Gradient Descent

- how are we going to find the solution for
n

arg min 2 £(b+wlx,y,)
G
- e.g., Logistic Regression do not have closed form solution for

YV, ZLb,w) =0
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Running example: linear regression

. Givendata: {(z;,y;)}"~; x; € R? y; € R

= Learning model parameters:

wig = argmin |y — Xw|[5 100
weRY \ |

e Although we know the optimal 50|ution25€_.ﬁ-.
in a closed form, we will use this as 0o

10
a running example to understand GD

w, 20 -20 W,



1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — wyy L

w W=wy
is very close to f(w)

Sfwp)

Jw)

I
Wy = arg min f(w)



1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have
df(w)
Jwp) + (W —wy)
w W=wy
is very close to f(w)

Thus, for very smalln > 0,

d
ifw, =wy—n ]:l(vr/‘/) ‘L:V then
afw) | o
W —_—
J(wp) ’7( v w:w()>

is very close to f(w,) < f(wy)

W=Ww

I
Wy = arg min f(w)



1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

Fwg) + (W — wp) )

w W=wy

is very close to f(w)

df(w) I .

Thus, for very smalln > 0, Wo W, =Wy,—1 'Z;W ‘ Wy = arg min f(w)

. df(w) W= w

ifw, =wy—7 then

J dw  lw=w, Gradient descent
Fowg) = 1 /) 2 For k=0,1,2,3,...
0 1 J
dw W=Ww, Wiig = Wy — f(w)
is very close to f(w,) < f(wy) " aw =y,




1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — wyy L

w W=wy
is very close to f(w)

I .
Thus, for very smalln > 0, Wy w; W, Wy = arg min f(w)
. df (w) W
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1-dimensional gradient descent
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1-dimensional gradient descent

Let w, be an initial guess. How can we improve this solution?

Taylor series approximation:
For w very close to w, we have

d
Fowg) + (w — wyy L

w W=wy
is very close to f(w)

Thus, for very smalln > 0, Wy W W, W3 Wy = arg min f(w)
. df(w) W
ifw, =wy—n then
I C)l W Tw=wy Gradient descent
df(w _
f(WO) o }7< 2 For k=0,1,2,3,... .
dw W=Ww, Wi =W, —1 f(w)
is very close to () < f(wp) " aw ey,
d
Note that as k — 0o we have % — 0

W=wg



Running example: linear regression

. Givendata: {(z;,y;)}"~; x; € R? y; € R

= Learning model parameters:

weR? . :

fw)

= Gradient descent:
e Initialize: wy = 0
e For t=0,1,2,...
Wy < w,—n-V,f(w)




ow, = (900, — 0.1)
eFort=0,1,2,...

. — .
{(zi, yi) M0 Wier < W =1V f(wy)
LiyYi) fi=1

700 ' ' ‘

600"
> 500+
()
S
= 400"
k=
% 300! y=wl[l]+w][2]x
S — _
g =900 - 0.1x |

100 Training data

— Current hypothesis
1000 2000 3000 4000 1000 -500 0 500 1000 1500 2000

Size (feetz) 0
w

Evolution of the predictor GD dynamics in the Parameter space

e Which direction will the GD move?



ow, = (900, — 0.1)
eFor t=0,1,2,...

Wy < W,—H- wa(wz)
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Gradient descent for linear regression

e [n this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory b« = argmin ||y — X “2
e Initialize: wy = 0 YLs = gweRd Y ik
e For t=0,1,2,... Jw)




Gradient descent for linear regression

e [n this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory b« = argmin ||y — X “2
e Initialize: wy = 0 YLs = gweRd Y ik
e For t=0,1,2,... Jw)




Gradient descent for linear regression

e [n this example of linear regression,
we can derive exactly the gradient For linear regression, we have

descent trajectory b« = argmin ||y — X “2

e Initialize: wy = 0 YLs = gweRd Y ik

e For t=0,1,2,... Jw)
.WH_I <« w,—n: wa(Wt)




Gradient descent for linear regression

e Initialize: wy = 0 For linear regression, we have
eFor t=0,1,2,...
: v fis = arg min_ [ly — Xwl3
Wit < W= -V, fO0) min z
Jw)

Viw) =—2XT(y — Xw,)
woy = w+2Xy—=Xw) = I-2pX"X)w, + 25Xy

Let the least-squares solution be w* = (X' X)Xy

we —wt = I=2nX"X)w, + 2nX"y — w*
I = 27X X)(w, — w*) + 2nX"y — 27X Xw*
(1 = 27X X)(w, — w)



How do you choose step size?

Let w, be an initial guess. How can we improve this solution?

Jw)

Taylor series approximation: Jwp)
For w very close to w, we have

d
Fowg) + (w — wyy L

w W=wy

is very close to f(w)

I
Wy Wy = arg min f(w)

If 7 too big, does not converge!
If # too small, converges very, very slowly.

In practice: choose the largest value of  that converges (guess and check)



Stochastic Gradient Descent

W
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Machine Learning Problems

= Given data:
{(zs,y)Hiew € RY y; € R

n
= Learning a model’s parameters: Z i (w)
1=1

Gradient Descent: ;>
— — vw — ez |
= (332w |

=1



Machine Learning Problems

= Given data:
(@i, yi) Fien Ti € R y; € R

= Learning a model’s parameters: Z Ci(w

Gradient Descent: n
St
Wil = W —
t+1 t (n 4 Ci( ) B

Stochastic Gradient Descent:
I; drawn uniform at
W=y random from {1,...,n}

Wil = Wy — NVl (w)‘

E[VEr, (w)] =



Machine Learning Problems

n
= Learning a model’s parameters: Z i (w)
1=1

Stochastic Gradient Descent:
I; drawn uniform at

Wiyl — Wt — nvwfft (UJ) |w:wt random from {1, “. ,n}

E[V{r, (w)] = VI(w)



Mini-batch SGD

e Instead of one iterate, average B stochastic gradient together

e Advantages:
- Smaller variance: the variance of the stochastic gradient

is smaller by a factor of 1/\/§

- Parallelization: each gradient in the mini-batch
can be computed in parallel

1 n
If you have regularizer, — 2 Z(w) + r(w), then update
n

i=1
with the stochastic gradient of the loss and gradient of the
regularizer



Fully-Connected Neural
Networks




Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 10s: state-of-the-art techniques for many
applications:
e Computer Vision
e Natural language processing: e.g., GPT
e Speech recognition
e Decision-making / control problems (AlphaGo, Dota, robots)
e Limited theory:
e Non-convexity
e Model are complex but generalization error is small



Neural Networks




Single Node

“bias unit”

-

/ \
‘\ L0 ,\\CIZ’O =1 X =
~N_7 \\
~ 0o
6, s

N\

@ 92 ,Z/—>h9(x)

Sigmoid (logistic) activation function: g(z) —

Based on slide by Andrew Ng

L0 0o
1 . (91
L9 0= (92
I3 il i (93 _
g(0Tx)  loge
1 Regression
14 e 0'x
1




Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)

11



OV = weight matrix stores parameters
from layerj to layerj + 1

e al) = “activation” of unit/ in layer
JaY ‘2>a53)_>h9(x) - : :

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
a§2) = g((-')%)a:o + @( )£C + @( )x + @(1) 3)
a:(f) = g(@(l)x + @( )x —|—@( )2 —I—('-)%):B )
ho(@) = a® = g(02a® + 6P + 64?1+ 0@2)

If network has s; units in Iayerj and S;,; units in layer j+1,
then ©U) has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng



Multi-layer Neural Network - Binary Classification

o) = (@1 M)

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 Binary
g(2) = | + o2 Logistic
€ Regression

y=g(0Mah)




Multi-layer Neural Network - Binary Classification

al) = x

0@ = (0 g1

y=9(

O(L) (L)

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 Binary

o(z) = max{0,2} g(z) = | + 2 Logistic

Regression




Multiple Output Units: One-vs-Rest

OO

0
when pedestrian

Slide by Andrew Ng

>
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when car
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o O

K
< he (X) c R
Multi-class
Logistic
Regression
E E
0 0
h@(X) ~ 1 h@(X) =~ O
- O - - 1 -
when motorcycle when truck



Multi-layer Neural Network - Regression

al) = x

0@ = (0 g1

L(ya @\) — (y - @\)2

o(z) = max{0, z} Regression

7= L)L)




Neural Network
Optimization




Machine Learning Problems

» Given data:
{(zi,yi) }ieq T; € R? y; € R

mn
= Learning a model’s parameters: Z i (w)
1=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))

Squared error Loss: £;(w) = (y; — z w)?



Machine Learning Problems

» Given data:
(i, yi) biza Ti € R y; € R

n
= Learning a model’s parameters: Z i (w)
1=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))
Squared error Loss: £;(w) = (y; — z w)?

Gradient Descent:

1 n
— — w | gz ‘
W41 Wi nV (n ; (’lU)) —



Gradient Descent

Initialize: wg =0
fort=1,2,...
w1 = wy — NV f(wy)

Convex Function Non-convex Function

NV




Sub-Gradient Descent

Initialize: wg = 0
fort=1,2,...
Find any ¢ such that f(y) > f(w:) + ¢, (y — wy)

Wiy1 = W — NGt
g is a subgradient at z if f(y) > f(z) + 9" (y — x)

Convex Function Non-convex Function

N




Machine Learning Problems

= Given data:
(@i, yi) Fien Ti € R y; € R

= Learning a model’s parameters: Z Ci(w

Gradient Descent: n
St
Wil = W —
t+1 t (n 4 Ci( ) B

Stochastic Gradient Descent:
I; drawn uniform at
W=y random from {1,...,n}

Wil = Wy — NVl (w)‘



Gradient Computation on a Graph

WL
[ ERKS

22\

Naive computation: node by node



A brief history

 Back propagation: the workhorse for training neural networks.
An algorithm that for a network with V nodes and E edges
calculates that gradient in linear time O(V+E).

 The name was introduced by Rumelhart, Hinton, Williams '86.
Same idea was rediscovered multiple times. Also mentioned in
Werbos’ thesis '74 in the context of neural networks.

e Control theory: Kelly '60, Bryson '61 [dynamic programming]

 Theoretical computer science: Baur-Strassen lemma '83
[algebraic circuits]



a) = x
,@ — @y

a® = g (z®)

Z(l+1) — D40
al+) = g (Z(z+1))

7= g(O®aD)

L(y,y) =ylog(y)+ (1 — y)log(l — y)
1
1l +e%

g(z) =

Gradient Descent: O «+ @Y — nVgou L(y, §) Vi




Forward Propagation

a) = x
;@ — @M

a® = g (z@)

a) — g(z(l))
+D) — @Dg0

al+h) = g (Z(l+1)>

5 = a@tD

L(y,y) =ylog(y) + (1 — y)log(l — y)
1
1l +e¢

g(z) =




Backprop
a) = x
7@ = @y

a® = g (z@)

a) — g(z(l))
+D) — @Dg0

al+h) = g (Z(l+1))

5 = a@tD

Train by Stochastic Gradient Descent:

00 — b _ " OL(y,y)
L,J L, (D)

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 + e < ] aZ(H_l)
l

g(z) =




Backprop
a) = x
7@ = @y

a® = g (z@)

a) — g(z(l))
+D) — @Dg0

al+) = g (Z(l+1))

5 = a@tD

oL(y, ) _ oL(y,y) oz _. 5D . 4O

00} AN C l J

Train by Stochastic Gradient Descent:

=1
" 00

OV « @
l,]

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 5(14.1) _ GL(y, 3}\)
| + ez i PECS)
l

g(z) =




Backprop
a) = x
@ = @M

a® = g (z@)

a) — g(z(l))
+D) — @Dg0

gD = g (z(+D)

5 = a@tD

aL(ya 3}\) . aL(ya :/y\) ) aZi(H-l) —- 5(l+1) . Cl(l)

0o oD el T

s _ OLO-9) _ 3 L0 ) o't
PO

- aZ]ng) azi(l)

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 5(14.1) _ 0L(y9 37\)
1+ e i PECS)
l

g(z) =




Backprop
a) = x

@ = @M
a® =g (z@)

a) — g(z(l))
+D) — @Dg0
a+D) = ¢ (z(l“))

5 = a@tD

OL(y,y) _ oL(y,y) . 0z; _. 5D . 4O
z = z ) .
a@f’]) aZi( +1) a@gj) I J
R I+1
50 — oL(y, y) _ Z oL(y,y) 0z ¢
i o7 ~ gD 70
_ Z sU+D | @(l) g (Z(l))
. a(l)(l (l)) Z NG @(1)

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 5(14.1) _ 0L(y9 37\)
1+ e i PECS)
l

g(z) =




Backprop
oL(y.9) _oL(y.9) oz .
= : =: 0, - a!

@ = D40

a(z) =g (Z(z))

D — D1 = 40 I+ . O
51‘ = 4 (1 4, )25k ®k,i
k

CL(Z) — g(z(l))
7D = @Dg "

(I+1) — (I+1)
a .8 (Z ) L(y,y) = ylog(y) + (1 — y)log(l — )

L SA+D) oL(y,y)
Il +e= l (3z-(l+1)
l

5/\ — a(L+1) g(z) =




Backprop

a'V) = x
-2 — @M

a® = g (z@)

l

a) — g(z(l))
+D) — @Dg0

al+) = g (Z(l+1))

5 = a@tD

aL(ya 3}\) . aL(ya :/y\) ) azi(l+1) —- 5(l+1) . Cl(l)

0o oD el T

D — D1 = 40 I+ . O
51‘ = 4 (1 4, )25k ®k,i
k

oL(y, y) 0
o= az(L+1) N az(L+1) [y log(g(z(LH))) + (1 —y)log(l - g(Z(LH)))]
l l 1 _ y
— 7 (LD _ 10 (L+1)
gy § ) T T Ty $ 6

=y — g(zI*D) = y — g+

L(y, y) = ylog(y) + (1 — y)log(1l — )

1 5(14.1) _ 0L(y, 3}\)
1 + e i PECS)
l

g(z) =




Backprop

oL(y,y) _ OL(y,y) . oz _. 5D . 4O
(1) — ) T 4,04+D) ( i

,@ — @y

, , 5i(l> = ai(l)(l _ ai(l)) Z 5]£z+1) 0
Cl( ) — g ( Z( )) -

k,i

SLAD =y _ qU+D

a) — g(z(l))

Z(l+1) — @(l)a(l) Recursive Algorithm!

(+1) — (I+1)
“ T8 E)[ 15, 9) = y1oa(9) + (1 - tog -

1 5(14.1) _ 0L(y, 3)\)
] + e i 97D
l

_ a(i+1) 8(z) =

y




Auto-differentiation

Backprop for this simple network architecture is a special
case of reverse-mode auto-differentiation:

‘ y = f(z1,22) = In(x1) +z122 —sin(zy)

I :/’U:l\ »>

Forward Primal Trace Reverse Adjoint (Derivative) Trace
@—» f V-1= T1 =2 Az, =9, =5.5
Vo = T2 =5 T2 = Vo = 1.716
vi =lnv_;  =In2 D_1=0_1 +01pA =01+ 01 /v-1 =55
vz =v_1 Xvo =2X5 To =To+0252 =00+ Xv_1 =1716
) :\Uy > U3 17_1:1723%”_2; =Ty X Ug =5
v3 = sinwg =sind vg = 173%% = D3 X COS Vg = —0.284
vs =vi+vz =0.693+ 10 To =@4g—g§ =74 x1 =1
B = 0.5 =3y x 1 =1
vs =vg—ws = 10.693 4 0.959 U3 = U5 =vx(-1) =-1
vy =055 =75 x 1 =1
V y =us =11.652 U5 =7 =1




Auto-differentiation

» Given a function, computes its partial derivatives

« Compute all of the partial derivatives of a function with (nearly)
same computation runtime [Griewank ‘89, Baur and Strassen
'83]

« Backbone of (applied) machine learning: Pytorch, Tensorflow, ...



Example of Computation Graph

. 27TW1 3W1 3W1
fw,w,y) = (sm < > + — — exp(2w2)) . <— — exp(2w2)>
W2 W2 W2

Input: 7, = (W, wy)




Computation Model

« Given access to a set of differentiable real functions h € #

« Use functions in # to create intermediate variables.
 Evaluation trace:

 All intermediate variables will be scalars; each corresponds to
a node.

e Inputzy =w € R4 120l = Wy, (2], = Wo, .. [20]y = Wy
- Step 1: z; = h, (a subset of variables in w)

- Step t: z, = h, (a subset of variables in 7, ..., Z,_{, W)

° Step T: zp = hy (a subset of variables in z;, ..., Zp_, W)
e Return: z;

(hy,....,.hp € X)



Computation Model

- Every h € # is one of the following:
* Type 1: An affine transformation of the inputs

- Type 2: A product of variables, to some power

* Type 3: Afixed set of one dimensional differentiable
functions: sin( - ), cos( - ), exp( - ),log(-),...

* We assume we can easily compute the derivatives for
each of this functions.

* Type 3 can be approximated by Type 1 and Type 2, using
polynomials.



Neural Network Example




Reverse Mode of Automatic Differentiation

Goal: Compute partial derivatives of f(w), i.e., df/dw.
- Step 1: computer f(w) and store in memory all intermediate

variables z;, ..., Zr
dz
_ Step 2: Initialize: — = 1.
dZT
« Step3:Fort=71,T—-1,...,0
dZT - 2 dZT aZc
* dz, dz. 0z

cis a child of t
(Child: a node z, directly points to)

dz d
. Step 4: Return L = —f
dZO dw



Time Complexity

Theorem (Baur and Strassen ’83, Griewak ’89): Assume every
h is specified as in our computational model. For A( - ) of type 3,

assume we can compute the derivative /'(z) in time as the same
order of computing /(z). Let T denote the time to compute f(w).

Then the reverse mode computes df/dw in time O(T').



Time Complexity



Clarke Differential




Subdifferential and Subgradient

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Subdifferential and Subgradient

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Subdifferential is not enough

Definition: Given f: RY — R, for every x, the subdifferential set
is defined as

d.f(x) 2 {seRY:Vx' eRY f(x) > f(x)+s'(x'—x)}. The
elements in the subdifferential set are subgradients.



Clarke Differential

Definition: Given f : RY — R, for every x, the Clark differential
Is defined as

df(x) £ conv ({S e RY: 3{x 12, =2 A V)12, — s}).
The elements in the subdifferential set are subgradients.



When does Clarke differential exists

Definition (Locally Lipschitz): f : R4 - R is locally Lipchitz if
Vx € R there exists a neighborhood S of x, such that f is
Lipchitz in S.



Optimization Methods
for Deep Learning




Gradient descent for non-convex optimization

Decsent Lemma: Let f : RY — R be twice differentiable, and
| V2f]|, < . Then setting the learning rate = 1/, and
applying gradient descent, x, . ; = x, — n Vf(x,), we have:

1
f(xt) _f(xt+1) Z ﬁ”vf(xz)”%



Converging to stationary points

Theorem: In T = 0(%) iterations, we have [|Vf(x)||, L e.
€



Gradient Descent for Quadratic Functions

Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let A .. and 4 . be the largest and the smallest

1

eigenvalues of A. If we setn < , we have

4
1115 < (1 = 1) %]l

max



Momentum: Heavy-Ball Method (Polyak ’64)

Problem: min f(x)
X

Method: v, ; = — Vf(x,) + pv,
X1 = X+ NV




Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x)
X

Method: v, | = — Vf(x, + pv,) + pv,
X1 = X+ Ve

Polyak's Momentum Nesterov Momentum




Newton’s Method

Newton’s Method: x,. ; = x, — n( V*f(x,)) ! Vf(x))
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AdaGrad (Duchi et al. ’11)

Newton Method: x,, | = x, — n( V>f(x,))~! Vf(x,)
AdaGrad: separate learning rate for every parameter

—1
X1 =X — (G g + GI)_l Vix), (G);; = Z (Vf(xt)i)z

\2




RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

t—1
X1 = X — ﬂ(GH_l + €I)_1 Vf(-x[)a (Gt i = Z ( Vf(xt)i)z

\2

RMSProp: exponential weighting of gradient norms
Xep1 = X — N(Gpyq + 61)_1/2 Vfx), )
(Gt+1)ii — IB(Gt)ii + (1 _ ﬁ)( Vf(xt)i)




AdaDelta (Zeiler ’12)

RMSProp:
X1 =X —n(Gy + GI)_1/2 Vi(x,),
(Gt+1)ii — ﬂ(Gt)ii + (1 — ﬂ)( Vf(xt)i)z

AdaDelta:

X1 = X, — nAx,

Ax, = /u,+ ¢ - (G, + )2 Vfx)
(Gt+1)ii — p(Gt)ii + (1 — ,0)( Vf(xt)i)za
U = pu,+ (1 — p)||Axt||%



Adam (Kingma & Ba ’14)

Momentum:

Vip1 = — V) + v X = X+ v
RMSProp: exponential weighting of gradient norms

X1 = X% — NGy + el)™! Vf(x),
(Gy;; = P(GYy; + (1 = p)( Vf(xt)l-)z
Adam

Vg1 = P+ (1 = B VIx,)

(Gt+1)ii — ﬂz(Gt)ii + (1 _ :BZ)( Vf(xt)i)z

—1/2
X1 =X — (G + €)™y

Default choice nowadays.



Important Techniques
In Neural Network
Training




Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate



Activation Functions
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Rectified Linear United



Activation Function

Sigmoid Hyperbolic Tangent

1 — 1
Traditional /

Non-Linear 0 0
Activation
; -1 -1
Functions 1 0 1 1 0 1
y=1/(1+e™) y=(eX-eX)/(eX+e™)
Remiﬁ‘:giﬁ‘;ar Unit Leaky RelLU Exponential LU
1 1 1
Modern / i
Non-Linear g ([ — 0
Activation
Functions
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X20
y=max(9,Xx) y=max(ax, X) y={a(ex_1),x<e

a = small const. (e.g. 0.1)



Initialization

o Zero-initialization
 Large initialization
 Small initialization

 Design principles:
« Zero activation mean

 Activation variance remains same across layers



Kaiming Initialization (He et al. ’15)

W~ 0,3 .
- bW =0

» Designed for RelLU activation
« 30-layer neural network

0.95
0.9+

2 0.85
w

1

08+ — EﬁlVar[w,] =1 ours
075H  ___. AVar[w] =1 Xavier
|
0 1 2 3 4 5 6 7 8 9



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Initialization by Pre-training

« Use a pre-trained network as initialization
* And then fine-tuning

Source Domain ; Target Domain

Output Dimension: N Output Dimension: M
L L J

) H
T ! T
Initialize

Wei:g hts

Source Model — Source Model

Target
Dataset
(Dog Breeds)

Source Dataset
(ImageNet)




Gradient Clipping

* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Loss
v




Batch Normalization (loffe & Szegedy, '14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
« Could normalization be useful at the level of hidden layers?

e Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)

 During training, mean and std is computed for each
minibatch (can be backproped!



Batch Normalization (loffe & Szegedy, '14)

Standard Network

Adding a BatchNorm layer (between weights and activation function)



Batch Normalization (loffe

z=ijEj+b
I

& Szegedy, '14)

7 [Batch normalization
[ ]

U >

\f(2 y

Minibatch size

Minibatch mean

/ Minibatch standard deviation

1 1 c u; = Zi_mg/ yu; +
_ _ 2__2 2| W= = YU
Hp = B Zi| |95 = g (zi — us) ' Jo2 +e l :
i=1




Batch Normalization (loffe & Szegedy, '14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.

B
aDiv -1 —3 dDiv
E)
302~z WEte) L o,

v —1 <o oDiv

Oup Joi+e€ = Ou;

dDiv _ dDiv 1 oDiv 2(z; —ug) 0Div 1
b . . -

+
ou; JoE+e 005 B dug B

Batch normalization

N . dDiv
The rest of backprop continues from —
1




Batch Normalization (loffe & Szegedy, ’14)

Learning Rate=0.1 Learning Rate=0.5
100 100

X =

- >

O O

© ©

| - | -

0 —— Standard 5 —— Standard

g 5 —— Standard + BatchNorm & 3° —— Standard + BatchNorm
o o

£ £

£ £

(© ©

| - | -

- -

0 5k 10k 15k 0 5k 10k 15k

Steps Steps



What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. “18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training £, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)



More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)

* Instance normalization (Ulyanov, Vedaldi, Lempitsky, '16)
« Batch-independent, suitable for generation tasks
« Group normalization (Wu & He, ‘18)
« Batch-independent, improve BatchNorm for small batch size



