
Gradient Descent
- how are we going to find the solution for 	

 	

- e.g., Logistic Regression do not have closed form solution for	

arg min
b,w

n

∑
i=1

ℓ(b + wT xi, yi)

∇b,wℒ(b, w) = 0

Running example: linear regression

{(xi, yi)}ni=1 xi 2 Rd yi 2 R■ Given data:

w1 w2

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

■ Learning model parameters:
f (w1, w2)

• Although we know the optimal solution 	
in a closed form, we will use this as 	
a running example to understand GD

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

f (w0)

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

Thus, for very small , 	

if then	

 	

is very close to

η > 0

w1 = w0 − η
df (w)

dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1 = w0 − η df(w)
dw w=w0

f (w0)

f (w1)

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

Thus, for very small , 	

if then	

 	

is very close to

η > 0

w1 = w0 − η
df (w)

dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1 = w0 − η df(w)
dw w=w0

f (w0)

f (w1)

Gradient descent	
For k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

Thus, for very small , 	

if then	

 	

is very close to

η > 0

w1 = w0 − η
df (w)

dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

w2

f (w2)

Gradient descent	
For k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

Thus, for very small , 	

if then	

 	

is very close to

η > 0

w1 = w0 − η
df (w)

dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

w2

f (w2)

w3

f (w3)

Gradient descent	
For k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

1-dimensional gradient descent

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

Thus, for very small , 	

if then	

 	

is very close to

η > 0

w1 = w0 − η
df (w)

dw w=w0

f (w0) − η(df (w)
dw w=w0

)2

f (w1) < f (w0)

w1

f (w0)

f (w1)

Gradient descent	
For k=0,1,2,3,…	

wk+1 = wk − η df(w)
dw w=wk

w2

f (w2)

w3

f (w3)

Note that as we have k → ∞ df(w)
dw w=wk

→ 0

Running example: linear regression

{(xi, yi)}ni=1 xi 2 Rd yi 2 R■ Given data:

w1 w2

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

■ Learning model parameters:
f (w1, w2)

■ Gradient descent:
• Initialize: 	
• For t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

y

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt){(xi, yi)}ni=1

y = wt[1] + wt[2]x

= 900 − 0.1x

GD dynamics in the Parameter space Evolution of the predictor

• Which direction will the GD move?

w*

w0

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w[1]

w[2]

GD dynamics in the Parameter space Evolution of the predictor

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

w5

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

w5
w6

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

w5
w6

w7

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

• 	
•For t=0,1,2,…	

•

w0 = (900, − 0.1)

wt+1 ← wt − η ⋅ ∇w f(wt)
w0w1

w2

w3

w4

w5
w6w7

w8

GD dynamics in the Parameter space Evolution of the predictor

w[1]

w[2]

w*LS

Gradient descent for linear regression

For linear regression, we have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In this example of linear regression,
we can derive exactly the gradient
descent trajectory	

•Initialize: 	
•For t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

∇f(wt) = − 2XT(y − Xwt)

Gradient descent for linear regression

For linear regression, we have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In this example of linear regression,
we can derive exactly the gradient
descent trajectory	

•Initialize: 	
•For t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

∇f(wt) = − 2XT(y − Xwt)
wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

Gradient descent for linear regression

For linear regression, we have

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

•In this example of linear regression,
we can derive exactly the gradient
descent trajectory	

•Initialize: 	
•For t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

∇f(wt) = − 2XT(y − Xwt)
wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

wt+1 − w* = (I − 2ηXTX)wt + 2ηXTy − w*

Let the least-squares solution be w* = (XTX)−1XTy

= (I − 2ηXTX)(wt − w*) + 2ηXTy − 2ηXTXw*
= (I − 2ηXTX)(wt − w*)

Gradient descent for linear regression

For linear regression, we have

∇f(wt) = − 2XT(y − Xwt)

ŵLS = arg min
w∈ℝd

∥y − Xw∥2
2

f(w)

wt+1 = wt + η2XT(y − Xwt) = (I − 2ηXTX)wt + 2ηXTy

wt+1 − w* = (I − 2ηXTX)wt + 2ηXTy − w*

Let the least-squares solution be w* = (XTX)−1XTy

= (I − 2ηXTX)(wt − w*) + 2ηXTy − 2ηXTXw*
= (I − 2ηXTX)(wt − w*)

•Initialize: 	
•For t=0,1,2,…	

•

w0 = 0

wt+1 ← wt − η ⋅ ∇w f(wt)

How do you choose step size?

f(w)

w* = arg min
w

f (w)w0

Let be an initial guess. How can we improve this solution?w0

Taylor series approximation: 	
For very close to we have 	

 	

is very close to

w w0

f (w0) + (w − w0)
df (w)

dw w=w0

f (w)

f (w0)

If too big, does not converge!	
If too small, converges very, very slowly.

η
η

In practice: choose the largest value of that converges (guess and check)η

Stochastic Gradient Descent

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

Machine Learning Problems
nX

i=1

`i(w)■ Learning a model’s parameters:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] = r`(w)

Mini-batch SGD

• Instead of one iterate, average B stochastic gradient together	

• Advantages:	
• Smaller variance: the variance of the stochastic gradient  

is smaller by a factor of

• Parallelization: each gradient in the mini-batch  

can be computed in parallel 

• If you have regularizer, , then update  

with the stochastic gradient of the loss and gradient of the
regularizer

1/ B

1
n

n

∑
i=1

ℓi(w) + r(w)

Fully-Connected Neural
Networks

Neural Networks

• Origins: Algorithms that try to mimic the brain.	
• Widely used in 80s and early 90s; popularity diminished in late 90s.	
• Recent resurgence from 10s: state-of-the-art techniques for many
applications: 	
• Computer Vision	
• Natural language processing: e.g., GPT	
• Speech recognition	
• Decision-making / control problems (AlphaGo, Dota, robots)	

• Limited theory:	
• Non-convexity	
• Model are complex but generalization error is small	

Neural Networks

Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X Binary	
Logistic	
Regression

h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)

Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) =
1

1 + e−z

Binary	
Logistic	
Regression

Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))
L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) =
1

1 + e−z

Binary	
Logistic	
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class	
Logistic	
Regression

Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

Neural Network
Optimization

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Gradient Descent

Convex Function Non-convex Function

Initialize: w0 = 0

for t = 1, 2, . . .

wt+1 = wt � ⌘rf(wt)

Sub-Gradient Descent

g is a subgradient at x if f(y) � f(x) + gT (y � x)g is a subgradient at x if f(y) � f(x) + gT (y � x)

Initialize: w0 = 0

for t = 1, 2, . . .

Find any gt such that f(y) � f(wt) + g>t (y � wt)

wt+1 = wt � ⌘gt

Convex Function Non-convex Function

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

Gradient Computation on a Graph

Naive computation: node by node

A brief history

• Back propagation: the workhorse for training neural networks.
An algorithm that for a network with V nodes and E edges
calculates that gradient in linear time O(V+E).

• The name was introduced by Rumelhart, Hinton, Williams ’86.
Same idea was rediscovered multiple times. Also mentioned in
Werbos’ thesis ’74 in the context of neural networks.

• Control theory: Kelly ’60, Bryson ’61 [dynamic programming]

• Theoretical computer science: Baur-Strassen lemma ’83
[algebraic circuits]

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) =
1

1 + e−z

⇥(l) ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))

Forward Propagation

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) =
1

1 + e−z

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

Backprop

g(z) =
1

1 + e−z δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y)
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y)
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y)
∂z(l)

i
= ∑

k

∂L(y, ̂y)
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y)
∂z(l)

i
= ∑

k

∂L(y, ̂y)
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

= ∑
k

δ(l+1)
k ⋅ Θ(l)

k,i g′￼(z(l)
i)

= a(l)
i (1 − a(l)

i)∑
k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(L+1)
i =

∂L(y, ̂y)
∂z (L+1)

i
=

∂
∂z (L+1)

i
[y log(g(z(L+1))) + (1 − y)log(1 − g(z(L+1)))]

= y − g(z(L+1)) = y − a(L+1)

=
y

g(z(L+1))
g′￼(z(L+1)) −

1 − y
1 − g(z(L+1))

g′￼(z(L+1))

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(L+1) = y − a(L+1)

Recursive Algorithm!

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

Auto-differentiation

Backprop for this simple network architecture is a special
case of reverse-mode auto-differentiation:

Auto-differentiation

• Given a function, computes its partial derivatives

• Compute all of the partial derivatives of a function with (nearly)
same computation runtime [Griewank ’89, Baur and Strassen
’83]

• Backbone of (applied) machine learning: Pytorch, Tensorflow, …

Example of Computation Graph

Input:

f(w1, w2) = (sin (2πw1

w2) +
3w1

w2
− exp(2w2)) ⋅ (3w1

w2
− exp(2w2))

z0 = (w1, w2)

Computation Model

• Given access to a set of differentiable real functions
• Use functions in to create intermediate variables.
• Evaluation trace:

• All intermediate variables will be scalars; each corresponds to
a node.

• Input
• Step 1: (a subset of variables in)
• ….
• Step t: (a subset of variables in)
• …
• Step T: (a subset of variables in)
• Return:

()

h ∈ ℋ
ℋ

z0 = w ∈ ℝd . [z0]1 = w1, [z0]2 = w2, …, [z0]d = wd
z1 = h1 w

zt = ht z1, …, zt−1, w

zT = hT z1, …, zT−1, w
zT

h1, …, hT ∈ ℋ

Computation Model

• Every is one of the following:
• Type 1: An affine transformation of the inputs

• Type 2: A product of variables, to some power

• Type 3: A fixed set of one dimensional differentiable
functions:
• We assume we can easily compute the derivatives for

each of this functions.

• Type 3 can be approximated by Type 1 and Type 2, using
polynomials.

h ∈ ℋ

sin(⋅), cos(⋅), exp(⋅), log(⋅), . . .

Neural Network Example

Reverse Mode of Automatic Differentiation

Goal: Compute partial derivatives of , i.e., .
• Step 1: computer and store in memory all intermediate

variables

• Step 2: Initialize: .

• Step 3: For

•

(Child: a node directly points to)

• Step 4: Return

f(w) df /dw
f(w)

z1, …, zT
dzT

dzT
= 1

t = T, T − 1,…,0
dzT

dzt
= ∑

c is a child of t

dzT

dzc
⋅

∂zc

∂zt
zt

dzT

dz0
=

df
dw

Time Complexity

Theorem (Baur and Strassen ’83, Griewak ’89): Assume every
 is specified as in our computational model. For of type 3,

assume we can compute the derivative in time as the same
order of computing . Let denote the time to compute .
Then the reverse mode computes in time .

h h(⋅)
h′￼(z)

h(z) T f(w)
df /dw O(T)

Time Complexity

Clarke Differential

Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′￼∈ ℝd, f(x′￼) ≥ f(x) + s⊤(x′￼− x)}

Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′￼∈ ℝd, f(x′￼) ≥ f(x) + s⊤(x′￼− x)}

Subdifferential is not enough

Definition: Given , for every , the subdifferential set
is defined as

. The
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′￼∈ ℝd, f(x′￼) ≥ f(x) + s⊤(x′￼− x)}

Clarke Differential

Definition: Given , for every , the Clark differential
is defined as

.
The elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂f(x) ≜ conv ({s ∈ ℝd : ∃{xi}∞
i=1 → x, {∇f(xi)}∞

i=1 → s})

When does Clarke differential exists

Definition (Locally Lipschitz): is locally Lipchitz if
, there exists a neighborhood of , such that is

Lipchitz in .

f : ℝd → ℝ
∀x ∈ ℝd S x f

S

Optimization Methods
for Deep Learning

Gradient descent for non-convex optimization

Decsent Lemma: Let be twice differentiable, and
. Then setting the learning rate , and

applying gradient descent, , we have:

.

f : ℝd → ℝ
∥∇2f∥2 ≤ β η = 1/β

xt+1 = xt − η∇f(xt)

f(xt) − f(xt+1) ≥
1

2β
∥∇f(xt)∥2

2

Converging to stationary points

Theorem: In iterations, we have .T = O(
β
ϵ2

) ∥∇f(x)∥2 ≤ ϵ

Gradient Descent for Quadratic Functions

Problem: with being positive-definite.

Theorem: Let be the largest and the smallest

eigenvalues of . If we set , we have

min
x

1
2

x⊤Ax A ∈ ℝd×d

λmax and λmin

A η ≤
1

λmax
∥xt∥2 ≤ (1 − ηλmin)t ∥x0∥2

Momentum: Heavy-Ball Method (Polyak ’64)

Problem:

Method:

min
x

f(x)

vt+1 = − ∇f(xt) + βvt
xt+1 = xt + ηvt+1

Momentum: Nesterov Acceleration (Nesterov ’89)

Problem:

Method:

min
x

f(x)

vt+1 = − ∇f(xt + βvt) + βvt
xt+1 = xt + ηvt+1

Newton’s Method

Newton’s Method: xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)

AdaGrad (Duchi et al. ’11)

Newton Method:
AdaGrad: separate learning rate for every parameter

,

xt+1 = xt − η(∇2f(xt))−1 ∇f(xt)

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2

RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

,

RMSProp: exponential weighting of gradient norms
,

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt) (Gt)ii =
t−1

∑
j=1

(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

AdaDelta (Zeiler ’12)

RMSProp:
,

AdaDelta:
,

,

xt+1 = xt − η(Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

xt+1 = xt − ηΔxt
Δxt = ut + ϵ ⋅ (Gt+1 + ϵI)−1/2 ∇f(xt)
(Gt+1)ii = ρ(Gt)ii + (1 − ρ)(∇f(xt)i)2

ut+1 = ρut + (1 − ρ)∥Δxt∥2
2

Adam (Kingma & Ba ’14)

Momentum:
,

RMSProp: exponential weighting of gradient norms
,

Adam

Default choice nowadays.

vt+1 = − ∇f(xt) + βvt xt+1 = xt + ηvt+1

xt+1 = xt − η(Gt+1 + ϵI)−1 ∇f(xt)
(Gt)ii = β(Gt)ii + (1 − β)(∇f(xt)i)2

vt+1 = β1vt + (1 − β1)∇f(xt)
(Gt+1)ii = β2(Gt)ii + (1 − β2)(∇f(xt)i)2

xt+1 = xt − η(Gt+1 + ϵI)−1/2vt+1

Important Techniques
in Neural Network
Training

Gradient Explosion / Vanishing

• Deeper networks are harder to train:
• Intuition: gradients are products over layers
• Hard to control the learning rate

Activation Functions

Activation Function

Initialization

• Zero-initialization
• Large initialization
• Small initialization

• Design principles:
• Zero activation mean

• Activation variance remains same across layers

Kaiming Initialization (He et al. ’15)

• .

•
• Designed for ReLU activation
• 30-layer neural network

W(h)
ij ∼ 𝒩 (0,

2
dh)

b(h) = 0

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Initialization by Pre-training

• Use a pre-trained network as initialization
• And then fine-tuning

Gradient Clipping

• The loss can occasionally lead to a steep descent
• This result in immediate instability
• If gradient norm bigger than a threshold, set the gradient to the

threshold.

Batch Normalization (Ioffe & Szegedy, ’14)

• Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
• Could normalization be useful at the level of hidden layers?
• Internal covariate shift: the calculations of the neural

networks change the distribution in hidden layers even if the
inputs are normalized

• Batch normalization is an attempt to do that：
• Each unit’s pre-activation is normalized (mean subtraction,

std division)
• During training, mean and std is computed for each

minibatch (can be backproped!

Batch Normalization (Ioffe & Szegedy, ’14)

Batch Normalization (Ioffe & Szegedy, ’14)

Batch Normalization (Ioffe & Szegedy, ’14)

• BatchNorm at training time
• Standard backprop performed for each single training data
• Now backprop is performed over entire batch.

Batch Normalization (Ioffe & Szegedy, ’14)

What is BatchNorm actually doing?

• May not due to covariate shift (Santurkar et al. ‘18):
• Inject non-zero mean, non-standard covariance Gaussian

noise after BN layer: removes the whitening effect
• Still performs well.

• Only training with random convolution kernels gives non-
trivial performance (Frankle et al. ’20)

• BN can use exponentially increasing learning rate! (Li & Arora
’19)

β, γ

More normalizations

• Layer normalization (Ba, Kiros, Hinton, ’16)
• Batch-independent
• Suitable for RNN, MLP

• Weight normalization (Salimans, Kingma, ’16)
• Suitable for meta-learning (higher order gradients are

needed)
• Instance normalization (Ulyanov, Vedaldi, Lempitsky, ’16)

• Batch-independent, suitable for generation tasks
• Group normalization (Wu & He, ‘18)

• Batch-independent, improve BatchNorm for small batch size

