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CSEP590: Deep Learning

Instructor: Simon Du

Teaching Assistant: Siting, Ruizhe Shi

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/csep590a/26wi/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas



https://courses.cs.washington.edu/courses/csep590a/26wi/
https://courses.cs.washington.edu/courses/csep590a/26wi/

CSEP590: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation
properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning: the field is fast-moving, you will
be able to apply the fundamentals and teach yourself the latest

What this class is not:

* An easy course: mathematically easy
« A survey course: laundry list of algorithms



Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSEP546)
Mathematical maturity
= “Can | learn these topics concurrently?”



Lecture

= Time: Thursday 6:30 - 9:20PM

= CSE2 010 or Zoom (see website for the schedule)

= Slides + handwritten notes (e.g., derivations, proofs)
= Zoom link on Canvas

= Tentative schedule on course website



Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and
programming questions

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas

0 Must be typed

0 Two late days

O Tentative timeline:
0 HW 1 due: 2/5
0 HW 2 due: 2/19



Course Project (60%)

= Group of 3-5.

= Topic: literature review (state-of-the-art) or an application or
original research.

= Post on Ed Discussion to form teams.

= Some potential topics are in listed on Canvas. OK to do a
project not listed.

= You can work on a project related to your research.
= Proposal (due: 1/33): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (3/12 on Zoom): 20%
= Final report (due: 3/19): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas



Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |[mplicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF, RLVR
= Deep learning application



Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours (Zoom):
Simon Du: Friday 10:00 - 11:00 AM
Siting Li: Thursday 11:00 - 12:00 PM
Ruizhe Shi: Friday 19:00 - 20:00 PM
Regrade requests
Canvas
Personal concerns:
0 Email to instructor or TAs



Topic: Machine Learning Review

= General setup

= Regression

= Train/Test Split

= Regularization

= Classification

= Basic optimization methods

= Fully-connected neural network



Topic: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-
norm, ..



Topic: Architecture

Convolutional neural network
Recurrent neural network
« LSTM
Attention-based neural network
= Transformer
General framework



Topic: Theoretical Foundation

= Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
= Universal approximation theorem

= global convergence of gradient of over-parameterized
neural networks

= Neural Tangent Kernel



Topic: Generalization

= Measures of generalization

= Double descent

= Techniques for improving generalization

= Generalization theory beyond VC-dimension
= [mplicit regularization

= Why NN outperforms kernel



Topic 6: Representation Learning / Pre-Training

= Multi-task representation learning
= Auto-regressive pre-training

= Multi-modal learning

= Contrastive learning

= Meta-learning

= Data

= Theory



Topic 7: Generative Models

= Generative adversarial network
= Variational Auto-Encoder

= Energy-based models

= Normalizing flows

= Diffusion models



Machine Learning Review

W



e Spotify:

Discover Weekly am azon
—
98% Match

ML uses past data to make predictions

facebook.

ads




Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit Google

Top 100 /r/aww Submissions Video Search Interest
About Cats and Dogs Catts Versus Dogs
!
| ~ | I
l

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

Twitter?


https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit Google Twitter?
Top 100 /r/aww Submissions Video Search Interest
About Calts and Dogs Catts Versus Dogs
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Write a program that sorts
tweets into those containing
‘cat’, “dog’, or other

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1
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Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit

Top 100 /r/aww Submissions
About Calts and Dogs

Google

Video Search Interest
Cats Versus Dogs

100

Write a program that sorts
tweets into those containing

‘cat’, “dog’, or other

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

Twitter?
cats = []
dogs = []
other = []

for tweet in tweets:

1f “cat” in tweet:
cats.append (tweet)
elseif “dog” in tweet:

dogs.append (tweet)
else:

other.append (tweet)

return cats, dogs, other



https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1

Machine learning algorithms

Write a program that sorts images
Into those containing “birds”,
“airplanes”, or other.

=t RN o B ERE S - airplane
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Machine learning algorithms

Write a program that sorts image
Into those containing “birds”,
‘airplanes’, or other.

=t RN o B ERE S - airplane
Eﬂh‘ other
Tml V&S ¥ EREM vio

birds = []
planes = []
other = []
for image 1in images:
i1f bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other




Machine learning algorithms _
birds = []

planes = []

Write a program that sorts image ther ~ 1]

Into those containing “birds”, P . ,
or image in images:

“airplanes”, or other. if bird in image:
birds.append (image)

'ﬂ_éy wr.n:dz: airplane elseif plane in image:
Egﬁﬂht other planes.append (image)
Smll NED § EEE o

other . append (tweet)
A

o® return birds, planes, other
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Machine learning algorithms

Write a program that sorts image

Into those containing “birds”,
‘airplanes’, or other.

i

H sl 9 other
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feature 1
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birds = []
planes = []
other = []
for image 1in images:
if bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other




Machine learning algorithms

Write a program that sorts image
Into those containing “birds”,

‘airplanes’, or other.

%Elzw
= el S
Small N M o
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feature 2

feature 1

-~ E& ED ww airplane @

®
©

birds = []
planes = []
other = []
for image 1n images:
if bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other




Machine learning algorithms _
birds = []

planes = []

Write a program that sorts image

) oo oy . other = []

Into those containing “birds”, s s . ,
Oor image 1n images:

“airplanes”, or other. if bird in image:
birds.append (image)
elseif plane in image:

planes. append (image)

else:

other . append (tweet)

[ 2P ® ® .; return birds, planes, other
o o] © o
N O e © The decision rule of
e ¢ ¢ 1f “ecat” 1n tweet:
§ o’ L° S 's hard coded by expert.
e o P
«® o ° The decision rule of
°°, if bird in image:

feature 1 is LEARNED using DATA



Machine Learning Ingredients

- Data: past observations
« Hypotheses/Models: devised to capture the patterns in data

* Prediction: apply model to forecast future observations



Your first consulting job

* Billionaire: | have special coin, if | flip it, what’s the
probability it will be heads?

* You: Please flip it a few times: HHTHT

* You: The probability is:

* Billionaire: Why?



Coin — Binomial Distribution

- Data: sequence D= (HHTHT...), k heads out of n flips
- Hypothesis: P(Heads) = 6, P(Tails) =1-6
* Flips are i.i.d.:
 Independent events

* Identically distributed according to Binomial
distribution

+ P(D|0) =



Maximum Likelihood Estimation
- Data: sequence D= (HHTHT...), k heads out of n flips
- Hypothesis: P(Heads) = 6, P(Tails) =1-0

P(D|#) = 0%(1 — )" "

« Maximum likelihood estimation (MLE): Choose 6 that
maximizes the probability of observed data:
P(D|0)

é\MLE — argm@ax P(D‘@)

= argmax log P(D|6)

)

LE




Your first learning algorithm

é\MLE — arg m@ax 10g P(D|9)

— argmax log 6% (1 — 6)" "

« Set derivative to zero:

0

d

do

log P(D|A) =0




Maximum Likelihood Estimation

Observe X1, Xo,..., X, drawn IID from f(x;#) for some “true” 6 = 0,

n

Likelihood function L,(0) =[] f(X:;0)
=1

Log-Likelihood function [,(0) =log(L,(0)) = Zlog(f(Xi; 6))

1=1

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, ()
0



Recap

* Learning is...
* Collect some data
* E.g., coin flips
« Choose a hypothesis class or model
* E.g., binomial
« Choose a loss function
 E.g., data likelihood

« Choose an optimization procedure
* E.g., set derivative to zero to obtain MLE



What about continuous variables?

* Billionaire: What if | am measuring a continuous variable?
 You: Let me tell you about Gaussians...

1 ==
Pz | p,o) = oot 20




Some properties of Gaussians

« affine transformation (multiplying by scalar and adding a
constant)

« X~ N(u,0?)
cY=aX+b = Y~ Naut+b,a2o?)

« Sum of Gaussians
« X~ N(MX’OZX)

« Y ~ N(uy,0%)
e Z=X+Y > Z~ N(uytuy, 02+02))



MLE for Gaussian

- Prob. of i.i.d. samples D={x,,...,x } (e.g., temperature):

P(D|\p,0) = P(x1,...,%n|,0)

( 1 )” D (e w?
— H é 202
o\ 2T

1=1

 Log-likelihood of data:

S

log P(D|p,0) = —nlog(ov?2 Z
1=1

 What is é\MLE for 0 = (,u,a )?



Your second learning algorithm:
MLE for mean of a Gaussian

e \What’s MLE for mean?
d

N

— log P(D|u,0) = a4 —nlog(ov2m) — Z (z: = 1)”
du ’ d — 202



MLE for variance

e Again, set derivative to zero:

N

d d (; — p)?
- log P(D|u, o) = - —nlog(oV2m) — ; 52



Learning Gaussian parameters

» MLE: R ] —
UMLE = - z;ibz
1=

- 1

O_QMLE — E Z(xz — ,TJJ\MLE)2
1=1

n

MLE for the variance of a Gaussian is biased

N

E[O’QMLE] 7& 0'2

Unbiased variance estimator:

n
0~ unbiased — n— 1 (xz — ,UJMLE)

1—=1



Maximum Likelihood Estimation

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

n

Likelihood function L,(0)=]] f(X:0)

1=1

Log-Likelihood function [,(8) =log(L,(0)) = Zlog(f(Xi; 6))

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, (6)
0

Under benign assumptions, as the number of observations 7 — oo we have 0, p — 0.

The MLE is a “recipe” that begins with a model for data f(x; 0)



Maximum Likelihood Estimation

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

Likelihood function L,(0)=]] f(X;0)

1=1

Log-Likelihood function [,(8) =log(L,(0)) = Zlog(f(Xi; 6))

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, (6)
0

Under benign assumptions, as the number of observations 7 — oo we have 0, p — 0.

Why is it useful to recover the “true” parameters 6. of a probabilistic model?

- Estimation of the parameters 6. is the goal
* Help interpret or summarize large datasets
» Make predictions about future data

- Generate new data X ~ f( - ; (/9\MLE)



Estimation

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

UK poll tracker

Opinion polls
How does the greater

population feel about an issue?
Correct for over-sampling? . B

. 0. is “true” average opinion Iy
[ Xl, XZ, e o are Sample Ca”S ozom T o e T e o 5o hor e ngreen

z.o-’l:'

How do we figure out which ad
results in more click-through? e O
« O, are the “true” average rates iz i

« X, X,, ... are binary “clicks” | =
Treatment

A/B testing o %

o

A




Interpret

Observe X1, Xo,...,X,, drawn IID from f(x;6) for some “true” 6 = 6,

Customer segmentation / clustering
Can we identify distinct groups of
customers by their behavior?

Y
« 0. describes “center” of distinct groups :“tz

« X{,X,, ... are individual customers

Data exploration

What are the degrees of freedom of the
dataset?

« 0. describes the principle directions of
variation

« X{,X,, ... are the individual images




Predict

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

Content recommendation amazon
Can we predict how much someone will ~—Tprime
like a movie based on past ratings?

- 0. describes user’s preferences
- X, X,, ... are (movie, rating) pairs

Spotify’
98% Match e potify

Discover Weekly

Object recognition / classification
|dentify a flower given just its picture?

- 0. describes the characteristics of
each kind of flower
Figure 1.1: Three types of Iris flowers: Setosa, Versicolor and Virginica. Used with kind permission of Dennis

« X, X5, ... are the (image, label) pairs s wasicra

index sl sw pl pw label
0 51 35 14 02 Setosa
1 49 30 14 02 Setosa

50 7.0 32 47 14 Versicolor

149 59 3.0 5.1 1.8 Virginica




Generate

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

Text ti “Kaia the dog wasn't a natural pick to go to mars.
ext generation No one could have predicted she would...”
Can Al generate text that could have R —_—

fun "
his.element=a(b) };¢ 2 poplacel/ - : « 50 5 wu s

been written like a human? 13 RN BTN |
« 0. describes language structure
« X, X,, ... are text snippets found

RANSIT

onlne eI SN YU
- selelgl” | S
https://chat.openai.com/chat
|mag e to text g eneration “dog talking on cell phone under water, oil painting”

Can Al generate an image from a prompt?

« 0. describes the coupled structure of
images and text

- X, X5, ... are the (image, caption) pairs
found online

https://labs.openai.com/



Linear Regression

UNIVERSITY of WASHINGTON



The regression problem, 1-dimensional

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft.}

. . T, € R
. Training Data: '
n Yi € R
¢ {(@i,yi) Hiza

Sale Price
( ]
o0
( ]

# square feet


http://zillow.com

Fit a function to our data, 1-d

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft.}

. . T, € R
Training Data: '
mn Yi S ]R
. {(xz‘, yz’) i=1
o o Hypothesis/Model: linear

o’ yi = w46 e K N(0,0?)

best linear fit e

Sale Price

# square feet


http://zillow.com

Fit a function to our data, 1-d

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft.}

. . T, € R
Training Data: '
mn Yi S ]R
. {(xz‘, yz’) i=1
o o Hypothesis/Model: linear

o’ yi = w4+ € e K N(0,0?)

best linear fit o

Sale Price

# square feet


http://zillow.com

The regression problem, d-dim

Given past sales data on zillow.com, predict:
y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

d
Training Data; %i €R
{wn )b, »<F
S LiyYi)fi=1
Sale price i 100 Hypothesis/Model: linear
_— Y = ZU;IF’U] e €; z}vd N(O, 0_2)
r—100
% . —200
#2):0\12\ 9 -1 0 1 . =

a
l‘hroorns # square feet



http://zillow.com

The regression problem, d-dim

Given past sales data on zillow.com, predict:

y = House sale price from

x = {# sq. ft., zip code, date of sale, etc.}

Sale price

w90 -] 0 1
# square feet

wiE]Rd

Training Data: i € R

n
200 {(x’L)y’L) 1=1
100 Hypothesis/Model: linear

i T .1.d.
O Yy =T w g Eizzv N(O,JQ)
' ~100

200 1 e—(y—xTw)2/2a2



http://zillow.com

Maximizing log-likelihood

Training Data: QZ'EEI]R%; oyl w,0) = L —-aTw)?/20
mn 1 y Wy —
{(mi,yi) bieq V2mo?

Likelihood: P(D|w,o) =[] p(yili,w,0) =] L e w)*/20°

1=1 1=1




Maximum Likelihood Estimation

Observe X1, Xo,..., X,, drawn IID from f(x;6) for some “true” 6 = 0,

Likelihood function L,(0)=]] f(X;0)

1=1

Log-Likelihood function [,(8) =log(L,(0)) = Zlog(f(Xi; 6))

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, (6)
0

Under benign assumptions, as the number of observations 7 — oo we have 0, p — 0.

Why is it useful to recover the “true” parameters 6. of a probabilistic model?

- Estimation of the parameters 6. is the goal
* Help interpret or summarize large datasets
» Make predictions about future data

- Generate new data X ~ f( - ; (/9\MLE)



Maximizing log-likelihood

. R
Training Data: ¥ € 1 yaTw)?/20
Yi € R p(y‘$7w70) — e Y
{(-CBZ7 yz) n —1 V27TO-2

T - L | 2 12
Likelihood: P(D|w,o) =] p(yilzi,w,0) =]] o~ (i—z] w)?/20
1=1 )

Maximize (wrt w): log P(D|w,0) 1og< —<yi—x2 w>2/20—2>



Maximizing log-likelihood

. R
Training Data: ¥ € 1 yaTw)?/20
n Yi € R p(y‘$7w70) — €

{(mi,yi) bieq V2mo?

L1 - S| 2 2
Likelihood: P(D|w,o) =] p(yilzi,w,0) =]] o~ (yi—z] w)? /20
1=1 )

. &1 2 /92
Maximize (wrt w): log P(D|w,0) = log (H e~ (wi—z{ w)*/20 )

=1

n
~ : T \2
WM LE = arg mféﬂ E (yz — 4 w)
i=1




Maximizing log-likelihood

n

WNLE = arg min Z(yz — CU?;T”LU)Q Set derivate=0, solve for w
w

1=1

n —1 n

~ . T

WMLE — E ;X E LilYi
i=1 i=1




The regression problem in matrix notation

WM LE = argmuijn E (y;
i—1

Y1

Yn

n

-

—T; W

-

Ly

T
Ln

)2

d : # of features
n : # of examples/datapoints



The regression problem in matrix notation

n

Wy LE = arg min E (y; —xiTw
w
i=1
Y1 ﬁ
y=|:] X=]:

)2

d : # of features
n : # of examples/datapoints

y = Xw+ €




The regression problem in matrix notation

n

AN . _|_ 2
@yre = argmin Y (y; — v w)
1=1
L -
9 L7 d : # of features
y = X = n : # of examples/datapoints
_yn_ _CCZ;_
T

Wrs = argmui)n ly — Xw||3

= arg min(y — Xw)T(y — Xuw)

£ norm: ||z||2_1/zi=1 2 =4/772




The regression problem in matrix notation

n

AN . _|_ 2
@yre = argmin Y (y; — v w)
1=1
L -
9 L7 d : # of features
y = | - X = n : # of examples/datapoints
_yn_ _CIZ’Z;_
T

Wrs = argmui)n ly — Xw||3

= arg min(y — Xw)T(y — Xuw)

Wrs = Wure = (X' X) T X'Y




The regression problem in matrix notation

Wrs = afgffgn HY — X@UH%

= (X'X)"' X"y

What about an offset?

n

SR . 2
wrs,brs = arg min (yi — (z] w+b))
w7 .
1=1

= argmin [ly — (Xw + 1b)||;



Dealing with an offset

Wrs,brs = argrgiil ly — (Xw + 1b)||3



Dealing with an offset

Drs,brs = argmin ly — (Xw + 1b)][3
XX +brsXT'1 =Xy
1'X @ g+brg1t1 =11y
If X171 =0 (i.e., if each feature is mean-zero) then

s = (X'X)"1X'Y

~ 1 <
brs = E;yz



Make Predictions

A new house is about to be listed. What should it sell for?

A T A -
Unew = TnewWLs + 0L s



Process

Decide on a model for the likelihood function f(x; 0)
Find the function which fits the data best
Choose a loss function- least squares

Pick the function which minimizes loss on data

Use function to make prediction on new examples



Linear regression with non-
linear basis functions

W

UNIVERSITY of WASHINGTON



Quadratic regression in 1-dimension

Data: X =

e Linear model with parameter (b, w,):

« Vi=b+wx

V1
Y2

Yn

label y

_—

input x



Quadratic regression in 1-dimension

X1 Y1 Label
X abcl y
Data: X = :2 , Y= y:2
_xn yn /

e Linear model with parameter (b, w,):

* 3/\1' =b+ Wi X /
Wy input x
. Quadratic model with parameter (b, w = ):

1)

¢y, = b+w1xi+w2xl-2



Quadratic regression in 1-dimension

X1 Y1 Label

X abcl y
Data: X = :2 , Y= y.2

'xl’l yl’l

e Linear model with parameter (b, w,):
« Vi=b+wx

W input x
. Quadratic model with parameter (b, w = ):

Ws
e ¥, =b+wx;+w,x?
e
Degree-p polynomial model with parameter (b,w = | : |):
* w
p

e Vi=b+wixi+wyxt+ ... +w, x’




Quadratic regression in 1-dimension

X1 Y1 Label

X abcl y
Data: X = :2 , Y= y.2

xl’l yl’l

Linear model with parameter (b, w/):
« Vi=b+wx

_ _ W input x
Quadratic model with parameter (b, w = ):

[ w2
ey, =b +w1xl-+w2xl.2
Uh
Degree-p polynomial model with parameter (b,w = | : |):
* w
L p_
e Vi=b+wix+wyxi+ . +w,xl
-
General p-features with parameter w = | :
* w
p

. /y\,- = (w, h(x;)) where h : R — R”



Quadratic regression in 1-dimension

X1 Y1
X label y
Data: X = .2 , Y= y.2
EA | | —
ih
General p-features with parameter w = | :
* w
p

« V.= (w,h(x;)) where h : R —» R”

Note: h can be arbitrary non-linear functions!

.
h(x) = llog(x), x2, sin(x), \/;]



Quadratic regression in 1-dimension

X1 Y1
X label y
Data: X = .2 , Y= y.2
EA | | —
ih
General p-features with parameter w = | :
* w
p

« V.= (w,h(x;)) where h : R —» R”

How do we learn w?



Quadratic regression in 1-dimension

X1 Y1 Label
X abel y
Data: X = :2 , Y= y.2
' %, Y,
| - /
"
General p-features with parameter w = | :
* w
L p_
« V.= (w,h(x;)) where h : R —» R”
How do we learn w?
] ) W = argmin |[Hw — y||3
_ h(xl)T L w
H= : € R™P For a new test point x, predict
=)' = Y =W, h(x)




Which p should we choose?

e First instance of class of models with different
representation power = model complexity

label y

degree 3

0.10 -
0.05 -
0.00 -
—-0.05 -
-0.10 A

-0154{ *

-0201 o

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

input x

label y

0.10 -

0.05 -

0.00 4

-0.05 -

-0.10 -

-0.15 1

-0.20 A

degree 20 overfits

-1.00 -0.75 -050 -0.25 000 025
mput x

« How do we determine which is better model?

0.50

0.75

100




Generalization

* we say a predictor generalizes if it performs as well on unseen data
as on training data (we will formalize the next lecture)

* the data used to train a predictor is training data or in-sample data
* we want the predictor to work on out-of-sample data

* we say a predictor fails to generalize if it performs well on in-
sample data but does not perform well on out-of-sample data



Generalization

* we say a predictor generalizes if it performs as well on unseen data
as on training data (we will formalize the next lecture)

* the data used to train a predictor is training data or in-sample data
* we want the predictor to work on out-of-sample data

* we say a predictor fails to generalize if it performs well on in-
sample data but does not perform well on out-of-sample data

o O

e train a cubic predictor on 32 (in-sample) white circles: Mean Squared Error (MSE) 174
e predict label y for 30 (out-of-sample) blue circles: MSE 192

e conclude this predictor/model generalizes, as in-sample MSE ~ out-of-sample MSE



Split the data into training and testing

e away to mimic how the predictor performs on unseen data

e given asingle dataset S = {(x;,y)}_;

e we split the dataset into two: training set and test set (e.g., 90/10)
* training set used to train the model

Z ;= X w)?

| tI'aIIll lES

. minimize Z;,(w

e testset usedto evaluate the model

ZLyes(W) = Z (y; — x; W)2

- |Stest| <

test

e this assumes that test set is similar to unseen data




Train/test error vs. complexity -

0.00

Error
0.0035 A
. —&— train error
.
_ &~ test error
0.0030 4 \ .
0.0025 A
0.0020 A
0.0015 A
0.0010 A
N
0.0005

25 50 75 100 125 150 175 200
degree p of the polynomial regression

- Degree p = 35, since it achieves minimum
test error

« Train error monotonically decreases with model
complexity

» Test error has a U shape

test set should never be used in training or picking degree

Y
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-0.20 1
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Cross-Validation




> How do we pick the number of basis functions...

> We could use the test data, but...



How... How... How???7????
> How do we pick the number of basis functions...

> We could use the test data, but...

= Never ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever train on the test data



(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:
- D - training data
- D\j —training data with j th data point (x; ,y;) moved to
validation set
> Learn classifier fy; with D\ dataset

> Estimate true error as squared error on predicting y;:

- Unbiased estimate of error,,,.(fp)!



(LOO) Leave-one-out cross validation

>

Consider a validation set with 1 example:

- D - training data

- D\j —training data with j th data point (x; ,y;) moved to
validation set

Learn classifier fy; with D\j dataset

Estimate true error as squared error on predicting y;:

- Unbiased estimate of error,,,.(fp)!

LOO cross validation: Average over all data points j:
- For each data point you leave out, learn a new classifier fp,

- Estimate error as:
mn

1
erroryoo = E Z(yg — fD\j(xj))2

g=1



LOO cross validation is (almost) unbiased estimate!

> When computing LOOCYV error, we only use N-71 data points
- So it’s not estimate of true error of learning with N data points

- Usually pessimistic, though — learning with less data typically
gives worse answer

> LOO is almost unbiased! Use LOO error for model selection!!!
- E.g., picking degree



Computational cost of LOO

> Suppose you have 100,000 data points

> You implemented a great version of your learning
algorithm

- Learns in only 1 second
> Computing LOO will take about 1 day!!!



Use k-fold cross validation

> Randomly divide training data into k equal parts

- Dy;...,Dy
> Foreach i
- Learn classifier fj,,; using data point not in D,

Train

- Estimate error of f,; on validation set D;:

1
errorp, = W E (Y5 — fD\D,; (%‘))2
! (z5,y5)€D;




>

>

>

>

Use k-fold cross validation

Randomly divide training data into k equal parts
B D1,...,Dk 1 2 3 4 5

For each i
- Learn classifier fj,,; using data point not in D,

Train

- Estimate error of f,; on validation set D;:

1
errorp, = W E (Y5 — fD\D,; (%‘))2
! (z5,y5)€D;

k-fold cross validation error is average over data splits:
1 k
ETTOTE— fold — E Zl ETTOTD;,
1=

k-fold cross validation properties:
- Much faster to compute than LOO
- More (pessimistically) biased — using much less data, only n(k-1)/k
- Usually, k=10



Recap

> Given a dataset, begin by splitting into

TRAIN TEST

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose magic parameters such as degree

TRAIN-1 VAL-1

TRAIN TRAIN-2 VAL-2 TRAIN-2

> Model assessment: Use TEST to assess the accuracy of the
model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Ridge Regression




Regularization in Linear Regression

n
Recall Least Squares: wr ¢ = arg minz (yz B ZU,LT”LU)Q
w
i=1
— arg min(y — Xw)? (y — Xw)

when (X7 X) 7! exists.... = (XTX)" X'y



Regularization in Linear Regression

n

- . 2
Recall Least Squares: ;¢ = arg mmz (yz _ szw)
w -

1=1
— arg min(y — Xw)? (y — Xw)

ingeneral: = argminw’ (X' X)w — 2y’ Xw



Regularization in Linear Regression

mn
A . 2
Recall Least Squares: @;,g = arg min E (yz _ a:;fw)
w -

1=1
— arg min(y — Xw)? (y — Xw)

ingeneral: = argminw’ (X X)w — 2y’ Xw

. A

N /

n

-
'

(1 —2fw)? + (y2 — 23 w)* + - + (Yo — 2 w)> = > (3 — ] w)?
1=1

What if 2; € R? and d > n?



Regularization in Linear Regression

mn
. . 2
Recall Least Squares: @;,g = arg min E (yz _ a:;fw)
w
i=1

When z; € R? and d > n the objective function is flat in some directions:




Regularization in Linear Regression

n
Recall Least Squares: wr ¢ = arg m@gnz (yz B ZE;pr)z
1=1

When z; € R? and d > n the objective function is flat in some directions:
Implies optimal solution is not unique and unstable ’
due to lack of curvature: /
e small changes in training data result in large

changes in solution

e often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a
“complexity” penalty



Ridge Regression

= Old Least squares objective: n




Minimizing the Ridge Regression Objective

n

~ . 2

Wridge — al'g mu%nz (yz — ZL‘;T’UJ) + )‘HwH%
1=1



Shrinkage Properties

n

~ . 2

Wridge — Al mu%nz (yz — .CU;FUJ) + )‘HwH%
1=1

= (X'X+ )" X"y



Classification
Logistic Regression

UNIVERSITY of WASHINGTON



Thus far, regression:

predict a continuous value given some inputs



Reading Your Brain, Simple Example

. o _ [Mitchell et al.]
Pairwise classification accuracy: 85%

Person ™ .. Animal




Classification

. Learnf: X - Y
. & C R?-features
- ¥ =1{1,...,k} - target classes

. Loss Function {(f(2),y) =1{f(z) # y}

- Expected loss of f:
Exy[1{f(X) #Y}] = Ex[Eyx[1{f(z) # Y }|X = 2]

Ey x[1{f(z) # VX =2] = S P(Y = ilX =2)1{f(z) #i} = 3. P(Y =i|X =)
i iZ£f(x)
—1—P(Y = f(@)|X =)

- Suppose you knew P(YIX) exactly, how should you classify?



Classification

. Learnf: X - Y
. & C R?-features
- ¥ =1{1,...,k} - target classes

. Loss Function {(f(2),y) =1{f(z) # y}

- Expected loss of f:
Exy[1{f(X) #Y}] = Ex[Eyx[1{f(z) # Y }|X = 2]

Ey x[1{f(z) # VX =2] = S P(Y = ilX =2)1{f(z) #i} = 3. P(Y =i|X =)
i iZ£f(x)
—1—P(Y = f(@)|X =)

- Suppose you knew P(YIX) exactly, how should you classify?
- Bayes-Optimal classifier:

f(x) = arg _manIP’(Y = y| X = x)



Bayes Optimal Binary Classifier

- Bayes-Optimal classifier: f(x) = arg manP(Y = y|X = x)

- Suppose we don’t know P(Y = y| X = x), but have n iid examples
{(zi,vi) }iea Y €{0,1}

. Suppose X is discrete sothat X € {1,2,...,m}. What is a natural
estimator for P(Y = y| X = x)?



Bayes Optimal Binary Classifier

- Bayes-Optimal classifier: f(x) = arg manP(Y = y|X = x)

- Suppose we don’t know P(Y = y| X = x), but have n iid examples
{(%i,9i) Fiz Y €{0,1;

. Suppose X is discrete sothat X € {1,2,...,m}. What is a natural
estimator for P(Y = y| X = x)?

2?21 1[Xi:XaYiZY]

f(.il?) — algMaXye{o,1} T 1[xi=x]

What if  is continuous? That is, what if X € R%?



Bayes Optimal Binary Classifier

- Bayes-Optimal classifier: f(x) = arg manP(Y = y|X = x)

- Suppose we don’t know P(Y = y| X = x), but have n iid examples
{(zi,vi) }iea Y €{0,1}

. Suppose X is discrete sothat X € {1,2,...,m}. What is a natural
estimator for P(Y = y| X = x)?

A 7.1_ ]_Xi:X, i—
f(x) = arg MaXye (0,1} 21_1?:[1 1[Xi:yx] /]

What if 2 is continuous? That is, what if X € R9?

We need a model to explain observations



Logistic Regression

Recall linear regression:
_ We assumed that for any x, we have p(Y =y|X =x) =

1 T2
e(y w'X) /2.
27

- Given data {(x;, y;) }'_,we then computed the MLE for w.



Logistic Regression

Recall linear regression:

_ We assumed that for any x, we have p(Y =y|X =Xx) = L o'z

2

- Given data {(x;, y;) }'_,we then computed the MLE for w.

Logistic regression uses a model specialized for classification:

1

1 09t
[P[Y — 1|X = x,w] = a(wT ) — = exp(—’waU) 0:8_

exp(—w?! )

1 + exp(—w'x)
B 1
1+ exp(wTx)

PlY =0|X =z,w]=1—-0o(wlz) =




Logistic Regression

Recall linear regression:

_ We assumed that for any x, we have p(Y =y|X =Xx) = L o'z

2

- Given data {(x;, y;) }'_,we then computed the MLE for w.

Logistic regression uses a model specialized for classification:

1

1 0.9}
[P[Y — 1|X = x,w] = U(wT ) — = exp(—’waU) 0l

exp(—w?! )

1 + exp(—w'x)
B 1
1+ exp(wTx)

PlY =0|X =z,w]=1—-0o(wlz) =

Features can be discrete or continuous!



Understanding the sigmoid
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Sigmoid for binary classes

1

P(Y = 0jw, X) =
( 0. X) 1+ exp(wo + ) _p wiXk)

exp(wo + ), wpXk)

PY =lw, X) =1-P(Y = 0w, X) = 1+ exp(wo + ), wpXk)
k

P(Y = 1w, X)
P(Y = 0w, X)

= exp(wo + Zkak)
k

Linear Decision Rule!

P(Y =1lw, X
( ’w’ ) :wo—l—Zkak
k

P(Y = 0|lw, X)

log




Logistic Regression —
a Linear classifier 1 "
1+ exp(—=2)
= + T
.:I']:.
= = :H:.
_ - 9P
.:I']:.
= ais
ais ais
- T
P(Y = 0|X)




Loss function: Conditional Likelihood

Have a bunch of iid data: {(xi,yi) iy x5 € R%, y; € {-1,1}

1
1 + exp(wlz)

PY = —1|z,w) =

exp(w!x)

1 4 exp(w!'z)

PY =1|z,w) =

This is equivalent to:

1
PY =ylz,w) =

1 + exp(—y wlz)

So we can compute the maximum likelihood estimator:

mn
WM LE = arg mng P(yi|zi, w)
i—1



Loss function: Conditional Likelihood

Have a bunch of iid data: {(:Ez, yz) ?’:1 Ti € Rd, y; € {—1,1}
1

P(Y = =
( yl, w) 1+ exp(—ywTx)

mn
WM LE = arg mng P(yi|zi, w)
i1

= arg min Z log(1 + exp(—y; x; w))
i=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; ] w))

Squared error Loss: £;(w) = (y; — zl w)?

(MLE for Gaussian noise)



Loss function: Conditional Likelihood

Have a bunch of iid data:  {(z;,4;)}i—; x; € RY, y,; € {—-1,1}
1

P(Y = =
( yle, w) 1+ exp(—ywTx)

n
Wy LE = arg mng Py, w)
i=1

= arg H?ljnz log(l + eXp(_yz' :C?UJ)) — J(w)
1=1

Bad news: no closed-form solution to maximize J(w)



How do we encode categorical data y?

* so far, we considered Binary case where there are two categories
e encoding y is simple: {+1,-1}

e multi-class classification predicts categorial y
e taking valuesin C = {cy, ..., ¢}

e (.S are called classes or labels

J .
* examples: .
2 | :
%‘ 10095 All English words
Y \§‘ I|:FT; thv Btl;‘&stl:ee
Country of birth Zipcode
(Argentina, Brazil, USA,...) (10005, 98195,...)

e a k-class classifier predicts y given x



Embedding ¢;’s in real values

o for optimization we need to embed raw categorical cj’s into real
valued vectors

* there are many ways to embed categorial data
e True->1, False->-1
e Yes->1, Maybe->0, No->-1
e Yes->(1,0), Maybe->(0,0), No->(0,1)
e Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

e Ordered sequence:
(Horse 3, Horse 1, Horse 2) -> (3,1,2)

* we use one-hot embedding (a.k.a. one-hot encoding)
e each class is a standard basis vector in k—dimension

1-h
encoding Chy) | b)) | o | o) | hyggle) |
1

Country of birth 1
\ (Argentina, Brazil, USA,...) ] | J

Y |
117 196 categories 196 features



118

Multi-class logistic regression

e data: categorical yin {c, ..

we use one-hot encoding, s.t. y =

., C} With k categories

1

-

0

-

0

implies that y = ¢,

e model: linear vector-function makes a linear prediction y € R*

with model parameter matrix w € R4k and sample x; € R4

Silx) (W10 Wi Wip o

fay = |POD| o Mo War W2
i/ . - .

_fk(xl.)_ | Wko Wit W2

w = [w[: A1 wl: 2]

w

T

wl:, k]]

1
xi[l]

_xi[d]_

X

wio + wpxl +wyox[2] + -

Wo o+ wo 1 X[ 1]+ wy o x[2] + -

_Wk,o + wk,lxi[l] + wk,le-[Z] + .-




* Logistic regression

2 classes

P(v.=-11Ix)= ——
O; %) 1 +ev'x
T

eV Xi

PO =+11%) =

1+ e N 1 + e

k classes
ew[:,l]Txi
H:D(yl - Cl |xl) - ew[:’l]Txi + e _|_ eW[I,k]Txi
ew[:,k]Tx,-
P(y; = ¢ lx) =

el x4 ewliklTx;

Without loss of generality setting w[:,1]=0 when
k = 2 recovers the original binary class case

Maximum Likelihood Estimator

. 1 ¢
maximize, — Z log(P(y; | x;)
n

i=1

. . 1 n 1
maximize, cra ; Z:J 10g< 1 + e viv'x )
=

ew[:’j]T'xi )

Yh el
j=1

1 n k
maximize,,c gaxc— Z z Hy; = ¢;}1og (
n
i=1 [j=1

I{y; = j} is an indicator that is one only if y; = j




Kernels

UNIVERSITY of WASHINGTON




Creating Features

e Feature mapping ¢ : RY — RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use fu ¥ R
one can generate vectors 1%;sj=1

S d define f
B gbz(x) B x2 an erine tfeatures:
PO T 3x) = cos(u
_d)k(x)_ _xk_

¢j(x) = (uij)Z
ij(x) =

1 + exp(u/ x)



Creating Features

e Feature mapping ¢ : RY — RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use fu ¥ R
one can generate vectors 1%;sj=1

[ (x) [ X ] et
_ || _ x? and define teatures:
7= | ¢;(x) = cos(u] x)
_d)k(x)_ _xk_

00 = W x)?

1+ exp(uTx)

« How many coefficients/parameters are there for degree-k polynomials
forx = (x,...,x;) € R4 7



How do we deal with high-dimensional lifts/data?

The kernel trick:

A function K : R¢ x R? - R is a kernel for a map
¢ : RY - RPif K(x,x") = (¢p(x), p(x")) for all x, x’

Big idea: if we can represent our

* training algorithms and

e decision rules for prediction
as functions of dot products of feature maps (i.e. {{¢(x), $(x"))}) and we can find a kernel
for our feature map such that

K(x.x') = {(p(x), (")

then we can avoid explicitly computing and storing (high-dimensional) and
instead only work with the kernel matrix of the training data



Recap: Kernels are much more efficient to
compute than features

* As illustrating examples, consider polynomial features of degree exactly k

X
. P(x) = x; fork = 1and d = 2, then K(x, x’) = x;x; + X,x;

= —

xi

2
4)(.76) — *2 fork =2andd = 2’ then K(X, .X/) — (xTx/)Z

Xo X1




Recap: Kernels are much more efficient to
compute than features

* As illustrating examples, consider polynomial features of degree exactly k

X
. P(x) = x; fork = 1and d = 2, then K(x, x’) = x;x; + X,x;

xp

2
Q’)(X) — *2 fork =2andd = 2’ then K(.X, .X/) — (xTx/)2

Xo X1

 Note that for a data point x;, explicitly computing the feature ¢(x;)
takes memory/time p = d*
* For a data point x;, if we can make predictions by only computing the kernel, then
computing {K(x;, x;) }};1 takes memory/time dn
e The features are implicit and accessed only via kernels, making it efficient



Examples of popular Kernels

. Polynomials of degree exactlyk

K(x, x") = (xTx")k
. Polynomials of degree up to k

K@, x") = (1 + xTx)

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
l|x — x/||2 )
202

K(x,x") = exp( —
 Sigmoid

K(x,x") = tanh(yx'x' + r)

 All these kernels are efficient to compute, but the corresponding
features are in high-dimensions



Ridge Linear Regression as Kernels

« Recall Ridge regression: W = arg néllel ly — XW”% + Allwll%
w
e Consider the trivial kernel K(x,x") = x'x’

e Training: W = (X'X+I,,,)"' X"y = X'(XX"+ L)y

e Prediction:  X,., € R4 Y new = WTxnew

=y' XX + 21, )" Xx, ..,

e Hence, to make prediction on any future data points, all we need to know is

xlTxnew K(xl’xnew) K(xl’xl) K(xl’x2)
Xx, ., = : = : eR" and XX’ = : : e R™"

new .
XX o K(x,, Xpey) K(x,, x)) K(x,,x,) -

n

, Keyidea: Now consider W = arg min Z (yl- — ngb(xi))2 + ﬂllwll% and use an any
weR?

kernel K(x, x') = ¢p(x)" p(x)! i=1



The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

‘RYx RY > R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = Z a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
LA _ =T — T
Predictionis ¥ joy = W Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

3.

4. Make prediction with y ., = Z a.K(x;, x,

Substitute xiij with K(x;, xj), and find a

—1
(repIaCing xiTxneW with K(xi’ xlllew))

using the above algorithm from step 2.

ew)



The Kernel Trick for regularized least squares

N~

w = argmln Z(yl wlx)? + Allwll3
i=1

There exists an o € R™: w = Z Qi (Step 1. We will prove it later)
i=1
n n n n
a = arg min Z(yz - Z (T, )% + A Z Z ;o (Ti, T )
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1

(Step 3. Switch inner product with kernel)

= argmin [[y — Ka|[; + Aa” Ka Where K;; = K(x, x)) = (¢(x), ()

(Solve for @y 1)

ThUS akemel (K + /11an) y



[|x; — x||3 } [ K

RBF kernel k(x;, x) = exp{ — T
o

samples {(x;, y) }i |

: : : ’.. : : bandwidth :\ o
1 6 i e /o

<
00 02 04
®

-0.4
l
Xal

r
)| T T
3 4 5 1 2 /\
: \
i : f(z) =a0+ ), 0;K(z,z))
le—)H § \ _//
: S
"-:» e ] . ~~
8 - : 8 o
~ . ~ .
8 w._ . R - I8
< - . ‘
o | . ]
o . . <
+ it 4 Ll S - 9 1 T L1 — -
-2 -1 0 1 2 -2 -1 0 1 2
T xIr

predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points



2
loc; — 12 }

RBF kernel k(x, x) = exp{ R
0]

e L) = |[Ka—yll; + Awll;

« The bandwidth 67 of the kernel regularizes the predictor, and the regularization
Coeff|C|ent A also regularlzes the predlctor

c=10" =104 o =10~ 2 =10"* c=10"" A=10"*
y N [ —— True f(x) v A —— True f(x) ) ' - — Trueflx)
‘ Fitted f(x) ) Fitted f(x) . Fitted f(x)

. + Data 60 /.\ "
’ 5.

.ﬁ +  Data o X - + Data
.- . A ) f ’;‘.50 .
\ " .

a 06 08 10 00 _1 06 0 10

0—100>\—104 0—10 A=10"
” —— True f(x)
— Truefix) Fitted fix)

Fitted f(x) o . Data
. Data [t
flx) = a; K(x;,x) | ‘
=1

/
.
. ‘-
02 04 06 08 10
x1




Fixed Feature V.S. Learned Feature

Can we learn the feature mapping ¢ : RY — [P from data also?



