through Time

o h.= (WX + Wibp _ 4 pM)
o Y =o0,(WPh, + b?) I .-

Y(0) Y (1) Y(2) Y(T=2) Y(T-1) Y(T)

° Zt(l): pre-activation of hidden state
(h, = al(Zt(l))) hy
J Zt(z) . pre-activation of output

(Yt — 02(Zt(z))) X(0) X(1) X(2) X(T-2) X(T-1) X

Back Propagation Through Time

Back Propagation Through Time

Extensions

What if Y, depends on the entire inputs?

¢ Biredictional RNN:

e AN RNN for forward dependencies: t=0,...,T
e An RNN for backward dependencies: t=T,...0

« Y, =f(h!,ht;0)

Y(0)

Y(1)

###

Y(2) Y(T-2) Y(T-1)

Y(T)

I

h(1)

X(0)

X(1)

(,ﬁ e 1L

X(2) X(T-2) X(T-1)

X(T)

AN

N\

NN N

N
!:

X(0)

i

X(1)

<
<«

F._<_!| F

X(2) X(T-2) X(T-1)

' hy(inf)

X(T)

> t

Extensions

RNN for sequence classification (sentiment analysis)

o Y =maxY,
1
e Cross-entropy loss

Y(0) Y(1) Y(2) Y(T-2) Y(T-1)

Y(T)

I

h(1)

X(0) X(1) X(2) X(T-2) X(T-1)

A

X(T)

N NN NN N

X(0) X(1) X(2) X(T-2) X(T-1)

! h,(inf)

X(T)

> t

Practical issues of RNN

Linear RNN derivation

Practical issues of RNN: training

Gradient explosion and gradient vanishing

Techniques for avoiding gradient explosion

e Gradient clipping
e |dentity initialization

e Truncated backprop through time
e Only backprop for a few steons

\/

N

Preserve Long-Term Memory

e Difficult for RNN to preserve long-term memory

e The hidden state /4, is constantly being written (short-term memory)
e Use a separate cell to maintain long-term memory

® ® &)
t | t
f r)
A J A
I I
&) © &)
@ ® &)
Memory c; 1

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
e RNN architecture for learning long-term dependencies

e o: layer with sigmoid activation

&) D, ®

1 ! f
e N N N
>—————> N
A Lebefl] A
\ /_’ J ’\)_’

&) x) &)

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
e Core idea: maintain separate state /1, and cell ¢, (memory)
e h1,: full update every step
e ¢, only partially update through gates
e o layer outputs importance ([0,1]) for each entry and only modify those
entries of ¢,

& ® ﬁf)

A

' N\ N N

P (X Oan > —»

@nh>
A P 0 A
[0] [tanh] [0]

—> > -

\ J O J

&) Q) &)
O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Long Short-Term Memory Network

Forget gate f;
e f, outputs whether we want to “forget” things in ¢,
e Compute ¢,_; © f, (element-wise)
e (i) = 0: want to forget ¢ (i)
e f(i) = 1: we want to keep the information in ¢ (i)

fe=0Wg-[hi—1,2¢] + by)

Long Short-Term Memory Network

Input gate i,
e [, extracts useful information from X, to update memory
e ¢, information from X, to update memory
e i.: which dimension in the memory should be updated by X,
e i(j) — 1:we want to use the information in ¢,(j) to update memory
e i () = 0:¢,(j) should not contribute to memory

® ® ©
f . i

A Latetll| A I ,, v = 0 (Wi-lhe_1, 2] + b))

é . o - ECIE-» Cy = tanh(We-[hy—1, 2] + be)

LLLLL

Long Short-Term Memory Network

Memory update

e, =f0c_+i0OC

o f, forget gate; i, input date

e f, © c,_;: drop useless information in old memory

e [, © C,: add selected new information from current input

Long Short-Term Memory Network

Output gate o,
e Next hidden state i, = 0, © tanh(c,)
e tanh(c,): non-linear transformation over all past information
* 0,: choose important dimensions for the next state
e 0(j) = 1 :tanh(c,())) is important for the next state
* 0(j) = 0 :tanh(c())) is not important

+

Enb> o =0 (Wy, [hi—1,2¢] + bo)
hy = 0 * tanh (C})

ht—l ht

Long Short-Term Memory Network
®

e i, = 0, © tanh(c,)

.Ct=](f®ct—l+il‘®5t

®

I
&) ® &)

Remarks:

1. No more matrix multiplications for ¢,

2. LSTM does not have guarantees for gradient explosion/vanishing

3. LSTM is the dominant architecture for sequence modeling from 13 - "16.
4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)
* Allow gates to take in ¢, information

® ® ©

T\ N Ne

| |
3 ® &

ft =0 Wy [Cemqyhi—1, 2] + by)
ir =0 (W;-[Ce=1,hi—1,2¢] + ;)
Z — < or =0 (Wy-[Cy, he—1,2¢] + Do)

LSTM Variant

Simplified LSTM
e Assumei, =1—1,
e Only two gates are needed: fewer parameters

& ® ®

T\ N A\ ’f T

3 ® &)

P@-’ Ct:ft*Ct—1+(1_ft)*ét

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14)
e Merge h, and c¢,;: much fewer parameters

6T9 ® ®

Y
ﬁ p— T
A TdAL A
© ,.® ©
b i . 2z =0 (W, - [hi—1,x4¢])
a re =0 (W« [he—1, ¢])
X 97 o ta):Ith he = tanh (W - [ry * hy_1, x4])
y ht:(l—zt)*ht_1-|-zt*izt

Tt

LSTM application: language model

e Autoregressive language model: P(X;0) = HthlP(Xt | Xi)s 0)
e X: asentence

e Sequential generation
e LSTM language model

e X.: word at position .
e Y.: softmax over all words

e Data: a collection of texts:
o Wiki

P(WI"The") P(WI"..quick") P(WI".brown") P(W"..fox")

Softmax I Softmax Softmax | Softmax

R
A ~ L) L)
—_—

RNN

llThell Ilquickll Ilbrownll Ilfoxll

—hg—»| RNN |—h— RNN |—ho—s

—hs BRNN —h,—~

LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

INBOX
|jSPAMi ggg
CLASSIFIER

SPAM FOLDER

=Y BB

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

BB NN
et e lile e 1c

X(1) X(2)

T i

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

>t

