Gradient Descent

- how are we going to find the solution for
n

arg min Z £(b+w!x,y)
B i
- e.g., Logistic Regression do not have closed form solution for

YV, Lb,w) =0

UNIVERSITY of WASHINGTON

Running example: linear regression

. Givendata: {(z;,v;)}~; x; ¢ R? y; € R

= Learning model parameters:

A i , fonw)
Wi = arg min “y — XW”2 100

weR® _) 75

Jw)

50

e Although we know the optimal solution 25
in a closed form, we will use this as 0
a running example to understand GD

w, 20 -20 W,

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
F r w very close to w, we have

/f(wo) + (W = wp) 4w

dw w=w,
is very close to f(w)

Sf(wp)

WY r)L/Y)

Jw)

I
Wy = arg min f(w)

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Jw)

Taylor series approximation: Jwp)
For w very close to w, we have

d
Fowg) + (w — gy L

W Iw=w,

is very close to f(w)

Thus, for very small 7 > 0, Wy Wi I= arg min f(w)
if then _} W~ Wy hmj Snmp
JF W
(ﬁil/?(ﬁw L
. dw W,
is very close to < f(wy)

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + o — wgy L)

W Iw=w,

is very close to f(w)

df(w ! .

Thus, for very small 7 > 0, Wo W, =Wwy—1 'Z(‘/v) Wy = arg min f(w)
i df(W) W=Wo w
ifw, =wy,—n@ then U

] dw lw=w, Gradient descent
fwy) — (Cf(W))2 For k=0,1,2,3,...
JWo) — 1 P dfow)

aw W=w, Wk+1 =W, ———
is very close to f(w,) < f(wp) aw ey,

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — gy L

W Iw=w,

is very close to f(w)

I .
Thus, for very smalln > 0, Wy W; W, Wy = arg min f(w)
w

if then
Gradient descent

For k=0,1,2,3,...

df(w)

dw w=w,

Wy, 1 =W, —
is very close to < f(wy) o k

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — gy L

W lw=w,
is very close to f(w)

I 0
Thus, for very smalln > 0, Wy W; W, Wj Wy = arg min f(w)

w

if then
Gradient descent

For k=0,1,2,3,...

df(w)

dw w=w,

Wy, 1 =W, —
is very close to < f(wy) o k

1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — gy L

W Iw=w,

is very close to f(w)

Thus, for very smalln > 0, Wy W; W, Wj Wy = arg min f(w)
w

if then
Gradient descent
For k=0,1,2,3,...

A
is very close to < f(wy) . g aw =y,
df(w)
Note that as k — oo we have];—W — 0

W=wy

Running example: linear regression

. Givendata: {(z;,v;)}~; x; ¢ R? y; € R

= Learning model parameters:

Wi = arg min I|y — XW||2 PN e T
weR? :

fw)

50

= Gradient descent:

e Initialize: wy = 0
e For t=0,1,2,...
W1 W= 0> wa(wt)

e, = (900, — 0.1)
e For t=0,1,2,...

. — °
(g, y:))0 Wier < Wy =1 Vo, f(W)
LiyYi)i=1

700 , '

600
- 500+
()
S
= 400
A=)
% 300 y=w][l]+w][2]x
(W)
£ 200, =900 —-0.1x

100+ Training data

0 — Current hypothesis
0.5 ' ‘ |
1000 2000 3000 4000 %00 -500 0 500 1000 1500 2000

Size (feet?
ize (feet”) W]

Evolution of the predictor GD dynamics in the Parameter space

e Which direction will the GD move?

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

700 0.5
600 0.4
0.3
- 500¢ I
é 0.2
= 400/ 0.1
8 wl2] 0
& 3007
,§ -0.1+
& 200} 0.2
-0.3-
1007 Training data
— Current hypothesis -0.4f

1 L T - .5 1 ! 1
1000 2000 3000 4000 (_)1000 500 0 500 1000

5 1500 2000
Size (feet®))

wl[1]

Evolution of the predictor GD dynamics in the Parameter space

Price $ (in 1000s)

[\
(@]

1007

< Training data "*-, |

— Current hypothesis

1000 2000 3000 4000
Size (feetz)

Evolution of the predictor

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

-0.17
-0.2}
-0.3
-0.47

_0.5 1 1 1 1
-1000 -500 0 500 1000 1500 2000

wl[1]

GD dynamics in the Parameter space

Price $ (in 1000s)

100+ * Training data -, |
— Current hypothesis

1000 2000 3000 4000
Size (feetz)

Evolution of the predictor

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

-0.17
-0.2}
-0.3
-0.47

_0.5 1 1 1 1
-1000 -500 0 500 1000 1500 2000

wl[1]

GD dynamics in the Parameter space

Price $ (in 1000s)

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

-0.17
-0.2}
-0.3
-0.4

100+ Training data "*-, |

— Current hypothesis

1000 2000 3000 4000
Size (feetz)

_ .5 1 1 1 1
(-)1000 -500 0 500 1000 1500 2000

wl[1]

Evolution of the predictor GD dynamics in the Parameter space

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

Wi Wo
700 ' - 0.5
W’-
2 0
6007 | *
500.W3 0.3
g S0 : 0.2
2400 Wa T e X 0-1
E T T wi2] 0
eﬁ'BOO— ..."t. i
.§ .'..". ..."'-:z 0.1
o “, ", Y
82000 o e — 0.2
— 0.3
100- ¢ Training data "*-, |
— Current hypothesis 0.4
0.5 1 * ‘ ‘
1000 2000 3000 4000 Moo -500 0 500 1000 1500 2000

Size (feetz)]
w

Evolution of the predictor GD dynamics in the Parameter space

N
o
')

Price $ (in 1000s)

—_
o
(@]

w
o
L

[\
o
O

..
..
. L]
. G
..
L]

...
. L]
* L]
L]
..
]

Training data "*., |

— Current hypothesis

1000 2000 3000 4000
Size (feetz)

Evolution of the predictor

-0.17
-0.27

0.3
0.4

-0.5 : :
-1000 -500 0 500

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

1000 1500 2000

wl[1]

GD dynamics in the Parameter space

Price $ (in 1000s)

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

-0.17
-0.2}
-0.3
-0.4

100+ Training data "*-, |

— Current hypothesis

1000 2000 3000 4000
Size (feetz)

_ .5 1 1 1 1
(-)1000 -500 0 500 1000 1500 2000

wl[1]

Evolution of the predictor GD dynamics in the Parameter space

ew, = (900, — 0.1)
eFort=0,1,2,...

Wy <= W—n- wa(wt)

Wi Wo
700 r ' ' r A 0.5
WH
2 0.
600° 4 2
% 500 0.2f LS
S
S 400 0.1
8 wl2] o ox
& 300+
8 We 0.1
& 200Y7_~ 0.2
Wy 0.3}
100+ < Training data |
— Current hypothesis -0.47
0 T T

1000 2000 3000 4000

5 1000 1500 2000
Size (feet®)

0.5 1 l
21000 -500 0 500
wl[1]

Evolution of the predictor GD dynamics in the Parameter space

Gradient descent for linear regression

e In this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory A X
e Initialize: wy = 0 WLs = argvf}rél[@ ly — W”z

eFort=0,1,2,... fw)
w_., < w—n-V, fw)

Gradient descent for linear regression

e In this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory A X
e Initialize: wy = 0 WLs = argvf}rél[@ ly — W”z

eFort=0,1,2,... fw)
w_., < w—n-V, fw)

Gradient descent for linear regression

e In this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory A X
e Initialize: wy = 0 WLs = argvf}rél[@ ly — W”z

eFort=0,1,2,... fw)
w_., < w—n-V, fw)

Gradient descent for linear regression

e Initialize: wy = 0 For linear regression, we have
eFort=0,1,2,...
w,_ < w,—n-V, fw) Wis = afgv?él[éld ly — XW”%
Jw)

Vin) = —2X7(y - Xw)
W1 = W T X'y —Xw,) = (I- 22X X)w, + 21Xy

T~ -1% T ™ /_d’TX
Let the least-squares solution be w* = (X' X)" X'y T— M
:>OC/_ W7 “!
wy —w* = I=2pX"X)w, + 27Xy — w* =

= (I-2npX"X)(w, — w*) + 2nX"y — 277XTXW* (i
— (A= 2 XX, — w*) 9%,k) W'

How do you choose step size?

Let w, be an initial guess. How can we improve this solution?

Jw)
Taylor series approximation: Jwp)

For w very close to w, we have T
df(w)
Jwp) + (w —wy)

W Iw=w,

is very close to f(w)

I
Wy Wy = arg min f(w)
w

If # too big, does not converge!
If # too small, converges very, very slowly.

In practice: choose the largest value of # that converges (guess and check)

Stochastic Gradient Descent

W

UNIVERSITY of WASHINGTON

Machine Learning Problems

« Given data:
{(rs,yi)}im, @ € R y; € R

= Learning a model’s parameters: Z i (w)

Gradient Descent: n
S tw) |
w = Ww —
t+1 t — (n - z) w—10,

£ hung (st‘W‘Y o)

Machine Learning Problems

« Given data:
{(rs,yi)}im, @ € R y; € R

n

= Learning a model’s parameters: Z i (w)

+wg (W ()/1(w1ty

1=1

3¢ ATM

Gradient Descent: . 0?‘/
Wikt = <nzz)\wwt 0 (1)

Stochastic Gradient Descent:
I; drawn uniform at
w— wt random from {1, .

B[\ / _ U A i {3 (W)
T[QNJ;(Q())IA} WQ)

Wir1 = Wy — NVly, (w)|

Machine Learning Problems

n
= Learning a model’s parameters: Z i (w)
1=1

Stochastic Gradient Descent:
I; drawn uniform at

wt_|_1 o wt — T}vwéft (w) ‘w:’LUt random from {1, .. ,n}

E[VLr, (w)] = Vé(w)

Mini-batch SGD [<hen Tf e
0TV

e |[nstead of one iterate, average B stochastic gradient together

e Advantages:
- Smaller variance: the variance of the stochastic gradient

is smaller by a factor of 1/\/§

 Parallelization: each gradient in the mini-batch

can be computed in parallel
- W(.l
- 1 \ —_
_ If you have regularizer, — Z Z(w) + r(w), then update

=1
with the stochastic gradient of the loss and gradient of the

regularizer

Fully-Connected Neural
Networks

Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 10s: state-of-the-art techniques for many
applications:
e Computer Vision
e Natural language processing: e.g., GPT
e Speech recognition
e Decision-making / control problems (AlphaGo, Dota, robots)
e Limited theory:
e Non-convexity
e Model are complex but generalization error is small

YtV medlatp }mlgl/

Neural Networks

Oady wade < Jmic [edgl
) anpd unops oyt o 7 T
)) o\(T\UCAJf'\W) 45 th W 5 A nguts
7) edlpl « eadh fi)

| 03 m/(iq(’ﬂ c R

»‘,—1 Ko"() @O 2

17 Single Node X2, Bocl

“bias unit” Lo go
27N | T . 1
(a0h 0= “=|m| 2=
\9\0 T3 03

01 "~ oo Oy Xod O Ki+ovkiyy

(2235 [ho(x) =9 (07%) Lo

(93 T Regression
@/ T lte O

Based on slide by Andrew Ng 9

Neurozqu\l'etwork) %X}

})
(> .
o o ol

7 Y (@
FORRELR ' C % 2

\ 71=0
2) %)O'i o — he(x)
ay 0\
> ;
o2 (,\VH“(} _%: @; ,'\ \ﬁ)w
= > 4= 0
Layer 1 Layer 2 Layer 3

(Input Layer) (Hidden Layer) (Output Layer)

Slide by Andrew Ng

OU) = weight matrix stores parameters

© i’ . al) = “activation” of unit j in layer j
A'A gz;? a; —>h9 (X) . . .
e from layerj to layerj + 1

a&z) = (@%):130 + @(1):13 + @(1):1:2 + @%)333)
a§2) = g(@(l)az + @(1)x1 + @():13 + @;?333)

aéz) = g(@(l)xo + @()a: + @()x + @%)xg)
r0(0) = al? = oOFal? +0Dal? + 0l + 0l

If network has Sj units in Iayerj and S;,; units in layer j+1,
then OV has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

(3R o)
Multi-layer Neural Network - Binary Classification

Dck | | @(\) ‘, Q\Wlxq

' L(y,y) = ylog(y) + (1 — y)log(l — ¥)
@\ — g(@(L)a(L)) 1 Binary
TR,

Multi-layer Neural Network - Binary Classification

al) = x

' L(y,y) =ylog(y) + (1 — y)log(1 - ¥)
:l//\ — g(@(L)a(L)) 1 Binary

/! 0(z) = max{0, z} g(2) = —— Logistic
#7 Q@LU: \/6('“1'\?4 JWeav um'\,{ te Regression

Multiple Output Units: One-vs-Rest

N X
SIHIX 7 YN
AV, \\

v}"‘\\\ %t Multi-class
(- a(‘(’;g Logistic
(@ Regression
We want: A N
[1] [0] [0] [0]
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 h@(X) ~ 1 h@(X) ~ 0
| 0 | 0 | 0 1
when pedestrian when car when motorcycle when truck

Slide by Andrew Ng 17

Multi-layer Neural Network - Regression

al) = x

O‘(Z) = maX{O, Z} Regression

Neural Network
Optimization

Machine Learning Problems

« Given data:
{(rs,yi)}imy @ € RY y; € R

= Learning a model’s parameters: Z i (w)
1=1

Logistic Loss: £;(w) = log(1 + exp(—y; z; w))

Squared error Loss: £;(w) = (y; — xl w)?

Machine Learning Problems

« Given data:
{(rs,yi)}imy @ € RY y; € R

= Learning a model’s parameters: Z i (w)
1=1

Logistic Loss: £;(w) = log(1 + exp(—y; 1 w

Squared error Loss: £;(w) = (y; — xl w)?

Gradient Descent:

1 mn
— — w | — gz ‘
wiy1 = wy — NV (n ; (w)) o

Gradient Descent

Initialize: wg = 0
fort=1,2,...
Wi41 = Wt — va(wt)

Convex Function Non-convex Function

N L

Sub-Gradient Descent

Initialize: wg = 0
fort=1,2,...
Find any g¢; such that f(y) > f(w:) + g, (y — wy)

Wiy = Wt — NGt
g is a subgradient at x if f(y) > f(z) +g¢" (v —)

Convex Function Non-convex Function

N2

Machine Learning Problems

« Given data:
{(rs,yi)}imy @ € RY y; € R

= Learning a model’s parameters: Z i (w

Gradient Descent: n
S tw) |
w = Ww —
t+1 t — (n - z) w—10,

Stochastic Gradient Descent:
I; drawn uniform at
W=w,; random from {1,...,n}

Wyl = Wy — NVuly, (’w)|

Gradient Computation on a Graph

AN

AN
\'«"/ X3
AV Kol

X
GO0
A X o
SROZLIOLY
oLl

a(2))

Naive computation: node by node

~ |\V\/l()

A brief history O QLL) = O

 Back propagation: the workhorse for training neural networks.
An algorithm that for a network with V nodes and E edges
calculates that gradient in linear time O(V+E).

 The name was introduced by Rumelhart, Hinton, Williams '86.
Same idea was rediscovered multiple times. Also mentioned in
Werbos’ thesis '74 in the context of neural networks.

e Control theory: Kelly '60, Bryson '61 [dynamic programming]

 Theoretical computer science: Baur-Strassen lemma '83
[algebraic circuits]

2D =

-2 = @4

a® = g (z®)

LD — @D O
al+) = g (Z(1+1)>

7= g(0Pa®)

2

AISRE ’
SIH O O
A’\\%‘/}”&Xé O Z
\ SN A a< >)
al M/,

L(y,y) =ylog(y) + (1 —y)log(1 — y)
1

1 +e=

g(z) =

Gradient Descent: @) « @) _ nVew L(y,y) W/

Forward Propagation
?(bc Pt virtiov

(| /
al) = x @
2 — @D,M 7
) R OSENOSS
a? = g (z?) O TN
5 ah NN 2
(2) 3)
+D) = @040 a a

a

y

(+1) = (Z(l+1))

L(y,y) =ylog(y) + (1 —y)log(l — y)

1
l +e=

_ g+ 8(2) =

QUL MMJ) XL p\d) Q(U) G pavemnetey <.ty

/

(% 1 I X
Backprop v, g B° e

a'V = x
- — @Dy

a® = g (z@)

) — g(z(l))
D) — @Dy M

a+) = ¢ (Z(z+1))

5 = q+D

)
(L), VPt
o2

Train by Stochastic Gradient Descent:

00 — o0 — 1 OL(y, y)
ij b ()

L(y,y) =ylog(y) + (1 —y)log(l — y)

1 5(l+1) _ aL(y, 3}\)
1 + e i o7 0+D

g(z) =

(Y Peal 0
Backprop

oL(y,y) _OL(y,y) 05" PGSV

a') = 00} Gzli“) a@bgl; S j
72 = @M
61(2) — g (Z(2)> Train by Stochastic Gradient Descent:
: 00 — @0 — p oL(y, y)
al) = g(z<l)) o 00}

NN (

(I+1) — o (4D -
a | 8 (Z) L(y, y) = ylog(y) + (1 — y)log(1 — y)

! 5(l+1) —_ aL(y’ 5}\)
1l +e¢ i Oz-(l"'l)

3}\ — a(L"l'l) g(z) =

Backprop

al) = x

- — @Dy

a® = g (z@)

oL(y,y) _ OL(y,y) 9% _. st O
0 (+1) () i J
() — OL(y, 3’\) _ Z oL(y, Y) 0z UH)
0 = —
aZ(1) aZ(l+1) az(l)
k —

N UZ/ (

@V—V\%(WS

L(y,y) =ylog(y) + (1 —y)log(l — y)

1 5(l+1) _ aL(y, 3}\)
1 + e i o7 0+D

g(z) =

Backprop

4 —
- — @Dy

a® = g (z@)

) — g(z(l))
D) — @Dy M
a+) = ¢ (z(l“))

5 = q+D

oL(y,y) _OL(y,y) 05" S L 40

a@glj) - o7V 0@5? > j

M_Mmm_zamwa““
e = 97D gz

= Z 5D 00 ¢'(z0)

_ a(l)(l (l)) Z sU+D @(l)

L(y,y) =ylog(y) + (1 —y)log(l — y)

1 5(l+1) _ aL(y, 3}\)
1 + e i o7 0+D

g(z) =

Backprop

oL(y,y) _ OL(y,y) 9% _. st | L0

1) (D) (I+1) (D) l J
a() —_ x a@i,j aZl a(")i,j

>¢<’\/-\/V
2 1) (1
Z() —_ @()a() 5i(l) _ ai(l)(l _ ai(l))25lgl+l)) @(l).
a® = g (z?) Y Ay
S5 g T 8
: 40
a) :g(z(l)) J B_,Liiff' - _5,@7(”
D) — @Dy D o 20
(+1) _ (I+1)
¢ .g (Z) L(y,y) = ylog(y) + (1 — y)log(l = ¥)
' _ 1 oL(y,)
5 = qL+D 8(z) = 1 + e 5 = 374D

Backprop

aD —

- — @Dy

a® = g (z@)

OL(y,y) OL(y,5) o0z"*V

- = 50D L g

06" ozt 00 l J

D — D1 - 4O I+ . @0
51’ = 4 (1 4)25k ®k,i
k

oL(y,y 0
W _ 0 314D = 0 = — T g) + (1 = ylog(1 = g4+0)
— l 1 / 1 — y /
a g (Z) - g(Z(L+1)) & (Z(LH)) B 1 — g(z(L“)) 5 (Z(LH))

A0+ — @D
a+h = g ((+D)

5 = q+D

—y — g(zL*D) = y — gL+

L(y,y) =ylog(y) + (1 —y)log(l — y)

1 5(l+1) _ aL(y, 3}\)
1 + e i o7 0+D

g(z) =

g &‘JQ

oL(y,y) _ OL(y,y) 9% _. st | L0

00 oz*Y 00y l ’

Backprop

al) = x

- — @Dy

a® = g (z@)

D — D1 _ 4O (+1) . @
9 o) =a; (1 —a)25k O
k

SLAD = y _ gD

[E [
) — g(o))
Z(l+1) — @(l)a(l) Recursive Algorithm!

(I+1) _ (I+1)
N EO) [165,5) = ytog) +.(1 - ytogt -

| I oL(y, y)
= (+1) — ‘
— a(L“) 8 1 +e* o = o7+ D

y

, it gurodite
Auto-differentiation (oak: (0™ 7

toes @ ([\W\)V\f rﬁM@

Backprop for this simple network architecture is a special
case of reverse-mode auto-differentiation:

N\ D y = f(z1,72) = In(z1) + 122 —sin(z2)
O\ Forward Primal Trace Reverse Adjoint (Derivative) Trace
@_; f V_1= 21 =2 A T1 = V-1 = 5.5
Vo = T2 =5 T2 = Vo = 1.716
vi =lhv_; =In2 To1=1D_1 +z71%’_1? =014+ /v_1 =55
va =v_1Xvy =2x5 To =To+T32 =00+ xv_1 =1716
2 =® 1= a2 = B2 X v =5
v3 = sinwg =sinb Vg = 1‘;3%‘; = U3 X COS Vo = —0.284
va =v1+ve =0.693+10 By =g =v4 %1 =1l
V1 = ’l_)Alg—z‘lL =4 X1 =1
vs =wvg—v3 = 10.693 + 0.959 U3 =V 5% =75 x (—1) =-1
vy =g =75 x 1 =1

YV y =us = 11.652 Ts =17 =

Auto-differentiation

« Given a function, computes its partial derivatives

« Compute all of the partial derivatives of a function with (nearly)
same computation runtime [Griewank ‘89, Baur and Strassen
'83]

» Backbone of (applied) machine learning: Pytorch, Tensorflow, ...

Example of Computation Graph

. 2w 3w, 3w,
Fw1s w5) = (sm (> TR exp<2w2>> - <— - exp<2w2>>
W W

4%
Input: 75 = (W, w,) w7 & —) @7———7 g
/\ 2| - '\TW'/(L [/1 /\
2.2, simQT=)
3 :ngQy\)(ZWL) \
Z‘L\ 24 < %’2(_23 \ \K’/
Si 25’ = 2 L+ 2% (

—

Computation Model

« Given access to a set of differentiable real functions h € #

« Use functions in & to create intermediate variables.
 Evaluation trace:

 All intermediate variables will be scalars; each corresponds to
a node.

. InpUt o= W < Rd [ZO]I = Wy, [Zo]z = Wy, ..., [Zo]d = W,
- Step 1: z; = hy (a subset of variables in w)

- Step t: z, = h, (a subset of variables in z;, ..., z,_{, W)

: Step T: Z; = hy (a subset of variables in z;, ..., Zp_1, W)
» Return: z;

(hys....hq € I)

Computation Model

- Every h € # is one of the following:
* Type 1: An affine transformation of the inputs

qu:zggl-’ 9}

* Type 2: A product of variables, to some power

Q{ = L4 Q’),

* Type 3: Afixed set of one dimensional differentiable 0
functions: sin(-), cos(-), exp(-),log(-),... Pol \/

* We assume we can easily compute the derivatives for
each of this functions.

» Type 3 can be approximated by Type 1 and Type 2, using
polynomials.

Reverse Mode of Automatic Differentiation d26

T < 26,7(%:2@7/

Goal: Compute partial derivatives of f(w), i.e., df/dw. %C/V
- (Step 1: computer f(w) and store in m ory | |nte ediate
ﬂables s oves 2T Widzedi J]iﬁ 7 Tz
dz w
_ Step 2: Initialize: L 1" C]l — @’2\) @/%é?
dzy L 4=
« Step3:Fort=T71,T-1,...,0 @7 g}% J2(_5/36 - 24
dZT - dZT aZC -—C@' = CQZ(\ DZ)" 5 325
S Y s 93 P 2% S
I cisachildoft "'\ g3 " o2 1%

(Child: a node z, directly points to) - ?}r’* JU 2%
d% d 6 'B-Zq _/-

)92 d2y -2-4, b?} @/1, ?f quzz
dzr _ df) d _ da 92% 42¢ 92
. Step 4: Return — = — g 2¢ 2%

2> 2
dZ() dW/p C'Q;(gk CQ%'L
ag . @”7. (A 20D L

Time Complexity

Theorem (Baur and Strassen ’83, Griewak ’89): Assume every
h is specified as in our computational model. For A(-) of type 3,

assume we can compute the derivative 4'(z) in time as the same
order of computing 4(z). Let T' denote the time to compute f(w).

Then the reverse mode computes df/dw in time O(T').

%/M)V] v ode) @ Ee&%)
O (VL)

ji(w)
77 W)

Clarke Differential

Subdifferential and Subgradient

Definition: Given f : RY - R, for every x, the subdifferential set
IS defined as

0.f(x) = {s € RY: Vx' € R, f(x) > f(x) + s (x'— x)}. The
elements in the subdifferential set are subgradients.

ol Xew & Kt — Of(w q
ad N dq(‘py){'
S«/\\/WP[\(V& 9(: G—D)T(X%) ;
Kt 4 <t = 0

2sF (0= G50 0¥ Jap7 37)

W\WSO/X 3 7) §¥

T}\CPD/ S £] = |
Y‘O S 7/09 @)J

Subdifferential and Subgradient

Definition: Given f : RY - R, for every x, the subdifferential set

Is defined as
0.f(x) = {s € RY: Vx' € R, f(x) > f(x) + s (x'— x)}. The
elements in the subdifferential set are subgradientsg.d_ ><

\ /
i f Jiffevert

w yf) 2 §<174y(7<)§

Subdifferential is not enough

Definition: Given f : RY - R, for every x, the subdifferential set
IS defined as

0.f(x) = {s € RY: Vx' € R, f(x) > f(x) + s (x'— x)}. The
elements in the subdifferential set are subgradlents /

o we veed G

S R ﬁy>¥SM/Hy

-2
thoop (7
?l+5&2Hﬂ

/) S 7
A
e /(\/ ﬁﬂ\' chooie ¥ - ("ID

/§ ,@;fsm
=) \SSO

Kot &Ct —Ur 9¢

Clarke Differential
et pi g¢ € 0TS

Definition: Given f : RY - R, for every x, the Clark differential
IS definAed as .

Of) £ conv ({s € RY: I{x;} 2, = x, { VAx)}2, = s5}).
The elements in the subdifferential set are subgradients.

Con V/ (S} = ﬁ J: \/:':j’ AU hE, /\57/0}

A=
‘ }(\\
[exowplt Rl U WGTR AT E RE T

When does Clarke differential exists

Definition (Locally Lipschitz): f : RY - R is locally Lipchitz if
Vx € RY, there exists a/neighborhood @ofx such that f is

'_’_/'\

1_|p(ih,|tzmS Ux S HK Y (| gmoq/(b70
(o) —F €L =t
Q@LU/ [oaly— Q@CU % jocmlﬁy P
(w14 v /WM’/ u)f—)

—) (MVQ/ Djﬂ‘:?j\
) 7&7[/y’&j CJUHO:MMW =) BJL ZIOT}

