
• Announcements

• Colab 9 on causal inference – out today, due next Sun

• Lecture next week on causal inference – be ready to do the colab



 Learned about: LSH/Similarity search & 
recommender systems

 Search:  “jaguar”

 Uncertainty about the user’s information need

▪ Don’t put all eggs in one basket!

 Relevance isn’t everything – need diversity!
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 Recommendation: 

 Summarization: 
“Robert Downey Jr.”

 News Media:
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 Goal: Timeline should express their relationships to other 
people through events (personal, collaboration, 
mentorship, etc.)

 Why timelines? 
▪ Easier: Wikipedia article is 18 pages long
▪ Context: Through relationships & event descriptions
▪ Exploration: Can “jump” to other people/entities

May 4, 2012

April 4, 1965

Timestamp

Related Entity

The Avengers

Samuel L Jackson

Robert Downey Jr.

Subject

1-hop 

event

2-hop 

event

related through 

2-hop event
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a
te

Robert  Downey  Jr.  (1965—)

1985 1990 1995 2000 2005 2010 2015

The  Avengers

Ben  Stiller

Ally  McBeal

Iron  Man  3Susan  Downey

Gothika

The  Party's

Over
Fiona  Apple

Robert

Downey,  Sr.
Iron  Man

Deborah

Falconer

Chaplin

Iron  Man  2

Paramount

Pictures

TimelinePerson

[Althoff et al., KDD 2015]
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 Given:

▪ Relevant relationships

▪ Events that each cover some relationships

 Goal: Given a large set of events, pick a small 
subset that explains most known 
relationships (“the timeline”)
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Robert  Downey  Jr.  (1965—)

1985 1990 1995 2000 2005 2010 2015

The  Avengers

Ben  Stiller

Ally  McBeal

Iron  Man  3Susan  Downey

Gothika

The  Party's

Over
Fiona  Apple

Robert

Downey,  Sr.
Iron  Man

Deborah

Falconer

Chaplin

Iron  Man  2

Paramount

Pictures

“RDJr starred in Chaplin 
in 1992 together with 

Anthony Hopkins.” Good overview

Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html  
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http://cs.stanford.edu/~althoff/timemachine/demo.html


 User studies: People hate redundancy!

vs

Iron Man
US Release

 Want to see more diverse set of relationships

Iron Man
EU Release

Iron Man
Award 
Ceremony

Iron Man
US Release

Rented Lips
US Release

Chaplin
Academy
Award N.
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 Idea: Encode diversity as coverage problem
 Example: Selecting events for timeline

▪ Try to cover all important relationships



 Q: What is being covered?
 A: Relationships

 Q: Who is doing the covering?
 A: Timeline Events

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Downey Jr. starred in Chaplin together with Anthony Hopkins
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 Suppose we are given a set of events E
▪ Each event e covers a set                     of 

relationships
 For a set of events                  we define:

 Goal: We want to 

 Note: F(S) is a set function:

e

Cardinality
Constraint
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 Given universe of elements 
and sets 

 Goal: Find set of k events X1…Xk covering most of U

▪ More precisely: Find set of k events X1…Xk whose size of 
the union is the largest

UX1
X2

X3

X4

U: all relationships
Xi: relationships 
covered by event i
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Simple Heuristic: Greedy Algorithm:
 Start with S0 = {}
 For i = 1…k

▪ Take event e that max

▪ Let 

 Example:
▪ Eval. F({e1}), …, F({em}), pick best (say e1)

▪ Eval. F({e1} u {e2}), …, F({e1} u {em}), pick best (say e2)

▪ Eval. F({e1, e2} u {e3}), …, F({e1, e2} u {em}), pick best

▪ And so on…
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 Goal: Maximize the covered area
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 Goal: Maximize the covered area
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 Goal: Maximize the size of the covered area 
with two sets

 Greedy first picks A and then C
 But the optimal way would be to pick B and C

A

B C
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 Bad news: Maximum Coverage is NP-hard

▪ Related to Set Cover Problem

 Good news: Good approximations exist

▪ Problem has certain structure to it that even 
simple greedy algorithms perform reasonably well

▪ Details in 2nd half of lecture

 Now: Generalize our objective for timeline 
generation
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 Objective values all relationships equally

 Unrealistic: Some relationships are more 
important than others
▪ use different weights (“weighted coverage function”)
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▪ Use global importance weights

▪ How much interest is there?

▪ Could be measured as
▪ w(X) = # search queries for person X

▪ w(X) = # Wikipedia article views for X

▪ w(X) = # news article mentions for X

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey
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 Some relationships are not (very) globally 
important but (not) highly relevant to timeline

 Need relevant to timeline instead of globally 
relevant
w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

Captain America Justin Bieber Tim AlthoffSusan Downey

Captain America Justin Bieber Tim AlthoffSusan Downey

Applying global importance weights

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 23



 Can use co-occurrence statistics
w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))

▪ Similar: Pointwise mutual information (PMI)

▪ How often do X and Y occur together compared to 
what you would expect if they were independent

▪ Accounts for popular entities (e.g., Justin Bieber)
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 How to differentiate between two events that 
cover the same relationships?

 Example: Robert and Susan Downey

▪ Event 1: Wedding, August 27, 2005

▪ Event 2: Minor charity event, Nov 11, 2006

 We need to be able to distinguish these!
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 Further improvement when we not only score 
relationships but also score the event timestamp

Relationship (as before) Timestamps

 Again, use co-occurrences for weights wT

where
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m
arvel.co
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• “Robert Downey Jr” and “May 4, 2012” occurs 173 
times on 71 different webpages

• US Release date of The Avengers

• Use MapReduce on 10B web pages (10k+ machines)
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 Generalized earlier coverage function to 
linear combination of weighted coverage 
functions

 Goal:

 Still NP-hard 
(because generalization of NP-hard problem)

where
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 How can we actually optimize this function?
 What structure is there that will help us do 

this efficiently?

 Any questions so far?
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 For this optimization problem, Greedy 
produces a solution S 
s.t. F(S)  (1-1/e)*OPT    (F(S)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) which are:

▪ Submodular, Monotone, Normal, Non-negative

  (discussed next)
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Definition:
 Set function F(·) is called submodular if:

For all P,Q U:
 F(P) + F(Q)   F(P Q) + F(P Q)

QP
P   Q

++ 
P  Q
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 Checking the previous definition is not easy in practice

 Substitute P = A  {d} and Q = B where A B and d B 
in the definition above 

From before: F(P) + F(Q)   F(P Q) + F(P Q)

F(A {d}) + F(B)   F(A {d}  B) + F((A {d})  B)

F(A {d}) + F(B)   F(B{d}) + F(A)

F(A {d}) – F(A)   F(B{d}) – F(B)

Common definition of Submodularity
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 Diminishing returns characterization 

dB      A

d

+

+

Large improvement

Small improvement

Gain of adding d to a small set Gain of adding d to a large set

F(A  d) – F(A)   ≥  F(B  d) – F(B)
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F
(·

)

Solution size |A|

F(A)

F(A  d)

F(B  d)
A  B 

F(B)

Adding d to B helps less

than adding it to A!

Gain of adding d to a small set Gain of adding d to a large set

F(A  d) – F(A)   ≥  F(B  d) – F(B)
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Let F1 … FM be submodular functions and 
λ1 … λM ≥ 0 and let S denote some solution set, 
then the non-negative linear combination F(S) 
(defined below) of these functions is also 
submodular.
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 When maximizing a submodular function with 
cardinality constraints, Greedy produces a 
solution S for which F(S)  (1-1/e)*OPT             
i.e., (F(S)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) which are:

▪ Monotone: if A  B then F(A)  F(B)

▪ Normal: F({})=0

▪ Non-negative: For any A, F(A)  0

▪ In addition to being submodular
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 Suppose we are given a set of events E
▪ Each event e covers a set         of 

relationships U
 For a set of events                  we define:

 Goal: We want to 

 Note: F(S) is a set function:

e

Cardinality
Constraint
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 Claim:                                 is submodular.  

A

B

Xe

Xe

Gain of adding Xe to a smaller set 

Gain of adding Xe to a larger set 

A  B 
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 Claim:                             is normal & monotone

 Normality: When S is empty,             is empty. 

 Monotonicity: Adding a new event to S can 
never decrease the number of relationships 
covered by S.

 What about non-negativity?
Monotone: if A  B then F(A)  F(B)

Normal: F({})=0
Non-negative: For any A, F(A)  0
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Simple 
Coverage

Weighted 
Coverage 

(Relationships)

Weighted 
Coverage 

(Timestamps)

Complete 
Optimization 

Problem

Submodularity

Monotonicity

Normality
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 Claim: F(S) is submodular.  

▪ Consider two sets A and B s.t. A  B  S and let us 
consider an event e  B 

▪ Three possibilities when we add e to A or B:

▪ Case 1: e does not cover any new relationships w.r.t 
both A and B

   F(A U {e}) – F(A) = 0 = F(B U {e}) – F(B)

where
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 Claim: F(S) is submodular.  

▪ Three possibilities when we add e to A or B:

▪ Case 2: e covers some new relationships w.r.t A but not 
w.r.t B

   F(A U {e}) – F(A) = v where v  0

  F(B U {e}) – F(B) = 0

   Therefore, F(A U {e}) – F(A)  F(B U {e}) – F(B)
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 Claim: F(S) is submodular.  

▪ Three possibilities when we add e to A or B:

▪ Case 3: e covers some new relationships w.r.t both A and 
B

   F(A U {e}) – F(A) = v  where v  0

  F(B U {e}) – F(B) = u where  u  0

  But, v  u because e will always cover fewer new 
relationships w.r.t B than w.r.t A because A B 
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 Claim: F(S) is monotone and normal.   

 Normality: When S is empty,                is empty. 

 Monotonicity: Adding a new event to S can 
never decrease the number of relationships 
covered by S.

where
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5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 46



 Claim: F(S) is submodular, monotone and 
normal

 Analogous arguments to that of weighted 
coverage (relationships) are applicable
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 Generalized earlier coverage function to non-
negative linear combination of weighted 
coverage functions

 Goal:

 Claim: F(A) is submodular, monotone and 
normal  

where
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 Submodularity: F(S) is a non-negative linear 
combination of two submodular functions. 
Therefore, it is submodular too.  

 Normality: F1({}) = 0 = F2({}) 
                             F1({}) + F2({}) = 0

 Monotonicity: Let A  B  S, 
    F1(A)  F1(B) and F2(A)  F2(B)
    F1(A) + F2(A)  F1(B) + F2(B)
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 Greedy Algorithm is Slow!
 At each iteration, we need to 

evaluate marginal gains of all 
the remaining elements

 Runtime O(|U| * K) for 
selecting K elements out of 
the set U

a

b

c

d

Marginal gain:
F(Sx)-F(S)

e

Greedy

Add element with 
highest marginal gain
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 In round i: 

▪ So far we have Si-1 = {e1  … ei-1}

▪ Now we pick an element e  Si-1 which maximizes 
the marginal benefit Δi = F(Si-1 U {e}) – F(Si-1)  

 Key observation: 

▪ Marginal gain of any element e can never 
increase!

▪ For every element e:
Δi (e)  Δj(e) for all iterations i < j 
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune
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[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A  B 

Upper bound on
Marginal gain 1



 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune
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[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B) A  B 

A1={a}

Upper bound on 
Marginal gain 2



 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune
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Upper bound on 
Marginal gain 2

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A2={a,b}

A  B 



 Lazy greedy offers significant speed-up over 
traditional greedy implementations in 
practice. 
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[Leskovec et al., KDD ’07]
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 Althoff et. al., TimeMachine: Timeline Generation for 
Knowledge-Base Entities, KDD 2015

 Leskovec et. al., Cost-effective Outbreak Detection in 
Networks, KDD 2007

 Andreas Krause, Daniel Golovin, Submodular 
Function Maximization

 ICML Tutorial: 
http://submodularity.org/submodularity-icml-part1-
slides-prelim.pdf

 Learning and Testing Submodular Functions: 
http://grigory.us/cis625/lecture3.pdf

 UW Research by Jeff Bilmes (ECE)
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