Optimization Methods
for Deep Learning




Gradient descent for non-convex optimization

Decsent Lemma: Let f : RY — R be twice differentiable, and
| V2f]|, < . Then setting the learning rate = 1/, and
applying gradient descent, x, . ; = x, — n Vf(x,), we have:

1
f(xt) _f(xt+1) Z ﬁ”vf(xz)”%



Converging to stationary points

Theorem: In T = 0(%) iterations, we have [|Vf(x)||, L e.
€



Gradient Descent for Quadratic Functions

Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let A .. and 4 . be the largest and the smallest

1

eigenvalues of A. If we setn < , we have

4
1115 < (1 = 1) %]l

max



Momentum: Heavy-Ball Method (Polyak ’64)

Problem: min f(x)
X

Method: v, ; = — Vf(x,) + pv,
X1 = X+ NV




Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x)
X

Method: v, | = — Vf(x, + pv,) + pv,
X1 = X+ Ve

Polyak's Momentum Nesterov Momentum




Newton’s Method

Newton’s Method: x,. ; = x, — n( V*f(x,)) ! Vf(x))
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AdaGrad (Duchi et al. ’11)

Newton Method: x,, | = x, — n( V>f(x,))~! Vf(x,)
AdaGrad: separate learning rate for every parameter

—1
X1 =X — (G g + GI)_l Vix), (G);; = Z (Vf(xt)i)z
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RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

t—1
X1 = X — ﬂ(GH_l + €I)_1 Vf(-x[)a (Gt i = Z ( Vf(xt)i)z

\2

RMSProp: exponential weighting of gradient norms
Xep1 = X — N(Gpyq + 61)_1/2 Vfx), )
(Gt+1)ii — IB(Gt)ii + (1 _ ﬁ)( Vf(xt)i)




AdaDelta (Zeiler ’12)

RMSProp:
X1 =X —n(Gy + GI)_1/2 Vi(x,),
(Gt+1)ii — ﬂ(Gt)ii + (1 — ﬂ)( Vf(xt)i)z

AdaDelta:

X1 = X, — nAx,

Ax, = /u,+ ¢ - (G, + )2 Vfx)
(Gt+1)ii — p(Gt)ii + (1 — ,0)( Vf(xt)i)za
U = pu,+ (1 — p)||Axt||%



Adam (Kingma & Ba ’14)

Momentum:

Vip1 = — V) + v X = X+ v
RMSProp: exponential weighting of gradient norms

X1 = X% — NGy + el)™! Vf(x),
(Gy;; = P(GYy; + (1 = p)( Vf(xt)l-)z
Adam

Vg1 = P+ (1 = B VIx,)

(Gt+1)ii — ﬂz(Gt)ii + (1 _ :BZ)( Vf(xt)i)z

—1/2
X1 =X — (G + €)™y

Default choice nowadays.



Important Techniques
In Neural Network
Training




Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate



Activation Functions
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Activation Function

Sigmoid Hyperbolic Tangent

1 — 1
Traditional /
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a = small const. (e.g. 0.1)



Initialization

o Zero-initialization
 Large initialization
 Small initialization

 Design principles:
« Zero activation mean

 Activation variance remains same across layers



Kaiming Initialization (He et al. ’15)

W~ 0,3 .
- bW =0

» Designed for RelLU activation
« 30-layer neural network
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Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Initialization by Pre-training

« Use a pre-trained network as initialization
* And then fine-tuning

Source Domain ; Target Domain

Output Dimension: N Output Dimension: M
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Source Model — Source Model

Target
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Gradient Clipping

* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Loss
v




Batch Normalization (loffe & Szegedy, '14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
« Could normalization be useful at the level of hidden layers?

e Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)

 During training, mean and std is computed for each
minibatch (can be backproped!



Batch Normalization (loffe & Szegedy, '14)

Standard Network

Adding a BatchNorm layer (between weights and activation function)



Batch Normalization (loffe

z=ijEj+b
I

& Szegedy, '14)

7 [Batch normalization
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Batch Normalization (loffe & Szegedy, '14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.
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Batch Normalization (loffe & Szegedy, ’14)
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What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. “18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training £, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)



More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)

* Instance normalization (Ulyanov, Vedaldi, Lempitsky, '16)
« Batch-independent, suitable for generation tasks
« Group normalization (Wu & He, ‘18)
« Batch-independent, improve BatchNorm for small batch size



Non-convex
Optimization Landscape
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Gradient descent finds global minima

Practice: gradient descent
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Zhang Bengio Hardt Recht Vinyals 2017

Understanding DL Requires Rethinking Generalization



Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € R?
e Local minimum:
x:fx) < fOVXlx—x| <e
e Local maximum:
X fx) = fOOVX L lx—x| <€
« Saddle points: stationary points
that are not a local min/max




Landscape Analysis

« All local minima are global!
» Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

saddle point

NEANON A

« Strict saddle point: a saddle point and 4. ( V2f(x)) < 0



Escaping Strict Saddle Points

» Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., '15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

« Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].

50 A

If 1) all local minima are global, and 2)
are saddle points are strict, then 2 50 p
noise-injected (stochastic) gradient S| G @ .
descent finds a global minimum in -1_52(3;_1-(7\/0/

polynomial time X, T

objective function
(42
o



What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation



What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

* Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

« Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie "19].



