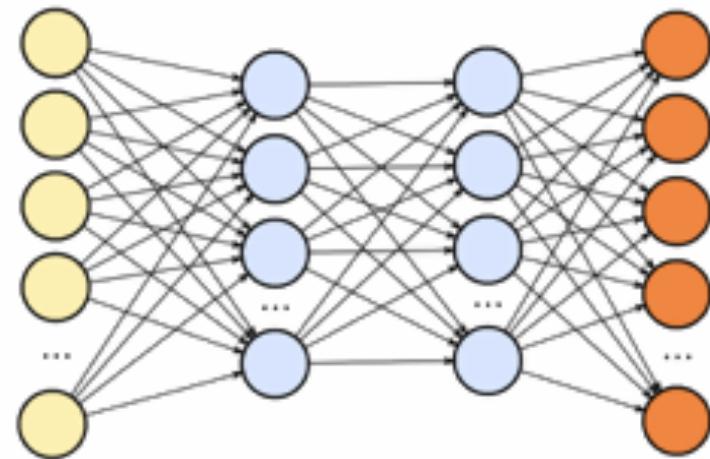


# Deep Learning

Simon Du

---



W

# CSEP590: Deep Learning

---

Instructor: Simon Du

Teaching Assistant: Siting, Ruizhe Shi

Course Website (contains all logistic information): <https://courses.cs.washington.edu/courses/csep590a/26wi/>

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas

# CSEP590: Deep Learning

---

## What this class is:

- **Fundamentals of DL:** Neural network architecture, approximation properties, optimization, generalization, generative models, representation learning
- **Preparation for further learning:** the field is fast-moving, you will be able to apply the fundamentals and teach yourself the latest

## What this class is not:

- **An easy course:** mathematically easy
- **A survey course:** laundry list of algorithms

# Prerequisites

---

- Working knowledge of:
  - Linear algebra
  - Vector calculus
  - Probability and statistics
  - Algorithms
  - Machine learning (CSEP546)
- Mathematical maturity
- “Can I learn these topics concurrently?”

# Lecture

---

- Time: Thursday 6:30 - 9:20PM
- CSE2 010 or Zoom (see website for the schedule)
- Slides + handwritten notes (e.g., derivations, proofs)
- Zoom link on Canvas
- Tentative schedule on course website

# Homework (40%)

---

- 2 homework (20%+20%)
  - Each contains both theoretical questions and programming questions
  - Related to course materials
  - Collaboration okay but must write who you collaborated with. You must write, submit, and understand your answers and code.
  - Submit on Canvas
  - Must be **typed**
  - **Two** late days
  - Tentative timeline:
    - HW 1 due: 2/5
    - HW 2 due: 2/19

# Course Project (60%)

---

- Group of 3 - 5.
- Topic: literature review (state-of-the-art) or an application or original research.
- Post on Ed Discussion to form teams.
- Some potential topics are listed on Canvas. OK to do a project not listed.
- You can work on a project related to your research.
- Proposal (due: 1/33): **5%**
  - Format: NeurIPS Latex format, ~1 - 1.5 pages
- Presentations on (3/12 on Zoom): **20%**
- Final report (due: 3/19): **35%**
  - Format: NeurIPS Latex format, ~8 pages
- Submit on Canvas

# Possible Topics

---

- Approximation properties
- Advanced optimization methods
- Optimization theory for deep learning
- Generalization theory for deep learning
- Deep reinforcement learning
- Implicit regularization
- Meta-learning
- Robustness
- Neural network compression
- Pre-training, fine-tuning, RLHF, RLVR
- Deep learning application
- ...

# Communication Channels

---

- **Announcements**
  - Canvas
- **questions about class, homework help**
  - Ed Discussion
  - Office hours (Zoom):
    - Simon Du: Friday 10:00 - 11:00 AM
    - Siting Li: Thursday 11:00 - 12:00 PM
    - Ruizhe Shi: Friday 19:00 - 20:00 PM
  - **Regrade requests**
    - Canvas
  - **Personal concerns:**
    - Email to instructor or TAs

# Topic: Machine Learning Review

---

- General setup
- Regression
- Train/Test Split
- Regularization
- Classification
- Basic optimization methods
- Fully-connected neural network

# Topic: Optimization

---

- Review: Back-propagation
- Auto-differentiation
- Advanced optimizers: momentum (Nesterov acceleration), adaptive method (AdaGrad, Adam)
- Techniques for improving optimization: batch-norm, layer-norm, ..

# Topic: Architecture

---

- Convolutional neural network
- Recurrent neural network
  - LSTM
- Attention-based neural network
  - Transformer
- General framework

# Topic: Theoretical Foundation

---

- Why neural networks can express the (regression, classification, ...) function you want?
- Construction of such desired neural networks
- Universal approximation theorem
- global convergence of gradient of over-parameterized neural networks
- Neural Tangent Kernel

# Topic: Generalization

---

- Measures of generalization
- Double descent
- Techniques for improving generalization
- Generalization theory beyond VC-dimension
- Implicit regularization
- Why NN outperforms kernel

# Topic 6: Representation Learning / Pre-Training

---

- Multi-task representation learning
- Auto-regressive pre-training
- Multi-modal learning
- Contrastive learning
- Meta-learning
- Data
- Theory

# Topic 7: Generative Models

---

- Generative adversarial network
- Variational Auto-Encoder
- Energy-based models
- Normalizing flows
- Diffusion models

# Machine Learning Review

---

W



ML uses past data to make predictions



# Traditional algorithms

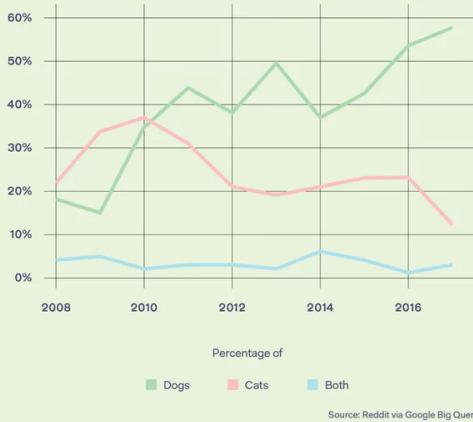
## Social media mentions of Cats vs. Dogs

Reddit

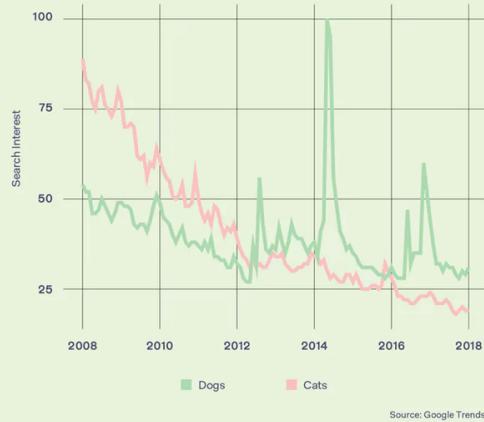
Google

Twitter?

Top 100 /r/aww Submissions  
About Cats and Dogs



Video Search Interest  
Cats Versus Dogs



# Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit

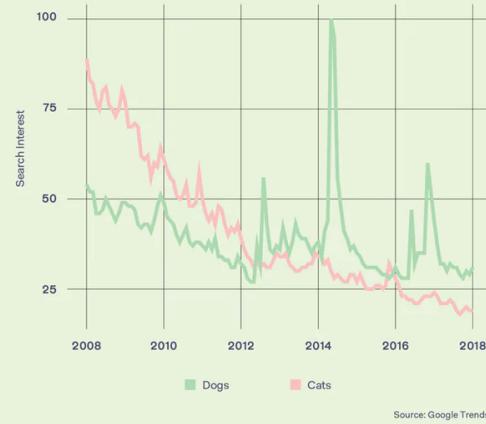
Google

Twitter?

Top 100 /r/aww Submissions About Cats and Dogs



Video Search Interest  
Cats Versus Dogs



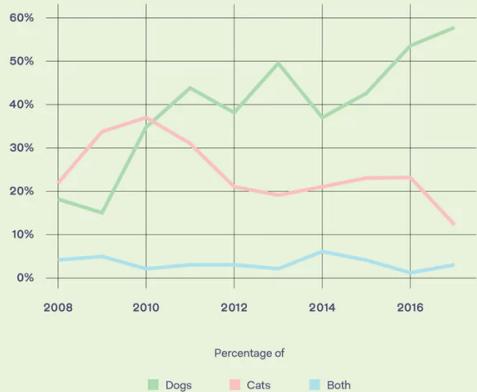
**Write a program that sorts tweets into those containing “cat”, “dog”, or *other***

# Traditional algorithms

## Social media mentions of Cats vs. Dogs

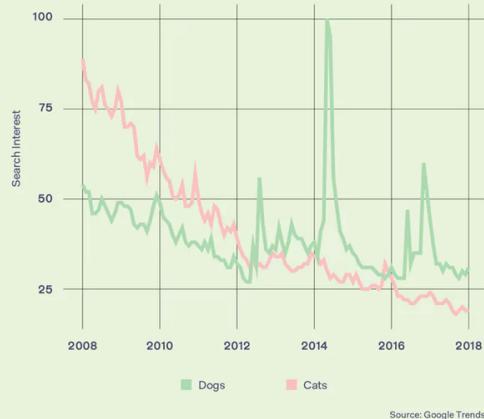
Reddit

### Top 100 /r/aww Submissions About Cats and Dogs



Google

### Video Search Interest Cats Versus Dogs



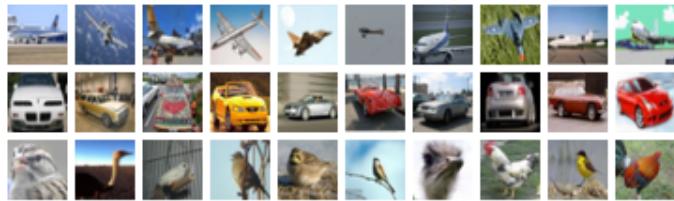
Twitter?

```
cats = []
dogs = []
other = []
for tweet in tweets:
    if "cat" in tweet:
        cats.append(tweet)
    elif "dog" in tweet:
        dogs.append(tweet)
    else:
        other.append(tweet)
return cats, dogs, other
```

**Write a program that sorts tweets into those containing "cat", "dog", or other**

# *Machine learning algorithms*

**Write a program that sorts images  
into those containing “birds”,  
“airplanes”, or *other*.**



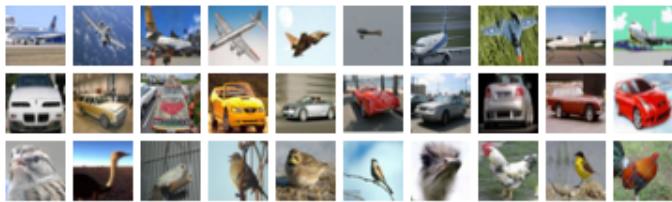
airplane

other

bird

# Machine learning algorithms

Write a program that sorts images into those containing “birds”, “airplanes”, or **other**.



airplane  
other  
bird

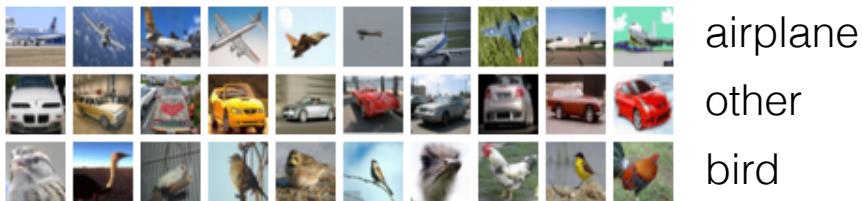
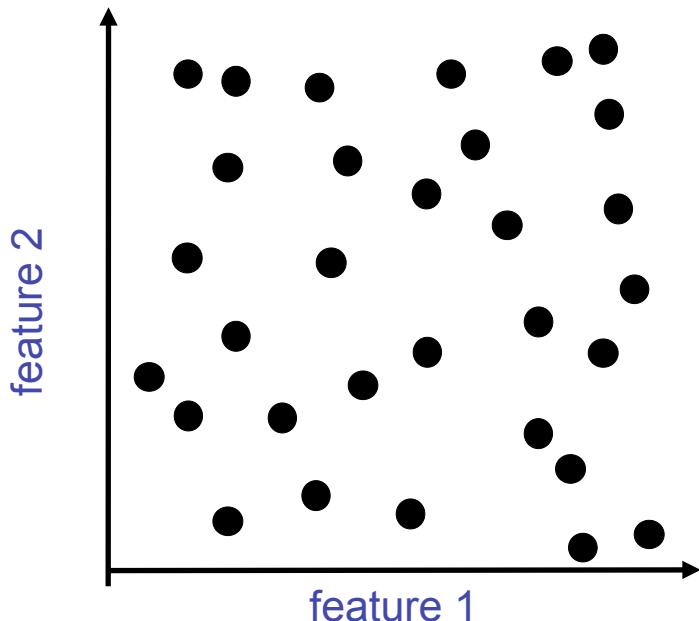
```
birds = []
planes = []
other = []

for image in images:
    if bird in image:
        birds.append(image)
    elif plane in image:
        planes.append(image)
    else:
        other.append(tweet)

return birds, planes, other
```

# Machine learning algorithms

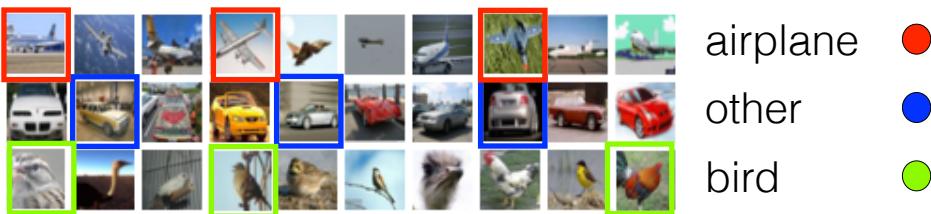
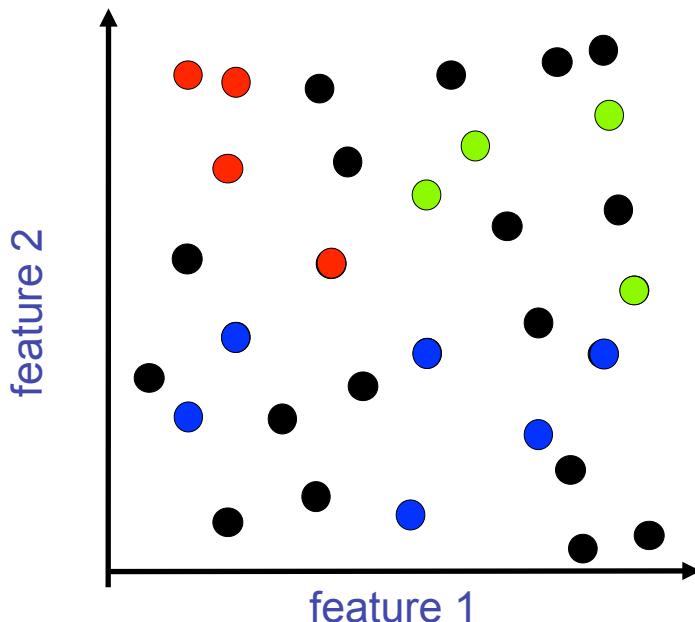
Write a program that sorts images into those containing “**birds**”, “**airplanes**”, or **other**.



```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elif plane in image:
        planes.append(image)
    else:
        other.append(tweet)
return birds, planes, other
```

# Machine learning algorithms

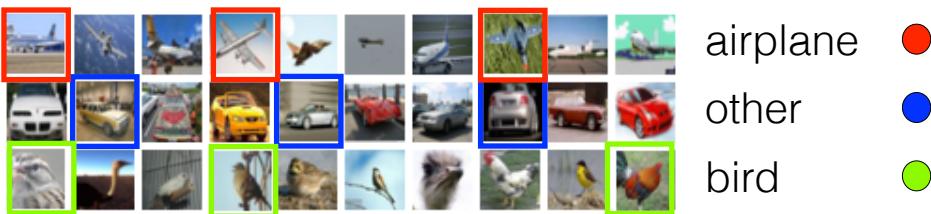
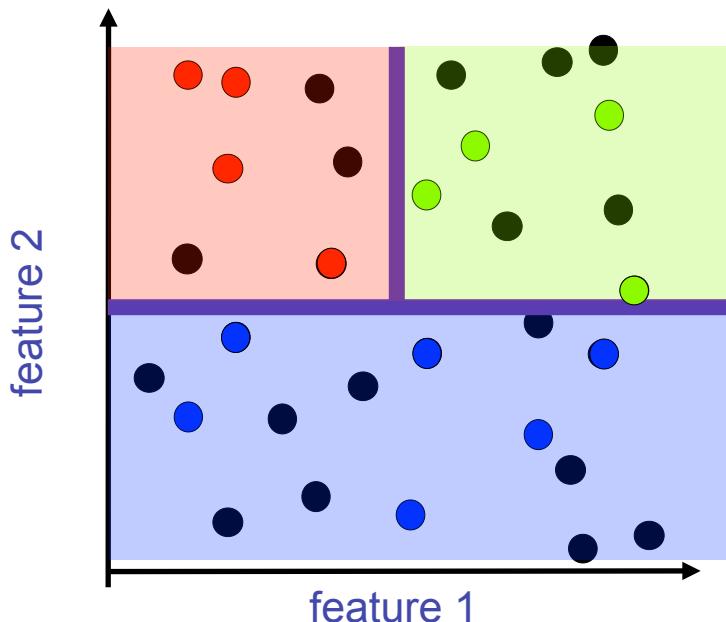
**Write a program that sorts images into those containing “birds”, “airplanes”, or *other*.**



```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elif plane in image:
        planes.append(image)
    else:
        other.append(tweet)
return birds, planes, other
```

# Machine learning algorithms

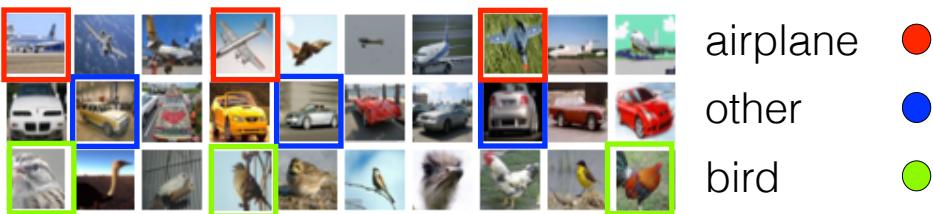
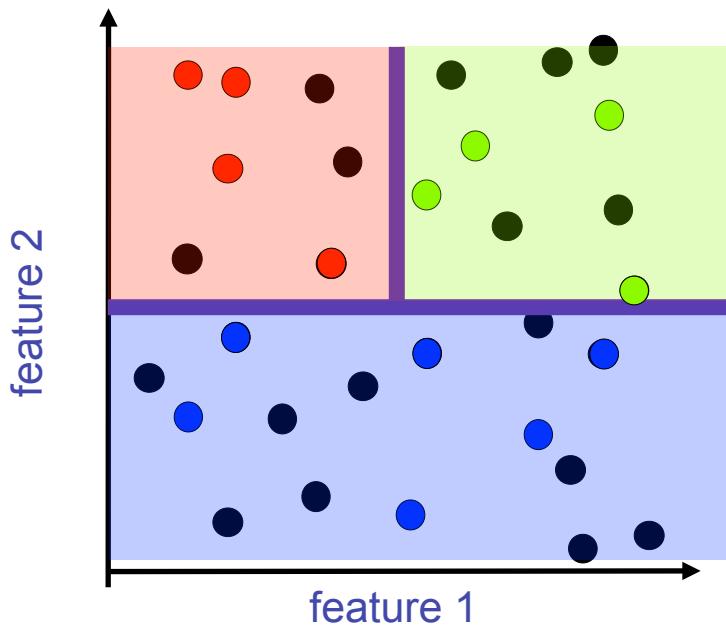
**Write a program that sorts images into those containing “birds”, “airplanes”, or *other*.**



```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elif plane in image:
        planes.append(image)
    else:
        other.append(tweet)
return birds, planes, other
```

# Machine learning algorithms

**Write a program that sorts images into those containing “birds”, “airplanes”, or *other*.**



```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elif plane in image:
        planes.append(image)
    else:
        other.append(tweet)
return birds, planes, other
```

The decision rule of  
*if “cat” in tweet:*  
is **hard coded by expert**.

The decision rule of  
*if bird in image:*  
is **LEARNED using DATA**

# Machine Learning Ingredients

- **Data:** past observations
- **Hypotheses/Models:** devised to capture the patterns in data
- **Prediction:** apply model to forecast future observations

# Your first consulting job

---

- *Billionaire*: I have special coin, if I flip it, what's the probability it will be heads?
- *You*: Please flip it a few times: HHTHT
- *You*: The probability is:
- *Billionaire*: Why?

# Coin – Binomial Distribution

---

- **Data:** sequence  $D = (HHTHT\ldots)$ , **k heads** out of **n flips**
- **Hypothesis:**  $P(\text{Heads}) = \theta$ ,  $P(\text{Tails}) = 1-\theta$ 
  - Flips are i.i.d.:
    - Independent events
    - Identically distributed according to Binomial distribution
  - $P(\mathcal{D}|\theta) =$

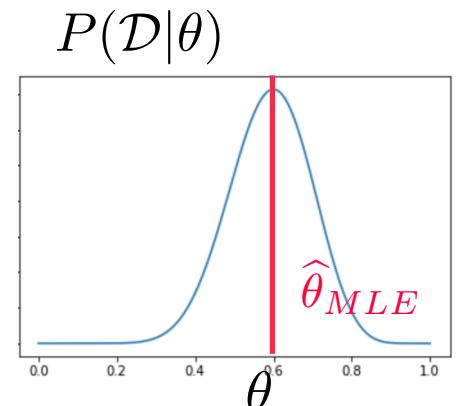
# Maximum Likelihood Estimation

- **Data:** sequence  $D = (HHTHT\dots)$ , **k heads** out of **n flips**
- **Hypothesis:**  $P(\text{Heads}) = \theta$ ,  $P(\text{Tails}) = 1 - \theta$

$$P(\mathcal{D}|\theta) = \theta^k (1 - \theta)^{n-k}$$

- Maximum likelihood estimation (MLE): Choose  $\theta$  that maximizes the probability of observed data:

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(\mathcal{D}|\theta) \\ &= \arg \max_{\theta} \log P(\mathcal{D}|\theta)\end{aligned}$$



# Your first learning algorithm

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} \log P(\mathcal{D}|\theta) \\ &= \arg \max_{\theta} \log \theta^k (1-\theta)^{n-k}\end{aligned}$$

- Set derivative to zero:

$$\boxed{\frac{d}{d\theta} \log P(\mathcal{D}|\theta) = 0}$$

# Maximum Likelihood Estimation

---

**Observe**  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

**Likelihood function**  $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

**Log-Likelihood function**  $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

**Maximum Likelihood Estimator (MLE)**  $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

# Recap

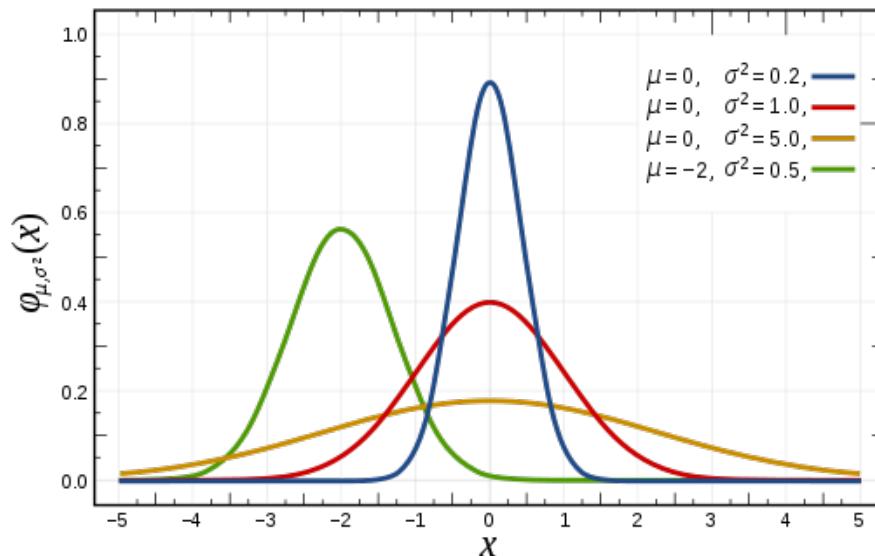
---

- Learning is...
  - Collect some data
    - E.g., coin flips
  - Choose a hypothesis class or model
    - E.g., binomial
  - Choose a loss function
    - E.g., data likelihood
  - Choose an optimization procedure
    - E.g., set derivative to zero to obtain MLE

# What about continuous variables?

- *Billionaire*: What if I am measuring a **continuous variable**?
- **You**: Let me tell you about **Gaussians**...

$$P(x | \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$



# Some properties of Gaussians

---

- affine transformation (multiplying by scalar and adding a constant)
  - $X \sim N(\mu, \sigma^2)$
  - $Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$
- Sum of Gaussians
  - $X \sim N(\mu_X, \sigma^2_X)$
  - $Y \sim N(\mu_Y, \sigma^2_Y)$
  - $Z = X+Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

# MLE for Gaussian

- Prob. of i.i.d. samples  $D=\{x_1, \dots, x_n\}$  (e.g., temperature):

$$\begin{aligned} P(\mathcal{D}|\mu, \sigma) &= P(x_1, \dots, x_n|\mu, \sigma) \\ &= \left( \frac{1}{\sigma\sqrt{2\pi}} \right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \end{aligned}$$

- Log-likelihood of data:

$$\log P(\mathcal{D}|\mu, \sigma) = -n \log(\sigma\sqrt{2\pi}) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

- What is  $\hat{\theta}_{MLE}$  for  $\theta = (\mu, \sigma^2)$ ?

# Your second learning algorithm: MLE for mean of a Gaussian

---

- What's MLE for mean?

$$\frac{d}{d\mu} \log P(\mathcal{D}|\mu, \sigma) = \frac{d}{d\mu} \left[ -n \log(\sigma\sqrt{2\pi}) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

# MLE for variance

---

- Again, set derivative to zero:

$$\frac{d}{d\sigma} \log P(\mathcal{D}|\mu, \sigma) = \frac{d}{d\sigma} \left[ -n \log(\sigma \sqrt{2\pi}) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

# Learning Gaussian parameters

- MLE:

$$\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\sigma^2}_{MLE} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2$$

- MLE for the variance of a Gaussian is **biased**

$$\mathbb{E}[\hat{\sigma^2}_{MLE}] \neq \sigma^2$$

- Unbiased variance estimator:

$$\hat{\sigma^2}_{unbiased} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2$$

# Maximum Likelihood Estimation

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

**Likelihood function**  $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

**Log-Likelihood function**  $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

**Maximum Likelihood Estimator (MLE)**  $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

Under benign assumptions, as the number of observations  $n \rightarrow \infty$  we have  $\hat{\theta}_{MLE} \rightarrow \theta_*$

The MLE is a “recipe” that begins with a *model* for data  $f(x; \theta)$

# Maximum Likelihood Estimation

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

**Likelihood function**  $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

**Log-Likelihood function**  $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

**Maximum Likelihood Estimator (MLE)**  $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

Under benign assumptions, as the number of observations  $n \rightarrow \infty$  we have  $\hat{\theta}_{MLE} \rightarrow \theta_*$

Why is it useful to recover the “true” parameters  $\theta_*$  of a probabilistic model?

- **Estimation** of the parameters  $\theta_*$  is the goal
- Help **interpret** or summarize large datasets
- Make **predictions** about future data
- **Generate** new data  $X \sim f(\cdot; \hat{\theta}_{MLE})$

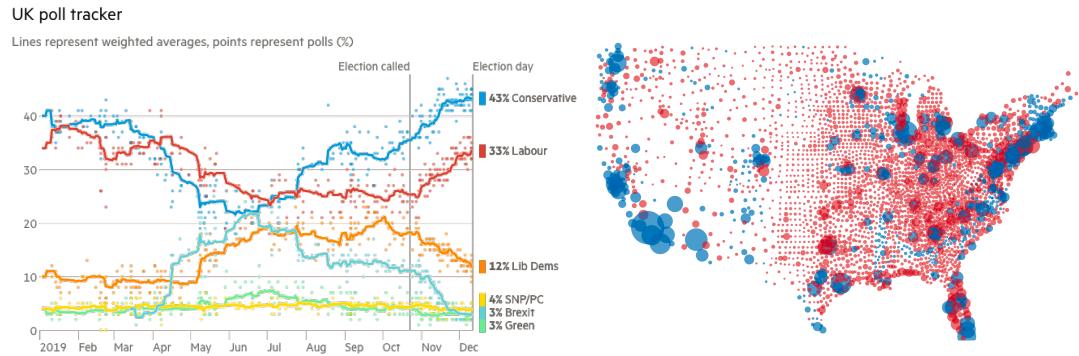
# Estimation

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

## Opinion polls

How does the greater population feel about an issue?  
Correct for over-sampling?

- $\theta_*$  is “true” average opinion
- $X_1, X_2, \dots$  are sample calls



## A/B testing

How do we figure out which ad results in more click-through?

- $\theta_*$  are the “true” average rates
- $X_1, X_2, \dots$  are binary “clicks”



# Interpret

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

## Customer segmentation / clustering

Can we identify distinct groups of customers by their behavior?

- $\theta_*$  describes “center” of distinct groups
- $X_1, X_2, \dots$  are individual customers



## Data exploration

What are the degrees of freedom of the dataset?

- $\theta_*$  describes the principle directions of variation
- $X_1, X_2, \dots$  are the individual images

|   |   |   |   |   |
|---|---|---|---|---|
| 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 9 | 9 | 9 |

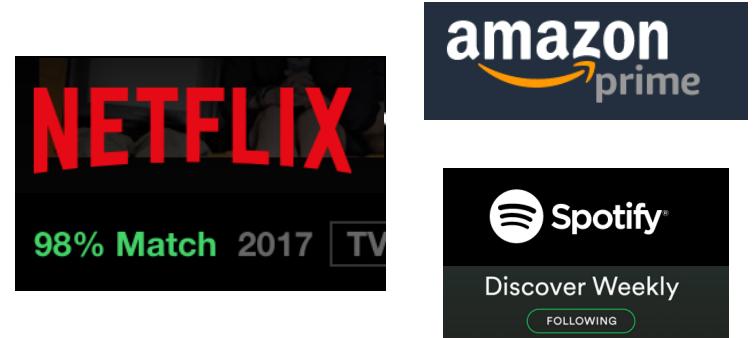
# Predict

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

## Content recommendation

Can we predict how much someone will like a movie based on past ratings?

- $\theta_*$  describes user’s preferences
- $X_1, X_2, \dots$  are (movie, rating) pairs



## Object recognition / classification

Identify a flower given just its picture?

- $\theta_*$  describes the characteristics of each kind of flower
- $X_1, X_2, \dots$  are the (image, label) pairs

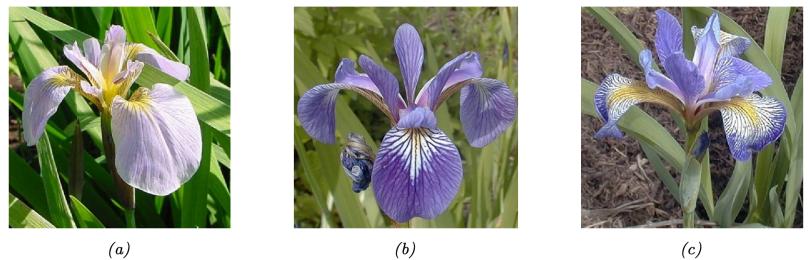


Figure 1.1: Three types of Iris flowers: Setosa, Versicolor and Virginica. Used with kind permission of Dennis Krumb and SIGNA.

| index | sl  | sw  | pl  | pw  | label      |
|-------|-----|-----|-----|-----|------------|
| 0     | 5.1 | 3.5 | 1.4 | 0.2 | Setosa     |
| 1     | 4.9 | 3.0 | 1.4 | 0.2 | Setosa     |
| ...   |     |     |     |     |            |
| 50    | 7.0 | 3.2 | 4.7 | 1.4 | Versicolor |
| ...   |     |     |     |     |            |
| 149   | 5.9 | 3.0 | 5.1 | 1.8 | Virginica  |

# Generate

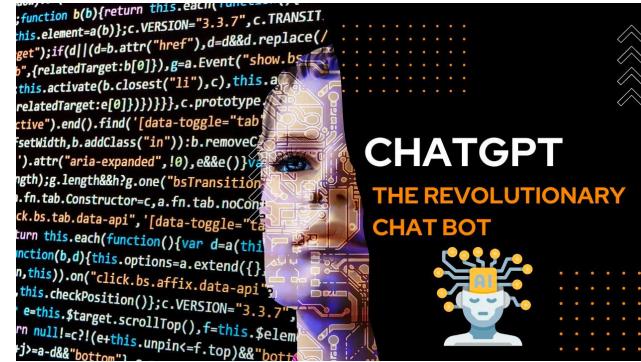
Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

## Text generation

Can AI generate text that could have been written like a human?

- $\theta_*$  describes language structure
- $X_1, X_2, \dots$  are text snippets found online

“Kaia the dog wasn't a natural pick to go to mars. No one could have predicted she would...”



<https://chat.openai.com/chat>

## Image to text generation

Can AI generate an image from a prompt?

- $\theta_*$  describes the coupled structure of images and text
- $X_1, X_2, \dots$  are the (image, caption) pairs found online

“dog talking on cell phone under water, oil painting”



<https://labs.openai.com/>

# Linear Regression

---

UNIVERSITY *of* WASHINGTON

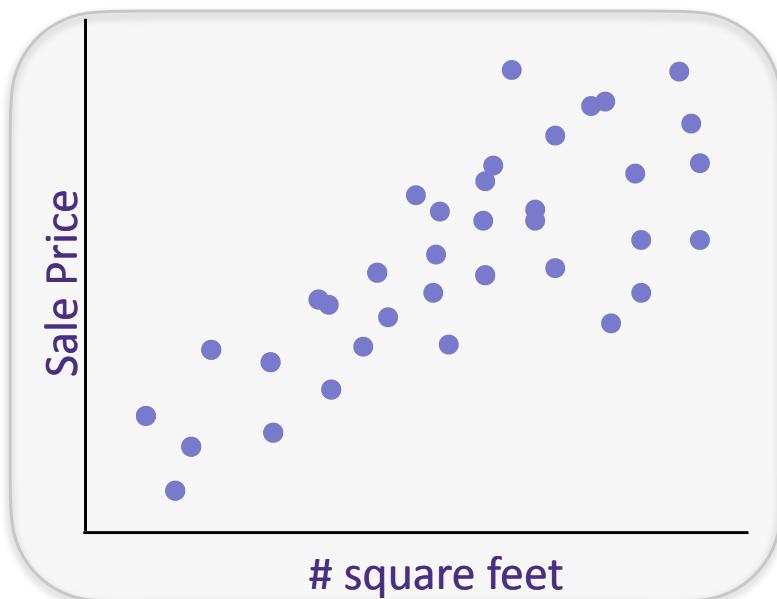
W

# The regression problem, 1-dimensional

Given past sales data on [zillow.com](https://zillow.com), predict:

$y$  = House sale price from

$x$  = {# sq. ft.}



Training Data:  
 $\{(x_i, y_i)\}_{i=1}^n$

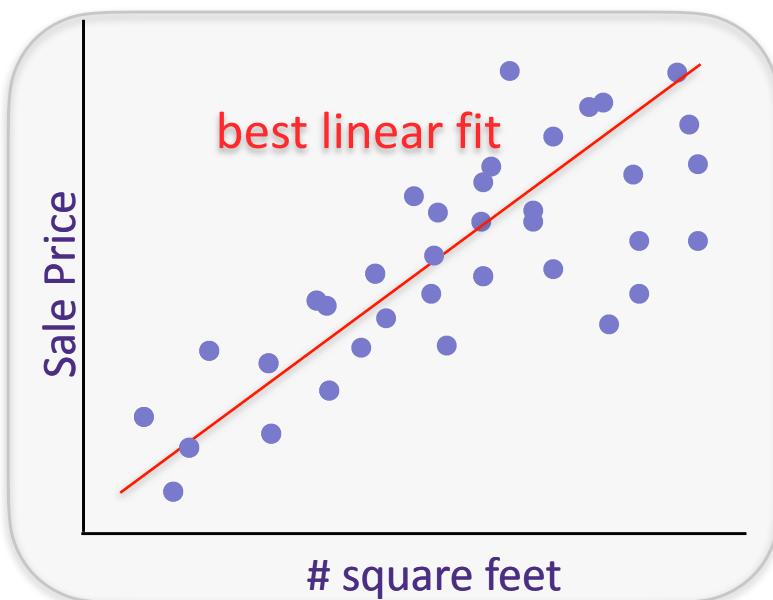
$$x_i \in \mathbb{R}$$

$$y_i \in \mathbb{R}$$

# Fit a function to our data, 1-d

Given past sales data on [zillow.com](https://zillow.com), predict:

$y$  = House sale price from  
 $x$  = {# sq. ft.}



Training Data:  
 $\{(x_i, y_i)\}_{i=1}^n$

$$x_i \in \mathbb{R}$$
$$y_i \in \mathbb{R}$$

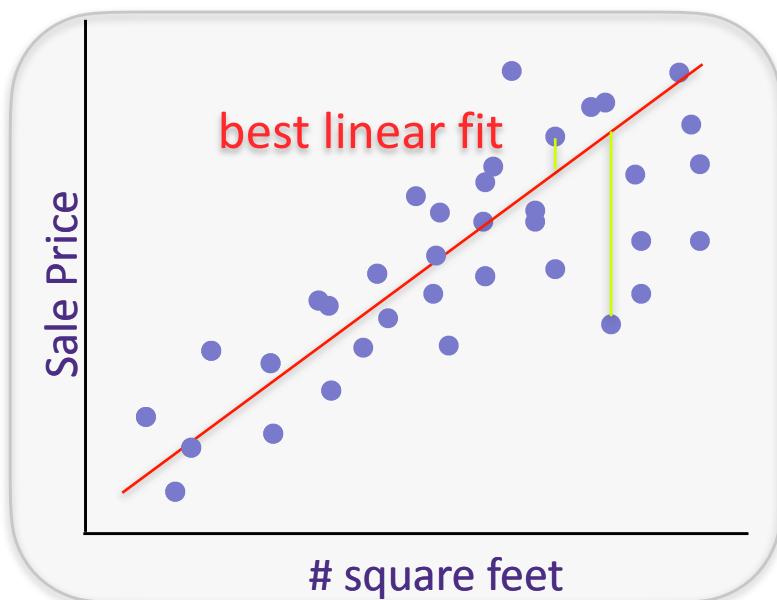
Hypothesis/Model: linear

$$y_i = x_i w + \epsilon_i \quad \epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

# Fit a function to our data, 1-d

Given past sales data on [zillow.com](https://zillow.com), predict:

$y$  = House sale price from  
 $x$  = {# sq. ft.}



Training Data:  
 $\{(x_i, y_i)\}_{i=1}^n$

$$x_i \in \mathbb{R}$$
$$y_i \in \mathbb{R}$$

Hypothesis/Model: linear

$$y_i = x_i w + \epsilon_i$$

$$\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

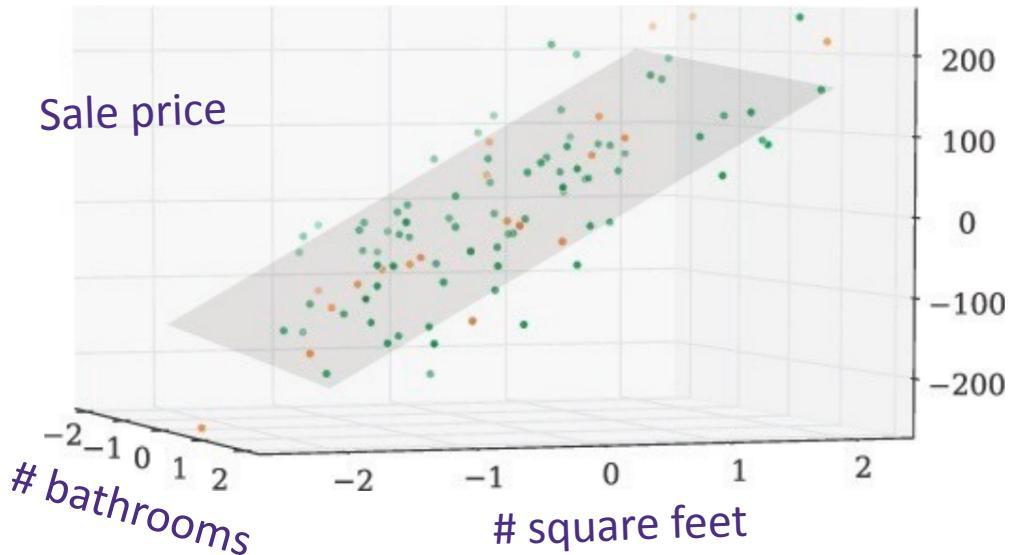


# The regression problem, d-dim

Given past sales data on [zillow.com](https://www.zillow.com), predict:

$y$  = House sale price from

$x$  = {# sq. ft., zip code, date of sale, etc.}



Training Data:  $\{(x_i, y_i)\}_{i=1}^n$   $x_i \in \mathbb{R}^d$   
 $y_i \in \mathbb{R}$

Hypothesis/Model: linear

$$y_i = x_i^T w + \epsilon_i \quad \epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

$$p(y|x, w, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-x^T w)^2/2\sigma^2}$$

# Maximizing log-likelihood

**Training Data:**  $x_i \in \mathbb{R}^d$   $y_i \in \mathbb{R}$   $\{(x_i, y_i)\}_{i=1}^n$   $p(y|x, w, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-x^\top w)^2/2\sigma^2}$

**Likelihood:**  $P(\mathcal{D}|w, \sigma) = \prod_{i=1}^n p(y_i|x_i, w, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i-x_i^\top w)^2/2\sigma^2}$

# Maximum Likelihood Estimation

Observe  $X_1, X_2, \dots, X_n$  drawn IID from  $f(x; \theta)$  for some “true”  $\theta = \theta_*$

**Likelihood function**  $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

**Log-Likelihood function**  $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

**Maximum Likelihood Estimator (MLE)**  $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

Under benign assumptions, as the number of observations  $n \rightarrow \infty$  we have  $\hat{\theta}_{MLE} \rightarrow \theta_*$

Why is it useful to recover the “true” parameters  $\theta_*$  of a probabilistic model?

- **Estimation** of the parameters  $\theta_*$  is the goal
- Help **interpret** or summarize large datasets
- Make **predictions** about future data
- **Generate** new data  $X \sim f(\cdot; \hat{\theta}_{MLE})$

# Maximizing log-likelihood

**Training Data:**  $x_i \in \mathbb{R}^d$   $y_i \in \mathbb{R}$   $\{(x_i, y_i)\}_{i=1}^n$   $p(y|x, w, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-x^\top w)^2/2\sigma^2}$

**Likelihood:**  $P(\mathcal{D}|w, \sigma) = \prod_{i=1}^n p(y_i|x_i, w, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i-x_i^\top w)^2/2\sigma^2}$

**Maximize (wrt  $w$ ):**  $\log P(\mathcal{D}|w, \sigma) = \log \left( \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i-x_i^\top w)^2/2\sigma^2} \right)$

# Maximizing log-likelihood

**Training Data:**  $x_i \in \mathbb{R}^d$   $y_i \in \mathbb{R}$   $\{(x_i, y_i)\}_{i=1}^n$   $p(y|x, w, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-x^\top w)^2/2\sigma^2}$

**Likelihood:**  $P(\mathcal{D}|w, \sigma) = \prod_{i=1}^n p(y_i|x_i, w, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i-x_i^\top w)^2/2\sigma^2}$

**Maximize (wrt  $w$ ):**  $\log P(\mathcal{D}|w, \sigma) = \log \left( \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i-x_i^\top w)^2/2\sigma^2} \right)$

$$\widehat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

# Maximizing log-likelihood

$$\hat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

Set derivate=0, solve for w

$$\hat{w}_{MLE} = \left( \sum_{i=1}^n x_i x_i^\top \right)^{-1} \sum_{i=1}^n x_i y_i$$

# The regression problem in matrix notation

$$\hat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$$

d : # of features

n : # of examples/datapoints

# The regression problem in matrix notation

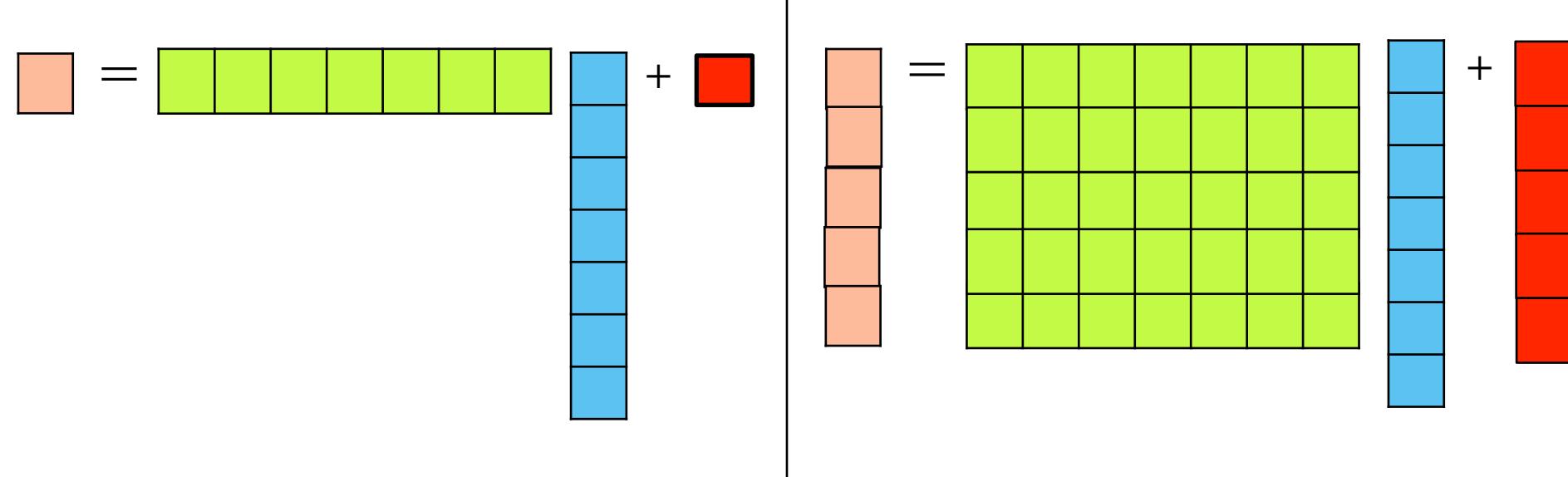
$$\hat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$$

d : # of features  
n : # of examples/datapoints

$$y_i = x_i^\top w + \epsilon_i$$

$$\mathbf{y} = \mathbf{X}w + \epsilon$$



# The regression problem in matrix notation

$$\hat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$$

d : # of features  
n : # of examples/datapoints

$$y_i = x_i^\top w + \epsilon_i \quad \mathbf{y} = \mathbf{X}w + \epsilon$$

$$\begin{aligned} \hat{w}_{LS} &= \arg \min_w \|\mathbf{y} - \mathbf{X}w\|_2^2 \\ &= \arg \min_w (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w) \end{aligned}$$

$$\ell_2 \text{ norm: } \|z\|_2 = \sqrt{\sum_{i=1}^n z_i^2} = \sqrt{z^\top z}$$

# The regression problem in matrix notation

$$\hat{w}_{MLE} = \arg \min_w \sum_{i=1}^n (y_i - x_i^\top w)^2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$$

d : # of features  
n : # of examples/datapoints

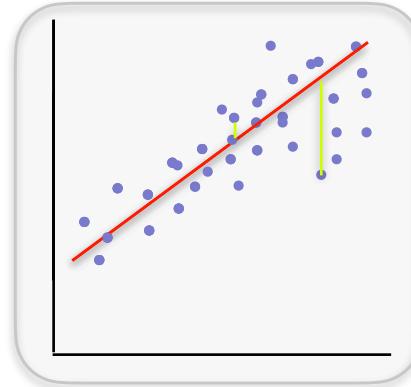
$$y_i = x_i^\top w + \epsilon_i \quad \mathbf{y} = \mathbf{X}w + \epsilon$$

$$\begin{aligned} \hat{w}_{LS} &= \arg \min_w \|\mathbf{y} - \mathbf{X}w\|_2^2 \\ &= \arg \min_w (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w) \end{aligned}$$

$$\boxed{\hat{w}_{LS} = \hat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}}$$

# The regression problem in matrix notation

$$\begin{aligned}\hat{w}_{LS} &= \arg \min_w \|\mathbf{y} - \mathbf{X}w\|_2^2 \\ &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}\end{aligned}$$



What about an offset?

$$\begin{aligned}\hat{w}_{LS}, \hat{b}_{LS} &= \arg \min_{w,b} \sum_{i=1}^n (y_i - (x_i^T w + b))^2 \\ &= \arg \min_{w,b} \|\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)\|_2^2\end{aligned}$$

# Dealing with an offset

---

$$\hat{w}_{LS}, \hat{b}_{LS} = \arg \min_{w,b} \|\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)\|_2^2$$

# Dealing with an offset

$$\hat{w}_{LS}, \hat{b}_{LS} = \arg \min_{w,b} \|\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)\|_2^2$$

$$\mathbf{X}^T \mathbf{X} \hat{w}_{LS} + \hat{b}_{LS} \mathbf{X}^T \mathbf{1} = \mathbf{X}^T \mathbf{y}$$

$$\mathbf{1}^T \mathbf{X} \hat{w}_{LS} + \hat{b}_{LS} \mathbf{1}^T \mathbf{1} = \mathbf{1}^T \mathbf{y}$$

If  $\mathbf{X}^T \mathbf{1} = 0$  (i.e., if each feature is mean-zero) then

$$\hat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\hat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i$$

# Make Predictions

---

$$\hat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\hat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i$$

A new house is about to be listed. What should it sell for?

$$\hat{y}_{\text{new}} = x_{\text{new}}^T \hat{w}_{LS} + \hat{b}_{LS}$$

# Process

---

Decide on a **model** for the likelihood function  $f(x; \theta)$

Find the function which fits the data best

**Choose a loss function- least squares**

**Pick the function which minimizes loss on data**

Use function to make prediction on new examples

# Linear regression with non-linear basis functions

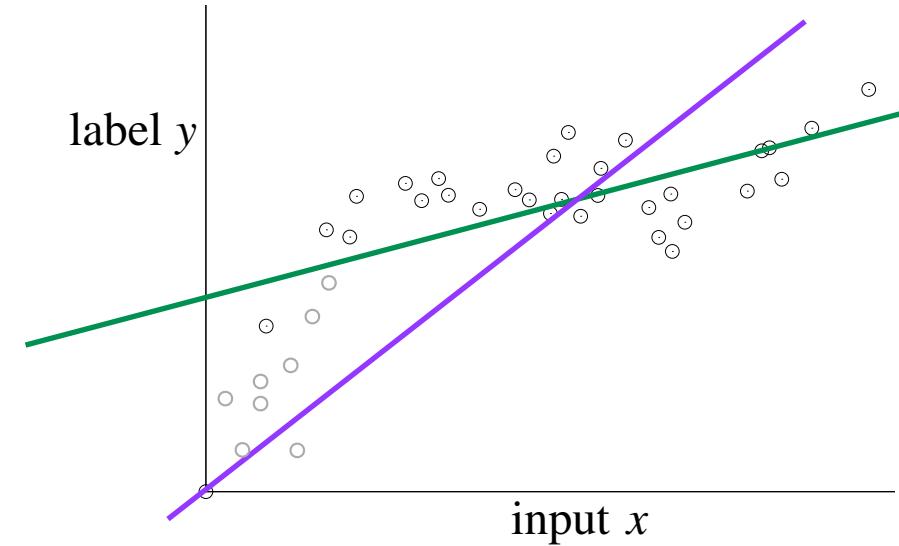
---

# Quadratic regression in 1-dimension

- Data:  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Linear model with parameter  $(b, w_1)$ :

- $\hat{y}_i = b + \underline{w_1 x_i}$



# Quadratic regression in 1-dimension

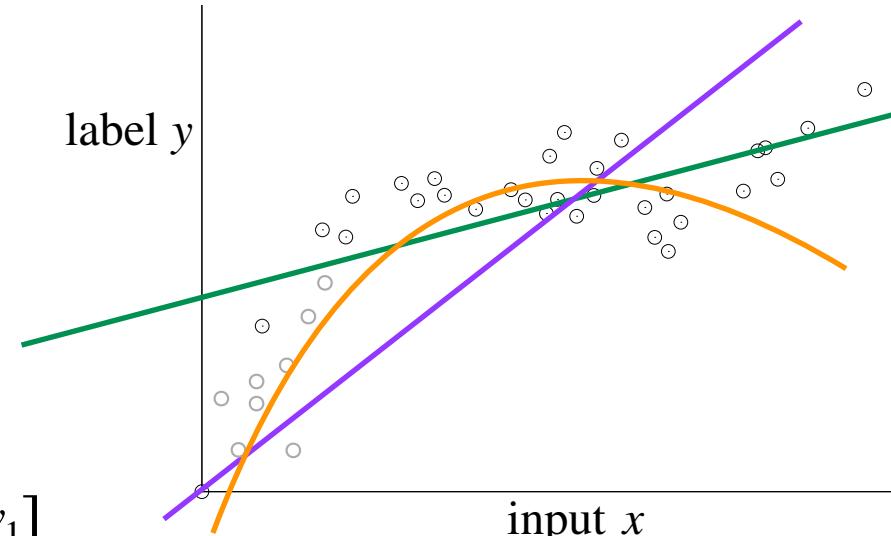
- Data:  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Linear model with parameter  $(b, w_1)$ :

- $\hat{y}_i = b + w_1 x_i$

- Quadratic model with parameter  $(b, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix})$ :

- $\hat{y}_i = b + w_1 x_i + w_2 x_i^2$



# Quadratic regression in 1-dimension

- Data:  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Linear model with parameter  $(b, w_1)$ :

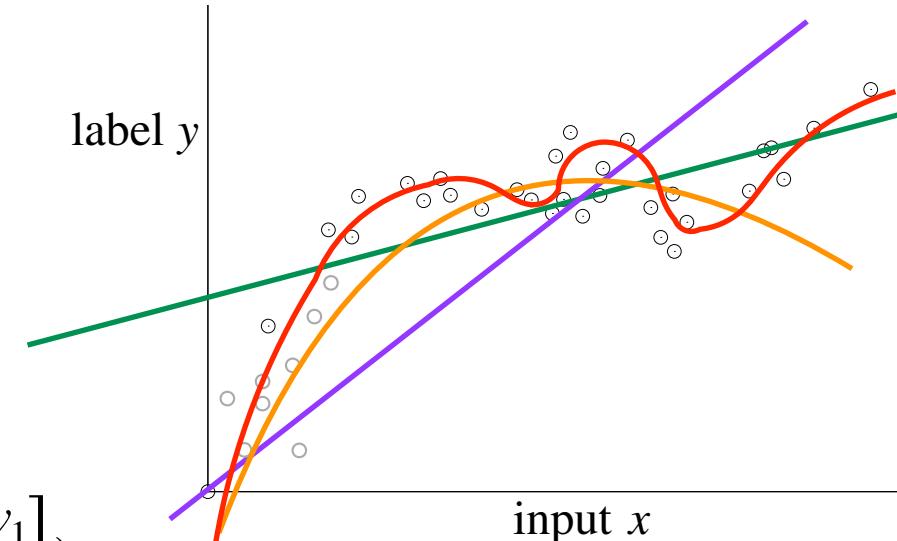
- $\hat{y}_i = b + w_1 x_i$

- Quadratic model with parameter  $(b, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix})$ :

- $\hat{y}_i = b + w_1 x_i + w_2 x_i^2$

- Degree-p polynomial model with parameter  $(b, w = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix})$ :

- $\hat{y}_i = b + w_1 x_i + w_2 x_i^2 + \dots + w_p x_i^p$



# Quadratic regression in 1-dimension

- Data:  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Linear model with parameter  $(b, w_1)$ :

- $\hat{y}_i = b + w_1 x_i$

- Quadratic model with parameter  $(b, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix})$ :

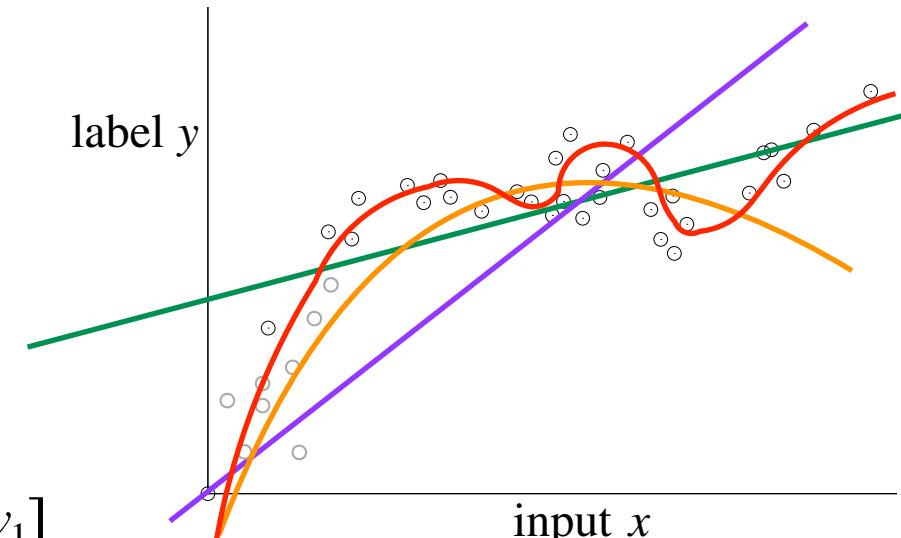
- $\hat{y}_i = b + w_1 x_i + w_2 x_i^2$

- Degree-p polynomial model with parameter  $(b, w = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix})$ :

- $\hat{y}_i = b + w_1 x_i + w_2 x_i^2 + \dots + w_p x_i^p$

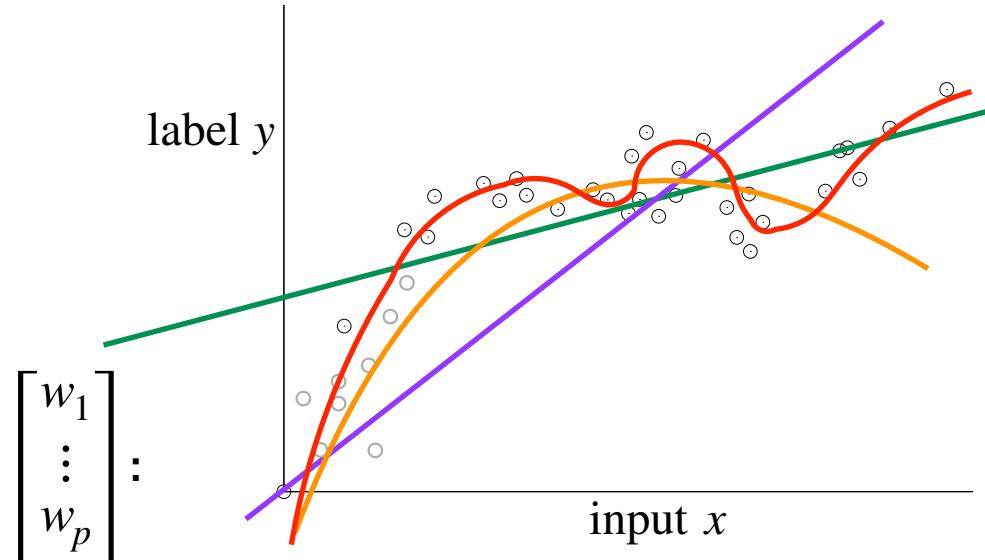
- General p-features with parameter  $w = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix}$ :

- $\hat{y}_i = \langle w, h(x_i) \rangle$  where  $h : \mathbb{R} \rightarrow \mathbb{R}^p$



# Quadratic regression in 1-dimension

- **Data:**  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$



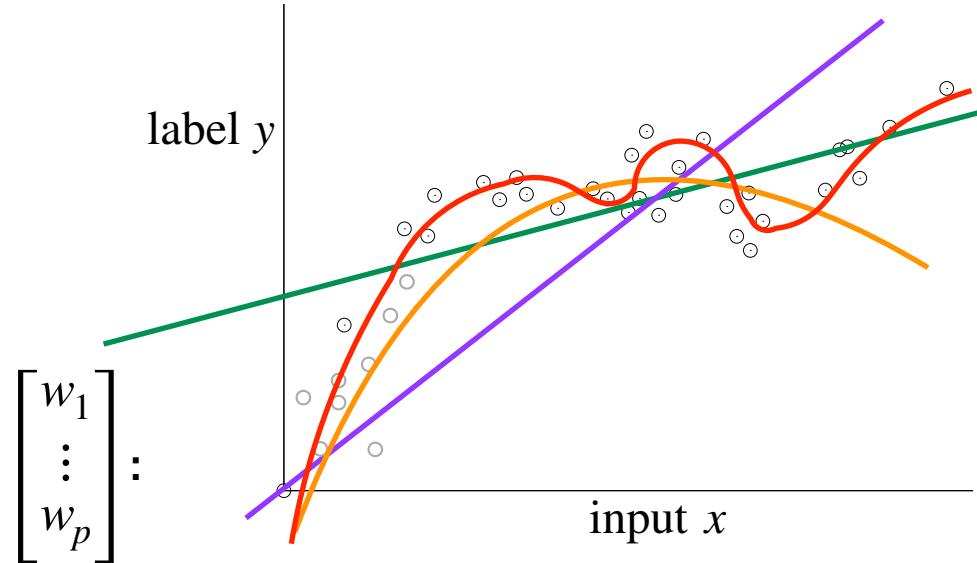
- $\hat{y}_i = \langle w, h(x_i) \rangle$  where  $h : \mathbb{R} \rightarrow \mathbb{R}^p$

Note:  $h$  can be arbitrary non-linear functions!

$$h(x) = \left[ \log(x), x^2, \sin(x), \sqrt{x} \right]^\top$$

# Quadratic regression in 1-dimension

- **Data:**  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

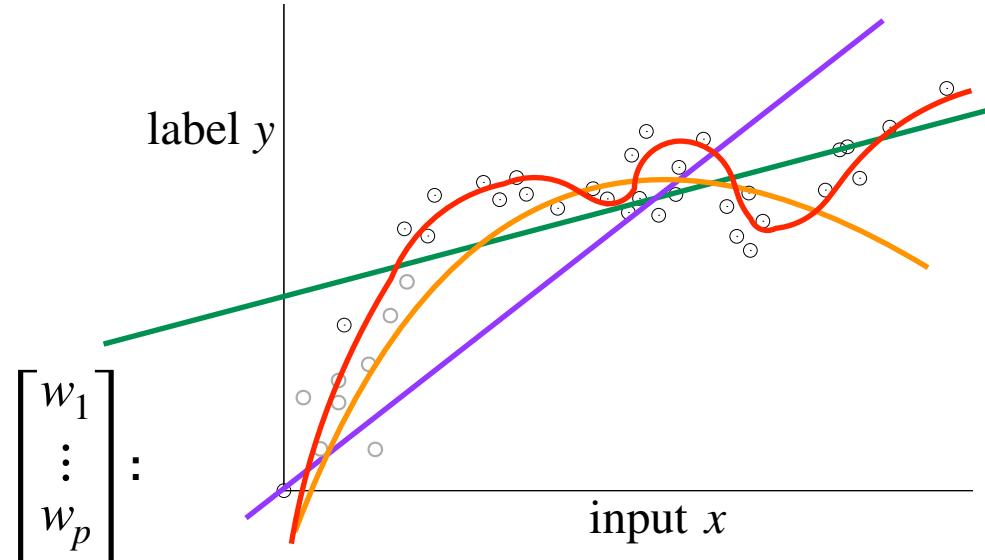


- $\hat{y}_i = \langle w, h(x_i) \rangle$  where  $h : \mathbb{R} \rightarrow \mathbb{R}^p$

How do we learn  $w$ ?

# Quadratic regression in 1-dimension

- **Data:**  $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$



- $\hat{y}_i = \langle w, h(x_i) \rangle$  where  $h : \mathbb{R} \rightarrow \mathbb{R}^p$

How do we learn  $w$ ?

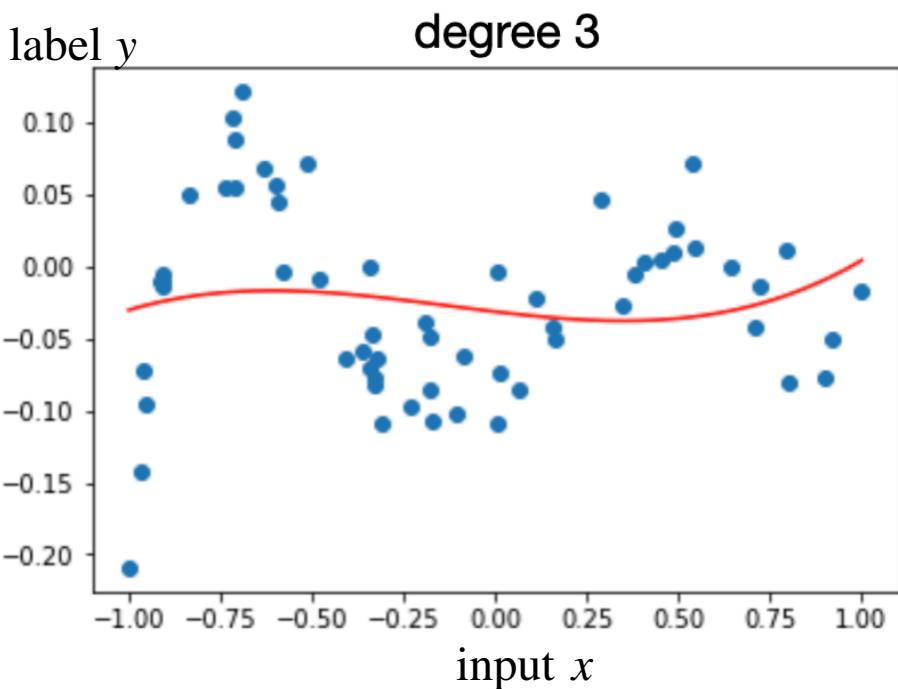
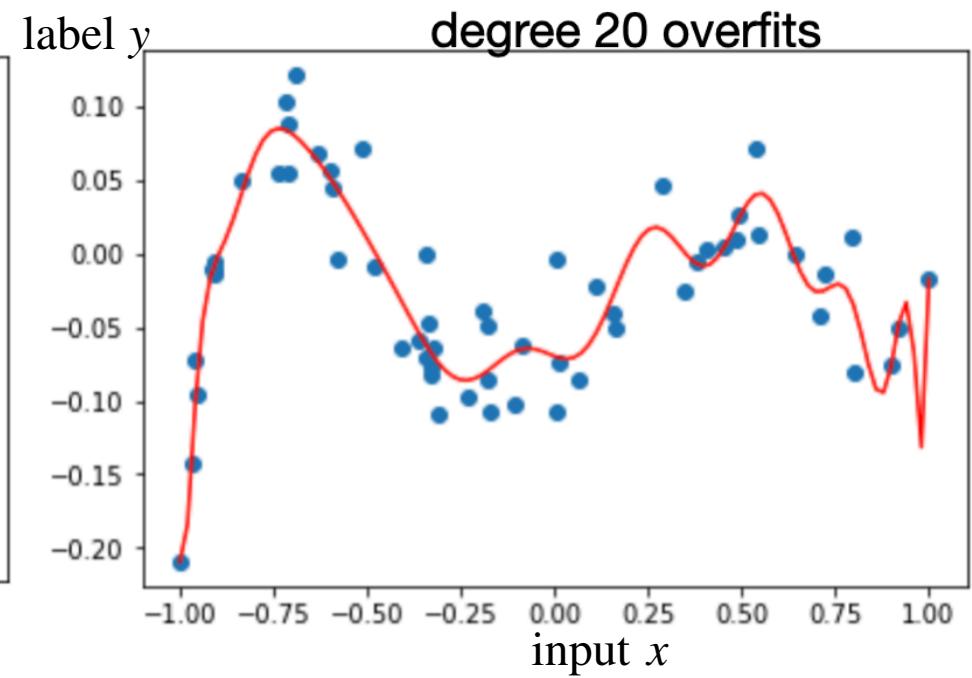
$$\mathbf{H} = \begin{bmatrix} \cdots h(x_1)^\top \cdots \\ \vdots \\ \cdots h(x_n)^\top \cdots \end{bmatrix} \in \mathbb{R}^{n \times p}$$

$$\widehat{w} = \arg \min_w \|\mathbf{H}w - \mathbf{y}\|_2^2$$

For a new test point  $x$ , predict  
 $\hat{y} = \langle \widehat{w}, h(x) \rangle$

# Which $p$ should we choose?

- First instance of class of models with different representation power = model complexity



- How do we determine which is better model?

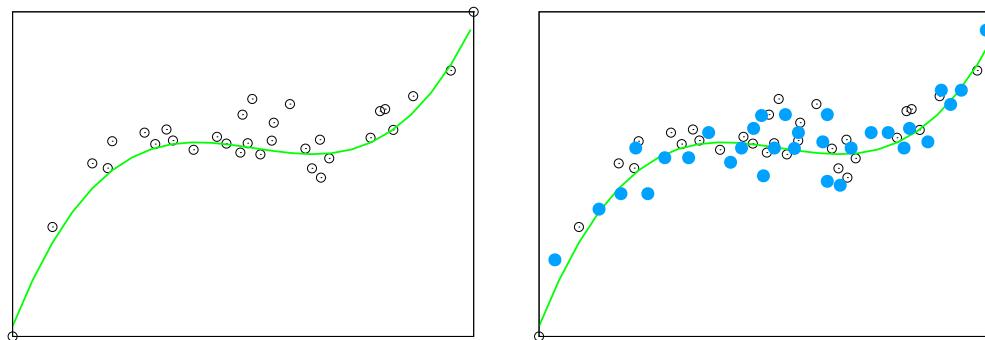
# Generalization

---

- we say a predictor **generalizes** if it performs as well on unseen data as on training data (we will formalize the next lecture)
- the data used to train a predictor is **training data** or **in-sample data**
- we want the predictor to work on **out-of-sample data**
- we say a predictor **fails to generalize** if it performs well on in-sample data but does not perform well on out-of-sample data

# Generalization

- we say a predictor **generalizes** if it performs as well on unseen data as on training data (we will formalize the next lecture)
- the data used to train a predictor is **training data** or **in-sample data**
- we want the predictor to work on **out-of-sample data**
- we say a predictor **fails to generalize** if it performs well on in-sample data but does not perform well on out-of-sample data



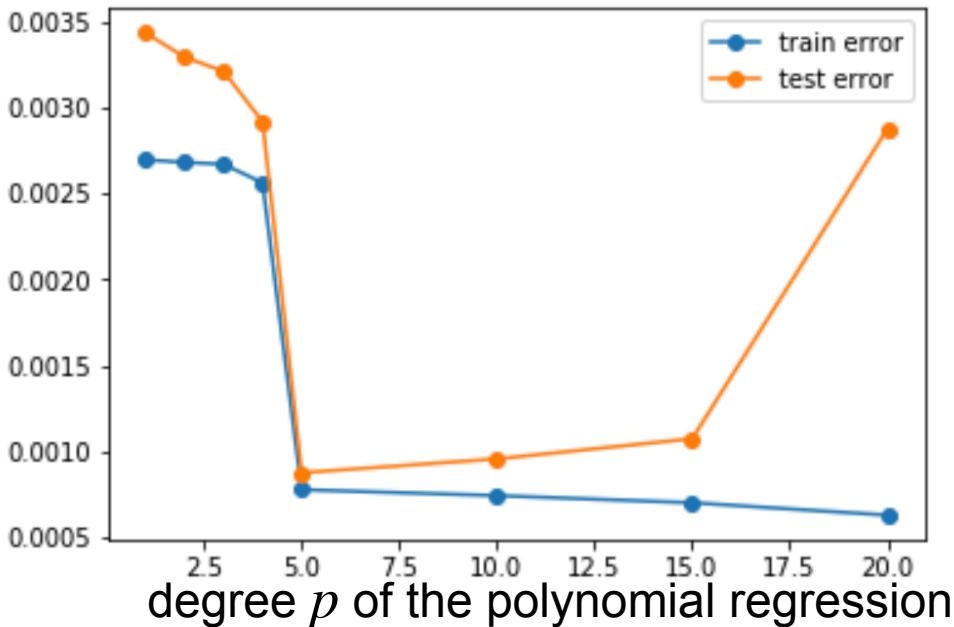
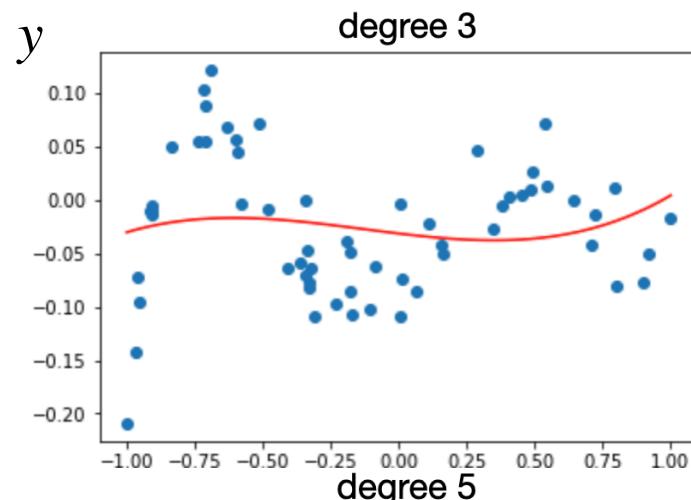
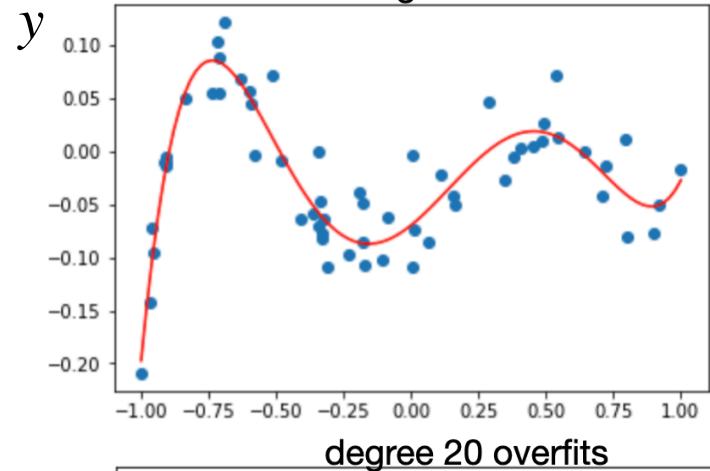
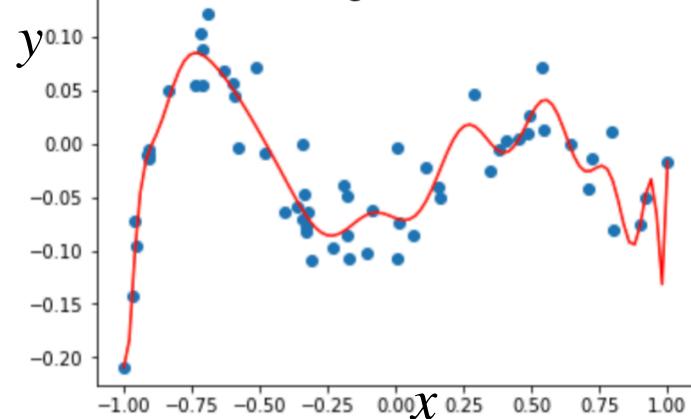
- **train** a cubic predictor on 32 (**in-sample**) white circles: Mean Squared Error (MSE) 174
- **predict** label  $y$  for 30 (**out-of-sample**) blue circles: MSE 192
- conclude this predictor/model generalizes, as in-sample MSE  $\simeq$  out-of-sample MSE

# Split the data into training and testing

- a way to mimic how the predictor performs on unseen data
- given a single dataset  $S = \{(x_i, y_i)\}_{i=1}^n$
- we split the dataset into two: training set and test set (e.g., 90/10)
- **training set** used to train the model
  - minimize  $\mathcal{L}_{\text{train}}(w) = \frac{1}{|S_{\text{train}}|} \sum_{i \in S_{\text{train}}} (y_i - x_i^T w)^2$
- **test set** used to evaluate the model
  - $\mathcal{L}_{\text{test}}(w) = \frac{1}{|S_{\text{test}}|} \sum_{i \in S_{\text{test}}} (y_i - x_i^T w)^2$
- this assumes that test set is similar to unseen data
- **test set should never be used in training or picking unknowns**

# Train/test error vs. complexity

Error



- Degree  $p = 5$ , since it achieves **minimum test error**
- Train error monotonically decreases with model complexity
- Test error has a U shape

test set should never be used in training or picking degree

# Cross-Validation

---

UNIVERSITY *of* WASHINGTON

W

# How... How... How??????

---

- > How do we pick the number of basis functions...
- > We could use the test data, but...

# How... How... How???????

# (LOO) Leave-one-out cross validation

---

- > Consider a validation set with 1 example:
  - $D$  – training data
  - $D \setminus j$  – training data with  $j$  th data point  $(x_j, y_j)$  moved to validation set
- > Learn classifier  $f_{D \setminus j}$  with  $D \setminus j$  dataset
- > Estimate true error as squared error on predicting  $y_j$ :
  - Unbiased estimate of error<sub>true</sub>( $f_{D \setminus j}$ )!

# (LOO) Leave-one-out cross validation

- > Consider a validation set with 1 example:
  - $D$  – training data
  - $D \setminus j$  – training data with  $j$  th data point  $(x_j, y_j)$  moved to validation set
- > Learn classifier  $f_{D \setminus j}$  with  $D \setminus j$  dataset
- > Estimate true error as squared error on predicting  $y_j$ :
  - Unbiased estimate of error<sub>true</sub>( $f_{D \setminus j}$ )!
- > LOO cross validation: Average over all data points  $j$ :
  - For each data point you leave out, learn a new classifier  $f_{D \setminus j}$
  - Estimate error as:

$$\text{error}_{LOO} = \frac{1}{n} \sum_{j=1}^n (y_j - f_{D \setminus j}(x_j))^2$$

# LOO cross validation is (almost) unbiased estimate!

---

- > When computing LOOCV error, we only use  $N-1$  data points
  - So it's not estimate of true error of learning with  $N$  data points
  - Usually pessimistic, though – learning with less data typically gives worse answer
- > LOO is almost unbiased! Use LOO error for model selection!!!
  - E.g., picking degree

# Computational cost of LOO

---

- > Suppose you have 100,000 data points
- > You implemented a great version of your learning algorithm
  - Learns in only 1 second
- > Computing LOO will take about 1 day!!!
  -

# Use $k$ -fold cross validation

- > Randomly divide training data into  $k$  equal parts

- $D_1, \dots, D_k$

- > For each  $i$

- Learn classifier  $f_{D \setminus D_i}$  using data point not in  $D_i$
  - Estimate error of  $f_{D \setminus D_i}$  on validation set  $D_i$ :

$$\text{error}_{D_i} = \frac{1}{|D_i|} \sum_{(x_j, y_j) \in D_i} (y_j - f_{D \setminus D_i}(x_j))^2$$



# Use $k$ -fold cross validation

- > Randomly divide training data into  $k$  equal parts

- $D_1, \dots, D_k$

- > For each  $i$

- Learn classifier  $f_{D \setminus D_i}$  using data point not in  $D_i$
  - Estimate error of  $f_{D \setminus D_i}$  on validation set  $D_i$ :

$$\text{error}_{D_i} = \frac{1}{|D_i|} \sum_{(x_j, y_j) \in D_i} (y_j - f_{D \setminus D_i}(x_j))^2$$

- >  **$k$ -fold cross validation error is average** over data splits:

$$\text{error}_{k\text{-}fold} = \frac{1}{k} \sum_{i=1}^k \text{error}_{D_i}$$

- >  **$k$ -fold cross validation properties:**

- **Much faster to compute** than LOO
  - **More (pessimistically) biased** – using much less data, only  $n(k-1)/k$
  - **Usually,  $k = 10$**

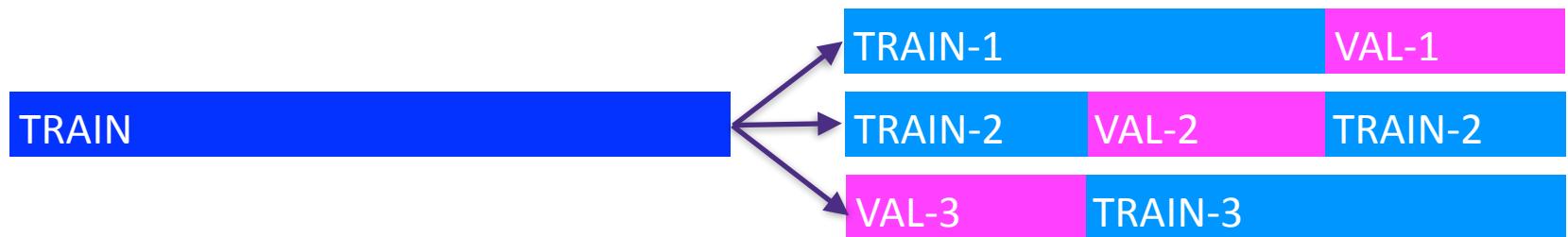


# Recap

- > Given a dataset, begin by splitting into



- > Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose magic parameters such as degree



- > Model assessment: Use TEST to assess the accuracy of the model you output
  - Never ever ever ever train or choose parameters based on the test data

# Ridge Regression

---

UNIVERSITY *of* WASHINGTON

W

# Regularization in Linear Regression

---

Recall Least Squares:  $\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$   
 $= \arg \min_w (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w)$   
when  $(\mathbf{X}^T \mathbf{X})^{-1}$  exists....  $= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

# Regularization in Linear Regression

---

Recall Least Squares:  $\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$

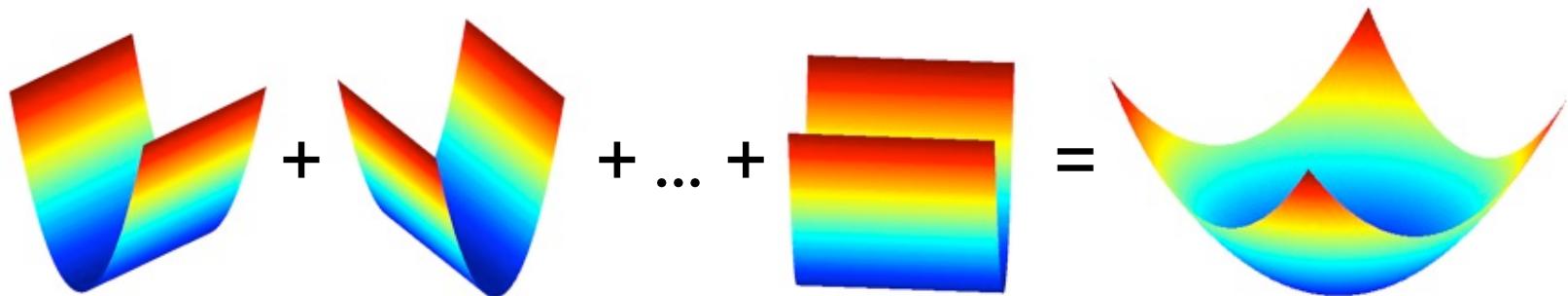
$$= \arg \min_w (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w)$$

In general:  $= \arg \min_w w^T (\mathbf{X}^T \mathbf{X})w - 2y^T \mathbf{X}w$

# Regularization in Linear Regression

Recall Least Squares:  $\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$

In general:  $= \arg \min_w w^T (\mathbf{X}^T \mathbf{X}) w - 2y^T \mathbf{X} w$



$$(y_1 - x_1^T w)^2 + (y_2 - x_2^T w)^2 + \cdots + (y_n - x_n^T w)^2 = \sum_{i=1}^n (y_i - x_i^T w)^2$$

What if  $x_i \in \mathbb{R}^d$  and  $d > n$ ?

# Regularization in Linear Regression

---

Recall Least Squares:  $\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$

When  $x_i \in \mathbb{R}^d$  and  $d > n$  the objective function is flat in some directions:



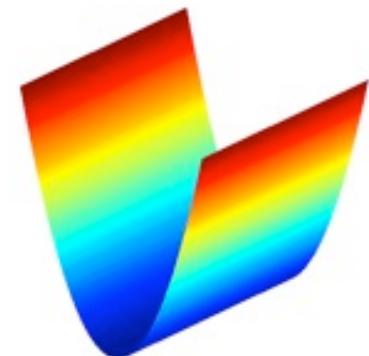
# Regularization in Linear Regression

Recall Least Squares:  $\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$

When  $x_i \in \mathbb{R}^d$  and  $d > n$  the objective function is flat in some directions:

Implies optimal solution is *not unique* and unstable due to lack of curvature:

- small changes in training data result in large changes in solution
- often the *magnitudes* of  $w$  are “very large”

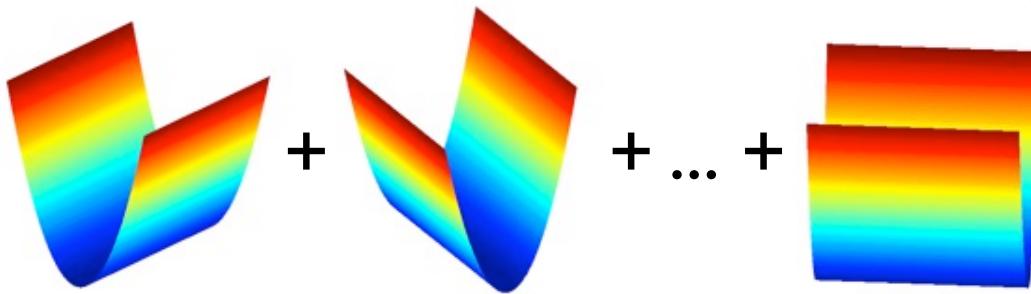


**Regularization imposes “simpler” solutions by a “complexity” penalty**

# Ridge Regression

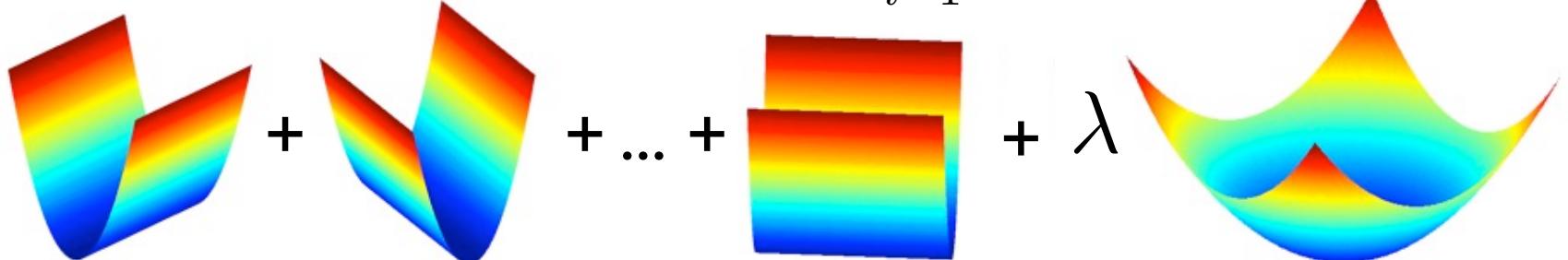
- Old Least squares objective:

$$\hat{w}_{LS} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2$$



- Ridge Regression objective:

$$\hat{w}_{ridge} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$



# Minimizing the Ridge Regression Objective

---

$$\hat{w}_{ridge} = \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

# Shrinkage Properties

---

$$\begin{aligned}\widehat{w}_{ridge} &= \arg \min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda ||w||_2^2 \\ &= (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}\end{aligned}$$

# Classification Logistic Regression

---

UNIVERSITY *of* WASHINGTON

W

# Thus far, regression:

---

**predict a continuous value given some inputs**

# Reading Your Brain, Simple Example

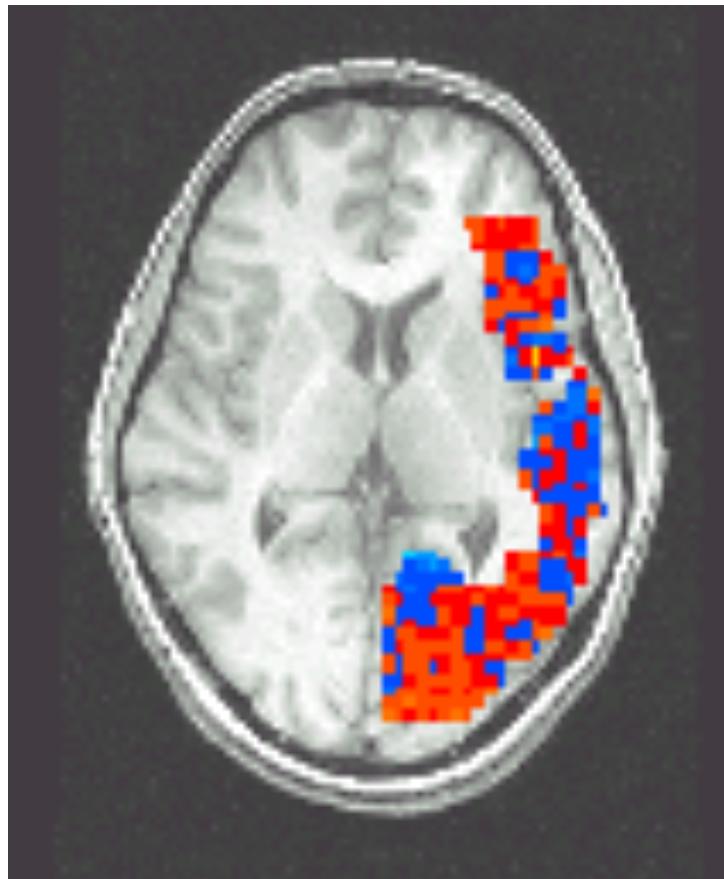
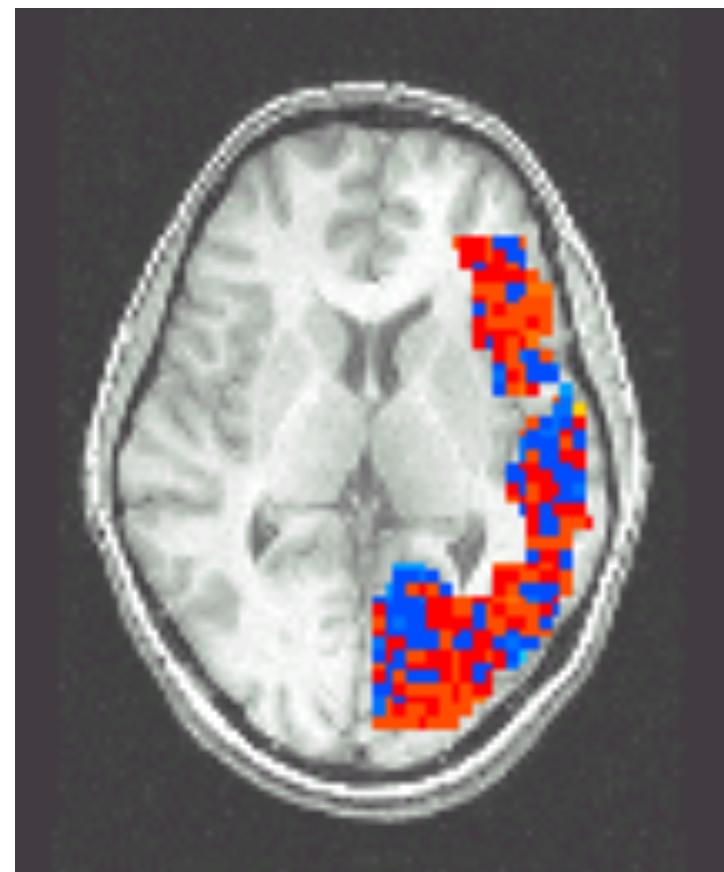
[Mitchell et al.]

Pairwise classification accuracy: 85%

Person



Animal



# Classification

- **Learn**  $f: \mathcal{X} \rightarrow \mathcal{Y}$ 
  - $\mathcal{X} \subset \mathbb{R}^d$  - **features**
  - $\mathcal{Y} = \{1, \dots, k\}$  - **target classes**
- **Loss Function**  $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$
- **Expected loss of f:**
$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$
$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = \sum_i P(Y = i|X = x) \mathbf{1}\{f(x) \neq i\} = \sum_{i \neq f(x)} P(Y = i|X = x)$$
$$= 1 - P(Y = f(x)|X = x)$$
- **Suppose you knew  $P(Y|X)$  exactly, how should you classify?**

# Classification

- **Learn**  $f: \mathcal{X} \rightarrow \mathcal{Y}$ 
  - $\mathcal{X} \subset \mathbb{R}^d$  - **features**
  - $\mathcal{Y} = \{1, \dots, k\}$  - **target classes**

- **Loss Function**  $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

- **Expected loss of f:**

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\begin{aligned}\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] &= \sum_i P(Y = i|X = x) \mathbf{1}\{f(x) \neq i\} = \sum_{i \neq f(x)} P(Y = i|X = x) \\ &= 1 - P(Y = f(x)|X = x)\end{aligned}$$

- Suppose you knew  $P(Y|X)$  exactly, how should you classify?
- **Bayes-Optimal classifier:**

$$f(x) = \arg \max_y \mathbb{P}(Y = y|X = x)$$

# Bayes Optimal Binary Classifier

- **Bayes-Optimal classifier:**  $f(x) = \arg \max_y \mathbb{P}(Y = y | X = x)$
- Suppose we don't know  $P(Y = y | X = x)$ , but have  $n$  iid examples

$$\{(x_i, y_i)\}_{i=1}^n \quad Y \in \{0, 1\}$$

- Suppose  $\mathcal{X}$  is discrete so that  $X \in \{1, 2, \dots, m\}$ . What is a natural estimator for  $P(Y = y | X = x)$ ?

# Bayes Optimal Binary Classifier

- **Bayes-Optimal classifier:**  $f(x) = \arg \max_y \mathbb{P}(Y = y | X = x)$
- Suppose we don't know  $P(Y = y | X = x)$ , but have  $n$  iid examples

$$\{(x_i, y_i)\}_{i=1}^n \quad Y \in \{0, 1\}$$

- Suppose  $\mathcal{X}$  is discrete so that  $X \in \{1, 2, \dots, m\}$ . What is a natural estimator for  $P(Y = y | X = x)$ ?

$$\hat{f}(x) = \arg \max_{y \in \{0, 1\}} \frac{\sum_{i=1}^n \mathbf{1}[\mathbf{x}_i = \mathbf{x}, \mathbf{y}_i = y]}{\sum_{i=1}^n \mathbf{1}[\mathbf{x}_i = \mathbf{x}]}$$

What if  $\mathcal{X}$  is continuous? That is, what if  $X \in \mathbb{R}^d$ ?

# Bayes Optimal Binary Classifier

- **Bayes-Optimal classifier:**  $f(x) = \arg \max_y \mathbb{P}(Y = y | X = x)$
- Suppose we don't know  $P(Y = y | X = x)$ , but have  $n$  iid examples

$$\{(x_i, y_i)\}_{i=1}^n \quad Y \in \{0, 1\}$$

- Suppose  $\mathcal{X}$  is discrete so that  $X \in \{1, 2, \dots, m\}$ . What is a natural estimator for  $P(Y = y | X = x)$ ?

$$\hat{f}(x) = \arg \max_{y \in \{0, 1\}} \frac{\sum_{i=1}^n \mathbf{1}[\mathbf{x}_i = \mathbf{x}, \mathbf{y}_i = y]}{\sum_{i=1}^n \mathbf{1}[\mathbf{x}_i = \mathbf{x}]}$$

What if  $\mathcal{X}$  is continuous? That is, what if  $X \in \mathbb{R}^d$ ?

We need a model to explain observations

# Logistic Regression

---

**Recall linear regression:**

- We assumed that for any  $x$ , we have  $p(Y = y | X = x) = \frac{1}{\sqrt{2\pi}} e^{(y - w^T x)^2/2}$ .
- Given data  $\{(x_i, y_i)\}_{i=1}^n$  we then computed the MLE for  $w$ .

# Logistic Regression

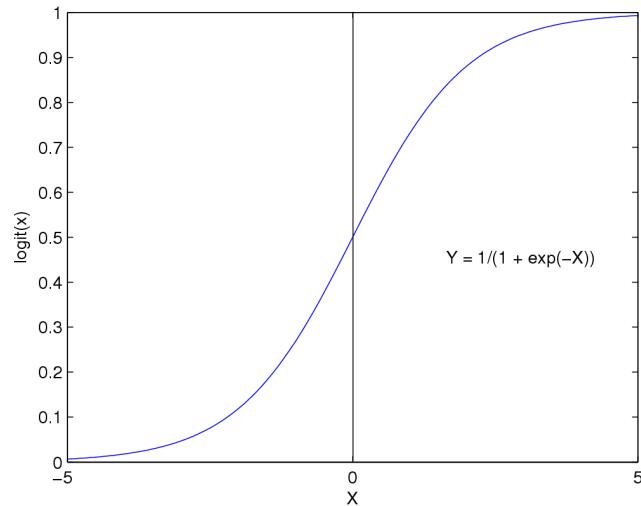
Recall linear regression:

- We assumed that for any  $x$ , we have  $p(Y = y | X = x) = \frac{1}{\sqrt{2\pi}} e^{(y - w^T x)^2/2}$ .
- Given data  $\{(x_i, y_i)\}_{i=1}^n$  we then computed the MLE for  $w$ .

Logistic regression uses a model specialized for classification:

$$\mathbb{P}[Y = 1 | X = x, w] = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

$$\begin{aligned}\mathbb{P}[Y = 0 | X = x, w] &= 1 - \sigma(w^T x) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)} \\ &= \frac{1}{1 + \exp(w^T x)}\end{aligned}$$



# Logistic Regression

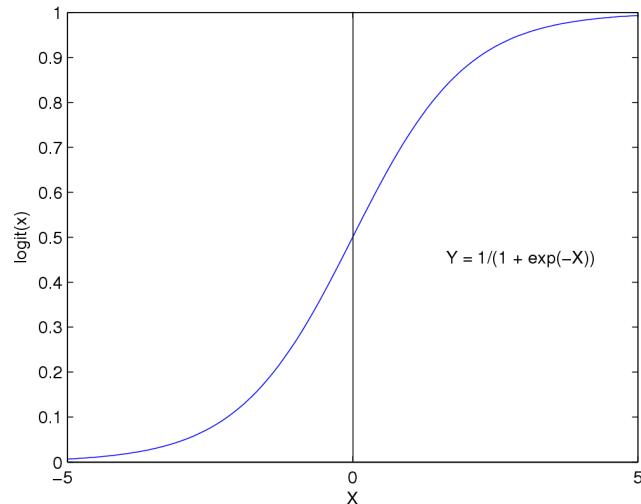
Recall linear regression:

- We assumed that for any  $x$ , we have  $p(Y = y | X = x) = \frac{1}{\sqrt{2\pi}} e^{(y - w^T x)^2/2}$ .
- Given data  $\{(x_i, y_i)\}_{i=1}^n$  we then computed the MLE for  $w$ .

Logistic regression uses a model specialized for classification:

$$\mathbb{P}[Y = 1 | X = x, w] = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

$$\begin{aligned}\mathbb{P}[Y = 0 | X = x, w] &= 1 - \sigma(w^T x) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)} \\ &= \frac{1}{1 + \exp(w^T x)}\end{aligned}$$

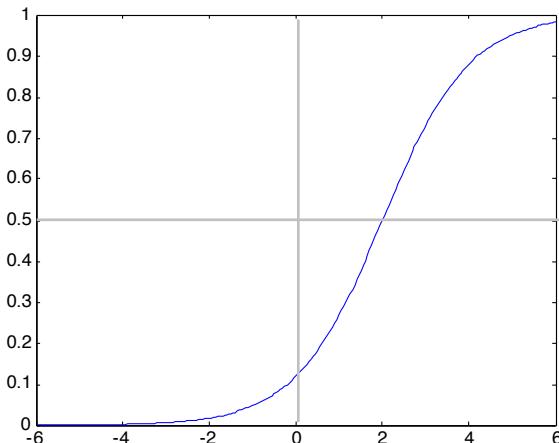


Features can be discrete or continuous!

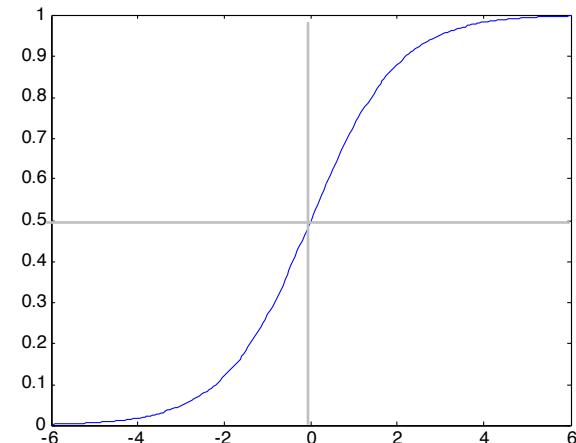
# Understanding the sigmoid

$$\sigma(w_0 + \sum_k w_k x_k) = \frac{1}{1 + e^{w_0 + \sum_k w_k x_k}}$$

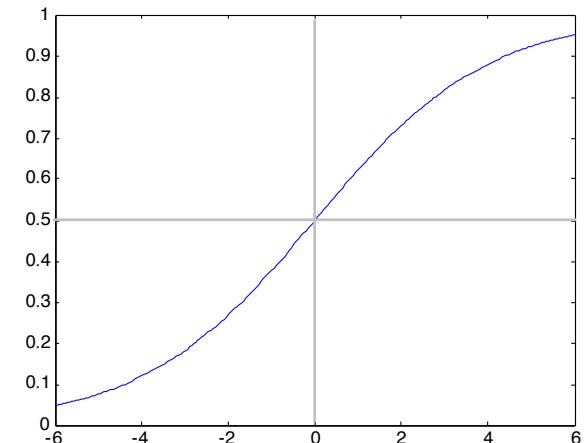
$w_0 = -2, w_1 = -1$



$w_0 = 0, w_1 = -1$



$w_0 = 0, w_1 = -0.5$



# Sigmoid for binary classes

$$\mathbb{P}(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1|w, X) = 1 - \mathbb{P}(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

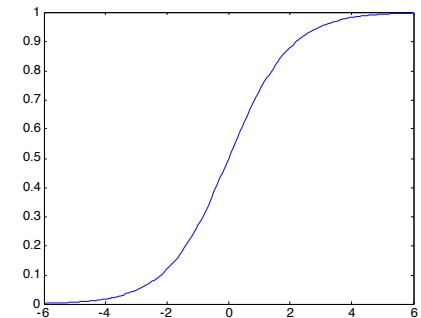
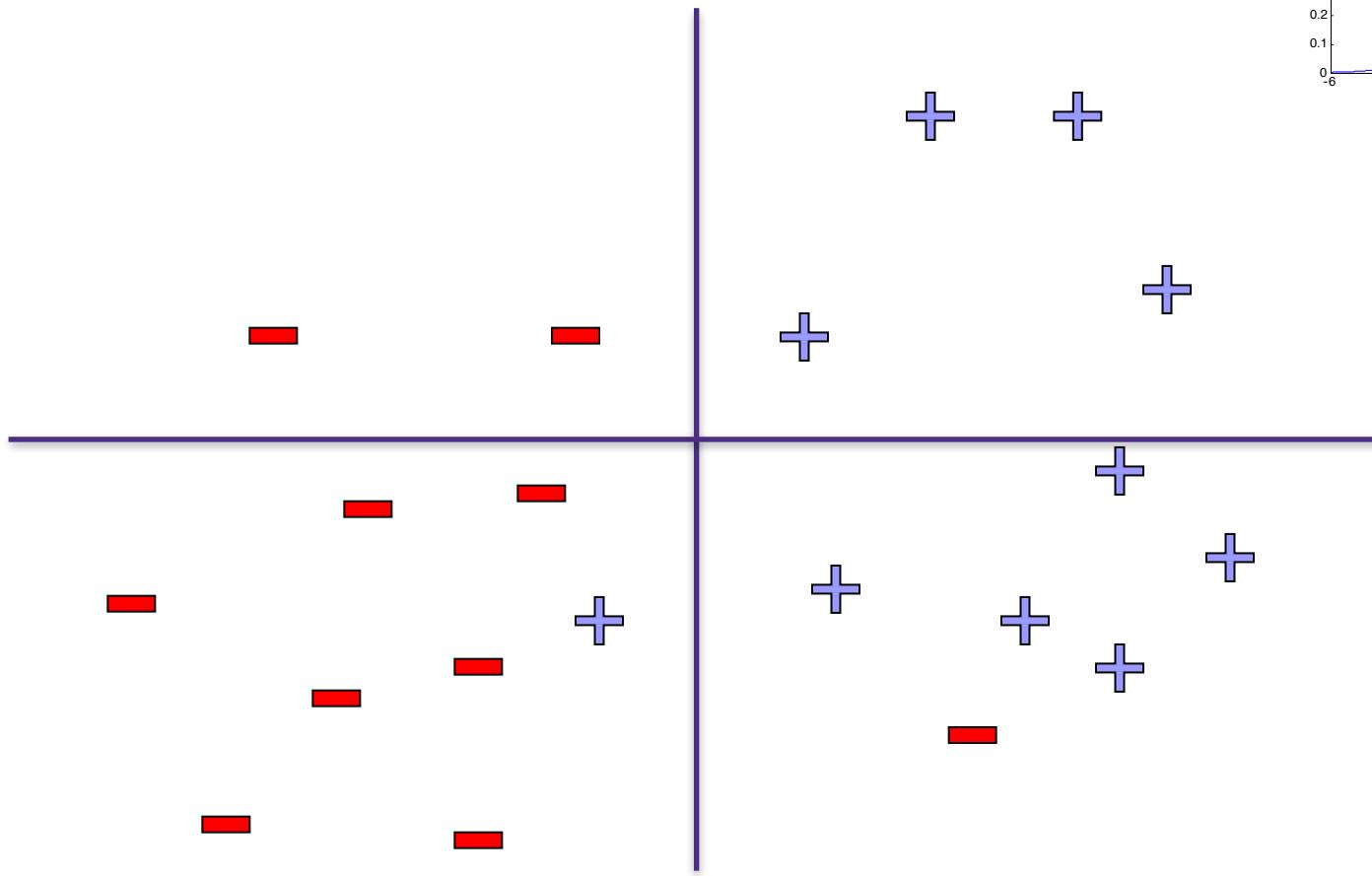
$$\frac{\mathbb{P}(Y = 1|w, X)}{\mathbb{P}(Y = 0|w, X)} = \exp(w_0 + \sum_k w_k X_k)$$

**Linear Decision Rule!**

$$\log \frac{\mathbb{P}(Y = 1|w, X)}{\mathbb{P}(Y = 0|w, X)} = w_0 + \sum_k w_k X_k$$

# Logistic Regression – a Linear classifier

$$\frac{1}{1 + \exp(-z)}$$



$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$$

# Loss function: Conditional Likelihood

- **Have a bunch of iid data:**

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$$

$$P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}$$

$$P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

- **This is equivalent to:**

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

- **So we can compute the maximum likelihood estimator:**

$$\hat{w}_{MLE} = \arg \max_w \prod_{i=1}^n P(y_i|x_i, w)$$

# Loss function: Conditional Likelihood

- **Have a bunch of iid data:**

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$$

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

$$\begin{aligned}\hat{w}_{MLE} &= \arg \max_w \prod_{i=1}^n P(y_i|x_i, w) \\ &= \arg \min_w \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w))\end{aligned}$$

Logistic Loss:  $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

Squared error Loss:  $\ell_i(w) = (y_i - x_i^T w)^2$

(MLE for Gaussian noise)

# Loss function: Conditional Likelihood

- **Have a bunch of iid data:**  $\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$

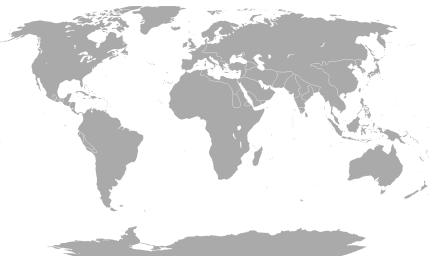
$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

$$\begin{aligned}\hat{w}_{MLE} &= \arg \max_w \prod_{i=1}^n P(y_i|x_i, w) \\ &= \arg \min_w \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w)) = J(w)\end{aligned}$$

**Bad news:** no closed-form solution to maximize  $J(\mathbf{w})$

# How do we encode categorical data $y$ ?

- so far, we considered Binary case where there are two categories
- encoding  $y$  is simple:  $\{+1, -1\}$
- multi-class classification predicts categorial  $y$
- taking values in  $C = \{c_1, \dots, c_k\}$
- $c_j$ 's are called **classes** or **labels**
- examples:



Country of birth  
(Argentina, Brazil, USA,...)



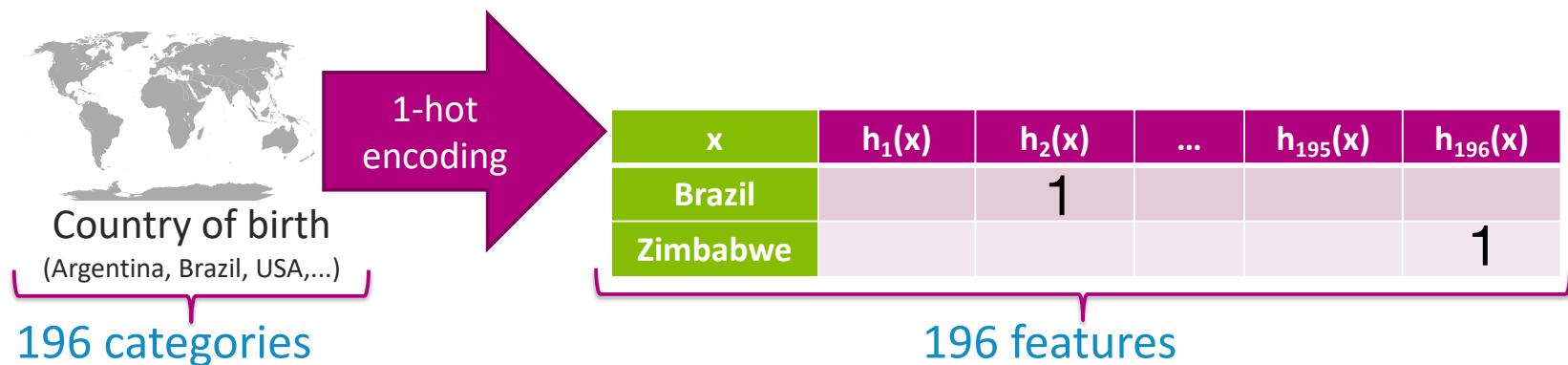
Zipcode  
(10005, 98195,...)

All English words

- a **k-class classifier** predicts  $y$  given  $x$

# Embedding $c_j$ 's in real values

- for optimization we need to **embed** raw categorical  $c_j$ 's into real valued vectors
- there are many ways to embed categorial data
  - True->1, False->-1
  - Yes->1, Maybe->0, No->-1
  - Yes->(1,0), Maybe->(0,0), No->(0,1)
  - Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)
  - Ordered sequence:  
(Horse 3, Horse 1, Horse 2) -> (3,1,2)
- we use **one-hot embedding** (a.k.a. **one-hot encoding**)
  - each class is a standard basis vector in  $k$ -dimension



# Multi-class logistic regression

- data: categorical  $y$  in  $\{c_1, \dots, c_k\}$  with  $k$  categories

we use one-hot encoding, s.t.  $y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$  implies that  $y = c_1$

- model: linear vector-function makes a linear prediction  $\hat{y} \in \mathbb{R}^k$

$$\hat{y}_i = f(x_i) = w^T x_i \in \mathbb{R}^k$$

with model parameter matrix  $w \in \mathbb{R}^{d \times k}$  and sample  $x_i \in \mathbb{R}^d$

$$f(x_i) = \begin{bmatrix} f_1(x_i) \\ f_2(x_i) \\ \vdots \\ f_k(x_i) \end{bmatrix} = \underbrace{\begin{bmatrix} w_{1,0} & w_{1,1} & w_{1,2} & \cdots \\ w_{2,0} & w_{2,1} & w_{2,2} & \cdots \\ \vdots & & & \\ w_{k,0} & w_{k,1} & w_{k,2} & \cdots \end{bmatrix}}_{w^T} \underbrace{\begin{bmatrix} 1 \\ x_i[1] \\ \vdots \\ x_i[d] \end{bmatrix}}_{x_i} = \begin{bmatrix} w_{1,0} + w_{1,1}x_i[1] + w_{1,2}x_i[2] + \cdots \\ w_{2,0} + w_{2,1}x_i[1] + w_{2,2}x_i[2] + \cdots \\ \vdots \\ w_{k,0} + w_{k,1}x_i[1] + w_{k,2}x_i[2] + \cdots \end{bmatrix}$$

$$w = [w[:, 1] \quad w[:, 2] \quad \cdots \quad w[:, k]]$$

- Logistic regression

2 classes

$$\mathbb{P}(y_i = -1 | x_i) = \frac{1}{1 + e^{w^T x_i}}$$

$$\mathbb{P}(y_i = +1 | x_i) = \frac{1}{1 + e^{-w^T x_i}} = \frac{e^{w^T x_i}}{1 + e^{w^T x_i}}$$

k classes

$$\mathbb{P}(y_i = c_1 | x_i) = \frac{e^{w[:,1]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

⋮

$$\mathbb{P}(y_i = c_k | x_i) = \frac{e^{w[:,k]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

Without loss of generality setting  $w[:,1]=0$  when  $k = 2$  recovers the original binary class case

Maximum Likelihood Estimator

$$\underset{w}{\text{maximize}} \quad \frac{1}{n} \sum_{i=1}^n \log(\mathbb{P}(y_i | x_i))$$

$$\underset{w \in \mathbb{R}^d}{\text{maximize}} \quad \frac{1}{n} \sum_{i=1}^n \log\left(\frac{1}{1 + e^{-y_i w^T x_i}}\right)$$

$$\underset{w \in \mathbb{R}^{d \times k}}{\text{maximize}} \quad \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k \mathbf{I}\{y_i = c_j\} \log\left(\frac{e^{w[:,j]^T x_i}}{\sum_{j'=1}^k e^{w[:,j']^T x_i}}\right)$$

$\mathbf{I}\{y_i = j\}$  is an indicator that is one only if  $y_i = j$

# Kernels

---

UNIVERSITY *of* WASHINGTON

W

# Creating Features

- Feature mapping  $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^p$  maps original data into a rich and high-dimensional feature space (usually  $d \ll p$ )

For example, in  $d=1$ , one can use

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_k(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

For example, for  $d>1$ , one can generate vectors  $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$

and define features:

$$\phi_j(x) = \cos(u_j^T x)$$

$$\phi_j(x) = (u_j^T x)^2$$

$$\phi_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$

# Creating Features

- Feature mapping  $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^p$  maps original data into a rich and high-dimensional feature space (usually  $d \ll p$ )

For example, in  $d=1$ , one can use

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_k(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

For example, for  $d>1$ , one can generate vectors  $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$

and define features:

$$\phi_j(x) = \cos(u_j^T x)$$

$$\phi_j(x) = (u_j^T x)^2$$

$$\phi_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$

- How many coefficients/parameters are there for degree- $k$  polynomials for  $x = (x_1, \dots, x_d) \in \mathbb{R}^d$  ?

# How do we deal with high-dimensional lifts/data?

## The kernel trick:

A function  $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$  is a *kernel* for a map  $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^p$  if  $K(x, x') = \langle \phi(x), \phi(x') \rangle$  for all  $x, x'$

**Big idea:** if we can represent our

- training algorithms and
- decision rules for prediction

as functions of dot products of feature maps (i.e.  $\{\langle \phi(x), \phi(x') \rangle\}$ ) and we can find a kernel for our feature map such that

$$K(x, x') = \langle \phi(x), \phi(x') \rangle$$

then we can avoid explicitly computing and storing (high-dimensional)  $\{\phi(x_i)\}_{i=1}^n$  and instead only work with the kernel matrix of the training data  $\{K(x_i, x_j)\}_{i,j \in \{1, \dots, n\}}$

# Recap: Kernels are much more efficient to compute than features

- As illustrating examples, consider polynomial features of degree exactly  $k$

- $\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$  for  $k = 1$  and  $d = 2$ , then  $K(x, x') = x_1 x'_1 + x_2 x'_2$
- $\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$  for  $k = 2$  and  $d = 2$ , then  $K(x, x') = (x^T x')^2$

# Recap: Kernels are much more efficient to compute than features

- As illustrating examples, consider polynomial features of degree exactly  $k$

- $\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$  for  $k = 1$  and  $d = 2$ , then  $K(x, x') = x_1 x'_1 + x_2 x'_2$
- $\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$  for  $k = 2$  and  $d = 2$ , then  $K(x, x') = (x^T x')^2$

- Note that for a data point  $x_i$ , **explicitly** computing the feature  $\phi(x_i)$  takes memory/time  $p = d^k$
- For a data point  $x_i$ , if we can make predictions by only computing the kernel, then computing  $\{K(x_i, x_j)\}_{j=1}^n$  takes memory/time  $dn$ 
  - The features are **implicit** and accessed only via kernels, making it efficient

# Examples of popular Kernels

- Polynomials of degree exactly  $k$

$$K(x, x') = (x^T x')^k$$

- Polynomials of degree up to  $k$

$$K(x, x') = (1 + x^T x')^k$$

- Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function)

$$K(x, x') = \exp\left(-\frac{\|x - x'\|_2^2}{2\sigma^2}\right)$$

- Sigmoid

$$K(x, x') = \tanh(\gamma x^T x' + r)$$

- All these kernels are efficient to compute, but the corresponding features are in high-dimensions

# Ridge Linear Regression as Kernels

- Recall Ridge regression:  $\hat{w} = \arg \min_{w \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- Consider the trivial kernel  $K(x, x') = x^T x'$
- Training:  $\hat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y}$
- Prediction:  $x_{\text{new}} \in \mathbb{R}^d$   $\hat{y}_{\text{new}} = \hat{w}^T x_{\text{new}} = \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$
- Hence, to make prediction on any future data points, all we need to know is
  - $\mathbf{X} x_{\text{new}} = \begin{bmatrix} x_1^T x_{\text{new}} \\ \vdots \\ x_n^T x_{\text{new}} \end{bmatrix} = \begin{bmatrix} K(x_1, x_{\text{new}}) \\ \vdots \\ K(x_n, x_{\text{new}}) \end{bmatrix} \in \mathbb{R}^n$ , and  $\mathbf{X} \mathbf{X}^T = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots \\ \vdots & \vdots & \vdots \\ K(x_n, x_1) & K(x_n, x_2) & \cdots \end{bmatrix} \in \mathbb{R}^{n \times n}$
- **Key idea:** Now consider  $\hat{w} = \arg \min_{w \in \mathbb{R}^p} \sum_{i=1}^n (y_i - w^T \phi(x_i))^2 + \lambda \|w\|_2^2$  and use an *any* kernel  $K(x, x') = \phi(x)^T \phi(x')$ !

# The Kernel Trick

- Given data  $\{(x_i, y_i)\}_{i=1}^n$ , pick a kernel  $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$

- For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^n \alpha_i x_i \quad \text{for some } \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \text{ to be learned}$$

Prediction is  $\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^n \alpha_i x_i^T x_{\text{new}}$

- Design an algorithm that finds  $\alpha$  while accessing the data only via  $\{x_i^T x_j\}$

- Substitute  $x_i^T x_j$  with  $K(x_i, x_j)$ , and find  $\alpha$  using the above algorithm from step 2.

- Make prediction with  $\widehat{y}_{\text{new}} = \sum_{i=1}^n \alpha_i K(x_i, x_{\text{new}})$

(replacing  $x_i^T x_{\text{new}}$  with  $K(x_i, x_{\text{new}})$ )

# The Kernel Trick for regularized least squares

$$\widehat{w} = \arg \min_w \sum_{i=1}^n (y_i - w^T x_i)^2 + \lambda \|w\|_2^2$$

There exists an  $\alpha \in \mathbb{R}^n$ :  $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. We will prove it later)

$$\widehat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle x_i, x_j \rangle$$

(Step 2. Write an algorithm in terms of  $\widehat{\alpha}$ )

$$\widehat{\alpha}_{\text{kernel}} = \arg \min_{\alpha} \sum_{i=1}^n (y_i - \sum_{j=1}^n \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$= \arg \min_{\alpha} \|\mathbf{y} - \mathbf{K}\alpha\|_2^2 + \lambda \alpha^T \mathbf{K} \alpha$$

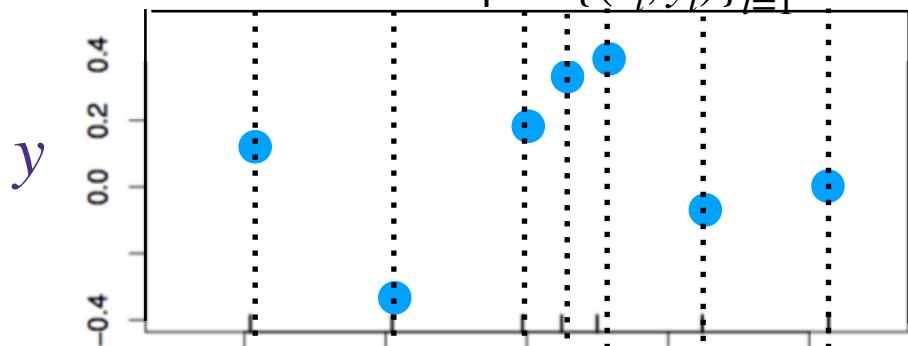
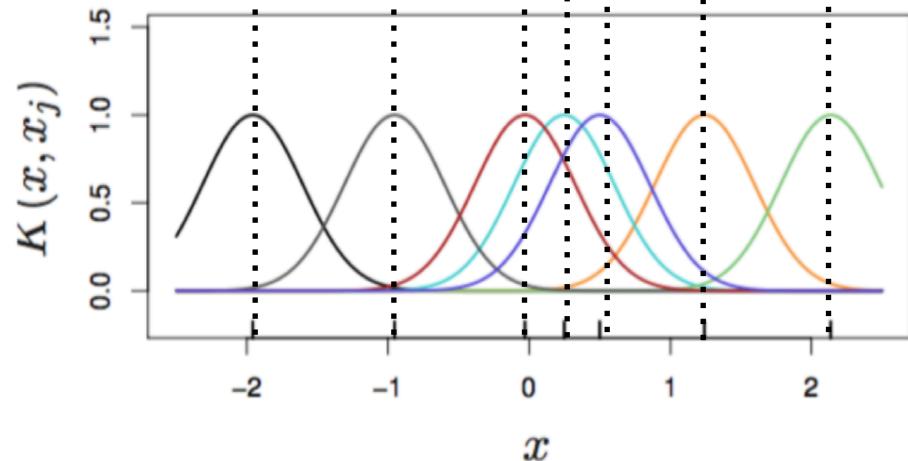
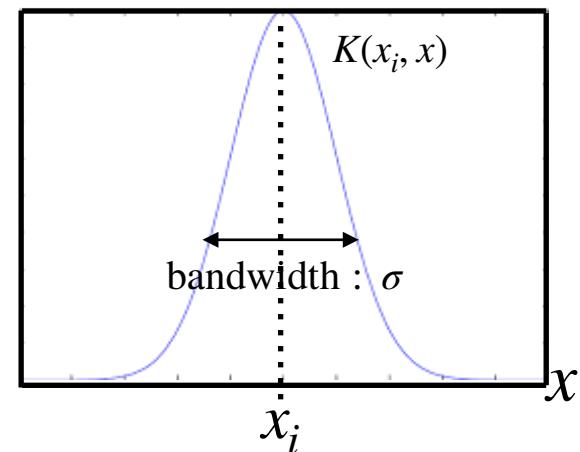
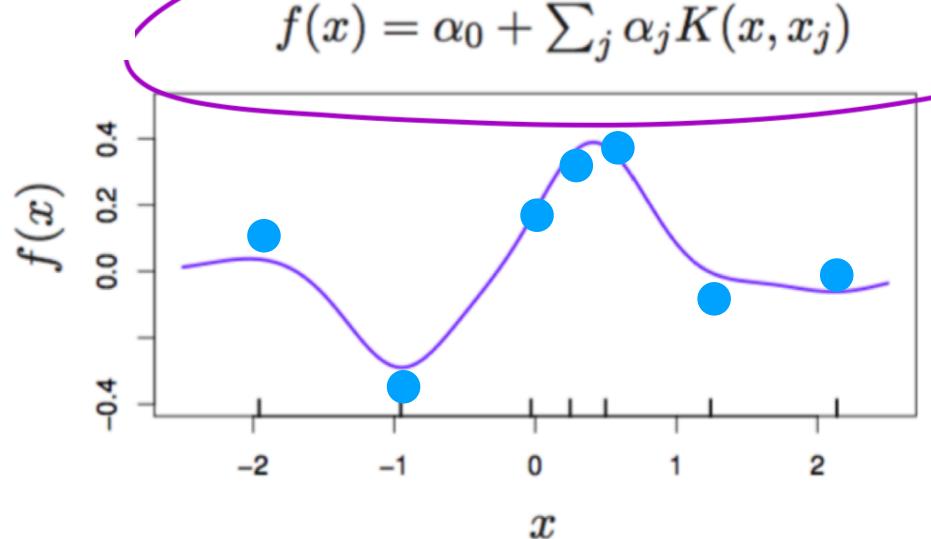
Where  $\mathbf{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$

(Solve for  $\widehat{\alpha}_{\text{kernel}}$ )

Thus,  $\widehat{\alpha}_{\text{kernel}} = (\mathbf{K} + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y}$

RBF kernel  $k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}$

samples  $\{(x_i, y_i)\}_{i=1}^n$



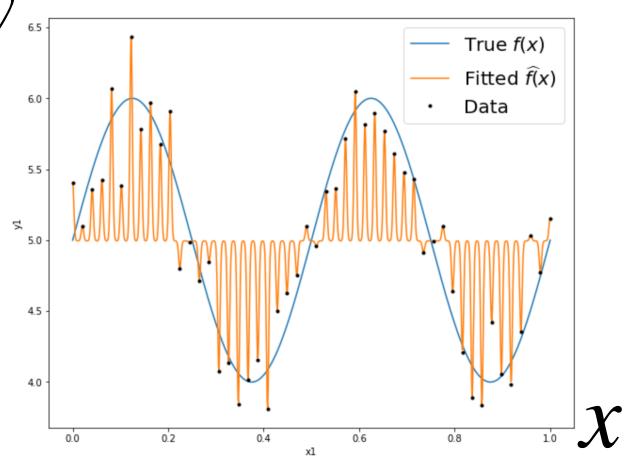
- predictor  $f(x) = \sum_{i=1}^n \alpha_i K(x_i, x)$  is taking weighted sum of  $n$  kernel functions centered at each sample points

# RBF kernel

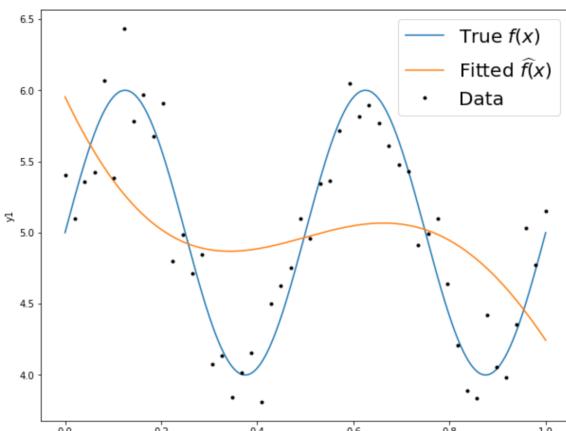
$$k(x_i, x) = \exp \left\{ -\frac{\|x_i - x\|_2^2}{2\sigma^2} \right\}$$

- $\mathcal{L}(\alpha) = \|\mathbf{K}\alpha - \mathbf{y}\|_2^2 + \lambda\|w\|_2^2$
- The bandwidth  $\sigma^2$  of the kernel regularizes the predictor, and the regularization coefficient  $\lambda$  also regularizes the predictor

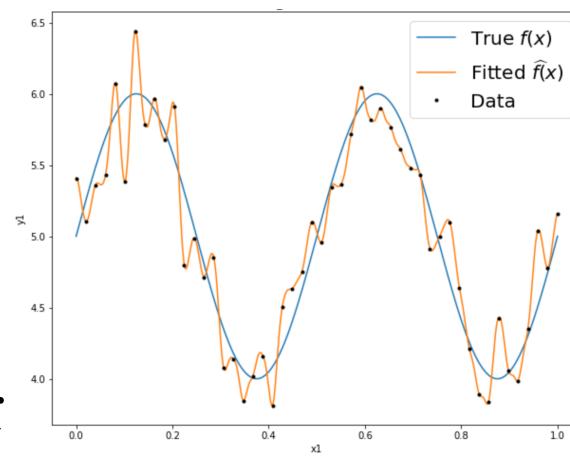
$$\sigma = 10^{-3} \quad \lambda = 10^{-4}$$



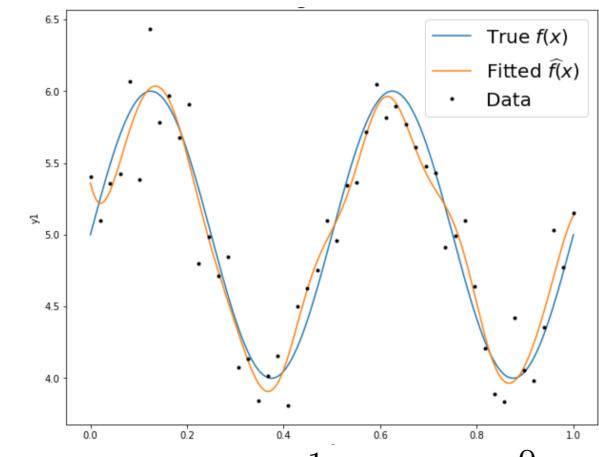
$$\sigma = 10^{-0} \quad \lambda = 10^{-4}$$



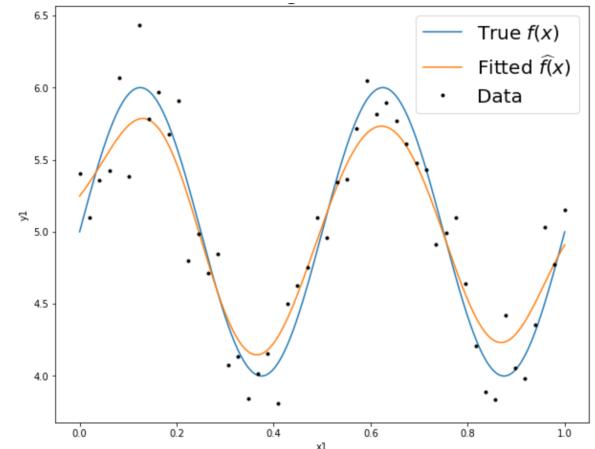
$$\sigma = 10^{-2} \quad \lambda = 10^{-4}$$



$$\sigma = 10^{-1} \quad \lambda = 10^{-4}$$



$$\sigma = 10^{-1} \quad \lambda = 10^{-0}$$



$$\hat{f}(x) = \sum_{i=1}^n \hat{\alpha}_i K(x_i, x)$$

# Fixed Feature V.S. Learned Feature

---

Can we learn the feature mapping  $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^p$  from data also?