
Gradient Descent
- how	are	we	going	to	find	the	solution	for		

													 	

- e.g.,	Logistic	Regression	do	not	have	closed	form	solution	for	
														 	

arg min
b,w

n

∑
i=1

ℓ(b + wT xi, yi)

∇b,wℒ(b, w) = 0

Running example: linear regression

{(xi, yi)}ni=1 xi 2 Rd yi 2 R■ Given data:

w1 w2

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

■ Learning model parameters:
f (w1, w2)

• Although	we	know	the	optimal	solution		
in	a	closed	form,	we	will	use	this	as		
a	running	example	to	understand	GD

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

f (w0)

min fix

u

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

Thus,	for	very	small	 ,		

if	 	then	

	 		

is	very	close	to		

η > 0
w1 = w0 − η

df (w)
dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1 = w0 − η df(w)
dw w=w0

f (w0)

f (w1)

if w Wo has same

direction as dta
Tw u

wi wolf
d lw wo

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

Thus,	for	very	small	 ,		

if	 	then	

	 		

is	very	close	to		

η > 0
w1 = w0 − η

df (w)
dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1 = w0 − η df(w)
dw w=w0

f (w0)

f (w1)

Gradient	descent	
For	k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

w

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

Thus,	for	very	small	 ,		

if	 	then	

	 		

is	very	close	to		

η > 0
w1 = w0 − η

df (w)
dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

w2

f (w2)

Gradient	descent	
For	k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

Thus,	for	very	small	 ,		

if	 	then	

	 		

is	very	close	to		

η > 0
w1 = w0 − η

df (w)
dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

w2

f (w2)

w3

f (w3)

Gradient	descent	
For	k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

Thus,	for	very	small	 ,		

if	 	then	

	 		

is	very	close	to		

η > 0
w1 = w0 − η

df (w)
dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

Gradient	descent	
For	k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

w2

f (w2)

w3

f (w3)

Note	that	as	 	we	have	k → ∞ df(w)
dw w=wk

→ 0

Running example: linear regression

{(xi, yi)}ni=1 xi 2 Rd yi 2 R■ Given data:

w1 w2

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

■ Learning model parameters:
f (w1, w2)

■ Gradient descent:
• Initialize:	 	
• For	t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

y

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt){(xi, yi)}ni=1

y = wt[1] + wt[2]x
= 900 − 0.1x

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

• Which	direction	will	the	GD	move?

w*

w0d

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w[1]

w[2]

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4
w5

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4
w5
w6

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4
w5

w6
w7

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

• 	
•For	t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4
w5

w6w7
w8

GD	dynamics	in	the	Parameter	space	Evolution	of	the	predictor

w[1]

w[2]

w*LS

Gradient descent for linear regression

For	linear	regression,	we	have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In	this	example	of	linear	regression,	
we	can	derive	exactly	the	gradient	
descent	trajectory	

•Initialize:	 	
•For	t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)
∇f(wt) = − 2XT(y − Xwt)

Gradient descent for linear regression

For	linear	regression,	we	have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In	this	example	of	linear	regression,	
we	can	derive	exactly	the	gradient	
descent	trajectory	

•Initialize:	 	
•For	t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)
∇f(wt) = − 2XT(y − Xwt)

wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

Gradient descent for linear regression

For	linear	regression,	we	have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In	this	example	of	linear	regression,	
we	can	derive	exactly	the	gradient	
descent	trajectory	

•Initialize:	 	
•For	t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)
∇f(wt) = − 2XT(y − Xwt)

wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

wt+1 − w* = (I − 2ηXTX)wt + 2ηXTy − w*

Let	the	least-squares	solution	be	w* = (XTX)−1XTy

= (I − 2ηXTX)(wt − w*) + 2ηXTy − 2ηXTXw*
= (I − 2ηXTX)(wt − w*)

Gradient descent for linear regression

For	linear	regression,	we	have

∇f(wt) = − 2XT(y − Xwt)

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

wt+1 − w* = (I − 2ηXTX)wt + 2ηXTy − w*

Let	the	least-squares	solution	be	w* = (XTX)−1XTy

= (I − 2ηXTX)(wt − w*) + 2ηXTy − 2ηXTXw*
= (I − 2ηXTX)(wt − w*)

•Initialize:	 	
•For	t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

in Fxx
oct 24 x2

c

4 x ̅
In How w

How do you choose step size?

f(w)

w* = arg min
w

f (w)w0

Let	 	be	an	initial	guess.		How	can	we	improve	this	solution?w0

Taylor	series	approximation:		
For	 	very	close	to	 	we	have		

	 	

is	very	close	to		

w w0

f (w0) + (w − w0) df (w)
dw w=w0

f (w)

f (w0)

If	 	too	big,	does	not	converge!	
If	 	too	small,	converges	very,	very	slowly.

η
η

In	practice:	choose	the	largest	value	of	 	that	converges	(guess	and	check)η

Stochastic Gradient Descent

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient	Descent:

time complexy On

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient	Descent:

Stochastic	Gradient	Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

time complexity

per iteration

O I

e unitsin.nl
Ow Eili w

Machine Learning Problems
nX

i=1

`i(w)■ Learning a model’s parameters:

Stochastic	Gradient	Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] = r`(w)

Mini-batch SGD

• Instead	of	one	iterate,	average	B	stochastic	gradient	together	

• Advantages:	
• Smaller variance: the variance of the stochastic gradient  

is smaller by a factor of

• Parallelization: each gradient in the mini-batch  

can be computed in parallel  

• If you have regularizer, , then update  

with the stochastic gradient of the loss and gradient of the
regularizer

1/ B

1
n

n

∑
i=1

ℓi(w) + r(w)

1 EB
open Ben

will

Fully-Connected Neural
Networks

Neural Networks

• Origins:	Algorithms	that	try	to	mimic	the	brain.	
• Widely	used	in	80s	and	early	90s;	popularity	diminished	in	late	90s.	
• Recent	resurgence	from	10s:	state-of-the-art	techniques	for	many	
applications:		
• Computer	Vision	
• Natural	language	processing:	e.g.,	GPT	
• Speech	recognition	
• Decision-making	/	control	problems	(AlphaGo,	Dota,	robots)	

• Limited	theory:	
• Non-convexity	
• Model	are	complex	but	generalization	error	is	small	

Neural Networks
intermediate layer

if

a
f

a
node neuron units k ledge

each node maps output of
a heavy

1 input to the input of
aneuron

2 activation each link has
3 output a weight ER

I

Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X Binary	
Logistic	
Regression

4 44 if 0 1 00 2

0
2 00 1

Ou Xot G xita.x.to

from linear non linear

h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

0
1 as

4 3

Go ait.gl oi
0 al g a ay

a

ui.gl oo'sixi

14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)

Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) = 1
1 + e−z

Binary	
Logistic	
Regression

ignore bias

pointwise
2mxa

Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))
L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) = 1
1 + e−z

Binary	
Logistic	
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

If RelU rectified linearunit

Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class	
Logistic	
Regression

an a

ftp.iiiia23

Ca 24
at

Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

Neural Network
Optimization

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient	Descent:

Gradient Descent

Convex	Function Non-convex	Function

Initialize: w0 = 0

for t = 1, 2, . . .

wt+1 = wt � ⌘rf(wt)

Sub-Gradient Descent

g is a subgradient at x if f(y) � f(x) + gT (y � x)g is a subgradient at x if f(y) � f(x) + gT (y � x)

Initialize: w0 = 0

for t = 1, 2, . . .

Find any gt such that f(y) � f(wt) + g>t (y � wt)

wt+1 = wt � ⌘gt

Convex	Function Non-convex	Function

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient	Descent:

Stochastic	Gradient	Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

Gradient Computation on a Graph

Naive	computation:	node	by	node
L layers

time complexity 0 L

A brief history

• Back propagation: the workhorse for training neural networks.
An algorithm that for a network with V nodes and E edges
calculates that gradient in linear time O(V+E).

• The name was introduced by Rumelhart, Hinton, Williams ’86.
Same idea was rediscovered multiple times. Also mentioned in
Werbos’ thesis ’74 in the context of neural networks.

• Control theory: Kelly ’60, Bryson ’61 [dynamic programming]

• Theoretical computer science: Baur-Strassen lemma ’83
[algebraic circuits]

012 014

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) = 1
1 + e−z

⇥(l) ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))

1

014

Forward Propagation

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) = 1
1 + e−z

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

21 pre activation

b d

Backprop

g(z) = 1
1 + e−z δ(l+1)

i = ∂L(y, ̂y)
∂z(l+1)

i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y)
∂Θ(l)

i, j

Train	by	Stochastic	Gradient	Descent:

ignore bial Epd Qty 014 parameters to train

2ⁿᵈ
141 2mm
14 2m vector

w

Backprop

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y)
∂Θ(l)

i, j

Train	by	Stochastic	Gradient	Descent:

ChainRule

0

2 Eat all

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

δ(l)
i = ∂L(y, ̂y)

∂z(l)
i

= ∑
k

∂L(y, ̂y)
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))
D 21 oil.gl Ti Eggin

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

δ(l)
i = ∂L(y, ̂y)

∂z(l)
i

= ∑
k

∂L(y, ̂y)
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

= ∑
k

δ(l+1)
k ⋅ Θ(l)

k,i g′ (z(l)
i)

= a(l)
i (1 − a(l)

i)∑
k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))

Backprop

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k
δ(l+1)

k ⋅ Θ(l)
k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l)) in

Backprop

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

δ(L+1)
i = ∂L(y, ̂y)

∂z (L+1)
i

= ∂
∂z (L+1)

i
[y log(g(z(L+1))) + (1 − y)log(1 − g(z(L+1)))]

= y − g(z(L+1)) = y − a(L+1)

= y
g(z(L+1)) g′ (z(L+1)) − 1 − y

1 − g(z(L+1)) g′ (z(L+1))

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k
δ(l+1)

k ⋅ Θ(l)
k,i

Backprop

g(z) = 1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
= ∂L(y, ̂y)

∂z(l+1)
i

⋅ ∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i = ∂L(y, ̂y)

∂z(l+1)
i

δ(L+1) = y − a(L+1)

Recursive	Algorithm!

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k
δ(l+1)

k ⋅ Θ(l)
k,i

name

Auto-differentiation

Backprop	for	this	simple	network	architecture	is	a	special	
case	of	reverse-mode	auto-differentiation:

Goal compute gradient

takes computefund

Auto-differentiation

• Given a function, computes its partial derivatives

• Compute all of the partial derivatives of a function with (nearly)
same computation runtime [Griewank ’89, Baur and Strassen
’83]

• Backbone of (applied) machine learning: Pytorch, Tensorflow, …

Example of Computation Graph

Input:

f(w1, w2) = (sin (2πw1
w2) + 3w1

w2
− exp(2w2)) ⋅ (3w1

w2
− exp(2w2))

z0 = (w1, w2)

i a ᵗw
2 22 sin 2721

3,2 ext 2W 1

4 24 321 23 f
5 25 22 24

6 26 24 25
u

024 7

Computation Model

• Given access to a set of differentiable real functions
• Use functions in to create intermediate variables.
• Evaluation trace:

• All intermediate variables will be scalars; each corresponds to
a node.

• Input
• Step 1: (a subset of variables in)
• ….
• Step t: (a subset of variables in)
• …
• Step T: (a subset of variables in)
• Return:

()

h ∈ ℋ
ℋ

z0 = w ∈ ℝd . [z0]1 = w1, [z0]2 = w2, …, [z0]d = wd
z1 = h1 w

zt = ht z1, …, zt−1, w

zT = hT z1, …, zT−1, w
zT

h1, …, hT ∈ ℋ

Computation Model

• Every is one of the following:
• Type 1: An affine transformation of the inputs

• Type 2: A product of variables, to some power

• Type 3: A fixed set of one dimensional differentiable
functions:
• We assume we can easily compute the derivatives for

each of this functions.

• Type 3 can be approximated by Type 1 and Type 2, using
polynomials.

h ∈ ℋ

sin(⋅), cos(⋅), exp(⋅), log(⋅), . . .

24 321 23

Zf 24 25

Recov

Reverse Mode of Automatic Differentiation

Goal: Compute partial derivatives of , i.e., .
• Step 1: computer and store in memory all intermediate

variables

• Step 2: Initialize: .

• Step 3: For

•

(Child: a node directly points to)

• Step 4: Return

f(w) df /dw
f(w)

z1, …, zT
dzT

dzT
= 1

t = T, T − 1,…,0
dzT

dzt
= ∑

c is a child of t

dzT

dzc
⋅ ∂zc

∂zt
zt

dzT

dz0
= df

dw

fix Zo goat

w

T.EE 1 E t 6

011 1

0 23 24

1 1 24 3
2 5 11 225

14 1 4 28 2,522
0 2 1 322 8 É

latt 1 27 102072

Time Complexity

Theorem (Baur and Strassen ’83, Griewak ’89): Assume every
 is specified as in our computational model. For of type 3,

assume we can compute the derivative in time as the same
order of computing . Let denote the time to compute .
Then the reverse mode computes in time .

h h(⋅)
h′ (z)

h(z) T f(w)
df /dw O(T)

d

grath of nodes edge

O VTE

Clarke Differential

th
oth

RelO x maxx 03

Not differentiable

At

Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′) ≥ f(x) + s⊤(x′ − x)}

GD Xet Xt of of

subgradient
descent

pick gt 2,71
1

xttifxt wgt
fdstlol.gs

Relun sx

maxton32 six

8 s
TOID

Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′) ≥ f(x) + s⊤(x′ − x)}

if f is differentiable at X

asty 90741

it it convex

dst x is always non empty

w

Subdifferential is not enough

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′) ≥ f(x) + s⊤(x′ − x)}

1g

we need s sit

this it s ext 1

choose x
0 3 s 21 41

what's Istl 11
5711

empty set
choose x a

13 s t h

s O

Clarke Differential

Definition: Given , for every , the Clark differential
is defined as

.
The elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂f(x) ≜ conv ({s ∈ ℝd : ∃{xi}∞
i=1 → x, {∇f(xi)}∞

i=1 → s})

Yet Ext If Gt

where pick It EDHI

mm

conv S GV v Didi hits 7530

example

Relf axis 1 1 5 to ti
sn

so

2
s 9ᵗ convestion To

5 3 2 E it of
conv 4,13

4 1 O 1 offxity
the

E IID

When does Clarke differential exists

Definition (Locally Lipschitz): is locally Lipchitz if
, there exists a neighborhood of , such that is

Lipchitz in .

f : ℝd → ℝ
∀x ∈ ℝd S x f

S FII xsma.to
Hail fix 2.11 41

RelU Leaky RelU are locally lip
Theme It is totally lip

Clarke Differential exist

It til convex 2,7 25

it is differentiable of Got

