Optimization Methods
for Deep Learning

Gradient descent for non-convex optimization
(IA ‘ ~wmor VTAU T ER

|\/I(|,]
Decsent Lemma: Let f : RY — R be twice differentiable, and
| V4f]l, < B. Then setting the learning rate # = 1/, and <“7

_— C
applying gradient descent, x,, | = xt n Vf(x,), we have: &

fx) _f(xt+1)> ”Vf(xt)nz S O

20) o1 =5
[}Y Tmyfof QXPO;M)OW Q menv "t/m/lf(zo,,ffz 7

7L(X‘Vb ’fﬁ)* &0t (%) ts bvi(?’)bfyﬂwy

L

z>v§9n>\ll\77[)i, ND’ G[JHD[2
chog = TN Gl 14 [efr],
F(¥ea) € H(~ B HV Q

](Vf(Xf)

= () - 2(6

Converging to stationary points [

%;(5

Theorem: In T = O(ﬁ) iterations, we have ||Vf(x)||2 <e.

PJ(%({f,(/cﬁ (X&) — %Hw[(ﬂ)(l

sum oY T=20/ g 1= f P o o)1
2_ (Xe) £ ’JL” -5 Z
] (ke T~P [[V)t(XO[J;_
=) UL () £ ’} 0(:O~HXT)\
=) Vf[o ﬂj@ W

R L S uoﬂﬁf)(zf |EEasey

o<t 5L LT

Gradient Dgscent for Quadratic Functions
=0 8% (K)= Ak Dy 2 ()

Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let 4_ .. and A_. be the largest and the smallest

1

eigenvalues of A. If we set < , we have
/Imax Lomn |y ll(m%’ou’
Pl < (1=) il ot Il €T
el = ”X’((%%/Xﬁ"(?l— % c ,T\Z,W
= - Q1! — Nmsy Al
Nl 145A | 4‘(([T - ~q A\ IL (VA 1] o {)/\[’7\(/\49 (M\;Mf“?(fj)
([- tghnin) < | D] S e ey

€ (e fpin) " el
Dinerv (suv09en (0

Momentum: Heavy-Ball Method (Polyak "64)
| S = 7 o (Fo)
Problem: min f(x)

Method: v, = — V/f(x,) + /v,
Xerl = X F Vi

Fov ggw‘d(/orff(b(ﬂ’ﬁ’wizfjﬂ‘w

~. [
@(QKM (7))
J.S . Gradient fescast
O (1)
(K-" /08 ;;> gmpyo\/Q /D(’; /bcf
&DU ko KSKOV ?PUW/OJ Stvougly [udx
r](U\\Il (‘(\10\4

[anveves)

Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x) SS Y {- (X€)

X

Method: Vig1 = — Vf(-xt +ﬁvt) +16Vt
w

Xep1 = X TNV
G generel Strmgly (e F oty

YA (1)

Polyak's Momentum Nesterov Momentum

Tlght ()

KRS OWY) suwse O(L)
Newton’s Method
dxd

Newton’s Method: x, ;| = x, — ;7(&22/]\”9&2)“._1 Vi(x,)
) Xt = Xt "”UTHKO _&((D[{Z’
Soe)x fte) €02

£ _ _ o'{‘ (Kf) |
= b - :".‘
) A -

[

ﬁ’ (]{ — X2X1 Xo
f (o) j_g_gm%%)/f " N
~ ¥ () ~ « optima pom‘
v) AT — (VL]L) v7[" (7“/@1’(

(
Theoen = OCAD b5 (5.7) & enre

VAY ﬂoj(%/

AdaGrad (Duchietal.’11) Jiasoudf

()
Newton Method: x,, | = x, — 7(sz()?ct))_1 Vix,)
AdaGrad: separate learning rate for every parameter

JF”‘?O"'“‘L —1
Y1 = 5= 1(Gra + D) VI, Gy = | X (V)
waflp Ayuedlf \ =1
Xt R4

pi coudrtting

RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter
StA(ly susigr—

X1 =% = NGy + D)7 VX, (G),; = Z (Vf(xt)i>2

NG

RMSProp: exponential weighting of gradient norms
X1 =X — (G + el)~!” Vf(x),

(Gry)i = PGy + (1 = f)(Vf(x;)i)z DL /b 2| ,C/‘W“J—
VVVW . '
G npatel LRI

EMA

Dj’ ' umx

AdaDelta (Zeiler ’12) DY
‘ umit of K
RMSProp: (ui 11" o it 163

Xep1 = X — (wvf(x)

AdaDelta:
xt+1 _xt ”Ax anit fes/ ‘7L %

(&Wfﬁxz))z S
uf+1—put+<1 Pliagiep=l #bt] 1)

¢ - of(&) W,m&

[\/gm\q . oY A (

O[uomjx

7L> 57? o&(\m «Wﬂ Rk

Y

Adam (Kingma & Ba ’14)

Momentum: Veavy WAA

Vier = = Vi) + v x = x+nv —
RMSProp: exponential welghtlng of gradient norms
X1 =X — (G +el)” Vf(xt)
(Gt i — IB(Gt)u + (1 _ :B)(Vf(xt))
Adam T

Vet = P+ (1= B VSR ~
(G1)ii = (G + (1 — ﬂz)(Vf(x,),)?

X =X — NGy +el) Vt+1

Default choice nowadays.

Important Techniques
In Neural Network
Training

Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate

]‘L(K)M/l/ S \‘/H{—O ZWH,(—(6 (W{/{ -‘—{; {(U/IK))
’?i - (WHH /’\Hw Whﬂ A“) (AM~(V/h-["'V//Y)
i = !) @(W/X)““)
Al/[= d(my (é (U/p, 6(| |
T Woo, Whty weynde Yoo =) Grodied ej»/;{wv
P R e

| S
Activation Functions i et A

sigmoid

6=

10 Re;LU

R(z) =max(0, z)

0
=10 -5

Rectified Linear United

Activation Function

Sigmoid Hyperbolic Tangent

1 | 1
... /
Traditional) / ol

Non-Linear
Activation
" A -1 |
Functions 1 0 1 1 0 1
y=1/(1+e™*) y=(e*-e™*)/(e*+e™x)
RectifiigeLLiBt)ear Unit aky ReLU Exponential LU
1 1 1
Modern /
Non-Linear g 0 0
Activation
Functions
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X20
y=max (0, x) y=max(ax, X) y={a(ex_1) ,X<0

a = small const. (e.g. 0.1)

Initialization 7md’ =0
//{/(I -

* Zero-initialization (| e y/oﬂby
+ Large initialization —) il W @{ o’) %W 4
l

+ Small initialization =) o smdl =) ywd uomub,\,}

« Design principles: |
. Zero activation mean / Vs \)l/m)/

A

 Activation variance remains same across layers

K@@ puey Jon vt Wlmw((’d

Kaiming Initialization (He et al. ’151 o
Wntl

(W
W.(.’”’)N/V<O£) W R
° ij ?)

dy
. b = A

* Designed for ReLU activation
« 30-layer neural network

0.95+
0.9+
B 085)
w
1 ~
08+ — Eanar[wl] =1 ours

_/\- 0.751 ____ AVar[w,] =1 Xavier
N (0, 4 h} ——

o
-
N
w
i
w
[+2]
~
[o2]
©

Kaiming Initialization (He et aI ’15) ortlol
201, W 7§ PU@"U(’@

For Jaytr I
=62
2h < 2wk

! T"V ol oy
&OW{‘ ZM . meauv gem Sam¢ AviGn(f Yos

it EM]<0 2 £ [3]): pj[W@
dh C(-—r] X

Jz
=

Kaiming Initialization (He et al. ’15)

Vau (25) = do Vv (Y5,) »,
> i [l v >
1 Q:t Lw‘d \/m(K)WL\/W(WJ@

/—\’_/\

(1

- d(/) \/mv(\//ﬂ)EL()

gr)] =" e era)ds

) w \mmK(O/) P(E;)di/
(RKLU 7 _ fv () (2)dz;’

2)

.

)

=

L\

Kaiming Initialization (He et al. ’15)

Symnety of (2 2 7 ,(7") J 22,”7/
(qt/HJR > j ‘/ /
v O

Initialization by Pre-training

* Use a pre-trained network as initialization
* And then fine-tuning

Source Domain E Target Domain

Output Dimension: N Output Dimension: M
L)

) H L
T ' T
Initialize

i

Source Model —) Source Model

Target

Source Dataset
(ImageNet)

Dataset
(Dog Breeds)

; (e) ([, 7 thwernodd
()’]L ”VJC : /\77(’ () - Tyreld
%é/\ [oftée) il
Xt &F— 9y
* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Gradient Clipping

Loss

Batch Normalization (loffe & Szegedy, ’14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
* Could normalization be useful at the level of hidden layers?

* Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)
 During training, mean and std is computed for each
minibatch (can be backproped!

Batch Normalization (loffe & Szegedy, '14)

Standard Network

A8 80

Adding a BatchNorm layer (between weights and activation function)

Batch Normalization (loffe & Szegedy, '14)
ol By o 2g e it S

0= w4 G :p oty vy

[Batch normalization A
Z VA A
(o) —

Minibatch size Minibatch mean

ﬂ / Minibatch standard deviation
I

1 = 123: u; = Z,—i—#g/ yu; +f
I'lB - B ' 1Zl UB - B ' (Zl. nuB) l O'Bg + € L L
L= =1

Batch Normalization (loffe & Szegedy, ’14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.

dDiv —1

2
dojg

dDiv _

B .
o e
i=1

aui

B
-1 dDiv

oup Voi +e& du;

dDiv 1

dDiv B dDiv 1
dug B

oDiv 2(z; — ug)
aZl' B aui

+
dof B

2
og T €

Pl

Batch normalization

dDiv
0z;

The rest of backprop continues from

Batch Normalization (loffe & Szegedy, '14)

Learning Rate=0.1 Learning Rate=0.5
100 100

S =

> -

O O

(© (©

. | -

3 —— Standard O —— Standard

g % —— Standard + BatchNorm & 59 —— Standard + BatchNorm
o o

£ £

£ £

© ©

| . | -

= =

0 5k 10k 15k 0 5k 10k 15k

Steps Steps

What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. ‘18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training f, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)

More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)

* Instance normalization (Ulyanov, Vedaldi, Lempitsky, "16)
« Batch-independent, suitable for generation tasks
» Group normalization (Wu & He, ‘18)
« Batch-independent, improve BatchNorm for small batch size

Non-convex
Optimization Landscape

W

Gradient descent finds global minima /W% Y/

| ‘/) 4 \V' U/~ et [y e
\ (XH V)9 Practice: gradient descent 4’ Df]t mef
J g 0+ 1) o) — 2K

’ e 2 A
i (%J 9\\/) gM ® True labels 4

® Random labels

=
o

Optimization — [(//\/
error -> 0 for =) o W
both true

labels and

random labels !

—
wn

Optimization Error
o [
n o

o
o

0 5 10 15 20 25
Thousand steps

Zhang Bengio Hardt Recht Vinyals 2017
Understanding DL Requires Rethinking Generalization

Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € RY
e Local minimum:
x:fx) < fXHVx": flx =X <€
e |Local maximum:
x:fx) 2 fOVXlx =X <€
« Saddle points: stationary points
that are not a local min/max

Landscape Analysis

 All local minima are global!
« Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)
jocwl M ; K

saddle point

NANON A

» Strict saddle point: a saddle point and 4, (V2f(x)) < 0

b L AT gt A= A A "
1 iy M CAV
el Ve) R sty
ST = (’k}\w.\q VA v 6176’” vV d()Ol‘/(‘°
= U ey [V Y onalley o

|

Escaping Strict Saddle Points

* Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., "15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

o Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].

50 A

If 1) all local minima are global, and 2)
are saddle points are strict, then
noise-injected (stochastic) gradient
descent finds a global minimum in 150 0
polynomial time X, T

20

objective function
(6)]
o

What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation

What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

 Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

» Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie '19].

