
Announcements:

• Important: Please use updated version of HW4 with new Problem 2. 

• If you already did the old Problem 2, you can still get credit.

• Everyone using new Problem 2 gets 48h extension. 

• Colab 8 – Extra time until Wed June 4 to cover submodular optimization topic 
(next week)

• Thu May 29 – Extra Project Office Hours (optional)

• We will have one lecture, break, then optional office hours in classroom

• Sign up on Ed in spreadsheet. Be prepared what you want to ask about
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 In many data mining situations, we do not 
know the entire data set in advance

 Stream Management is important when 
the input rate is controlled externally:

▪ Google queries

▪ Twitter/X or Facebook status updates

 We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)

▪ This is the fun part and why interesting 
algorithms are needed
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 Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)

▪ We call elements of the stream tuples

 The system cannot store the entire stream 
accessibly

 Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 5



 Stochastic Gradient Descent (SGD) is an 
example of a stream algorithm

 In Machine Learning we call this: Online Learning
▪ Allows for modeling problems where we have 

a continuous stream of data 

▪ We want an algorithm to learn from it and 
slowly adapt to the changes in data

 Idea: Do small updates to the model
▪ SGD (SVM, Perceptron) makes small updates

▪ So: First train the classifier on training data

▪ Then: For every example from the stream, we slightly 
update the model (using small learning rate)
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 Types of queries one wants on answer on 
a data stream: (we’ll do these before the 
break)

▪ Sampling data from a stream

▪ Construct a random sample

▪ Queries over sliding windows

▪ Number of items of type x in the last k elements 
of the stream
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 Types of queries one wants on answer on 
a data stream: (we’ll do these on after the 
break)

▪ Filtering a data stream (Bloom filters)

▪ Select elements with property x from the stream

▪ Counting distinct elements (Flajolet-Martin)

▪ Number of distinct elements in the last k elements 
of the stream

▪ Estimating moments (AMS method)

▪ Estimate avg./std. dev. of elements in stream
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 Mining query streams

▪ Google wants to know what queries are 
most frequent today

 Mining click streams

▪ Wikipedia wants to know which of its pages are 
getting an unusual number of hits in the past hour

 Mining social network news feeds

▪ Look for trending topics on Twitter/X, Facebook
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 Sensor Networks 
▪ Many sensors feeding into a central controller

 Telephone call records 
▪ Data feeds into customer bills as well as 

settlements between telephone companies
 IP packets monitored at a switch

▪ Gather information for optimal routing

▪ Detect denial-of-service attacks
 Large-scale machine learning models

▪ Get summary statistics of data for candidate splits 
in decision tree model (e.g. Xgboost)

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 11



As the stream grows the sample 
also gets bigger



 Since we can not store the entire stream, 
one obvious approach is to store a sample

 Two different problems:

▪ (1) Sample a fixed proportion of elements 
in the stream (say 1 in 10)

▪ (2) Maintain a random sample of fixed size 
over a potentially infinite stream

▪ At any “time” k we would like a random sample 
of s elements
▪ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has 
equal prob. of being sampled
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 Problem 1: Sampling fixed proportion
 Scenario: Search engine query stream

▪ Stream of tuples: (user, query, time)

▪ Answer questions such as: How often did a user 
run the same query in a single day

▪ Have space to store 1/10th of query stream

 Naïve solution:

▪ Generate a random integer in [0...9] for each query

▪ Store the query if the integer is 0, otherwise discard  
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 Simple question: What fraction of unique queries 
by an average search engine user are duplicates?
▪ Suppose each user issues x queries once and d queries 

twice (total of x+2d query instances)
▪ Correct answer: d/(x+d)

▪ Proposed solution: We keep 10% of the queries
▪ Sample will contain x/10 of the singleton queries and 

2d/10 of the duplicate queries at least once
▪ But only d/100 pairs of duplicates

▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ Of d “duplicates” 18d/100 appear exactly once
▪ 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

▪ So the sample-based answer is 
𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅
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Solution:
 Pick 1/10th of users and take all their 

searches in the sample

 Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets
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 Stream of tuples with keys:

▪ Key is some subset of each tuple’s components

▪ e.g., tuple is (user, search, time); key is user

▪ Choice of key depends on application

 To get a sample of a/b fraction of the stream:

▪ Hash each tuple’s key uniformly into b buckets

▪ Pick the tuple if its hash value is at most a
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Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample? 

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



As the stream grows, the sample is of 
fixed size



 Problem 2: Fixed-size sample
 Suppose we need to maintain a random

sample S of size exactly s tuples

▪ E.g., main memory size constraint

 Why? Don’t know length of stream in advance
 Suppose by time n we have seen n items

▪ Each item is in the sample S with equal prob. s/n
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How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



 Algorithm (a.k.a. Reservoir Sampling)

▪ Store all the first s elements of the stream to S

▪ Suppose we have seen n-1 elements, and now 
the nth element arrives (𝒏 > 𝒔)

▪ With probability s/n, keep the nth element, else discard it

▪ If we picked the nth element, then it replaces one of the 
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:

▪ After n elements, the sample contains each 
element seen so far with probability s/n
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 We prove this by induction:
▪ Assume that after n elements, the sample contains 

each element seen so far with probability s/n

▪ We need to show that after seeing element n+1 
the sample maintains the property
▪ Sample contains each element seen so far with 

probability s/(n+1)

 Base case:
▪ After we see n=s elements the sample S has the 

desired property
▪ Each out of n=s elements is in the sample with 

probability s/s = 1
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 Inductive hypothesis: After n elements, the sample 
S contains each element seen so far with prob. s/n

 Now element n+1 arrives
 Inductive step: For elements already in S, 

probability that the algorithm keeps it in S is:

 So, at time n, tuples in S were there with prob. s/n
 Time n→n+1, tuple stayed in S with prob. n/(n+1)

 So prob. tuple is in S at time n+1 = 
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏
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 A useful model of stream processing is that 
queries are about a window of length N – 
the N most recent elements received

 Interesting case: N is so large that the data 
cannot be stored in memory, or even on disk
▪ Or, there are so many streams that windows 

for all cannot be stored
 Amazon example: 

▪ For every product X we keep 0/1 stream of whether 
that product was sold in the n-th transaction

▪ We want answer queries, how many times have we 
sold X in the last k sales
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 Sliding window on a single stream:
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 Problem: 

▪ Given a stream of 0s and 1s

▪ Be prepared to answer queries of the form 
How many 1s are in the last k bits? For any k ≤ N

 Obvious solution: 
Store the most recent N bits

▪ When new bit comes in, discard the N+1st  bit
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 You can not get an exact answer without 
storing the entire window

 Real Problem: 
What if we cannot afford to store N bits?
▪ Say we’re processing many such streams and for 

each N=1 billion

 But we are happy with an approximate 
answer
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 Q: How many 1s are in the last N bits?
 A simple solution that does not really solve 

our problem: Uniformity assumption

 Maintain 2 counters: 
▪ S: number of 1s from the beginning of the stream

▪ Z: number of 0s from the beginning of the stream

 How many 1s are in the last N bits? 𝑵 ∙
𝑺

𝑺+𝒁
 But, what if stream is non-uniform?

▪ What if distribution changes over time?
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 DGIM solution that does not assume 
uniformity

 We store 𝑶(log𝟐𝑵) bits per stream

 Solution gives approximate answer, 
never off by more than 50%

▪ Error factor can be reduced to any fraction > 0, 
with more complicated algorithm and 
proportionally more stored bits

▪ Error: If we have 10 1s then 50% error means 10 +/- 5
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[Datar, Gionis, Indyk, Motwani]



 Solution that doesn’t (quite) work:
▪ Summarize exponentially increasing regions 

of the stream, looking backward

▪ Drop small regions if they begin at the same point 
as a larger region
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 Stores only O(log2N ) bits

▪ 𝑶(log𝑵) counts of log𝟐𝑵  bits each

 Easy update as more bits enter

 Error in count no greater than the number 
of 1s in the “unknown” area
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 As long as the 1s are fairly evenly distributed, 
the error due to the unknown region is small 
– no more than 50%

 But it could be that all the 1s are in the 
unknown area at the end

 In that case, the relative error is unbounded!
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 Idea: Instead of summarizing fixed-length 
blocks, summarize blocks with specific 
number of 1s:

▪ Let the block sizes (number of 1s) increase 
exponentially

 When there are few 1s in the window, block 
sizes stay small, so errors are small
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 Each bit in the stream has a timestamp, 
starting 1, 2, …

 Record timestamps modulo N  (the window 
size), so we can represent any relevant 
timestamp in 𝑶(𝒍𝒐𝒈𝟐𝑵) bits
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 A bucket in the DGIM method is a record 
consisting of:

▪ (A) The timestamp of its end [O(log N) bits]

▪ (B) The number of 1s between its beginning and 
end [O(log log N) bits]

 Constraint on buckets: 
Number of 1s must be a power of 2

▪ That explains the O(log log N) in (B) above
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 Either one or two buckets with the same 
power-of-2 number of 1s

 Buckets do not overlap in timestamps

 Buckets are sorted by size

▪ Earlier buckets are not smaller than later buckets

 Buckets disappear when their 
end-time is > N  time units in the past
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Three properties of buckets that are maintained:
  - Either one or two buckets with the same power-of-2 number of 1s
  - Buckets do not overlap in timestamps
 - Buckets are sorted by size



 When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to N  
time units before the current time

 2 cases: Current bit is 0 or 1

 If the current bit is 0: 
no other changes are needed
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 If the current bit is 1:

▪ (1) Create a new bucket of size 1, for just this bit

▪ End timestamp = current time

▪ (2) If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2

▪ (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4

▪ (4) And so on …
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Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging



 To estimate the number of 1s in the most 
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

 Remember: We do not know how many 1s 
of the last bucket are still within the wanted 
window
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Estimate for the number of ones in window of size N is: 

1 + 1 + 2 + 4 + 4 + 8 + 8 + 16/2



 Why is error at most 50%? Let’s prove it!
 Suppose the last bucket has size 2r

 Worst case overestimate: All the 1s in the bucket 
are outside of window (except rightmost) - we 
make an error of at most 2r-1 -1

 Since there is at least one bucket of each of the 
sizes less than 2r, the true sum is at least 
1 + 2 + 4 + .. + 2r-1  = 2r -1

 Thus, error at most 50% [=2r-1/2r > (2r-1 -1)/(2r -1)]
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 Instead of maintaining 1 or 2 of each size 
bucket, we allow either r-1 or r buckets  (r > 2)

▪ Except for the largest size buckets; we can have 
any number between 1 and r of those

 Error is at most O(1/r)

▪ see MMDS book for details

 By picking r appropriately, we can tradeoff 
between number of bits we store and the 
error
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 Can we use the same trick to answer queries 
How many 1’s in the last k? where k < N?

▪ A: Find earliest bucket B that at overlaps with k.
Number of 1s is the sum of sizes of more recent 
buckets + ½ size of B

 How can we handle the case where the 
stream is not bits, but integers, and we want 
the sum of the last k elements?
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2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3 

2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3

2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3  2  

2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3  2  5

 Stream of positive integers
 We want the sum of the last k elements

▪ Amazon: Avg. price of last k sales
 Solution:

▪ (1) If you know all have at most m bits
▪ Treat m bits of each integer as a separate stream
▪ Use DGIM to count 1s in each integer/stream

▪ The sum is = σ𝑖=0
𝑚−1 𝑐𝑖2

𝑖

▪ (2) Use buckets to keep partial sums
▪ Sum of elements in size b bucket is at most 2b
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ci …estimated 

count for i-th bit

Idea: Sum in each 

bucket is at most 
2b (unless bucket 
has only 1 integer)

Max bucket sum:

12816 4

[Distributed Streams. Algorithms for Sliding Windows,
Gibbons & Tirthapura]



 Sampling a fixed proportion of a stream

▪ Sample size grows as the stream grows

 Sampling a fixed-size sample

▪ Reservoir sampling

 Counting the number of 1s in the last N 
elements

▪ Exponentially increasing windows

▪ Extensions:

▪ Number of 1s in any last k (k < N) elements

▪ Sums of integers in the last N elements
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