Optimization Methods
for Deep Learning




Gradient descent for non-convex optimization
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Decsent Lemma: Let f : RY — R be twice differentiable, and
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Converging to stationary points [
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Theorem: In T = O(ﬁ) iterations, we have ||Vf(x)||2 <e.
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Gradient Dgscent for Quadratic Functions
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Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let 4_ .. and A_. be the largest and the smallest

1

eigenvalues of A. If we set < , we have
/Imax Lomn |y ll(m%’ou’
Pl < (1= ) il ot Il €T
el = ”X’(( %%/Xﬁ"(?l— % c ,T\Z,W
= - Q1! — Nmsy Al
Nl 145A | 4‘(( [T - ~q A\ IL (VA 1] o {)/\[’7\(/\49 (M\;Mf“?(fj)
( [ - tghnin ) < | D] S e ey

€ (e fpin) " el
Dinerv (suv09en (0



Momentum: Heavy-Ball Method (Polyak "64)
| S = 7 o (Fo)
Problem: min f(x)

Method: v, = — V/f(x,) + /v,
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Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x) SS Y {- (X€)
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Newton’s Method
dxd

Newton’s Method: x, ;| = x, — ;7(&22/]\”9&2)“._1 Vi(x,)
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AdaGrad (Duchietal.’11) Jiasoudf

()
Newton Method: x,, | = x, — 7( sz()?ct))_1 Vix,)
AdaGrad: separate learning rate for every parameter
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RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter
StA(ly susigr—

X1 =% = NGy + D)7 VX, (G),; = Z (Vf(xt)i>2

NG

RMSProp: exponential weighting of gradient norms
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Adam (Kingma & Ba ’14)

Momentum: Veavy WAA

Vier = = Vi) + v x = x+nv —
RMSProp: exponential welghtlng of gradient norms
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Important Techniques
In Neural Network
Training




Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate
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Activation Functions i et A

sigmoid
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10 Re;LU

R(z) =max(0, z)
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Rectified Linear United



Activation Function

Sigmoid Hyperbolic Tangent

1 | 1
... /
Traditional ) / ol

Non-Linear
Activation
" A -1 |
Functions 1 0 1 1 0 1
y=1/(1+e™*) y=(e*-e™*)/(e*+e™x)
RectifiigeLLiBt)ear Unit aky ReLU Exponential LU
1 1 1
Modern /
Non-Linear g 0 0
Activation
Functions
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X20
y=max (0, x) y=max(ax, X) y={a(ex_1) ,X<0

a = small const. (e.g. 0.1)



Initialization 7md’ =0
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* Zero-initialization ( | e y/oﬂby
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 Activation variance remains same across layers
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Kaiming Initialization (He et al. ’151 o
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* Designed for ReLU activation
« 30-layer neural network
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Kaiming Initialization (He et aI ’15) ortlol
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Kaiming Initialization (He et al. ’15)
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Kaiming Initialization (He et al. ’15)
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Initialization by Pre-training

* Use a pre-trained network as initialization
* And then fine-tuning

Source Domain E Target Domain

Output Dimension: N Output Dimension: M
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Source Model —) Source Model

Target

Source Dataset
(ImageNet)

Dataset
(Dog Breeds)
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* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Gradient Clipping

Loss




Batch Normalization (loffe & Szegedy, ’14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
* Could normalization be useful at the level of hidden layers?

* Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)
 During training, mean and std is computed for each
minibatch (can be backproped!



Batch Normalization (loffe & Szegedy, '14)

Standard Network

A8 80

Adding a BatchNorm layer (between weights and activation function)



Batch Normalization (loffe & Szegedy, '14)
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Batch Normalization (loffe & Szegedy, ’14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.
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Batch Normalization (loffe & Szegedy, '14)
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What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. ‘18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training f, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)



More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)

* Instance normalization (Ulyanov, Vedaldi, Lempitsky, "16)
« Batch-independent, suitable for generation tasks
» Group normalization (Wu & He, ‘18)
« Batch-independent, improve BatchNorm for small batch size



Non-convex
Optimization Landscape
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Gradient descent finds global minima /W% Y/
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Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € RY
e Local minimum:
x:fx) < fXHVx": flx =X <€
e |Local maximum:
x:fx) 2 fOVXlx =X <€
« Saddle points: stationary points
that are not a local min/max




Landscape Analysis

 All local minima are global!
« Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)
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Escaping Strict Saddle Points

* Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., "15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

o Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].
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If 1) all local minima are global, and 2)
are saddle points are strict, then
noise-injected (stochastic) gradient
descent finds a global minimum in 150 0
polynomial time X, T
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What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation



What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

 Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

» Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie '19].



