 Announcements
« Colab 9 on causal inference — out today, due next Sun
« Lecture next week on causal inference — be ready to do the colab

Submodular Optimization

CSEP590A Machine Learning for Big Data
Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Motivation

Learned about: LSH/Similarity search &
recommender systems

Search: “jaguar

Google I'

ST

Uncertainty about the user’s information need

Don’t put all eggs in one basket!
Relevance isn’t everything — need diversity!
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Many applications need diversity!

Recommendation:

NETFLIX

Summarization:
“Robert Downey Jr.”

WIKIPEDIA

News Media:



Automatic Timeline Generation

aaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

e \

Goal: Timeline should express their relationships to other

people through events (personal, collaboration,
mentorship, etc.)

Why timelines?
Easier: Wikipedia article is 18 pages long
Context: Through relationships & event descriptions
Exploration: Can “jump” to other people/entities
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Problem Definition

Given:
Relevant relationships
Events that each cover some relationships

Goal: Given a large set of events, pick a small
subset that explains most known
relationships (“the timeline”)
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Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html

Example Timeline

ﬁ ﬂ H %
‘% -I
' BES ™
Deborah Q i The Party's

Ben Stiller P —— Fiona Apple s

B
.

Susan Dow;'ley Iron Man 2 Iron Man 3

&S.fw’;’i o !
e Chaplin FETRITETS P;.I-I Mch.I Gothik Iron Man The Aveng:
Downey, Sr. apil Pictures Y ea othika ro a & Avengers
1995 2000 2005 2010

“RDJr starred in Chaplin\

in 1992 together with _
Anthony Hopkins.” Good overview ]
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http://cs.stanford.edu/~althoff/timemachine/demo.html

Why diversity?

User studies: People hate redundancy!

Chaplin
Academy
Award N.

Rented Lips
US Release

|ron Man Iron Man

US Release Award
Ceremony | VS

Iron Man
US Release

Iron Man

EU Release

Want to see more diverse set of relationships




Diversity as Coverage



Encode Diversity as Coverage

= ldea: Encode diversity as coverage problem
= Example: Selecting events for timeline

= Try to cover all important relationships

:( 1 i - v \'
h f -
B e B 47

AVENGERS

Miv4 -




What is being covered?

Q: What is being covered?
A: Relationships

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

Downey Jr. starred in Chaplin together with Anthony Hopkins

Q: Who is doing the covering?
A: Timeline Events
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Simple Coverage Model

Suppose we are given a set of events E X,
Each event e coversaset X, C U of
e

relationships
For a set of events § C F we define:

F(S) = || ] X

ecS
Goal: We want to max F'(S)  Cardinality
SISk Constraint

Note: F(S) is a set function: F(S) : 2¥ — N
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Maximum Coverage Problem

Given universe of elements U = {uq,...,u,}
andsets {X1,..., X} CU

U: all relationships
X:: relationships
covered by event |

Goal: Find set of k events X,...X, covering most of U

More precisely: Find set of k events X,...X, whose size of
the union is the largest
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Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:
Start with S, = {}
Fori=1..k

Take event e that max F'(.S5;_1 Ue)
Let S; = S;_1 U {6} E(S)

Example:
Eval. F({e,}), ..., F({e,}), pick best (say e,)

Eval. F({e,} u {e,}), ..., F({e,;} u {e}), pick best (say e,)
Eval. F({e,, e,} u {e5}), ..., F({e,, e,} u {e}), pick best
And so on...
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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When Greedy Heuristic Fails?

5/29

/2025

C

Goal: Maximize the size of the covered area
with two sets

Greedy first picks A and then C

But the optimal way would be to pick B and C
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Bad News & Good News

Bad news: Maximum Coverage is NP-hard

Related to Set Cover Problem

Good news: Good approximations exist

Problem has certain structure to it that even
simple greedy algorithms perform reasonably well

Details in 2" half of lecture

Now: Generalize our objective for timeline
generation

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Issue 1: Not all relationships are created equal

Objective values all relationships equally

F(S)= | ) Xc|=) 1where R= ] X,

eesS reR ecS

Unrealistic: Some relationships are more
important than others

use different weights (“weighted coverage function”)

F(S) = w(r) w: R — RT
reR
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Example weight function

Use global importance weights
How much interest is there?

Could be measured as

* w(X) = # search queries for person X
= w(X) = # Wikipedia article views for X
* w(X) = # news article mentions for X

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

v

Ca Dtaln Amerlca Anthonv Hopkins Gwyneth Paltrow Susan Downey
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Better weight function

Captain America Justin Bieber Susan Downey Tim Althoff

¢ Applying global importance weights

Some relationships are not (very) globally
important but (not) highly relevant to timeline
Need relevant to timeline instead of globally
relevant

w(Susan Downey | RDJr) > w(Justin Bieber | RDIJr)
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Capturing relevance to timeline

Can use co-occurrence statistics
w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))
Similar: Pointwise mutual information (PMI)

How often do X and Y occur together compared to
what you would expect if they were independent

Accounts for popular entities (e.g., Justin Bieber)
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Issue 2: Differentiating between events

How to differentiate between two events that
cover the same relationships”?

Example: Robert and Susan Downey
Event 1: Wedding, August 27, 2005
Event 2: Minor charity event, Nov 11, 2006

We need to be able to distinguish these!

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Scoring of event timestamps

Further improvement when we not only score
relationships but also score the event timestamp

F(S) =) wr(r)H)_wr(t)

reR e€cS where
/ \ U
ecS
Relationship (as before) Timestamps

Again, use co-occurrences for weights wy
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Co-occurrences on Web Scale

Marvel's The Avengers

-_at_ s 1N

Release Date: May 04, 2012

Stamng Gvyneth Paltrow, Chris Evans, Scarlett Johansson, Chris Hemsworth, Tom Hiddleston,
: Stellan Skarsgard, Clark Gregg, Jeremy Renner, Mark Ruffalo, Cobie Smulders,

Robert Downey Jr.

3
Y
ﬂ
2
@

()
O
3
“Robert Downey Jr” and “May 4, 2012” occurs 173
times on 71 different webpages

US Release date of The Avengers
Use MapReduce on 10B web pages (10k+ machines)
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Complete Optimization Problem

Generalized earlier coverage function to
linear combination of weighted coverage

functions
where
F(S) =Y wr(r)+ > wr(t)
reR ecS It = U Ao
ecS

Goal: max F(S)
|S|<k

Still NP-hard
(because generalization of NP-hard problem)
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Next

How can we actually optimize this function?
What structure is there that will help us do
this efficiently?

Any questions so far?

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Approximate Solution

For this optimization problem, Greedy

produces a solution S
s.t. F(S) =>(1-1/e)*OPT (F(S) =0.63*0OPT)

[Nemhauser, Fisher, Wolsey "78]

Claim holds for functions F(:) which are:
= Submodular, Monotone, Normal, Non-negative

(discussed next)
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Submodularity: Definition 1

Definition:
Set function F(-) is called submodular if:
For all PQc U:

F(P) + F(Q) > F(PL Q) + F(PN Q)
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Submodularity: Definition 2

Checking the previous definition is not easy in practice

Substitute P=A U{d}and Q=B where

in the definition above
From before: F(P) + F(Q) = F(P_L Q) + F(P Q)

F(AU{d}) + F(B) = F(Au{d} uB) + F((AL{d}) N B)

F(AU{d}) + F(B) = F(BLAd}) + F(A)

F(AU{d}) - F(A) = F(BLAd}) - F(B)

Common definition of Submodularity
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Submodularity: Definition 2

Diminishing returns characterization

F(A _d)—-F(A) 2 F(B _d) - F(B)

Gain of adding d to a small set Gain of adding d to a large set

+ed < Large improvement |

+ o d <small improvement|
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Submodularity: Diminishing Returns

F(A _d)-F(A) 2 F(B _d)-F(B)

Gain of adding d to a small set Gain of adding d to a large set
“- VAcCB
F(B U d)
F(B)
F(A U d)
F(A) Adding d to B helps less
than adding it to Al

Solution size |A]
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Submodularity: An important property

Let F, ... F,, be submodular functions and

A, ... A\, 20 and let S denote some solution set,
then the non-negative linear combination F(S)
(defined below) of these functions is also
submodular.
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Submodularity: Approximation Guarantee

When maximizing a submodular function with
cardinality constraints, Greedy produces a
solution S for which F(S) > (1-1/e)*OPT

i.e., (F(S) =0.63*0PT)

[Nemhauser, Fisher, Wolsey "78]

Claim holds for functions F(-) which are:
" Monotone: if A B then F(A) < F(B)

= Normal: F({})=0

= Non-negative: For any A, F(A) =20

" In addition to being submodular
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Back to our Timeline Problem



Simple Coverage Model

Suppose we are given a set of events E X,
Each event e covers a set X, of
e

relationships U
For a set of events § C F we define:

F(S) = || ] X

ecS
Goal: We want to max F'(S) Cardinality
S|<k o Constraint

Note: F(S) is a set function: F(S) : 2¥ — N

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Simple Coverage: Submodular?

Claim: F(S) =

U X,

ecS

is submodular.

AE

Gain of adding X, to a smaller set

Gain of adding X, to a larger set

F(A UX,)-F(A) 2 F(B UX.)-F(B)

5/29/2025




Simple Coverage: Other Properties

Claim: F'(S) =

U X

ecS

is normal & monotone

Normality: When S is empty, LEJSXG is empty.

Monotonicity: Adding a new event to S can
never decrease the number of relationships

covered by S.

What about non-negativity?

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Lea

Monotone: if A < B then F(A) < F(B)
Normal: F({})=0
Non-negative: For any A, F(A) >0
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity

Monotonicity

Normality
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Weighted Coverage (Relationships)

FS) =Y wr) w:R-RY ge|x

reR e€S

Claim: F(S) is submodular.

Consider two sets Aand Bs.t. AcBc S andletus
consideranevente ¢ B
Three possibilities when we add e to A or B:

= Case 1: e does not cover any new relationships w.r.t
bothAand B

F(AU {e})-F(A)=0=FBU {e})-F(B)
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Weighted Coverage (Relationships)

F(S):Zw(r) w:R— RT
reR
Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 2: e covers some new relationships w.r.t A but not
w.r.t B

F(AU {e})-—F(A)= v where v 20
F(BU {e})—F(B)=0
Therefore, F(A U {e}) — F(A) > F(B U {e}) — F(B)
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Weighted Coverage (Relationships)

F(S):Zw(r) w:R— RT
reR
Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 3: e covers some new relationships w.r.t both A and
B

F(AU {e})—F(A)=v where v>0
F(BU {e}) —F(B) =u where u>0

But, v > u because e will always cover fewer new
relationships w.r.t B than w.r.t A because Ac B
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Weighted Coverage (Relationships)

5/29

/2025

FS) =S wlr) w:iR—RY A-UX

es
rcR ‘

Claim: F(S) is monotone and normal.
Normality: When Sis empty, = eLGJSXe is empty.
Monotonicity: Adding a new event to S can

never decrease the number of relationships
covered by S.



Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/

Monotonicity \/ \/

Normality \/ \/
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Weighted Coverage (Timestamps)

F(S) =) wrl(t)

ecS

Claim: F(S) is submodular, monotone and
normal

Analogous arguments to that of weighted
coverage (relationships) are applicable
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/ \/

Monotonicity \/ \/ \/

Normality \/ \/ \/
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Complete Optimization Problem

= Generalized earlier coverage function to non-
negative linear combination of weighted
coverage functions

where
R = U X,
ecS

= Goal: max I'(S
1S|<k

= Claim: F(A) is submodular, monotone and
normal

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 49



Complete Optimization Problem

Submodularity: F(S) is a non-negative linear
combination of two submodular functions.
Therefore, it is submodular too.

Normality: F,({}) = 0 = F,({})
Fo({}) +F,({}) =0

Monotonicity: Let Ac B c S,
F.(A) <F,(B) and F,(A) < F,(B)
F1(A) + Fy(A) < F;(B) + F,(B)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a



Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity v v v Ve

Monotonicity \/ \/ \/ \/

Normality \/ \/ \/ \/

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 51



Lazy Optimization of
Submodular Functions



Greedy Solution

Greedy
Marginal gain: Greedy Algorithm is Slow!
F5Lx)-FS) At each iteration, we need to
- evaluate marginal gains of all
> [l the remaining elements
c Runtime O(|U| * K) for
d selecting K elements out of
¢ the set U

Add element with
highest marginal gain
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Speeding up Greedy

In round i:
So farwe have S, ; ={e; ... e}

Now we pick an element e S, ; which maximizes
the marginal benefit A, = F(S;; U {e}) — F(S;.,)
Key observation:

Marginal gain of any element e can never
increase!

For every element e:
A; (e) = Aj(e) for all iterations i < |
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[Leskovec etal., KDD '07]

Lazy Greedy

Idea:
A b g A (i >i Upper bound on
Use jdsS upper-pound on \j (f > l) Marginal gain A,

Lazy Greedy: 2 | A=)
Keep an ordered list of marginal b

benefits A; from previous iteration

Re-evaluate A, only for top node

Re-sort and prune

F(A uldf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec etal., KDD '07]

Lazy Greedy

Idea:
A b g A (i >i Upper bound on
Use jdsS upper-pound on \j (f > l) Marginal gain A,

Lazy Greedy: 2 | A=)
Keep an ordered list of marginal b

benefits A; from previous iteration

Re-evaluate A, only for top node

Re-sort and prune

F(A uldf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec etal., KDD '07]

Lazy Greedy

Idea:

Upper bound on

Use A; as upper-bound on A; (G > 1) \arginal gaina,

Lazy Greedy: 2 | A=)
Keep an ordered list of marginal d . A,={a,b}

benefits A; from previous iteration

Re-evaluate A, only for top node

€

Re-sort and prune

C

F(A uldf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec etal., KDD '07]

Speed Up of Lazy Greedy Algorithm

Lazy greedy offers significant speed-up over
traditional greedy implementations in
practice.

400 |~ \ \ \ \ \
exhaustive search
<—
*— o 300 [ (all subsets)
0 S
e
0 5
Ra) ] naive
W %200
— &
Q =
(% .8100
[
— [
2
v B S S g
1 2 3 4 5 6 7 9 10

8
number of elements selected
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