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CSEP590: Deep Learning

Instructor: Simon Du  
Teaching Assistant: Siting, Ruizhe Shi 
Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/csep590a/26wi/ 
Questions: Ed Discussion 
Announcements: Canvas 
Homework: Canvas

https://courses.cs.washington.edu/courses/csep590a/26wi/
https://courses.cs.washington.edu/courses/csep590a/26wi/


What this class is:
• Fundamentals of DL: Neural network architecture, approximation 

properties, optimization, generalization, generative models, 
representation learning 

• Preparation for further learning: the field is fast-moving, you will 
be able to apply the fundamentals and teach yourself the latest

What this class is not:
• An easy course: mathematically easy 
• A survey course: laundry list of algorithms

CSEP590: Deep Learning



Prerequisites

■ Working knowledge of: 
■ Linear algebra 
■ Vector calculus 
■ Probability and statistics 
■ Algorithms 
■ Machine leanring (CSEP546) 

■ Mathematical maturity 
■ “Can I learn these topics concurrently?”



Lecture

■ Time: Thursday 6:30 - 9:20PM 
■ CSE2 010 or Zoom (see website for the schedule)  
■ Slides + handwritten notes (e.g., derivations, proofs) 
■ Zoom link on Canvas 
■ Tentative schedule on course website



Homework (40%)

■ 2 homework (20%+20%) 
□ Each contains both theoretical questions and 

programming questions 
□ Related to course materials 
□ Collaboration okay but must write who you collaborated 

with. You must write, submit, and understand your 
answers and code. 

□ Submit on Canvas 
□ Must be typed 
□ Two late days 
□ Tentative timeline: 
□ HW 1 due: 2/5 
□ HW 2 due: 2/19



Course Project (60%)

■ Group of 3 - 5. 
■ Topic: literature review (state-of-the-art) or an application or 

original research. 
■ Post on Ed Discussion to form teams. 
■ Some potential topics are in listed on Canvas. OK to do a 

project not listed. 
■ You can work on a project related to your research. 
■ Proposal (due: 1/33): 5% 

■ Format: NeurIPS Latex format, ~1 - 1.5 pages 
■ Presentations on (3/12 on Zoom): 20% 
■ Final report (due: 3/19): 35% 

■ Format: NeurIPS Latex format, ~8 pages 
■ Submit on Canvas



Possible Topics

■ Approximation properties 
■ Advanced optimization methods 
■ Optimization theory for deep learning 
■ Generalization theory for deep learning 
■ Deep reinforcement learning 
■ Implicit regularization 
■ Meta-learning 
■ Robustness 
■ Neural network compression 
■ Pre-training, fine-tuning, RLHF, RLVR 
■ Deep learning application 
■ …



Communication Chanels

■ Announcements 
■ Canvas 

■ questions about class, homework help 
□ Ed Discussion 
□ Office hours (Zoom): 
□ Simon Du: Friday 10:00 - 11:00 AM 
□ Siting Li: Thursday 11:00 - 12:00 PM 
□ Ruizhe Shi: Friday 19:00 - 20:00 PM 

□ Regrade requests 
□ Canvas 

□ Personal concerns: 
□ Email to instructor or TAs



Topic: Machine Learning Review

■ General setup 
■ Regression 
■ Train/Test Split 
■ Regularization 
■ Classification 
■ Basic optimization methods 
■ Fully-connected neural network



Topic: Optimization

■ Review: Back-propagation 
■ Auto-differentiation 
■ Advanced optimizers: momentum (Nesterov acceleration), 

adaptive method (AdaGrad, Adam) 
■ Techniques for improving optimization: batch-norm, layer- 

norm, ..



Topic: Architecture

■ Convolutional neural network 
■ Recurrent neural network 

■ LSTM 
■ Attention-based neural network 

■ Transformer 
■ General framework



Topic: Theoretical Foundation

■ Why neural networks can express the (regression, 
classification, …) function you want? 

■ Construction of such desired neural networks 
■ Universal approximation theorem 
■ global convergence of gradient of over-parameterized 

neural networks 
■ Neural Tangent Kernel



Topic: Generalization

■ Measures of generalization 
■ Double descent 
■ Techniques for improving generalization 
■ Generalization theory beyond VC-dimension 
■ Implicit regularization 
■ Why NN outperforms kernel



Topic 6: Representation Learning / Pre-Training

■ Multi-task representation learning 
■ Auto-regressive pre-training 
■ Multi-modal learning 
■ Contrastive learning 
■ Meta-learning 
■ Data 
■ Theory



Topic 7: Generative Models

■ Generative adversarial network 
■ Variational Auto-Encoder 
■ Energy-based models 
■ Normalizing flows 
■ Diffusion models



Machine Learning Review



ML uses past data to make predictions



Traditional algorithms

Reddit Google Twitter?
Social media mentions of Cats vs. Dogs

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1


Traditional algorithms

Reddit Google Twitter?
Social media mentions of Cats vs. Dogs

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

Write a program that sorts 
tweets into those containing  
“cat”, “dog”, or other

https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1


Traditional algorithms

Reddit Google Twitter?
Social media mentions of Cats vs. Dogs

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

for tweet in tweets:

cats = []
dogs = []

if “cat” in tweet:
cats.append(tweet)

elseif “dog” in tweet:

other = []

dogs.append(tweet)
else:

other.append(tweet)
return cats, dogs, otherWrite a program that sorts 

tweets into those containing  
“cat”, “dog”, or other

https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1


Write a program that sorts images 
into those containing “birds”, 
“airplanes”, or other.

Machine learning algorithms

airplane
other
bird



Write a program that sorts images 
into those containing “birds”, 
“airplanes”, or other.

for image in images:

birds = []
planes = []

if bird in image:
birds.append(image)

elseif plane in image:

other = []

planes.append(image)
else:

other.append(tweet)
return birds, planes, other

Machine learning algorithms

airplane
other
bird
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Write a program that sorts images 
into those containing “birds”, 
“airplanes”, or other.

airplane
other
bird

for image in images:

birds = []
planes = []

if bird in image:
birds.append(image)

elseif plane in image:

other = []

planes.append(image)
else:

other.append(tweet)
return birds, planes, other

The decision rule of  
 if bird in image: 
is LEARNED using DATA

The decision rule of  
 if “cat” in tweet: 
is hard coded by expert.



Machine Learning Ingredients 

• Data: past observations 

• Hypotheses/Models: devised to capture the patterns in data  

• Prediction: apply model to forecast future observations 



Your first consulting job

• Billionaire: I have special coin, if I flip it, what’s the 
probability it will be heads? 

• You: Please flip it a few times: HHTHT 

• You: The probability is: 

• Billionaire: Why?



Coin – Binomial Distribution

P (D|✓) =

• Data: sequence D= (HHTHT…), k heads out of n flips
• Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ

• Flips are i.i.d.:
• Independent events
• Identically distributed according to Binomial 

distribution

•  
 



• Data: sequence D= (HHTHT…), k heads out of n flips
• Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ 
 

• Maximum likelihood estimation (MLE): Choose θ that 
maximizes the probability of observed data:

Maximum Likelihood Estimation

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax
✓

P (D|✓)

= argmax
✓

logP (D|✓)

P (D|✓)

✓

b✓MLE



Your first learning algorithm

d

d✓
logP (D|✓) = 0

b✓MLE = argmax
✓

logP (D|✓)

= argmax
✓

log ✓k(1� ✓)n�k

• Set derivative to zero:



Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)



Recap
• Learning is… 

• Collect some data 
• E.g., coin flips 

• Choose a hypothesis class or model 
• E.g., binomial 

• Choose a loss function 
• E.g., data likelihood 

• Choose an optimization procedure 
• E.g., set derivative to zero to obtain MLE



What about continuous variables?

• Billionaire: What if I am measuring a continuous variable? 
• You: Let me tell you about Gaussians…



Some properties of Gaussians

• affine transformation (multiplying by scalar and adding a 
constant) 
• X ~ N(µ,σ2) 
• Y = aX + b    ➔ Y ~ N(aµ+b,a2σ2) 

• Sum of Gaussians 
• X ~ N(µX,σ2

X) 

• Y ~ N(µY,σ2
Y) 

• Z = X+Y    ➔  Z ~ N(µX+µY, σ2
X+σ2

Y)



• Prob. of i.i.d. samples D={x1,…,xn} (e.g., temperature): 

• Log-likelihood of data: 

• What is                for                       ? 

MLE for Gaussian

P (D|µ,�) = P (x1, . . . , xn|µ,�)

=

✓
1

�
p
2⇡

◆n nY

i=1

e�
(xi�µ)2

2�2

logP (D|µ,�) = �n log(�
p
2⇡)�

nX

i=1

(xi � µ)2

2�2

b✓MLE ✓ = (µ,�2)



Your second learning algorithm: 
MLE for mean of a Gaussian

d

dµ
logP (D|µ,�) = d

dµ

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2

#
• What’s	MLE	for	mean?



MLE for variance

d

d�
logP (D|µ,�) = d

d�

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2

#
• Again,	set	derivative	to	zero:



Learning Gaussian parameters

bµMLE =
1

n

nX

i=1

xi

c�2
MLE =

1

n

nX

i=1

(xi � bµMLE)
2

E[c�2
MLE ] 6= �2

c�2
unbiased =

1

n� 1

nX

i=1

(xi � bµMLE)
2

• MLE: 

• MLE for the variance of a Gaussian is biased 

• Unbiased variance estimator:



Maximum Likelihood Estimation

The MLE is a “recipe” that begins with a model for data f(x; θ)

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Under benign assumptions, as the number of observations  we have n → ∞ ̂θ MLE → θ*



Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Under benign assumptions, as the number of observations  we have n → ∞ ̂θ MLE → θ*

Why is it useful to recover the “true” parameters  of a probabilistic model? 
• Estimation of the parameters  is the goal 
• Help interpret or summarize large datasets 
• Make predictions about future data 
• Generate new data 

θ*
θ*

X ∼ f( ⋅ ; ̂θ MLE)



Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Opinion polls 
How does the greater 
population feel about an issue? 
Correct for over-sampling? 
•  is “true” average opinion 
•  are sample calls

θ*
X1, X2, …

A/B testing 
How do we figure out which ad 
results in more click-through? 
•  are the “true” average rates 
•  are binary “clicks” 

θ*
X1, X2, …



Interpret

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Customer segmentation / clustering 
Can we identify distinct groups of 
customers by their behavior? 
•  describes “center” of distinct groups 
•  are individual customers

θ*
X1, X2, …

Data exploration 
What are the degrees of freedom of the 
dataset? 
•  describes the principle directions of 

variation 
•  are the individual images

θ*

X1, X2, …



Predict

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Content recommendation 
Can we predict how much someone will 
like a movie based on past ratings? 
•  describes user’s preferences 
•  are (movie, rating) pairs

θ*
X1, X2, …

Object recognition / classification 
Identify a flower given just its picture? 
•  describes the characteristics of 

each kind of flower 
•  are the (image, label) pairs

θ*

X1, X2, …



Generate

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Text generation 
Can AI generate text that could have 
been written like a human?  
•  describes language structure 
•  are text snippets found 

online

θ*
X1, X2, …

“Kaia the dog wasn't a natural pick to go to mars. 
No one could have predicted she would…”

https://chat.openai.com/chat

Image to text generation 
Can AI generate an image from a prompt? 
•  describes the coupled structure of 

images and text 
•  are the (image, caption) pairs 

found online

θ*

X1, X2, …

“dog talking on cell phone under water, oil painting” 

https://labs.openai.com/



Linear Regression



The regression problem, 1-dimensional

#	square	feet

Sa
le
	P
ric
e

Given	past	sales	data	on	zillow.com,	predict:	
					y = House	sale	price	from		
					x = {#	sq.	ft.}	

Training	Data:
{(xi, yi)}ni=1

yi 2 R
xi 2 R

<latexit sha1_base64="orh5n7qZpaR0XoEUpD3YIOQNUYs=">AAACGHicbZC7TsMwFIadcivhVmBksaiQmKqkIMFYQQfGUtGLaKLKcZzWquNEtoOoorwFExI8CxtiZeNR2HDaDNByJEu/vv8c+/j3Ykalsqwvo7Syura+Ud40t7Z3dvcq+wddGSUCkw6OWCT6HpKEUU46iipG+rEgKPQY6XmT69zvPRAhacTv1DQmbohGnAYUI6XR/eOQQody6LSHlapVs2YFl4VdiCooqjWsfDt+hJOQcIUZknJgW7FyUyQUxYxkppNIEiM8QSMy0JKjkEg3nW2cwRNNfBhEQh+u4Iz+nkhRKOU09HRniNRYLno5/M8bJCq4dFPK40QRjucPBQmDKoL596FPBcGKTbVAWFC9K8RjJBBWOiTTdHwSOM3UyS/GiKXNLJuz9px5XtrOMp2VvZjMsujWa/ZZrX57Xm1cFamVwRE4BqfABhegAW5AC3QABhw8gRfwajwbb8a78TFvLRnFzCH4U8bnD87eoBs=</latexit>
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Fit a function to our data, 1-d

#	square	feet
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Given	past	sales	data	on	zillow.com,	predict:	
					y = House	sale	price	from		
					x = {#	sq.	ft.}	

Training	Data:
{(xi, yi)}ni=1

yi 2 R

Hypothesis/Model:	linear	

best	linear	fit

xi 2 R
<latexit sha1_base64="orh5n7qZpaR0XoEUpD3YIOQNUYs=">AAACGHicbZC7TsMwFIadcivhVmBksaiQmKqkIMFYQQfGUtGLaKLKcZzWquNEtoOoorwFExI8CxtiZeNR2HDaDNByJEu/vv8c+/j3Ykalsqwvo7Syura+Ud40t7Z3dvcq+wddGSUCkw6OWCT6HpKEUU46iipG+rEgKPQY6XmT69zvPRAhacTv1DQmbohGnAYUI6XR/eOQQody6LSHlapVs2YFl4VdiCooqjWsfDt+hJOQcIUZknJgW7FyUyQUxYxkppNIEiM8QSMy0JKjkEg3nW2cwRNNfBhEQh+u4Iz+nkhRKOU09HRniNRYLno5/M8bJCq4dFPK40QRjucPBQmDKoL596FPBcGKTbVAWFC9K8RjJBBWOiTTdHwSOM3UyS/GiKXNLJuz9px5XtrOMp2VvZjMsujWa/ZZrX57Xm1cFamVwRE4BqfABhegAW5AC3QABhw8gRfwajwbb8a78TFvLRnFzCH4U8bnD87eoBs=</latexit>
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Consider yi = xT
i w + ✏i where ✏i

i.i.d.⇠ N (0,�2)yi = xiw + ✏i
<latexit sha1_base64="LOtnxQgiPKpP1vzfkfTJc26t6A4="></latexit>
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The regression problem, d-dim

Given	past	sales	data	on	zillow.com,	predict:	
					y = House	sale	price	from		
					x = {#	sq.	ft.,	zip	code,	date	of	sale,	etc.}	

Training	Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis/Model:	linear	

#	square	feet
#	bathrooms

Sale	price

Consider yi = xT
i w + ✏i where ✏i

i.i.d.⇠ N (0,�2)Consider yi = xT
i w + ✏i where ✏i

i.i.d.⇠ N (0,�2)

=
X

ŵj 6=0

ŷi =     ŵj hj(xi)

=
X

ŵj 6=0

ŷi =     ŵj hj(xi)

http://zillow.com


The regression problem, d-dim
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{(xi, yi)}ni=1
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yi 2 R

Hypothesis/Model:	linear	
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Maximizing log-likelihood

Likelihood:

Training	Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
<latexit sha1_base64="x8Gxg0mFUGvHDx7sknp16ilgZos="></latexit>
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Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Under benign assumptions, as the number of observations  we have n → ∞ ̂θ MLE → θ*

Why is it useful to recover the “true” parameters  of a probabilistic model? 
• Estimation of the parameters  is the goal 
• Help interpret or summarize large datasets 
• Make predictions about future data 
• Generate new data 

θ*
θ*

X ∼ f( ⋅ ; ̂θ MLE)



Maximizing log-likelihood

Likelihood:

Training	Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
<latexit sha1_base64="x8Gxg0mFUGvHDx7sknp16ilgZos="></latexit>

p(y|x,w,�) = 1p
2⇡�2

e�(y�x>w)2/2�2

Maximize (wrt w):
<latexit sha1_base64="YNlewJsyKWhRpABadfADwpH03KI="></latexit>

logP (D|w,�) = log
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Maximize (wrt w):
<latexit sha1_base64="YNlewJsyKWhRpABadfADwpH03KI="></latexit>

logP (D|w,�) = log

 
nY

i=1

1p
2⇡�2

e�(yi�x>
i w)2/2�2

!
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P (D|w,�) =
nY

i=1

p(yi|xi, w,�) =
nY

i=1

1p
2⇡�2

e�(yi�x>
i w)2/2�2

<latexit sha1_base64="8N26PSiPQSK+F8CKWZp0bHEs0KA=">AAACPXicbVBNbxMxEPW2QEv4CuXIxSJCKgeidVVRLpWqVkgcQCoSaSvFycrrnU2s2t6VPUuIrP0//Rf8A67AHW6IK1ecNAdoedJIT+/NjD0vr7XymKbfkrX1GzdvbWze7ty5e+/+g+7DrRNfNU7CQFa6cme58KCVhQEq1HBWOxAm13Canx8t/NMP4Lyq7Huc1zAyYmJVqaTAKGXdQz5TBUwFhlmbhbdvXrV0n3LhJtwom0WRct+YLKh91o4t3Z5nij6nHzM15ljVdPZsvJN1e2k/XYJeJ2xFemSF46z7nReVbAxYlFp4P2RpjaMgHCqpoe3wxkMt5LmYwDBSKwz4UVje2tKnUSloWblYFulS/XsiCOP93OSx0wic+qveQvyfN2ywfDkKytYNgpWXD5WNpljRRXC0UA4k6nkkQjoV/0rlVDghMcbb4QWUnAW+2JuXgbVtjIVdDeE6Odnpsxd99m63d3C4CmiTPCZPyDZhZI8ckNfkmAyIJBfkM/lCviafkh/Jz+TXZetaspp5RP5B8vsPiu2ufQ==</latexit>

bwMLE = argmin
w

nX

i=1

(yi � x>
i w)
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Maximizing log-likelihood
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bwMLE = argmin
w

nX

i=1

(yi � x>
i w)

2 Set derivate=0, solve for w
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!�1 nX

i=1

xiyi



The regression problem in matrix notation

y =

2

64
y1
...
yn

3

75 X =

2

64
xT
1
...
xT
n

3

75
d	:	#	of	features	
n	:	#	of	examples/datapoints
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=
X

ŵj 6=0

ŷi =     ŵj hj(xi)

The regression problem in matrix notation

y =

2

64
y1
...
yn

3

75 X =

2

64
xT
1
...
xT
n

3

75
d	:	#	of	features	
n	:	#	of	examples/datapoints

yi = xT
i w + ✏i

<latexit sha1_base64="XGQ0rQSnZMvlLaYfXpXfZFfomkE="></latexit>
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The regression problem in matrix notation

y =
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y1
...
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1
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75
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nX

i=1

(yi � x>
i w)
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= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

||y �Xw||22

yi = xT
i w + ✏i
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The regression problem in matrix notation
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...
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bwMLE = argmin
w

nX

i=1

(yi � x>
i w)

2

= argmin
w

(y �Xw)T (y �Xw)

bwLS = argmin
w

||y �Xw||22

bwLS = bwMLE = (XTX)�1XTY

yi = xT
i w + ✏i
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= (XTX)�1XTy

bwLS = argmin
w

||y �Xw||22

What	about	an	offset?

bwLS ,bbLS = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

= argmin
w,b

||y � (Xw + 1b)||22

The regression problem in matrix notation



Dealing with an offset

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22



If XT1 = 0 (i.e., if each feature is mean-zero) then

bwLS = (XTX)�1XTY

bbLS =
1

n

nX

i=1

yi

XTX bwLS +bbLSX
T1 = XTy

1TX bwLS +bbLS1
T1 = 1Ty

bwLS ,bbLS = argmin
w,b

||y � (Xw + 1b)||22

Dealing with an offset



Make Predictions

bwLS = (XTX)�1XTY

bbLS =
1

n

nX

i=1

yi

A	new	house	is	about	to	be	listed.	What	should	it	sell	for?

ŷnew = xT
newŵLS + b̂LS

<latexit sha1_base64="OBCTZ1ysswu78fvh4ENNelplGmk="></latexit>



Process

Decide	on	a	model	for	the	likelihood	function	 		

Find	the	function	which	fits	the	data	best	
Choose	a	loss	function-	least	squares	
Pick	the	function	which	minimizes	loss	on	data	

Use	function	to	make	prediction	on	new	examples

f(x; θ)



Linear regression with non-
linear basis functions



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

• Linear model with parameter :  
•  

(b, w1)̂y i = b + w1 xi
input x

label y



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

• Linear model with parameter :  
•  

• Quadratic model with parameter :  

•  

(b, w1)̂y i = b + w1 xi

(b, w = [w1
w2])

̂y i = b + w1 xi + w2 x2
i

input x

label y



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

• Linear model with parameter :  
•  

• Quadratic model with parameter :  

•  

•
Degree-p polynomial model with parameter :  

•

(b, w1)̂y i = b + w1 xi

(b, w = [w1
w2])

̂y i = b + w1 xi + w2 x2
i

(b, w =
w1
⋮
wp

)

̂y i = b + w1 xi + w2 x2
i + … + wp xp

i

input x

label y



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

• Linear model with parameter :  
•  

• Quadratic model with parameter :  

•  

•
Degree-p polynomial model with parameter :  

•  

•
General p-features with parameter :  

•  where 

(b, w1)̂y i = b + w1 xi

(b, w = [w1
w2])

̂y i = b + w1 xi + w2 x2
i

(b, w =
w1
⋮
wp

)

̂y i = b + w1 xi + w2 x2
i + … + wp xp

i

w =
w1
⋮
wp

̂y i = ⟨w, h(xi)⟩ h : ℝ → ℝp

input x

label y



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

•
General p-features with parameter :  

•  where 

w =
w1
⋮
wp

̂y i = ⟨w, h(xi)⟩ h : ℝ → ℝp
input x

label y

Note: h can be arbitrary non-linear functions! 

h(x) = [log(x), x2, sin(x), x]
⊤



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

•
General p-features with parameter :  

•  where 

w =
w1
⋮
wp

̂y i = ⟨w, h(xi)⟩ h : ℝ → ℝp
input x

label y

How do we learn w?



Quadratic regression in 1-dimension

•
Data: X =

x1
x2
⋮
xn

, y =

y1
y2
⋮
yn

•
General p-features with parameter :  

•  where 

w =
w1
⋮
wp

̂y i = ⟨w, h(xi)⟩ h : ℝ → ℝp
input x

label y

How do we learn w?

H =
− − h(x1)⊤ − −

⋮
− − h(xn)⊤ − −

∈ ℝn×p

̂w = arg min
w

∥Hw − y∥2
2

For a new test point x, predict 
̂y = ⟨ ̂w , h(x)⟩



Which  should we choose?p
• First instance of class of models with different  

          representation power = model complexity

• How do we determine which is better model?
input x

label y

input x

label y



Generalization
• we say a predictor generalizes if it performs as well on unseen data 

as on training data (we will formalize the next lecture)

• the data used to train a predictor is training data or in-sample data 
• we want the predictor to work on out-of-sample data 

• we say a predictor fails to generalize if it performs well on in-

sample data but does not perform well on out-of-sample data



Generalization
• we say a predictor generalizes if it performs as well on unseen data 

as on training data (we will formalize the next lecture)

• the data used to train a predictor is training data or in-sample data 
• we want the predictor to work on out-of-sample data 

• we say a predictor fails to generalize if it performs well on in-

sample data but does not perform well on out-of-sample data

• train a cubic predictor on 32 (in-sample) white circles: Mean Squared Error (MSE) 174 

• predict label  for 30 (out-of-sample) blue circles: MSE 192


• conclude this predictor/model generalizes, as in-sample MSE  out-of-sample MSE

y
≃



Split the data into training and testing

• a way to mimic how the predictor performs on unseen data 

• given a single dataset 

• we split the dataset into two: training set and test set (e.g., 90/10)

• training set used to train the model


• 


• test set used to evaluate the model


• 


• this assumes that test set is similar to unseen data 

• test set should never be used in training or picking unknowns

S = {(xi, yi)}n
i=1

minimize ℒtrain(w) = 1
|Strain | ∑

i∈Strain

(yi − xT
i w)2

ℒtest(w) = 1
|Stest | ∑

i∈Stest

(yi − xT
i w)2



Train/test error vs. complexity

• Degree , since it achieves minimum 
test error


• Train error monotonically decreases with model 
complexity 

• Test error has a U shape

p = 5

Error

degree  of the polynomial regressionp

x

y

y

y

x• test set should never be used in training or picking degree



Cross-Validation



How… How… How???????

> How do we pick the number of basis functions…

> We could use the test data, but… 



How… How… How???????

> How do we pick the number of basis functions…  

> We could use the test data, but… 

■ Never ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever train on the test data



(LOO)	Leave-one-out	cross	validation
> Consider a validation set with 1 example:

– D – training data
– D\j – training data with j th data point (xj ,yj) moved to 

validation set
> Learn classifier fD\j with D\j dataset
> Estimate true error as squared error on predicting yj: 

– Unbiased estimate of errortrue(fD\j)! 
 

> LOO cross validation: Average over all data points j: 
– For each data point you leave out, learn a new classifier fD\j 
– Estimate error as: 



(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:
– D – training data
– D\j – training data with j th data point (xj ,yj) moved to 

validation set
> Learn classifier fD\j with D\j dataset
> Estimate true error as squared error on predicting yj: 

– Unbiased estimate of errortrue(fD\j)! 
 

> LOO cross validation: Average over all data points j: 
– For each data point you leave out, learn a new classifier fD\j 
– Estimate error as: 

errorLOO =
1

n

nX

j=1

(yj � fD\j(xj))
2



LOO cross validation is (almost) unbiased estimate!

> When computing LOOCV error, we only use N-1 data points 
– So it’s not estimate of true error of learning with N data points
– Usually pessimistic, though – learning with less data typically 

gives worse answer

> LOO is almost unbiased! Use LOO error for model selection!!! 
– E.g., picking degree



Computational cost of LOO

> Suppose you have 100,000 data points
> You implemented a great version of your learning 

algorithm
– Learns in only 1 second 

> Computing LOO will take about 1 day!!!
–



 Use k-fold cross validation
> Randomly divide training data into k equal parts 

– D1,…,Dk 

> For each i 
– Learn classifier fD\Di using data point not in Di  

– Estimate error of fD\Di on validation set Di: 
 

> k-fold cross validation error is average over data splits: 
 

> k-fold cross validation properties: 
– Much faster to compute than LOO
– More (pessimistically) biased – using much less data, only n(k-1)/k
– Usually, k = 10

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



 Use k-fold cross validation
> Randomly divide training data into k equal parts 

– D1,…,Dk 

> For each i 
– Learn classifier fD\Di using data point not in Di  

– Estimate error of fD\Di on validation set Di: 
 

> k-fold cross validation error is average over data splits: 
 

> k-fold cross validation properties: 
– Much faster to compute than LOO
– More (pessimistically) biased – using much less data, only n(k-1)/k
– Usually, k = 10

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



Recap

> Given a dataset, begin by splitting into  
 

> Model selection: Use k-fold cross-validation on TRAIN to 
train predictor and choose magic parameters such as degree  
 
 
 
 
 

> Model assessment: Use TEST to assess the accuracy of the 
model you output
■ Never ever ever ever ever train or choose 

parameters based on the test data

TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Ridge Regression



Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a 

large number of features (high complexity) through non-linear feature 
maps. What if start with many features (high complexity) and not enough 
examples to learn? 

> Overfitting (too complex of a model, too little data) usually leads to very 
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

= (XTX)�1XTywhen                       exists…. (XTX)�1

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

Recall Least Squares:
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large parameter choices, e.g.: 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Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a 

large number of features (high complexity) through non-linear feature 
maps. What if start with many features (high complexity) and not enough 
examples to learn? 

> Overfitting (too complex of a model, too little data) usually leads to very 
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty
+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)(y1 � xT
1 w)

2 + (y2 � xT
2 w)

2 + · · ·+ (yn � xT
nw)

2 =
nX

i=1

(yi � xT
i w)

2

What if xi 2 Rd and d > n?

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

In general: = argmin
w

wT (XTX)w � 2yTXw

Recall Least Squares:



Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a 

large number of features (high complexity) through non-linear feature 
maps. What if start with many features (high complexity) and not enough 
examples to learn? 

> Overfitting (too complex of a model, too little data) usually leads to very 
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty
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When xi 2 Rd and d > n the objective function is flat in some directions:

Recall Least Squares:



Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a 

large number of features (high complexity) through non-linear feature 
maps. What if start with many features (high complexity) and not enough 
examples to learn? 

> Overfitting (too complex of a model, too little data) usually leads to very 
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:

Implies	optimal	solution	is	not	unique	and	unstable	
due	to	lack	of	curvature:	
• small	changes	in	training	data	result	in	large	
changes	in	solution	

• often	the	magnitudes	of	w	are	“very	large”

Regularization imposes “simpler” solutions by a 
“complexity” penalty

Recall Least Squares:



Ridge Regression

■ Old	Least	squares	objective:		

■ Ridge	Regression	objective:	

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)
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i w
�2
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Minimizing the Ridge Regression Objective

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Shrinkage Properties

bwridge = (XTX+ �I)�1XTy

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Classification 
Logistic Regression



Thus far, regression:

 
predict a continuous value given some inputs



Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]



Classification

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

• Learn 

•  - features

•  - target classes 

• Loss Function
• Expected loss of f:

• Suppose you knew P(Y|X) exactly, how should you classify?

f : 𝒳 → 𝒴
𝒳 ⊂ ℝd

𝒴 = {1,…, k}



Classification

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

• Learn 

•  - features

•  - target classes 

• Loss Function
• Expected loss of f:

• Suppose you knew P(Y|X) exactly, how should you classify?
• Bayes-Optimal classifier:

f : 𝒳 → 𝒴
𝒳 ⊂ ℝd

𝒴 = {1,…, k}

`(f(x), y) = 1{f(x) 6= y}



• Bayes-Optimal classifier: 

• Suppose we don’t know , but have n iid examples

• Suppose  is discrete so that . What is a natural 
estimator for ?

P(Y = y |X = x)

𝒳 X ∈ {1,2,...,m}
P(Y = y |X = x)

Bayes Optimal Binary Classifier

{(xi, yi)}ni=1
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Y 2 {0, 1}
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f(x) = argmax
y

P(Y = y|X = x)



• Bayes-Optimal classifier: 

• Suppose we don’t know , but have n iid examples

• Suppose  is discrete so that . What is a natural 
estimator for ?

What if  is continuous? That is, what if ?

P(Y = y |X = x)

𝒳 X ∈ {1,2,...,m}
P(Y = y |X = x)

𝒳 X ∈ ℝd

Bayes Optimal Binary Classifier

{(xi, yi)}ni=1
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f(x) = argmax
y

P(Y = y|X = x)

If X = {0, 1}d, or is generally discrete

f̂(x) = argmaxy2{0,1}

Pn
i=1 1[xi=x,yi=y]Pn

i=1 1[xi=x]
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• Bayes-Optimal classifier: 

• Suppose we don’t know , but have n iid examples

• Suppose  is discrete so that . What is a natural 
estimator for ?

What if  is continuous? That is, what if ?

P(Y = y |X = x)

𝒳 X ∈ {1,2,...,m}
P(Y = y |X = x)

𝒳 X ∈ ℝd
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f(x) = argmax
y

P(Y = y|X = x)

If X = {0, 1}d, or is generally discrete

f̂(x) = argmaxy2{0,1}
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i=1 1[xi=x,yi=y]Pn

i=1 1[xi=x]
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We need a model to explain observations



Logistic Regression

Recall linear regression: 

- We assumed that for any , we have   .  

- Given data we then computed the MLE for . 

x p(Y = y |X = x) = 1
2π

e(y−wT x)2/2

{(xi, yi)}n
i=1 w



Logistic Regression

P[Y = 1|X = x,w] = �(wTx) =
1

1 + exp(�wTx)
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P[Y = 0|X = x,w] = 1� �(wTx) =
exp(�wTx)

1 + exp(�wTx)

=
1

1 + exp(wTx)
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Recall linear regression: 

- We assumed that for any , we have   .  

- Given data we then computed the MLE for . 

x p(Y = y |X = x) = 1
2π

e(y−wT x)2/2

{(xi, yi)}n
i=1 w

Logistic	regression	uses	a	model	specialized	for	classification:



Logistic Regression

Features can be discrete or continuous!

P[Y = 1|X = x,w] = �(wTx) =
1

1 + exp(�wTx)
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Recall linear regression: 

- We assumed that for any , we have   .  

- Given data we then computed the MLE for . 

x p(Y = y |X = x) = 1
2π

e(y−wT x)2/2

{(xi, yi)}n
i=1 w

Logistic	regression	uses	a	model	specialized	for	classification:



Understanding the sigmoid
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<latexit sha1_base64="D1DRbps4IzWYXN3CCgJ7Lk/8iQY="></latexit>



Sigmoid for binary classes

P(Y = 0|w,X) =
1

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X) = 1� P(Y = 0|w,X) =
exp(w0 +

P
k wkXk)

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X)

P(Y = 0|w,X)
= exp(w0 +

X

k

wkXk)

log
P(Y = 1|w,X)

P(Y = 0|w,X)
= w0 +

X

k

wkXk

Linear Decision Rule!



Logistic Regression –  
a Linear classifier
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P (Y = 1|x,w) = exp(wTx)

1 + exp(wTx)

P (Y = �1|x,w) = 1

1 + exp(wTx)

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

■ Have a bunch of iid data:

Loss function: Conditional Likelihood



{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

(MLE for Gaussian noise)

■ Have a bunch of iid data:

Loss function: Conditional Likelihood



Loss function: Conditional Likelihood

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

■ Have a bunch of iid data:

Bad news: no closed-form solution to maximize J(w)



How do we encode categorical data y?
• so far, we considered Binary case where there are two categories

• encoding  is simple: {+1,-1}


• multi-class classification predicts categorial  
• taking values in  
• ’s are called classes or labels

• examples:


• a k-class classifier predicts  given 

y

y
C = {c1, …, ck}

cj

y x

Country of birth
(Argentina, Brazil, USA,...)

Zipcode
(10005, 98195,...)

All English words



Embedding ’s in real valuescj
• for optimization we need to embed raw categorical ’s into real 

valued vectors

• there are many ways to embed categorial data


• True->1, False->-1

• Yes->1, Maybe->0, No->-1

• Yes->(1,0), Maybe->(0,0), No->(0,1)

• Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

• Ordered sequence:  

        (Horse 3, Horse 1, Horse 2) -> (3,1,2)

• we use one-hot embedding (a.k.a. one-hot encoding)


• each class is a standard basis vector in dimension

cj

k−

117

Country of birth
(Argentina, Brazil, USA,...)

x =

196 categories

1-hot 
encoding x h1(x) h2(x) … h195(x) h196(x)

Brazil
Zimbabwe

196 features

1
1



Multi-class logistic regression

118

• data: categorical  in  with  categories 

 we use one-hot encoding, s.t.  implies that 


• model: linear vector-function makes a linear prediction  
 

 
 
with model parameter matrix  and sample  
 

  

 
 

y {c1, …, ck} k

y =

1
0
0
0
0

y = c1

̂y ∈ ℝk

̂yi = f(xi) = wT xi ∈ ℝk

w ∈ ℝd×k xi ∈ ℝd

f(xi) =

f1(xi)
f2(xi)

⋮
fk(xi)

=

w1,0 w1,1 w1,2 ⋯
w2,0 w2,1 w2,2 ⋯

⋮
wk,0 wk,1 wk,2 ⋯

wT

1
xi[1]

⋮
xi[d]

xi

=

w1,0 + w1,1xi[1] + w1,2xi[2] + ⋯
w2,0 + w2,1xi[1] + w2,2xi[2] + ⋯

⋮
wk,0 + wk,1xi[1] + wk,2xi[2] + ⋯

w = [w[: ,1] w[: ,2] ⋯ w[: , k]]



• Logistic regression

2 classes k classes

Maximum Likelihood Estimator
<latexit sha1_base64="obyMf5CLUC8LFJMMYsPnTNbfIwI=">AAACBXicbVC7SgNBFJ31GeNr1VKLwSBYhd1YaBkUwUIhgnlAsoTZ2dlkyDyWmVkxLGls/BUbC0Vs/Qc7/8ZJsoUmHhg4nHPvnXtPmDCqjed9OwuLS8srq4W14vrG5ta2u7Pb0DJVmNSxZFK1QqQJo4LUDTWMtBJFEA8ZaYaDi7HfvCdKUynuzDAhAUc9QWOKkbFS1z24QQ+Upxxe04Ed0pcygpfaUI6MVF235JW9CeA88XNSAjlqXferE0mcciIMZkjrtu8lJsiQMhQzMip2Uk0ShAeoR9qWCsSJDrLJFSN4ZJUIxlLZJwycqL87MsS1HvLQVtrt+nrWG4v/ee3UxGdBRkWSGiLw9KM4ZdBIOI4ERlQRbNjQEoQVtbtC3EcKYWODK9oQ/NmT50mjUvZPypXbSql6nsdRAPvgEBwDH5yCKrgCNVAHGDyCZ/AK3pwn58V5dz6mpQtO3rMH/sD5/AGUm5if</latexit>

ℙ(yi = − 1 |xi) = 1
1 + ewT xi

ℙ(yi = + 1 |xi) = 1
1 + e−wT xi

= ewT xi

1 + ewT xi

maximizew∈ℝd
1
n

n

∑
i=1

log( 1
1 + e−yiwT xi )

maximizew
1
n

n

∑
i=1

log(ℙ(yi |xi))

ℙ(yi = c1 |xi) = ew[:,1]T xi

ew[:,1]T xi + ⋯ + ew[:,k]T xi

ℙ(yi = ck |xi) = ew[:,k]T xi

ew[:,1]T xi + ⋯ + ew[:,k]T xi

⋮

maximizew∈ℝd×k
1
n

n

∑
i=1

k

∑
j=1

I{yi = cj}log( ew[:, j]T xi

∑k
j′ =1 ew[:, j′ ]T xi

)

 is an indicator that is one only if I{yi = j} yi = j

Without	loss	of	generality	setting	w[:,1]=0	when	
	recovers	the	original	binary	class	casek = 2



Kernels



Creating Features
• Feature	mapping	 	maps	original	data		
into	a	rich	and	high-dimensional	feature	space	(usually	 )

ϕ : ℝd → ℝp

d ≪ p

For	example,	in	d=1,	one	can	use For	example,	for	d>1,		
one	can	generate	vectors		
	
and	define	features:

{uj}pj=1 ⇢ Rd

ϕ(x) =

ϕ1(x)
ϕ2(x)

⋮
ϕk(x)

=

x
x2

⋮
xk

ϕj(x) = cos(uT
j x)

ϕj(x) = (uT
j x)2

ϕj(x) = 1
1 + exp(uT

j x)



Creating Features
• Feature	mapping	 	maps	original	data		
into	a	rich	and	high-dimensional	feature	space	(usually	 )

ϕ : ℝd → ℝp

d ≪ p

For	example,	in	d=1,	one	can	use For	example,	for	d>1,		
one	can	generate	vectors		
	
and	define	features:

{uj}pj=1 ⇢ Rd

• How many coefficients/parameters are there for degree-  polynomials  
for  ?

k
x = (x1, …, xd) ∈ ℝd

ϕ(x) =

ϕ1(x)
ϕ2(x)

⋮
ϕk(x)

=

x
x2

⋮
xk

ϕj(x) = cos(uT
j x)

ϕj(x) = (uT
j x)2

ϕj(x) = 1
1 + exp(uT

j x)



How do we deal with high-dimensional lifts/data?

The kernel trick:

Big	idea:	if	we	can	represent	our		
• training	algorithms	and		
• decision	rules	for	prediction		

as	functions	of	dot	products	of	feature	maps	(i.e.	 )	and	we	can	find	a	kernel	
for	our	feature	map	such	that		
								 	
then	we	can	avoid	explicitly	computing	and	storing	(high-dimensional)	 	and	
instead	only	work	with	the	kernel	matrix	of	the	training	data	

{⟨ϕ(x), ϕ(x′ )⟩}

K(x . x′ ) = ⟨ϕ(x), ϕ(x′ )⟩
{ϕ(xi)}n

i=1
{K(xi, xj)}i, j∈{1,…,n}

A	function	 	is	a	kernel	for	a	map	
	if	 	for	all	

K : ℝd × ℝd → ℝ
ϕ : ℝd → ℝp K(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩ x, x′ 



Recap: Kernels are much more efficient to 
compute than features
• As	illustrating	examples,	consider	polynomial	features	of	degree	exactly	 	

• 	for	 	and	 ,	then	 	

•
for	 	and	 ,	then	 	

k

ϕ(x) = [x1
x2] k = 1 d = 2 K(x, x′ ) = x1x′ 1 + x2x′ 2

ϕ(x) =

x2
1

x2
2

x1x2
x2x1

k = 2 d = 2 K(x, x′ ) = (xT x′ )2



Recap: Kernels are much more efficient to 
compute than features
• As	illustrating	examples,	consider	polynomial	features	of	degree	exactly	 	

• 	for	 	and	 ,	then	 	

•
for	 	and	 ,	then	 	

	

• Note	that	for	a	data	point	 ,	explicitly	computing	the	feature	 		
takes	memory/time	 	

• For	a	data	point	 ,	if	we	can	make	predictions	by	only	computing	the	kernel,	then	
computing	 	takes	memory/time	 	
• The	features	are	implicit	and	accessed	only	via	kernels,	making	it	efficient

k

ϕ(x) = [x1
x2] k = 1 d = 2 K(x, x′ ) = x1x′ 1 + x2x′ 2

ϕ(x) =

x2
1

x2
2

x1x2
x2x1

k = 2 d = 2 K(x, x′ ) = (xT x′ )2

xi ϕ(xi)
p = dk

xi
{K(xi, xj)}n

j=1 dn



• Polynomials of degree exactly  
 
                              

• Polynomials of degree up to  
 
                               

• Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function)  
 

                               

• Sigmoid  
 
                               

• All these kernels are efficient to compute, but the corresponding 
features are in high-dimensions

k

K(x, x′ ) = (xT x′ )k

k

K(x, x′ ) = (1 + xT x′ )k

K(x, x′ ) = exp( − ∥x − x′ ∥2
2

2σ2 )

K(x, x′ ) = tanh(γxT x′ + r)

Examples of popular Kernels



Ridge Linear Regression as Kernels

• Recall	Ridge	regression:					 	

• Consider	the	trivial	kernel				 				

• Training:	 				=				 	
																																									

• 	Prediction:								 																	 	
																																																																										 	

• Hence,	to	make	prediction	on	any	future	data	points,	all	we	need	to	know	is		

•
,	and						 	

• Key	idea:	Now	consider	 			and	use	an	any	
kernel	 !

ŵ = arg min
w∈ℝd

∥y − Xw∥2
2 + λ∥w∥2

2

K(x, x′ ) = xT x′ 

̂w = (XTX + λId×d)−1XTy XT(XXT + λIn×n)−1y

xnew ∈ ℝd ̂y new = ̂w T xnew
= yT(XXT + λIn×n)−1Xxnew

Xxnew =
xT

1 xnew
⋮

xT
n xnew

=
K(x1, xnew)

⋮
K(xn, xnew)

∈ ℝn XXT =
K(x1, x1) K(x1, x2) ⋯

⋮ ⋮
K(xn, x1) K(xn, x2) ⋯

∈ ℝn×n

̂w = arg min
w∈ℝp

n

∑
i=1

(yi − wTϕ(xi))2 + λ∥w∥2
2

K(x, x′ ) = ϕ(x)Tϕ(x′ )



• Given data , pick a kernel 

1. For a choice of a loss, use a linear predictor of the form  

   for some  to be learned  

 

Prediction is  

2. Design an algorithm that finds  while accessing the data only via  
3. Substitute  with , and find  using the above algorithm from step 2.

4. Make prediction with   

(replacing  with )

{(xi, yi)}n
i=1 K : ℝd × ℝd → ℝ

̂w =
n

∑
i=1

αixi α =
α1
⋮
αn

∈ ℝn

̂y new = ̂w T xnew =
n

∑
i=1

αi xT
i xnew

α {xT
i xj}

xT
i xj K(xi, xj) α

̂y new =
n

∑
i=1

αiK(xi, xnew)
xT

i xnew K(xi, xnew)

The Kernel Trick



There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �
nX

i=1

nX

j=1

↵i↵jhxi, xji

= argmin
↵

nX

i=1

(yi �
nX

j=1

↵jK(xi, xj))
2 + �

nX

i=1

nX

j=1

↵i↵jK(xi, xj)

= argmin
↵

||y �K↵||22 + �↵TK↵

The Kernel Trick for regularized least squares

(Step	1.	We	will	prove	it	later)

(Step	2.	Write	an	algorithm	in	terms	of	 )̂α

(Step	3.	Switch	inner	product	with	kernel)

(Solve	for	 )̂αkernel

Where	Kij = K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

̂w = arg min
w

n

∑
i=1

(yi − wT xi)2 + λ∥w∥2
2

Thus,	 ̂αkernel = (K + λIn×n)−1y

̂αkernel



RBF kernel k(xi, x) = exp{ − ∥xi − x∥2
2

2σ2 }

130

y
xi

bandwidth : σ

K(xi, x)

x

samples	{(xi, yi)}n
i=1

• predictor  is taking weighted sum of  kernel functions 

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n



RBF kernel k(xi, x) = exp{ − ∥xi − x∥2
2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

• 


• The bandwidth  of the kernel regularizes the predictor, and the regularization 
coefficient  also regularizes the predictor

ℒ(α) = ∥Kα − y∥2
2 + λ∥w∥2

2
σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y



Fixed	Feature	V.S.	Learned	Feature

Can	we	learn	the	feature	mapping	 	from	data	also?ϕ : ℝd → ℝp


