

Optimization Methods for Deep Learning

W

Gradient descent for non-convex optimization

Descent Lemma: Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$ be twice differentiable, and $\|\nabla^2 f\|_2 \leq \beta$. Then setting the learning rate $\eta = 1/\beta$, and applying gradient descent, $x_{t+1} = x_t - \eta \nabla f(x_t)$, we have:

$$f(x_t) - f(x_{t+1}) \geq \frac{1}{2\beta} \|\nabla f(x_t)\|_2^2.$$

Converging to stationary points

Theorem: In $T = O(\frac{\beta}{\epsilon^2})$ iterations, we have $\|\nabla f(x)\|_2 \leq \epsilon$.

Gradient Descent for Quadratic Functions

Problem: $\min_x \frac{1}{2} x^\top A x$ with $A \in \mathbb{R}^{d \times d}$ being positive-definite.

Theorem: Let λ_{\max} and λ_{\min} be the largest and the smallest eigenvalues of A . If we set $\eta \leq \frac{1}{\lambda_{\max}}$, we have

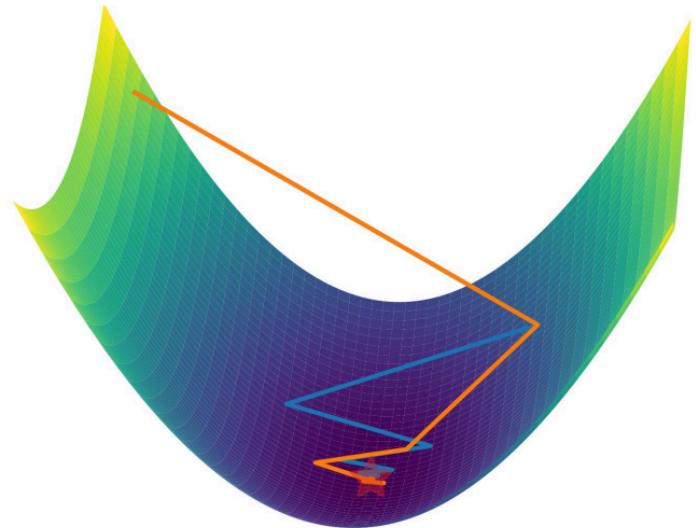
$$\|x_t\|_2 \leq (1 - \eta \lambda_{\min})^t \|x_0\|_2$$

Momentum: Heavy-Ball Method (Polyak '64)

Problem: $\min_x f(x)$

Method: $v_{t+1} = -\nabla f(x_t) + \beta v_t$

$$x_{t+1} = x_t + \eta v_{t+1}$$



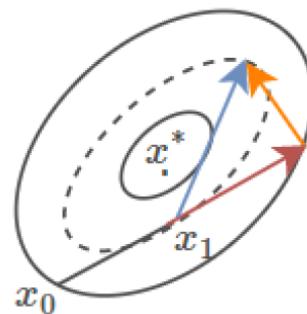
Momentum: Nesterov Acceleration (Nesterov '89)

Problem: $\min_x f(x)$

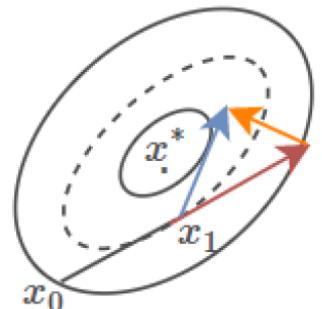
Method: $v_{t+1} = -\nabla f(x_t + \beta v_t) + \beta v_t$

$$x_{t+1} = x_t + \eta v_{t+1}$$

Polyak's Momentum

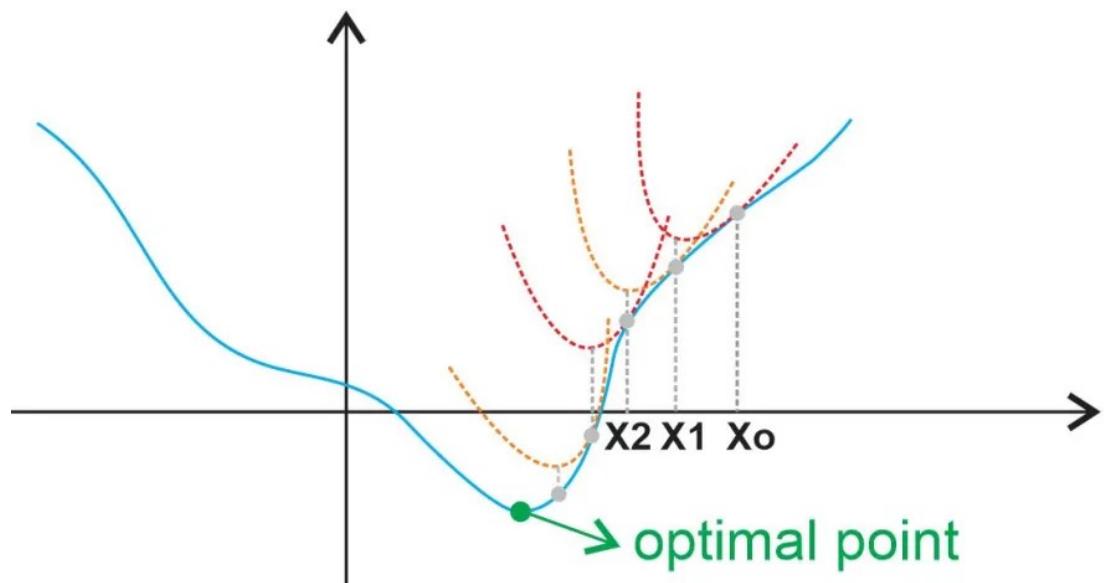


Nesterov Momentum



Newton's Method

Newton's Method: $x_{t+1} = x_t - \eta(\nabla^2 f(x_t))^{-1} \nabla f(x_t)$



AdaGrad (Duchi et al. '11)

Newton Method: $x_{t+1} = x_t - \eta(\nabla^2 f(x_t))^{-1} \nabla f(x_t)$

AdaGrad: separate learning rate for every parameter

$$x_{t+1} = x_t - \eta(G_{t+1} + \epsilon I)^{-1} \nabla f(x_t), (G_t)_{ii} = \sqrt{\sum_{j=1}^{t-1} (\nabla f(x_t)_i)^2}$$

RMSProp (Hinton et al. '12)

AdaGrad: separate learning rate for every parameter

$$x_{t+1} = x_t - \eta(G_{t+1} + \epsilon I)^{-1} \nabla f(x_t), (G_t)_{ii} = \sqrt{\sum_{j=1}^{t-1} (\nabla f(x_t)_i)^2}$$

RMSProp: exponential weighting of gradient norms

$$x_{t+1} = x_t - \eta(G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t), (G_{t+1})_{ii} = \beta(G_t)_{ii} + (1 - \beta)(\nabla f(x_t)_i)^2$$

AdaDelta (Zeiler '12)

RMSProp:

$$\begin{aligned}x_{t+1} &= x_t - \eta (G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t), \\ (G_{t+1})_{ii} &= \beta (G_t)_{ii} + (1 - \beta) (\nabla f(x_t)_i)^2\end{aligned}$$

AdaDelta:

$$\begin{aligned}x_{t+1} &= x_t - \eta \Delta x_t, \\ \Delta x_t &= \sqrt{u_t + \epsilon} \cdot (G_{t+1} + \epsilon I)^{-1/2} \nabla f(x_t) \\ (G_{t+1})_{ii} &= \rho (G_t)_{ii} + (1 - \rho) (\nabla f(x_t)_i)^2, \\ u_{t+1} &= \rho u_t + (1 - \rho) \|\Delta x_t\|_2^2\end{aligned}$$

Adam (Kingma & Ba '14)

Momentum:

$$v_{t+1} = -\nabla f(x_t) + \beta v_t, \quad x_{t+1} = x_t + \eta v_{t+1}$$

RMSProp: exponential weighting of gradient norms

$$x_{t+1} = x_t - \eta(G_{t+1} + \epsilon I)^{-1} \nabla f(x_t),$$
$$(G_t)_{ii} = \beta(G_t)_{ii} + (1 - \beta)(\nabla f(x_t)_i)^2$$

Adam

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$

$$(G_{t+1})_{ii} = \beta_2(G_t)_{ii} + (1 - \beta_2)(\nabla f(x_t)_i)^2$$

$$x_{t+1} = x_t - \eta(G_{t+1} + \epsilon I)^{-1/2} v_{t+1}$$

Default choice nowadays.

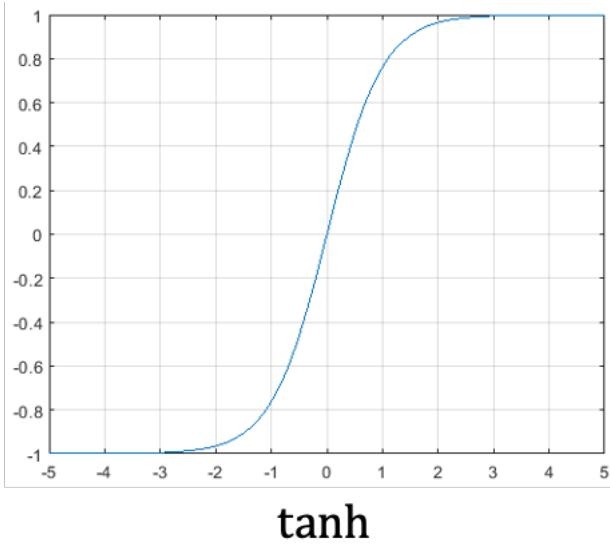
Important Techniques in Neural Network Training

W

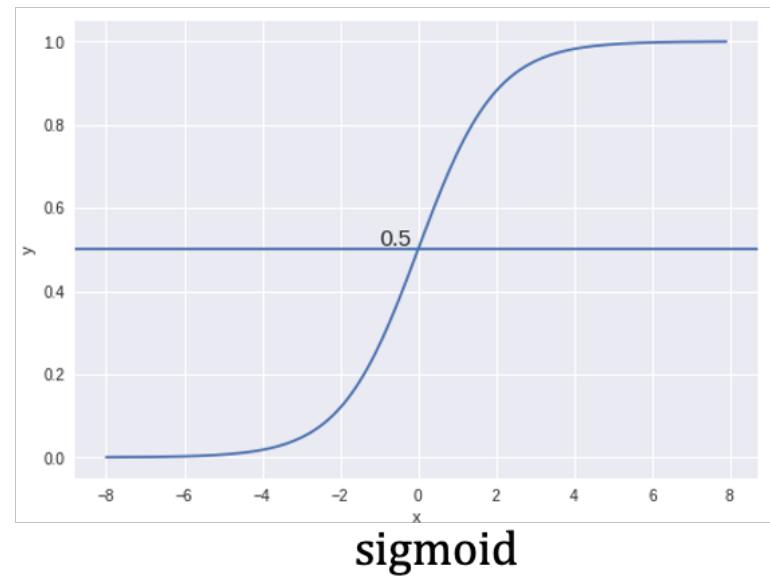
Gradient Explosion / Vanishing

- Deeper networks are harder to train:
 - Intuition: gradients are products over layers
 - Hard to control the learning rate

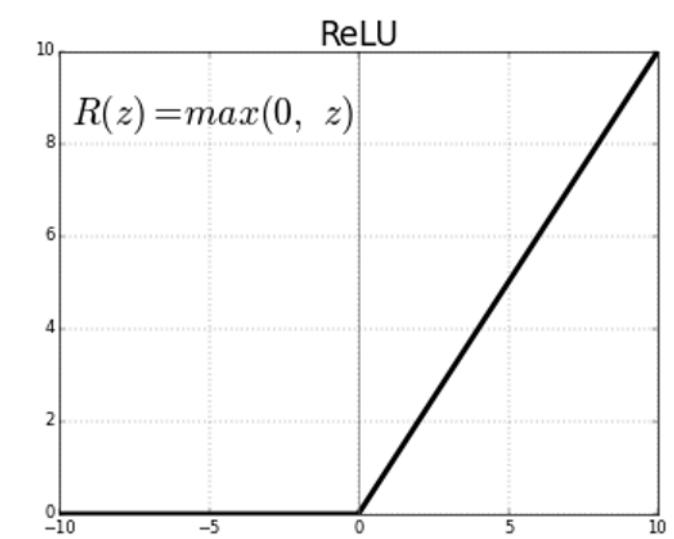
Activation Functions



tanh



sigmoid

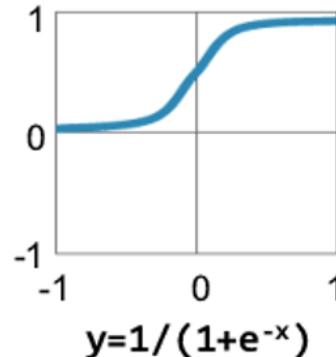


Rectified Linear United

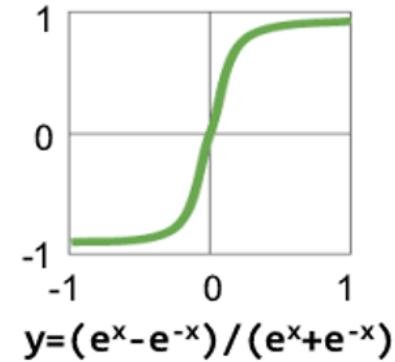
Activation Function

Traditional Non-Linear Activation Functions

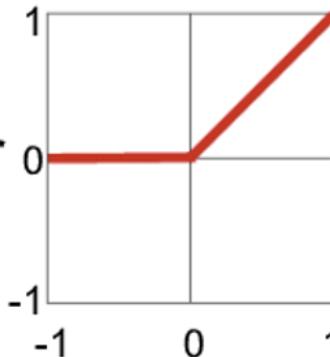
Sigmoid



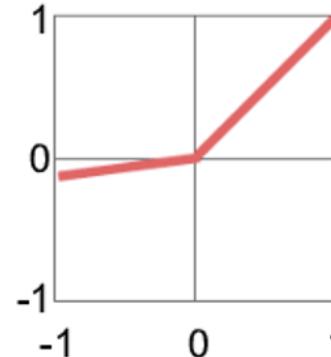
Hyperbolic Tangent



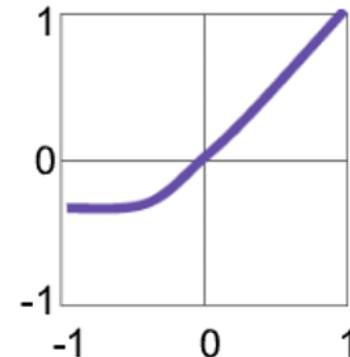
Rectified Linear Unit (ReLU)



Leaky ReLU



Exponential LU



Modern Non-Linear Activation Functions

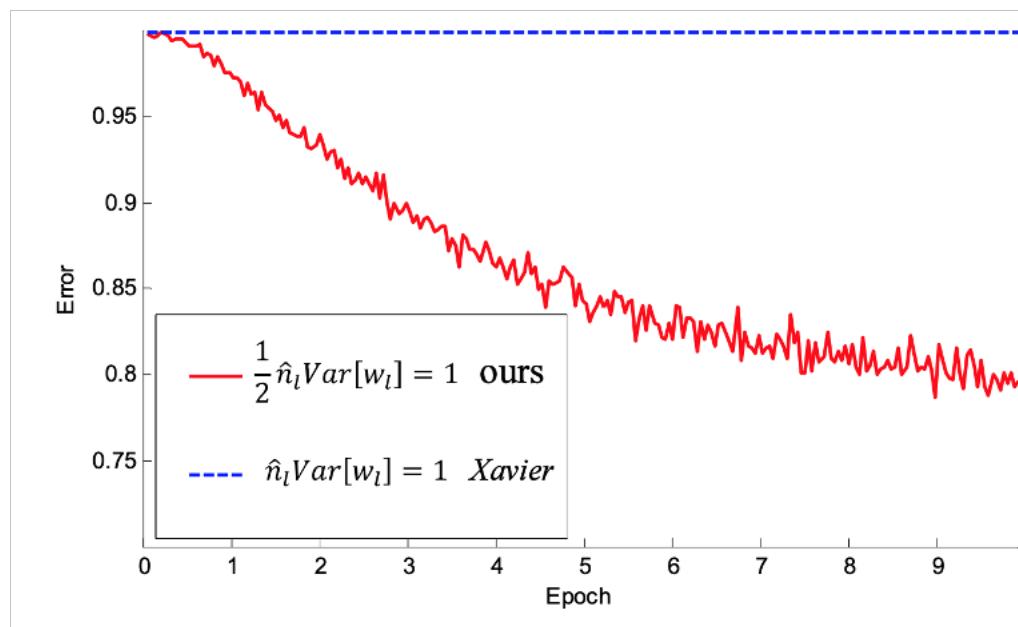
α = small const. (e.g. 0.1)

Initialization

- Zero-initialization
- Large initialization
- Small initialization
- Design principles:
 - Zero activation mean
 - Activation variance remains same across layers

Kaiming Initialization (He et al. '15)

- $W_{ij}^{(h)} \sim \mathcal{N} \left(0, \frac{2}{d_h} \right)$.
- $b^{(h)} = 0$
- Designed for ReLU activation
- 30-layer neural network



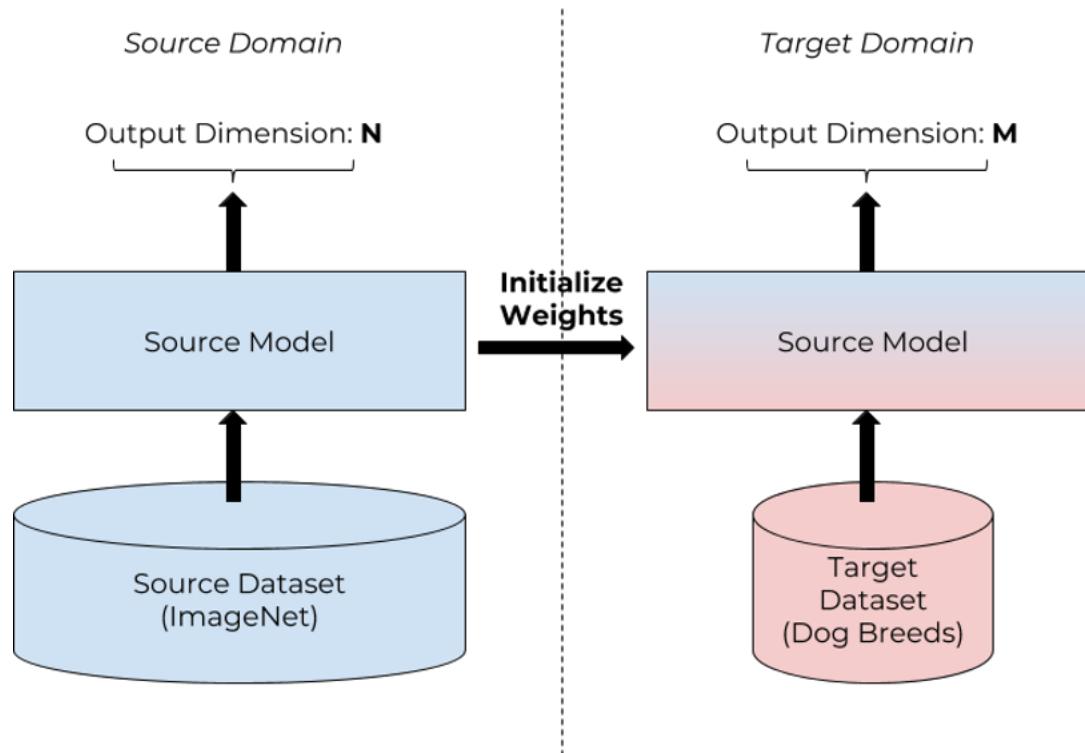
Kaiming Initialization (He et al. '15)

Kaiming Initialization (He et al. '15)

Kaiming Initialization (He et al. '15)

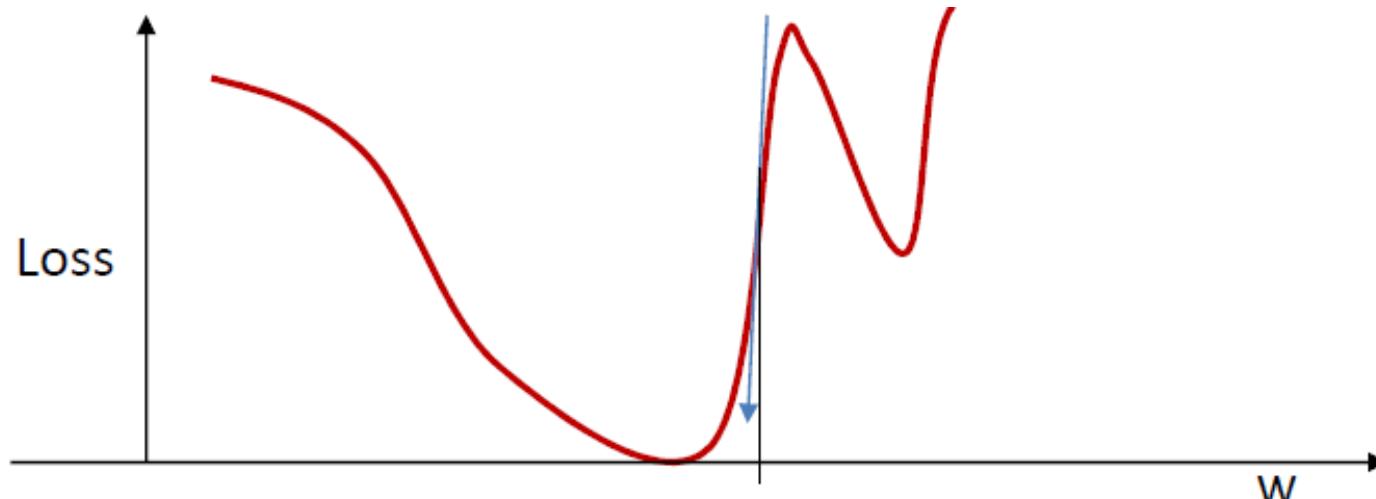
Initialization by Pre-training

- Use a pre-trained network as initialization
- And then fine-tuning



Gradient Clipping

- The loss can occasionally lead to a steep descent
- This result in immediate instability
- If gradient norm bigger than a threshold, set the gradient to the threshold.

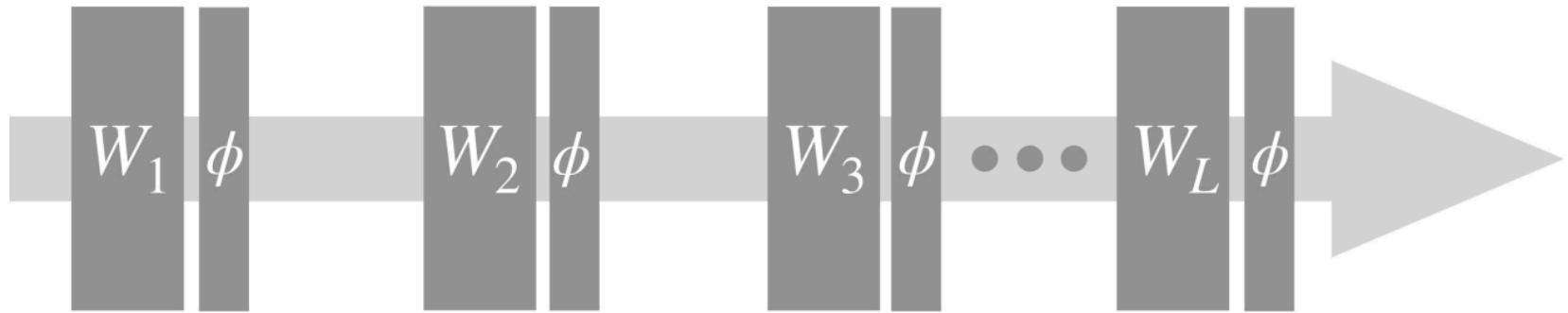


Batch Normalization (Ioffe & Szegedy, '14)

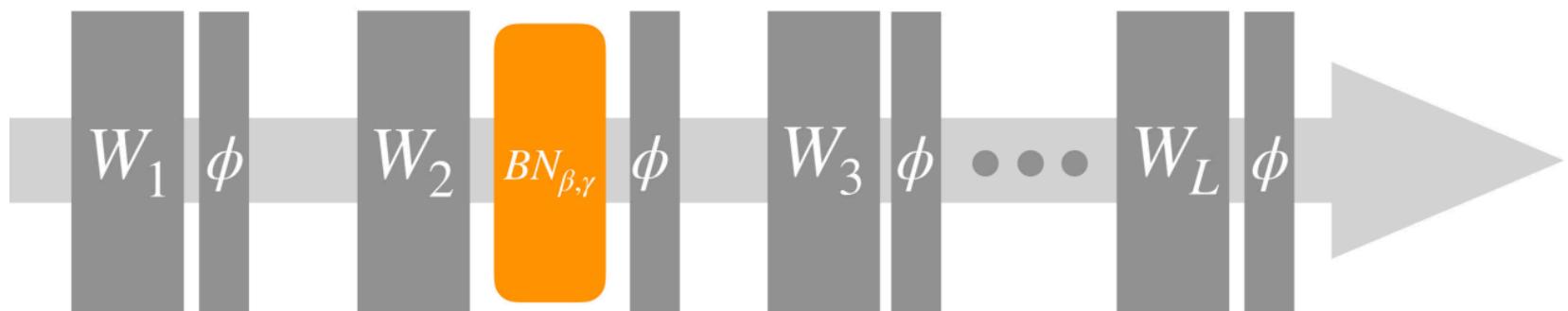
- **Normalizing/whitening** (mean = 0, variance = 1) the inputs is generally useful in machine learning.
 - Could normalization be useful at the level of hidden layers?
 - **Internal covariate shift**: the calculations of the neural networks change the distribution in hidden layers even if the inputs are normalized
- **Batch normalization** is an attempt to do that:
 - Each unit's **pre-activation** is normalized (mean subtraction, std division)
 - During training, mean and std is computed for each minibatch (can be backproped!)

Batch Normalization (Ioffe & Szegedy, '14)

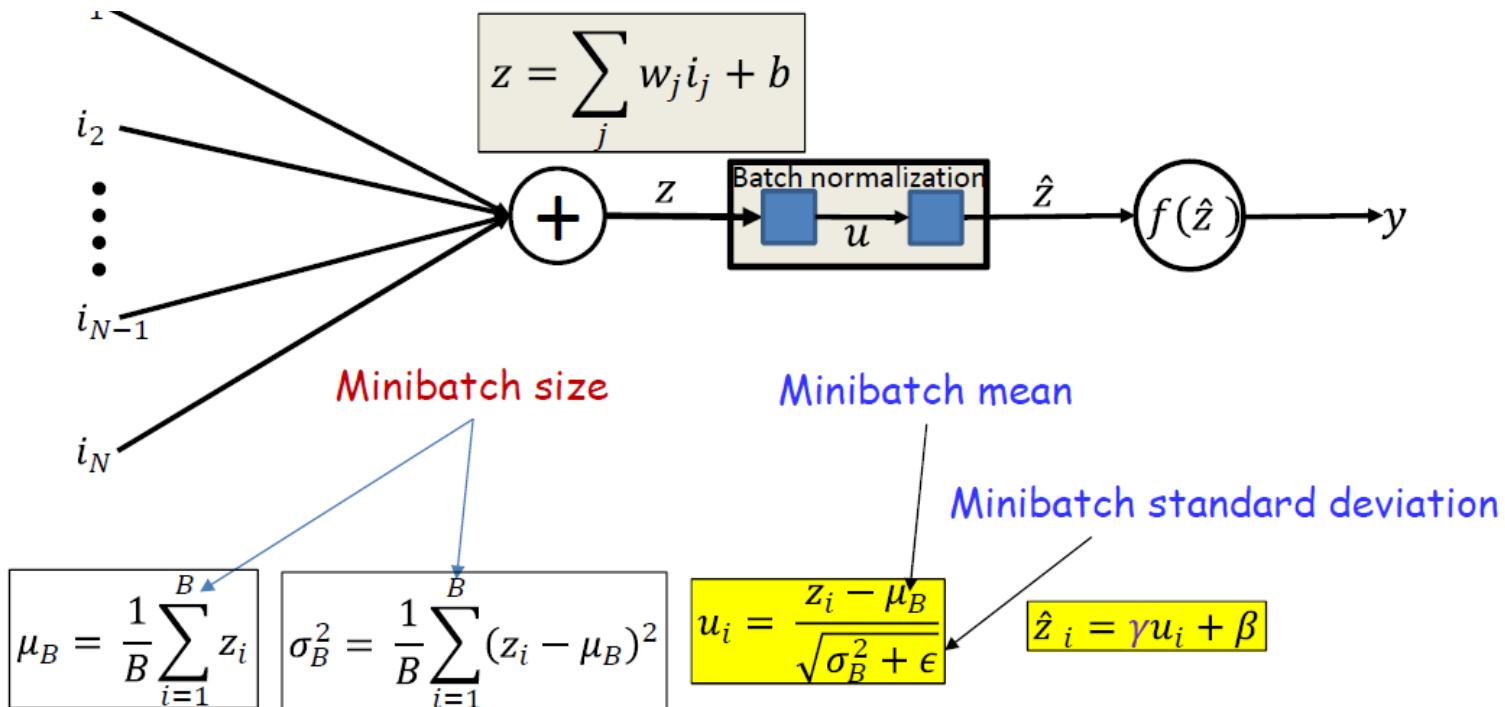
Standard Network



Adding a BatchNorm layer (between weights and activation function)



Batch Normalization (Ioffe & Szegedy, '14)

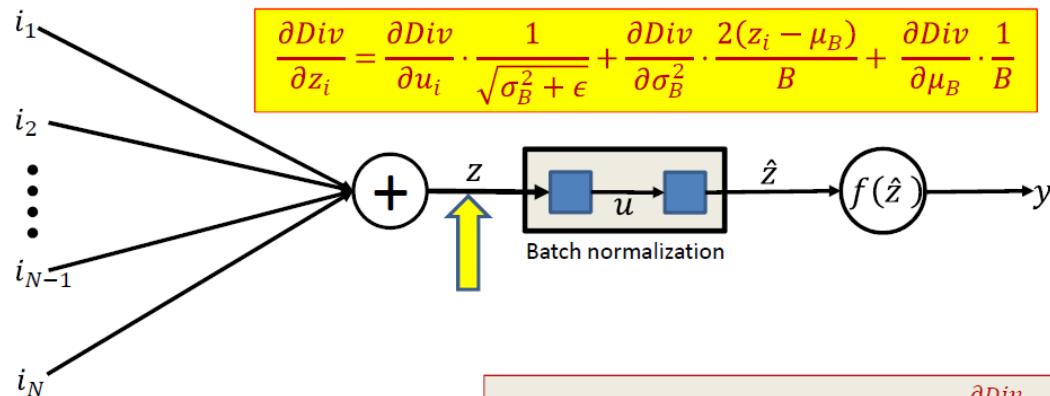


Batch Normalization (Ioffe & Szegedy, '14)

- BatchNorm at training time
 - Standard backprop performed for each single training data
 - Now backprop is performed over entire batch.

$$\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$

$$\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}$$



The rest of backprop continues from $\frac{\partial Div}{\partial z_i}$

Batch Normalization (Ioffe & Szegedy, '14)



What is BatchNorm actually doing?

- May not be due to covariate shift (Santurkar et al. '18):
 - Inject non-zero mean, non-standard covariance Gaussian noise after BN layer: removes the whitening effect
 - Still performs well.
- Only training β, γ with random convolution kernels gives non-trivial performance (Frankle et al. '20)
- BN can use exponentially increasing learning rate! (Li & Arora '19)

More normalizations

- Layer normalization (Ba, Kiros, Hinton, '16)
 - Batch-independent
 - Suitable for RNN, MLP
- Weight normalization (Salimans, Kingma, '16)
 - Suitable for meta-learning (higher order gradients are needed)
- Instance normalization (Ulyanov, Vedaldi, Lempitsky, '16)
 - Batch-independent, suitable for generation tasks
- Group normalization (Wu & He, '18)
 - Batch-independent, improve BatchNorm for small batch size

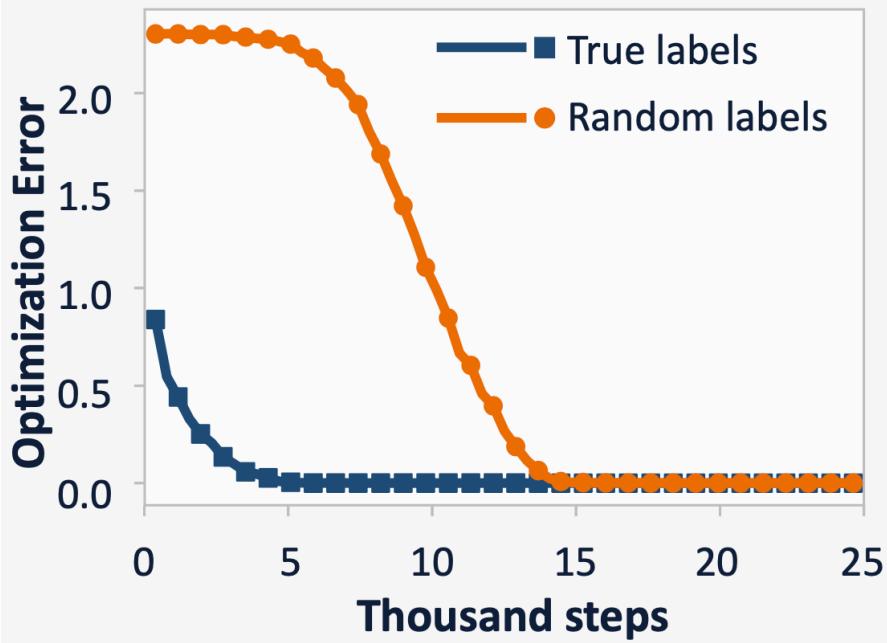
Non-convex Optimization Landscape

W

Gradient descent finds global minima

Practice: gradient descent

$$\theta(t + 1) \leftarrow \theta(t) - \eta \frac{\partial L(\theta(t))}{\partial \theta(t)}$$

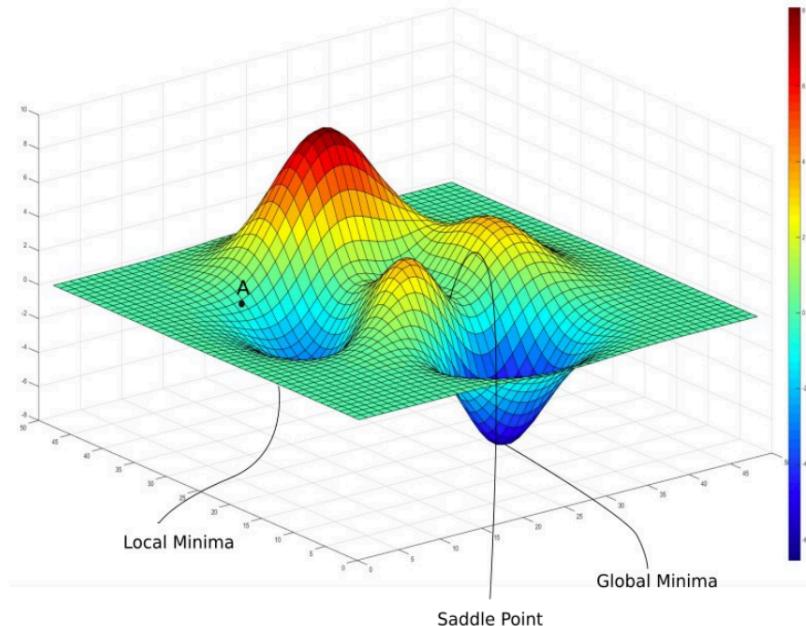


Optimization
error $\rightarrow 0$ for
both **true**
labels and
random labels !

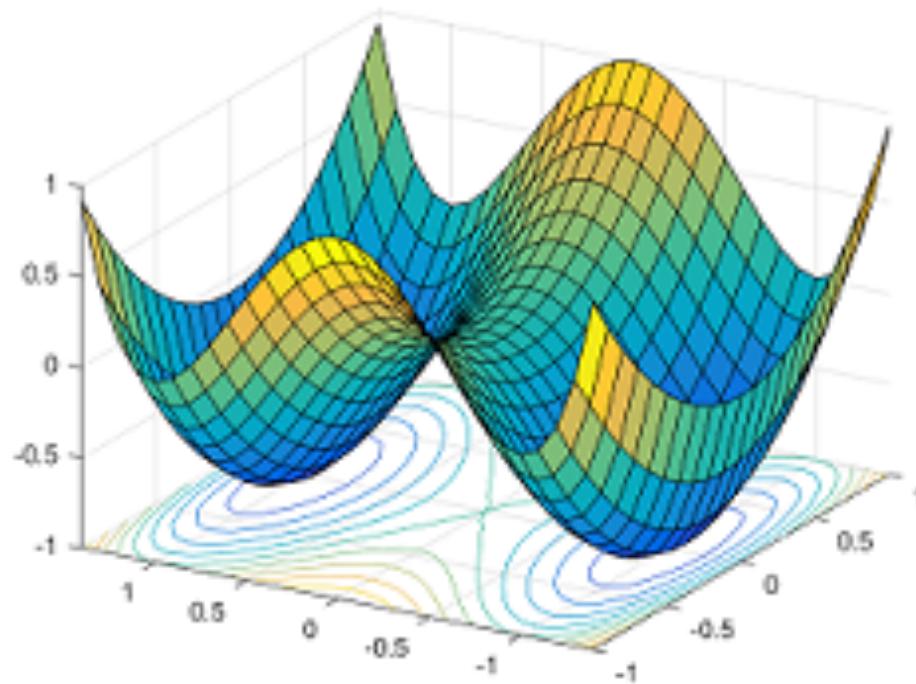
Zhang Bengio Hardt Recht Vinyals 2017
Understanding DL Requires Rethinking Generalization

Types of stationary points

- Stationary points: $x : \nabla f(x) = 0$
- Global minimum:
 $x : f(x) \leq f(x') \forall x' \in \mathbb{R}^d$
- Local minimum:
 $x : f(x) \leq f(x') \forall x' : \|x - x'\| \leq \epsilon$
- Local maximum:
 $x : f(x) \geq f(x') \forall x' : \|x - x'\| \leq \epsilon$
- Saddle points: stationary points that are not a local min/max

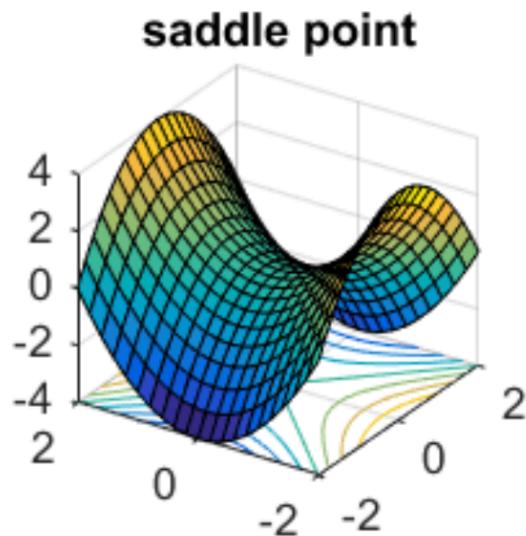


Landscape Analysis



- All local minima are global!
- Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. '15, Sun et al. '15)

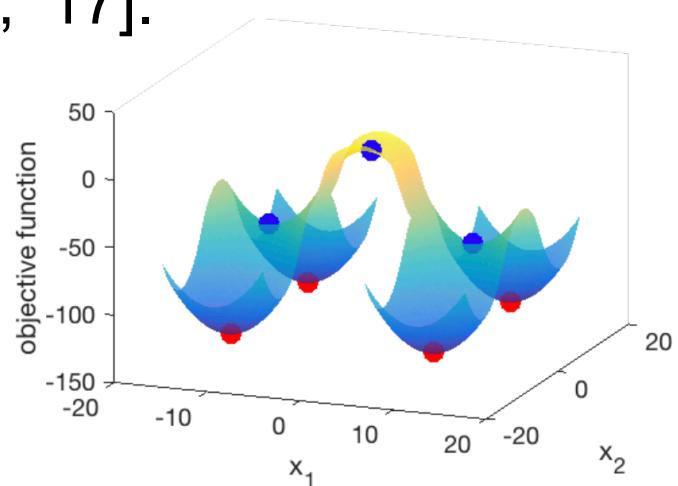


- Strict saddle point: a saddle point and $\lambda_{\min}(\nabla^2 f(x)) < 0$

Escaping Strict Saddle Points

- **Noise-injected** gradient descent can escape strict saddle points in polynomial time [Ge et al., '15, Jin et al., '17].
- Randomly initialized gradient descent can escape all strict saddle points asymptotically [Lee et al., '15].
 - Stable manifold theorem.
- Randomly initialized gradient descent can take exponential time to escape strict saddle points [Du et al., '17].

If 1) all local minima are global, and 2) all saddle points are strict, then noise-injected (stochastic) gradient descent finds a global minimum in polynomial time



What problems satisfy these two conditions

- Matrix factorization
- Matrix sensing
- Matrix completion
- Tensor factorization
- Two-layer neural network with quadratic activation

What about neural networks?

- Linear networks (neural networks with linear activations functions): **all local minima are global, but there exists saddle points that are not strict** [Kawaguchi '16].
- Non-linear neural networks with:
 - Virtually any non-linearity,
 - Even with Gaussian inputs,
 - Labels are generated by a neural network of the same architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-Jadbaie '19].