
Announcements: 

• Project Presentations + Q&A, Thu June 12, 6:30pm PT (CSE2 G10)

• Great opportunity to learn about each other’s projects

• Attendance is mandatory

• Active participation rewarded with extra credit
• Upload your project deliverables on Gradescope by Sunday, June 8 23:59pm PT 

– no late periods so that we can give you feedback and grades quickly

• Project Report

• Presentation Video (and slides PDF if possible)

• 6 minutes (no credit if longer)
• Metadata (primarily dataset info)
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 Course evaluation is out

▪ https://uw.iasystem.org/survey/310219

▪ Also see link on Ed (pinned) and in our email announcement

 We appreciate your feedback!

 Let’s do it right now ☺ 
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 Overview of causal inference and counterfactual reasoning

 Slides based on KDD 2018 Tutorial by Emre Kıcıman and Amit 
Sharma: http://causalinference.gitlab.io/kdd-tutorial/

 Additional resources
▪ UW Econ 488: Causal Inference

▪ UW Stat 566: Causal Modeling

▪ Books
▪ Pearl. Book of Why

▪ Rosenbaum. Design of Observational Studies

▪ Kiciman & Sharma. https://causalinference.gitlab.io/ (free, in-progress) 
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When is prediction / big data not enough?

What is causality?

Potential Outcomes Framework

Unobserved Confounds & Simpson’s Paradox

Structural Causal Model Framework





 Recommender Systems
 Social Networks
 …

 We have increasing amounts of data and highly accurate 
predictions! Why do we need causal inference? 
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Can we predict a user's 
future activity based on 
exposure to their social 
feed?
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Use the social feed to predict a user's future activity.

• Future Activity -> f(items in social feed) + 𝜖

Highly predictive model.

Does it mean that feeds are influencing us significantly?



Would changing what 
people see in the feed 
affect what a user likes?

Maybe, maybe not (!)
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Items liked 
by a user

Homophily

Items in 
Social Feed

Items liked 
by a user

Items in 
Social Feed

Predictability due to 
feed influence

Predictability due to
homophily
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http://www.tylervigen.com/spurious-correlations
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 Train/test from same distribution in supervised 
learning

 No such guarantee in real life!
 Problematic: Acting on a prediction changes 

distribution!
▪ Incl. critical domains: healthcare or adversarial scenarios.

 Connections to covariate shift, domain adaptation 
[Mansour et al. 2009, Ben-David 2007].
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 “Look at how much data I had…”
 ”How could I be wrong? I used 3 billion data points!”
 “This is just noise. All the problems will cancel out…”

 Beware! You do need to worry about bias and variance! 
 More data does not help you reduce bias!
 Today: Sources of bias, how to model it, & what to do about it
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 “The Unreasonable Effectiveness of Data”

▪ By Alon Halevy, Peter Norvig, and Fernando Pereira at Google

▪ Simple models + Lots of data work very well

 Now consider context of causal inference

▪ Measurement error, confounding, and selection bias common 
threats to causal inference, are independent of sample size

▪ Intuition: When we can’t observe counterfactuals, observing 
more data will not help us!
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...common threats to causal inference, including:

1. Construct validity

▪ E.g. measurement error

2. Internal Validity

▪ E.g. confounding

3. External Validity

▪ E.g. selection effects
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 Def: Are you measuring what you think you are 
measuring?
▪ Especially important operationalization of theoretical 

construct / new “sensor” 
(e.g. social media, linguistic proxy)

 How to demonstrate?
▪ Convergent validity: Simultaneous measures of same 

construct correlate
▪ Discriminant validity: Doesn't measure what it 

shouldn’t
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Big Data typically means little control 

over how anything was measured



 Def: Soundness of research design
 What potential selection effects / 

confounding are there?

▪ Is data missing non-randomly?

▪ Could measurement be biased across key groups? 

▪ Does population change across multiple analyses 
(complicating comparisons)?
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 How robust are findings across different choices 
along the way?

▪ How robust are results with respect to 
inclusion/exclusion of outliers?

 How many hypotheses are being tested?

▪ May need to control false discovery rate 

 Are distributional / parametric assumptions valid? 

▪ Consider non-parametric models and bootstrapping
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Big Data typically means observational data, 

convenience samples, and no pre-registration



 Def: Can findings be generalized to other 
situations and to other people?

 How biased is the study population?

▪ Ex: “Internet Explorer users”

▪ Ex: “Chrome latest beta users” 

▪ Ex: “Smartphone owner + health app installed”

▪ Convenience samples can be WEIRD, especially 
motivated, lack key groups of interest, …
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Big Data typically means more data, 

but more of the same!
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• Unclear, predictive algorithms provide no insight on effects of decisions

How often do they lead us to the right decision?

• Correlations can change
• Causal mechanisms are more robust

Will the predictions be robust tomorrow, or in new contexts?

• Active interventions change correlations 

What if the prediction accuracy is really high? Does that help?

• More data doesn’t necessarily help.

• Consider construct, internal and external validity when answering questions through data.

Does Big Data save us?





 Questions of cause and effect common in 
biomedical and social sciences

 Such questions form the basis of almost all 
scientific inquiry
▪ Medicine: drug trials, effect of a drug

▪ Social sciences: effect of a certain policy

▪ Genetics: effect of genes on disease

▪ So what is causality?

▪ What does it mean to cause something?
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 A fundamental question
 Surprisingly, until very recently---maybe the last 30+ years---

we have not had a mathematical language of causation.  We 
have not had an arithmetic for representing causal 
relationships.  
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“More has been learned about causal inference in the last few 
decades than the sum total of everything that had been 
learned about it in all prior recorded history.”

--Gary King, Harvard University



Level Typical Activity Typical Question Examples

1. Association
𝑃 𝑦 𝑥)

Seeing What is?
How would seeing 𝑋 
change my belief in 
𝑌?

What does a symptom tell me 
about a disease?
What does a survey tell us about the 
election results?

2. Intervention
𝑃 𝑦 𝑑𝑜 𝑥 , 𝑧)

Doing, 
Intervening

What if?
What if I do 𝑋?

What if I take aspirin, will my 
headache be cured?
What if we ban cigarettes?

3. Counterfactuals
𝑃 𝑦𝑥  𝑥′,  𝑦′ )

Imagining, 
Retrospection

Why?
Was it 𝑋 that caused 
𝑌?
What if I had acted 
differently?

Was it the aspirin that stopped my 
headache?
Would Kennedy be alive had 
Oswald not shot him?
What if I had not been smoking the 
past 2 years?
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Definition: T causes Y iff 

 changing T leads to a change in Y, 

 keeping everything else constant.

The causal effect is the magnitude by which Y is changed by a unit 
change in T.

Called the “interventionist” interpretation of causality.

32

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]

http://plato.stanford.edu/entries/causation-mani/
http://plato.stanford.edu/entries/causation-mani/
http://plato.stanford.edu/entries/causation-mani/


“What-if” questions
Reason about a world that does not exist.

 What if a system intervention was not done?
 What if an algorithm was changed?
 What if I gave a drug to a patient?
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Alice Treatment
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Alice
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Alice
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𝑌𝑇=0𝑌𝑇=1

Causal effect of 
treatment = 

𝐸[𝑌𝑇=1 − 𝑌𝑇=0]

Average Treatment Effect (ATE)
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Person T 𝒀𝑻=𝟏 𝒀𝑻=𝟎

P1 1 0.4 0.3

P2 0 0.8 0.6

P3 1 0.3 0.2

P4 0 0.3 0.1

P5 1 0.5 0.5

P6 0 0.6 0.5

P7 0 0.3 0.1

Causal effect: 𝐸 𝑌𝑡=1 − 𝑌𝑡=0

Fundamental problem of causal 
inference: For any person, observe 
only one: either 𝑌𝑡=1or 𝑌𝑡=0



 “Missing data” problem
 Estimate missing data values using various methods
 𝑌𝑇=0 now becomes an estimated quantity, based on 

outcomes of other people who did not receive treatment
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𝑌𝑇=1𝑌𝑇=0



One way to estimate counterfactual
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In many cases, we cannot randomize / intervene 
/ A-B test (cf. offline evaluation).

 Practicality: Exposure to treatment may be 
hard to manipulate

▪ Ex: Environmental effects (air pollution)

 Ethical concerns: Known negative effects

▪ Ex: Is suicide contagious?

 Efficiency: Experimental science is expensive 
and takes time

▪ Ex: Studying impact on mortality 10 years later

 …
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 Before: ATE – Average Treatment Effect

▪ 𝐸[𝑌𝑇=1 − 𝑌𝑇=0]
▪ This is average causal effect across entire population 

 ATE could be different on treated vs untreated group
▪ Ex: Special Job Training -> Average Annual Earning

▪ Not everyone needs that job training – Policymakers may be interested only in effect on low income 
population.

▪ Ex: Hip Surgery -> Walking Ability
▪ Doctors are not interested in effect of hip surgery on healthy population. What does it change for 

someone who has difficulty walking?

▪ Often we care about particular populations!

 ATT – Average Treatment Effect on the Treated

▪ 𝐸[𝑌𝑇=1 − 𝑌𝑇=0 | T=1]
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 Potential outcomes reasons about causal effects by comparing 
outcome of treatment to outcome of no-treatment

 The Fundamental Problem of Causal Inference: 
For any individual, we cannot observe both treatment and no-
treatment.

 Randomized experiments are one elegant solution, but not 
always possible

▪ We’ll discuss other solutions on later today

6/5/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 45





 Which treatment should a doctor recommend for kidney stones?
 Simpson’s paradox: After accounting for the confounder (stone size) 

the best choice reverses.
 Critical for decision making 
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Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)
 

Both 78% (273/350)
 

83% (289/350)

Charig et al., BMJ 1986



 Unobserved confounds are a threat to causal reasoning and to 
decision making
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 People may have inter-related characteristics

▪ How are these characteristics associated with each other?

 Other factors can influence the observed outcome

▪ How do they affect treatment and outcome?

▪ Which ones to include?

 How to identify the causal effect in such cases?

 When is it possible to find a causal effect?

▪ We can use graphical model framework to answer this
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Age

YT

Age

YT

Gender Age

YT

Stress

𝑿 = {𝐴𝑔𝑒} 𝑿 = {𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟} 𝑿 = {𝐴𝑔𝑒}
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Age

YT

Stress

Occupation

Age

YT

Exercise

Muscle 
Strength

𝑿 =? 𝑿 =?



Edges represent direct causes.
Directed paths represent indirect causes.
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𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = ℎ 𝐴𝑔𝑒, 𝑢𝑜

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑘 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, 𝑢𝑠

𝑇 = 𝑔 𝐴𝑔𝑒, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, 𝑢𝑡

𝑌 = 𝑓(𝑇, 𝐴𝑔𝑒, 𝑆𝑡𝑟𝑒𝑠𝑠, 𝑢𝑦)

Age

YT

Stress

Occupation

Structural Equation Models with Random Errors
u’s are “error variables” or “exogenous variables”



The graph encodes all causal assumptions. 
54

Age

YT

Stress

Occupation

Age

YT

Exercise

Muscle 
Strength
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Age

YT

Stress

Occupation

Assumption 1: Occupation does 
affect outcome Y.
Assumption 2: Age does not affect 
stress.
Assumption 3: Stress does not affect 
Occupation.
Assumption 4: Treatment does not 
affect stress.

..and so on.

Condition for validity: The graph reflects all relevant causal processes.



If a person was given treatment, what is the probability that he 
would be cured if he was not given treatment?
  𝑷 𝒀 = 𝟏 𝑻 = 𝟏, 𝑻 = 𝟎
Non-sensical.

Can write it as:
𝑷 𝒀𝑻=𝟎 = 𝟏 𝑻 = 𝟏 , 𝒐𝒓

𝑷(𝒀 = 𝟏|𝑻 = 𝟏, 𝒅𝒐 𝑻 = 𝟎 )

𝑃(𝑌|𝑑𝑜(𝑇)) avoids confusion with 𝑃(𝑌|𝑇)
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do-calculus: A rule-based calculus that can help identify any 
counterfactual quantity (Pearl)
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Age

YT

Stress

Occupation

do-calculus is complete: If we cannot identify 
using do-calculus, causal effect is unidentifiable. 

E.g.,
𝑃 𝑌 𝑑𝑜 𝑇
= ⋯ 𝑑𝑜−𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 𝑟𝑢𝑙𝑒𝑠 … 
 

= 

𝐴𝑔𝑒,𝑆𝑡𝑟𝑒𝑠𝑠

𝑃 𝑌 𝑇, 𝐴𝑔𝑒, 𝑆𝑡𝑟𝑒𝑠𝑠 𝑃(𝐴𝑔𝑒, 𝑆𝑡𝑟𝑒𝑠𝑠)



Three kinds of 
node-edges
Path is 
“blocked”
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A A A

If conditioned on A If conditioned on A If not conditioned on A

“Back-door” path: Any undirected path that starts with                    and ends with 

Back-door criterion:  If conditioning on X blocks all back-door paths between treatment T 
and outcome Y, and X does not include any descendants of T, then

𝑷(𝒀|𝒅𝒐(𝑻))  =  

𝒙

𝑷 𝒀 𝑻, 𝑿 = 𝒙 𝑷(𝑿 = 𝒙)

T Y
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Age

YT

Age

YT

Gender Age

YT

Stress

𝑿 = {𝐴𝑔𝑒} 𝑿 = {𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟} 𝑿 = {𝐴𝑔𝑒}
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Age

YT

Stress

Occupation

Age

YT

Exercise

Muscle 
Strength

𝑿 = 𝐴𝑔𝑒, 𝑆𝑡𝑟𝑒𝑠𝑠
𝑿 = {𝐴𝑔𝑒, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛}

𝑿 =
𝑿 = {𝑀𝑢𝑠𝑐𝑙𝑒𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒}
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Sprinkler 
on Rain

Grass is 
wet

A

If not conditioned on A

In causal inference, a collider is a variable 
that is causally influenced by two or more 
other variables (its “parents”).

 Conditioning on (or knowing the value 
of) a collider can induce a spurious 
correlation between its parent 
variables, even if they are otherwise 
independent.



Use structural causal model and do-calculus for 
modeling the problem
making assumptions explicit
identifying the causal effect

Use potential outcomes-based methods for 
estimating the causal effect

63



 Allow us to make causal assumptions explicit

▪ Assumptions are the missing edges!

 Provide language for expressing counterfactuals

 Well-defined mechanisms for reasoning about causal 
relationships

▪ E.g., Backdoor criterion
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 Causality is important for decision-making and study of effects

 Big Data does not necessarily address threats to causal inference

 Potential Outcomes Framework gives practical method for estimating 
causal effects
▪ Translates causal inference into counterfactual estimation

 Unobserved confounds are a critical challenge

 Structural Causal Model Framework gives language for expressing and 
reasoning about causal relationships

 After the break: Methods for causal inference in observational data
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