
• Announcements

• Colab 9 on causal inference – out today, due next Sun

• Lecture next week on causal inference – be ready to do the colab

 Learned about: LSH/Similarity search &
recommender systems

 Search: “jaguar”

 Uncertainty about the user’s information need

▪ Don’t put all eggs in one basket!

 Relevance isn’t everything – need diversity!

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 2

 Recommendation:

 Summarization:
“Robert Downey Jr.”

 News Media:

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 3

 Goal: Timeline should express their relationships to other
people through events (personal, collaboration,
mentorship, etc.)

 Why timelines?
▪ Easier: Wikipedia article is 18 pages long
▪ Context: Through relationships & event descriptions
▪ Exploration: Can “jump” to other people/entities

May 4, 2012

April 4, 1965

Timestamp

Related Entity

The Avengers

Samuel L Jackson

Robert Downey Jr.

Subject

1-hop

event

2-hop

event

related through

2-hop event

D
o
B

s
ta
rIn

s
ta
rI
n

re
lD
a
te

Robert Downey Jr. (1965—)

1985 1990 1995 2000 2005 2010 2015

The Avengers

Ben Stiller

Ally McBeal

Iron Man 3Susan Downey

Gothika

The Party's

Over
Fiona Apple

Robert

Downey, Sr.
Iron Man

Deborah

Falconer

Chaplin

Iron Man 2

Paramount

Pictures

TimelinePerson

[Althoff et al., KDD 2015]

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 4

 Given:

▪ Relevant relationships

▪ Events that each cover some relationships

 Goal: Given a large set of events, pick a small
subset that explains most known
relationships (“the timeline”)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 5

Robert Downey Jr. (1965—)

1985 1990 1995 2000 2005 2010 2015

The Avengers

Ben Stiller

Ally McBeal

Iron Man 3Susan Downey

Gothika

The Party's

Over
Fiona Apple

Robert

Downey, Sr.
Iron Man

Deborah

Falconer

Chaplin

Iron Man 2

Paramount

Pictures

“RDJr starred in Chaplin
in 1992 together with

Anthony Hopkins.” Good overview

Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 6

May 4, 2012

April 4, 1965

Timestamp

Related Entity

The Avengers

Samuel L Jackson

Robert Downey Jr.

Subject

1-hop

event

2-hop

event

related through

2-hop event

D
o
B

s
ta
rIn

s
ta
rI
n

re
lD
a
te

http://cs.stanford.edu/~althoff/timemachine/demo.html

 User studies: People hate redundancy!

vs

Iron Man
US Release

 Want to see more diverse set of relationships

Iron Man
EU Release

Iron Man
Award
Ceremony

Iron Man
US Release

Rented Lips
US Release

Chaplin
Academy
Award N.

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 7

 Idea: Encode diversity as coverage problem
 Example: Selecting events for timeline

▪ Try to cover all important relationships

 Q: What is being covered?
 A: Relationships

 Q: Who is doing the covering?
 A: Timeline Events

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Downey Jr. starred in Chaplin together with Anthony Hopkins

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 10

 Suppose we are given a set of events E
▪ Each event e covers a set of

relationships
 For a set of events we define:

 Goal: We want to

 Note: F(S) is a set function:

e

Cardinality
Constraint

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 11

 Given universe of elements
and sets

 Goal: Find set of k events X1…Xk covering most of U

▪ More precisely: Find set of k events X1…Xk whose size of
the union is the largest

UX1
X2

X3

X4

U: all relationships
Xi: relationships
covered by event i

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 12

Simple Heuristic: Greedy Algorithm:
 Start with S0 = {}
 For i = 1…k

▪ Take event e that max

▪ Let

 Example:
▪ Eval. F({e1}), …, F({em}), pick best (say e1)

▪ Eval. F({e1} u {e2}), …, F({e1} u {em}), pick best (say e2)

▪ Eval. F({e1, e2} u {e3}), …, F({e1, e2} u {em}), pick best

▪ And so on…

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 13

 Goal: Maximize the covered area

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 14

 Goal: Maximize the covered area

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 15

 Goal: Maximize the covered area

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 16

 Goal: Maximize the covered area

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 17

 Goal: Maximize the covered area

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 18

 Goal: Maximize the size of the covered area
with two sets

 Greedy first picks A and then C
 But the optimal way would be to pick B and C

A

B C

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 19

 Bad news: Maximum Coverage is NP-hard

▪ Related to Set Cover Problem

 Good news: Good approximations exist

▪ Problem has certain structure to it that even
simple greedy algorithms perform reasonably well

▪ Details in 2nd half of lecture

 Now: Generalize our objective for timeline
generation

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 20

 Objective values all relationships equally

 Unrealistic: Some relationships are more
important than others
▪ use different weights (“weighted coverage function”)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 21

▪ Use global importance weights

▪ How much interest is there?

▪ Could be measured as
▪ w(X) = # search queries for person X

▪ w(X) = # Wikipedia article views for X

▪ w(X) = # news article mentions for X

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 22

 Some relationships are not (very) globally
important but (not) highly relevant to timeline

 Need relevant to timeline instead of globally
relevant
w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

Captain America Justin Bieber Tim AlthoffSusan Downey

Captain America Justin Bieber Tim AlthoffSusan Downey

Applying global importance weights

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 23

 Can use co-occurrence statistics
w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))

▪ Similar: Pointwise mutual information (PMI)

▪ How often do X and Y occur together compared to
what you would expect if they were independent

▪ Accounts for popular entities (e.g., Justin Bieber)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 24

 How to differentiate between two events that
cover the same relationships?

 Example: Robert and Susan Downey

▪ Event 1: Wedding, August 27, 2005

▪ Event 2: Minor charity event, Nov 11, 2006

 We need to be able to distinguish these!

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 25

 Further improvement when we not only score
relationships but also score the event timestamp

Relationship (as before) Timestamps

 Again, use co-occurrences for weights wT

where

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 26

m
arvel.co

m

• “Robert Downey Jr” and “May 4, 2012” occurs 173
times on 71 different webpages

• US Release date of The Avengers

• Use MapReduce on 10B web pages (10k+ machines)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 27

 Generalized earlier coverage function to
linear combination of weighted coverage
functions

 Goal:

 Still NP-hard
(because generalization of NP-hard problem)

where

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 28

 How can we actually optimize this function?
 What structure is there that will help us do

this efficiently?

 Any questions so far?

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 29

 For this optimization problem, Greedy
produces a solution S
s.t. F(S)  (1-1/e)*OPT (F(S)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) which are:

▪ Submodular, Monotone, Normal, Non-negative

 (discussed next)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 30

Definition:
 Set function F(·) is called submodular if:

For all P,Q U:
 F(P) + F(Q)  F(P Q) + F(P Q)

QP
P  Q

++ 
P  Q

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 31

 Checking the previous definition is not easy in practice

 Substitute P = A  {d} and Q = B where A B and d B
in the definition above

From before: F(P) + F(Q)  F(P Q) + F(P Q)

F(A {d}) + F(B)  F(A {d}  B) + F((A {d})  B)

F(A {d}) + F(B)  F(B{d}) + F(A)

F(A {d}) – F(A)  F(B{d}) – F(B)

Common definition of Submodularity
5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 32

 Diminishing returns characterization

dB A

d

+

+

Large improvement

Small improvement

Gain of adding d to a small set Gain of adding d to a large set

F(A  d) – F(A) ≥ F(B  d) – F(B)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 33

F
(·

)

Solution size |A|

F(A)

F(A  d)

F(B  d)
A  B

F(B)

Adding d to B helps less

than adding it to A!

Gain of adding d to a small set Gain of adding d to a large set

F(A  d) – F(A) ≥ F(B  d) – F(B)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 34

Let F1 … FM be submodular functions and
λ1 … λM ≥ 0 and let S denote some solution set,
then the non-negative linear combination F(S)
(defined below) of these functions is also
submodular.

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 35

 When maximizing a submodular function with
cardinality constraints, Greedy produces a
solution S for which F(S)  (1-1/e)*OPT
i.e., (F(S)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) which are:

▪ Monotone: if A  B then F(A)  F(B)

▪ Normal: F({})=0

▪ Non-negative: For any A, F(A)  0

▪ In addition to being submodular
5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 36

 Suppose we are given a set of events E
▪ Each event e covers a set of

relationships U
 For a set of events we define:

 Goal: We want to

 Note: F(S) is a set function:

e

Cardinality
Constraint

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 38

 Claim: is submodular.

A

B

Xe

Xe

Gain of adding Xe to a smaller set

Gain of adding Xe to a larger set

A  B
5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 39

F(A  Xe) – F(A) ≥ F(B  Xe) – F(B)

 Claim: is normal & monotone

 Normality: When S is empty, is empty.

 Monotonicity: Adding a new event to S can
never decrease the number of relationships
covered by S.

 What about non-negativity?
Monotone: if A  B then F(A)  F(B)

Normal: F({})=0
Non-negative: For any A, F(A)  0

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 40

Simple
Coverage

Weighted
Coverage

(Relationships)

Weighted
Coverage

(Timestamps)

Complete
Optimization

Problem

Submodularity

Monotonicity

Normality

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 41

 Claim: F(S) is submodular.

▪ Consider two sets A and B s.t. A  B  S and let us
consider an event e  B

▪ Three possibilities when we add e to A or B:

▪ Case 1: e does not cover any new relationships w.r.t
both A and B

 F(A U {e}) – F(A) = 0 = F(B U {e}) – F(B)

where

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 42

 Claim: F(S) is submodular.

▪ Three possibilities when we add e to A or B:

▪ Case 2: e covers some new relationships w.r.t A but not
w.r.t B

 F(A U {e}) – F(A) = v where v  0

 F(B U {e}) – F(B) = 0

 Therefore, F(A U {e}) – F(A)  F(B U {e}) – F(B)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 43

 Claim: F(S) is submodular.

▪ Three possibilities when we add e to A or B:

▪ Case 3: e covers some new relationships w.r.t both A and
B

 F(A U {e}) – F(A) = v where v  0

 F(B U {e}) – F(B) = u where u  0

 But, v  u because e will always cover fewer new
relationships w.r.t B than w.r.t A because A B

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 44

 Claim: F(S) is monotone and normal.

 Normality: When S is empty, is empty.

 Monotonicity: Adding a new event to S can
never decrease the number of relationships
covered by S.

where

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 45

Simple
Coverage

Weighted
Coverage

(Relationships)

Weighted
Coverage

(Timestamps)

Complete
Optimization

Problem

Submodularity

Monotonicity

Normality

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 46

 Claim: F(S) is submodular, monotone and
normal

 Analogous arguments to that of weighted
coverage (relationships) are applicable

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 47

Simple
Coverage

Weighted
Coverage

(Relationships)

Weighted
Coverage

(Timestamps)

Complete
Optimization

Problem

Submodularity

Monotonicity

Normality

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 48

 Generalized earlier coverage function to non-
negative linear combination of weighted
coverage functions

 Goal:

 Claim: F(A) is submodular, monotone and
normal

where

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 49

 Submodularity: F(S) is a non-negative linear
combination of two submodular functions.
Therefore, it is submodular too.

 Normality: F1({}) = 0 = F2({})
 F1({}) + F2({}) = 0

 Monotonicity: Let A  B  S,
 F1(A)  F1(B) and F2(A)  F2(B)
 F1(A) + F2(A)  F1(B) + F2(B)

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 50

Simple
Coverage

Weighted
Coverage

(Relationships)

Weighted
Coverage

(Timestamps)

Complete
Optimization

Problem

Submodularity

Monotonicity

Normality

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 51

 Greedy Algorithm is Slow!
 At each iteration, we need to

evaluate marginal gains of all
the remaining elements

 Runtime O(|U| * K) for
selecting K elements out of
the set U

a

b

c

d

Marginal gain:
F(Sx)-F(S)

e

Greedy

Add element with
highest marginal gain

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 53

 In round i:

▪ So far we have Si-1 = {e1 … ei-1}

▪ Now we pick an element e  Si-1 which maximizes
the marginal benefit Δi = F(Si-1 U {e}) – F(Si-1)

 Key observation:

▪ Marginal gain of any element e can never
increase!

▪ For every element e:
Δi (e)  Δj(e) for all iterations i < j

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 54

 Idea:

▪ Use i as upper-bound on j (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 55

a

b

c

d

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A) ≥ F(B  {d}) – F(B)

A1={a}

A  B

Upper bound on
Marginal gain 1

 Idea:

▪ Use i as upper-bound on j (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 56

a

d

b

c

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A) ≥ F(B  {d}) – F(B) A  B

A1={a}

Upper bound on
Marginal gain 2

 Idea:

▪ Use i as upper-bound on j (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal
benefits i from previous iteration

▪ Re-evaluate i only for top node

▪ Re-sort and prune

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 57

a

c

d

b

e

Upper bound on
Marginal gain 2

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A) ≥ F(B  {d}) – F(B)

A1={a}

A2={a,b}

A  B

 Lazy greedy offers significant speed-up over
traditional greedy implementations in
practice.

L
o
w

e
r

is
 b

e
tt

e
r

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

number of elements selected

ru
n

n
in

g
 t

im
e

(s
ec

o
n

d
s)

exhaustive search
(all subsets)

naive
greedy

Lazy

[Leskovec et al., KDD ’07]

5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 58

 Althoff et. al., TimeMachine: Timeline Generation for
Knowledge-Base Entities, KDD 2015

 Leskovec et. al., Cost-effective Outbreak Detection in
Networks, KDD 2007

 Andreas Krause, Daniel Golovin, Submodular
Function Maximization

 ICML Tutorial:
http://submodularity.org/submodularity-icml-part1-
slides-prelim.pdf

 Learning and Testing Submodular Functions:
http://grigory.us/cis625/lecture3.pdf

 UW Research by Jeff Bilmes (ECE)
5/29/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 59

http://grigory.us/cis625/lecture3.pdf

	Slide 1: Submodular Optimization
	Slide 2: Motivation
	Slide 3: Many applications need diversity!
	Slide 4: Automatic Timeline Generation
	Slide 5: Problem Definition
	Slide 6: Example Timeline
	Slide 7: Why diversity?
	Slide 8: Diversity as Coverage
	Slide 9: Encode Diversity as Coverage
	Slide 10: What is being covered?
	Slide 11: Simple Coverage Model
	Slide 12: Maximum Coverage Problem
	Slide 13: Simple Greedy Heuristic
	Slide 14: Simple Greedy Heuristic
	Slide 15: Simple Greedy Heuristic
	Slide 16: Simple Greedy Heuristic
	Slide 17: Simple Greedy Heuristic
	Slide 18: Simple Greedy Heuristic
	Slide 19: When Greedy Heuristic Fails?
	Slide 20: Bad News & Good News
	Slide 21: Issue 1: Not all relationships are created equal
	Slide 22: Example weight function
	Slide 23: Better weight function
	Slide 24: Capturing relevance to timeline
	Slide 25: Issue 2: Differentiating between events
	Slide 26: Scoring of event timestamps
	Slide 27: Co-occurrences on Web Scale
	Slide 28: Complete Optimization Problem
	Slide 29: Next
	Slide 30: Approximate Solution
	Slide 31: Submodularity: Definition 1
	Slide 32: Submodularity: Definition 2
	Slide 33: Submodularity: Definition 2
	Slide 34: Submodularity: Diminishing Returns
	Slide 35: Submodularity: An important property
	Slide 36: Submodularity: Approximation Guarantee
	Slide 37: Back to our Timeline Problem
	Slide 38: Simple Coverage Model
	Slide 39: Simple Coverage: Submodular?
	Slide 40: Simple Coverage: Other Properties
	Slide 41: Summary so far
	Slide 42: Weighted Coverage (Relationships)
	Slide 43: Weighted Coverage (Relationships)
	Slide 44: Weighted Coverage (Relationships)
	Slide 45: Weighted Coverage (Relationships)
	Slide 46: Summary so far
	Slide 47: Weighted Coverage (Timestamps)
	Slide 48: Summary so far
	Slide 49: Complete Optimization Problem
	Slide 50: Complete Optimization Problem
	Slide 51: Summary so far
	Slide 52: Lazy Optimization of Submodular Functions
	Slide 53: Greedy Solution
	Slide 54: Speeding up Greedy
	Slide 55: Lazy Greedy
	Slide 56: Lazy Greedy
	Slide 57: Lazy Greedy
	Slide 58: Speed Up of Lazy Greedy Algorithm
	Slide 59: References

