
Announcements:

• Important: Please use updated version of HW4 with new Problem 2.

• If you already did the old Problem 2, you can still get credit.

• Everyone using new Problem 2 gets 48h extension.

• Colab 8 – Extra time until Wed June 4 to cover submodular optimization topic
(next week)

• Thu May 29 – Extra Project Office Hours (optional)

• We will have one lecture, break, then optional office hours in classroom

• Sign up on Ed in spreadsheet. Be prepared what you want to ask about

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

Decision
Trees

SVM

Parallel SGD

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 3

 In many data mining situations, we do not
know the entire data set in advance

 Stream Management is important when
the input rate is controlled externally:

▪ Google queries

▪ Twitter/X or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

▪ This is the fun part and why interesting
algorithms are needed

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 4

 Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)

▪ We call elements of the stream tuples

 The system cannot store the entire stream
accessibly

 Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 5

 Stochastic Gradient Descent (SGD) is an
example of a stream algorithm

 In Machine Learning we call this: Online Learning
▪ Allows for modeling problems where we have

a continuous stream of data

▪ We want an algorithm to learn from it and
slowly adapt to the changes in data

 Idea: Do small updates to the model
▪ SGD (SVM, Perceptron) makes small updates

▪ So: First train the classifier on training data

▪ Then: For every example from the stream, we slightly
update the model (using small learning rate)

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 6

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 7

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering.

Each stream is

composed of
elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

 Types of queries one wants on answer on
a data stream: (we’ll do these before the
break)

▪ Sampling data from a stream

▪ Construct a random sample

▪ Queries over sliding windows

▪ Number of items of type x in the last k elements
of the stream

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 8

 Types of queries one wants on answer on
a data stream: (we’ll do these on after the
break)

▪ Filtering a data stream (Bloom filters)

▪ Select elements with property x from the stream

▪ Counting distinct elements (Flajolet-Martin)

▪ Number of distinct elements in the last k elements
of the stream

▪ Estimating moments (AMS method)

▪ Estimate avg./std. dev. of elements in stream

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 9

 Mining query streams

▪ Google wants to know what queries are
most frequent today

 Mining click streams

▪ Wikipedia wants to know which of its pages are
getting an unusual number of hits in the past hour

 Mining social network news feeds

▪ Look for trending topics on Twitter/X, Facebook

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 10

 Sensor Networks
▪ Many sensors feeding into a central controller

 Telephone call records
▪ Data feeds into customer bills as well as

settlements between telephone companies
 IP packets monitored at a switch

▪ Gather information for optimal routing

▪ Detect denial-of-service attacks
 Large-scale machine learning models

▪ Get summary statistics of data for candidate splits
in decision tree model (e.g. Xgboost)

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 11

As the stream grows the sample
also gets bigger

 Since we can not store the entire stream,
one obvious approach is to store a sample

 Two different problems:

▪ (1) Sample a fixed proportion of elements
in the stream (say 1 in 10)

▪ (2) Maintain a random sample of fixed size
over a potentially infinite stream

▪ At any “time” k we would like a random sample
of s elements
▪ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has
equal prob. of being sampled

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 13

 Problem 1: Sampling fixed proportion
 Scenario: Search engine query stream

▪ Stream of tuples: (user, query, time)

▪ Answer questions such as: How often did a user
run the same query in a single day

▪ Have space to store 1/10th of query stream

 Naïve solution:

▪ Generate a random integer in [0...9] for each query

▪ Store the query if the integer is 0, otherwise discard

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 14

 Simple question: What fraction of unique queries
by an average search engine user are duplicates?
▪ Suppose each user issues x queries once and d queries

twice (total of x+2d query instances)
▪ Correct answer: d/(x+d)

▪ Proposed solution: We keep 10% of the queries
▪ Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once
▪ But only d/100 pairs of duplicates

▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ Of d “duplicates” 18d/100 appear exactly once
▪ 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

▪ So the sample-based answer is
𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 15

Solution:
 Pick 1/10th of users and take all their

searches in the sample

 Use a hash function that hashes the
user name or user id uniformly into 10
buckets

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 16

 Stream of tuples with keys:

▪ Key is some subset of each tuple’s components

▪ e.g., tuple is (user, search, time); key is user

▪ Choice of key depends on application

 To get a sample of a/b fraction of the stream:

▪ Hash each tuple’s key uniformly into b buckets

▪ Pick the tuple if its hash value is at most a

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 17

Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

As the stream grows, the sample is of
fixed size

 Problem 2: Fixed-size sample
 Suppose we need to maintain a random

sample S of size exactly s tuples

▪ E.g., main memory size constraint

 Why? Don’t know length of stream in advance
 Suppose by time n we have seen n items

▪ Each item is in the sample S with equal prob. s/n

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 19

How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

 Algorithm (a.k.a. Reservoir Sampling)

▪ Store all the first s elements of the stream to S

▪ Suppose we have seen n-1 elements, and now
the nth element arrives (𝒏 > 𝒔)

▪ With probability s/n, keep the nth element, else discard it

▪ If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:

▪ After n elements, the sample contains each
element seen so far with probability s/n

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 20

 We prove this by induction:
▪ Assume that after n elements, the sample contains

each element seen so far with probability s/n

▪ We need to show that after seeing element n+1
the sample maintains the property
▪ Sample contains each element seen so far with

probability s/(n+1)

 Base case:
▪ After we see n=s elements the sample S has the

desired property
▪ Each out of n=s elements is in the sample with

probability s/s = 1

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 21

 Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

 Now element n+1 arrives
 Inductive step: For elements already in S,

probability that the algorithm keeps it in S is:

 So, at time n, tuples in S were there with prob. s/n
 Time n→n+1, tuple stayed in S with prob. n/(n+1)

 So prob. tuple is in S at time n+1 =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 22

1

1

11
1

+
=







 −









+
+








+
−

n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

 A useful model of stream processing is that
queries are about a window of length N –
the N most recent elements received

 Interesting case: N is so large that the data
cannot be stored in memory, or even on disk
▪ Or, there are so many streams that windows

for all cannot be stored
 Amazon example:

▪ For every product X we keep 0/1 stream of whether
that product was sold in the n-th transaction

▪ We want answer queries, how many times have we
sold X in the last k sales

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 24

 Sliding window on a single stream:

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 25

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

 Problem:

▪ Given a stream of 0s and 1s

▪ Be prepared to answer queries of the form
How many 1s are in the last k bits? For any k ≤ N

 Obvious solution:
Store the most recent N bits

▪ When new bit comes in, discard the N+1st bit

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 26

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

Suppose N=6

 You can not get an exact answer without
storing the entire window

 Real Problem:
What if we cannot afford to store N bits?
▪ Say we’re processing many such streams and for

each N=1 billion

 But we are happy with an approximate
answer

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 27

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

 Q: How many 1s are in the last N bits?
 A simple solution that does not really solve

our problem: Uniformity assumption

 Maintain 2 counters:
▪ S: number of 1s from the beginning of the stream

▪ Z: number of 0s from the beginning of the stream

 How many 1s are in the last N bits? 𝑵 ∙
𝑺

𝑺+𝒁
 But, what if stream is non-uniform?

▪ What if distribution changes over time?
5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 28

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

N

Past Future

 DGIM solution that does not assume
uniformity

 We store 𝑶(log𝟐𝑵) bits per stream

 Solution gives approximate answer,
never off by more than 50%

▪ Error factor can be reduced to any fraction > 0,
with more complicated algorithm and
proportionally more stored bits

▪ Error: If we have 10 1s then 50% error means 10 +/- 5

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 29

[Datar, Gionis, Indyk, Motwani]

 Solution that doesn’t (quite) work:
▪ Summarize exponentially increasing regions

of the stream, looking backward

▪ Drop small regions if they begin at the same point
as a larger region

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 30

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

?

01

12

23

4

106

We can reconstruct the count of the last N bits, except we

are not sure how many of the last 6 1s are included in the N

Window of

width 16

has 6 1s

There are 4+2+1 1s here
There are 10+2+1 1s here

 Stores only O(log2N) bits

▪ 𝑶(log𝑵) counts of log𝟐𝑵 bits each

 Easy update as more bits enter

 Error in count no greater than the number
of 1s in the “unknown” area

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 31

 As long as the 1s are fairly evenly distributed,
the error due to the unknown region is small
– no more than 50%

 But it could be that all the 1s are in the
unknown area at the end

 In that case, the relative error is unbounded!

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 32

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

01

12

23

4

106

N

?

 Idea: Instead of summarizing fixed-length
blocks, summarize blocks with specific
number of 1s:

▪ Let the block sizes (number of 1s) increase
exponentially

 When there are few 1s in the window, block
sizes stay small, so errors are small

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 33

1001010110001011010101010101011010101010101110101010111010100010110010

N

[Datar, Gionis, Indyk, Motwani]

 Each bit in the stream has a timestamp,
starting 1, 2, …

 Record timestamps modulo N (the window
size), so we can represent any relevant
timestamp in 𝑶(𝒍𝒐𝒈𝟐𝑵) bits

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 34

 A bucket in the DGIM method is a record
consisting of:

▪ (A) The timestamp of its end [O(log N) bits]

▪ (B) The number of 1s between its beginning and
end [O(log log N) bits]

 Constraint on buckets:
Number of 1s must be a power of 2

▪ That explains the O(log log N) in (B) above

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 35

1001010110001011010101010101011010101010101110101010111010100010110010

N

 Either one or two buckets with the same
power-of-2 number of 1s

 Buckets do not overlap in timestamps

 Buckets are sorted by size

▪ Earlier buckets are not smaller than later buckets

 Buckets disappear when their
end-time is > N time units in the past

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 36

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 37

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three properties of buckets that are maintained:
 - Either one or two buckets with the same power-of-2 number of 1s
 - Buckets do not overlap in timestamps
 - Buckets are sorted by size

 When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to N
time units before the current time

 2 cases: Current bit is 0 or 1

 If the current bit is 0:
no other changes are needed

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 38

 If the current bit is 1:

▪ (1) Create a new bucket of size 1, for just this bit

▪ End timestamp = current time

▪ (2) If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2

▪ (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4

▪ (4) And so on …

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 39

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 40

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

 To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

 Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 41

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 42

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Estimate for the number of ones in window of size N is:

1 + 1 + 2 + 4 + 4 + 8 + 8 + 16/2

 Why is error at most 50%? Let’s prove it!
 Suppose the last bucket has size 2r

 Worst case overestimate: All the 1s in the bucket
are outside of window (except rightmost) - we
make an error of at most 2r-1 -1

 Since there is at least one bucket of each of the
sizes less than 2r, the true sum is at least
1 + 2 + 4 + .. + 2r-1 = 2r -1

 Thus, error at most 50% [=2r-1/2r > (2r-1 -1)/(2r -1)]

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 43

111111110000000011101010101011010101010101110101010111010100010110010

N

At least 16-1 1s

 Instead of maintaining 1 or 2 of each size
bucket, we allow either r-1 or r buckets (r > 2)

▪ Except for the largest size buckets; we can have
any number between 1 and r of those

 Error is at most O(1/r)

▪ see MMDS book for details

 By picking r appropriately, we can tradeoff
between number of bits we store and the
error

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 44

 Can we use the same trick to answer queries
How many 1’s in the last k? where k < N?

▪ A: Find earliest bucket B that at overlaps with k.
Number of 1s is the sum of sizes of more recent
buckets + ½ size of B

 How can we handle the case where the
stream is not bits, but integers, and we want
the sum of the last k elements?

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 45

1001010110001011010101010101011010101010101110101010111010100010110010

k

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 3

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 3 3

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 3 3 2

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 3 3 2 5

 Stream of positive integers
 We want the sum of the last k elements

▪ Amazon: Avg. price of last k sales
 Solution:

▪ (1) If you know all have at most m bits
▪ Treat m bits of each integer as a separate stream
▪ Use DGIM to count 1s in each integer/stream

▪ The sum is = σ𝑖=0
𝑚−1 𝑐𝑖2

𝑖

▪ (2) Use buckets to keep partial sums
▪ Sum of elements in size b bucket is at most 2b

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 46

ci …estimated

count for i-th bit

Idea: Sum in each

bucket is at most
2b (unless bucket
has only 1 integer)

Max bucket sum:

12816 4

[Distributed Streams. Algorithms for Sliding Windows,
Gibbons & Tirthapura]

 Sampling a fixed proportion of a stream

▪ Sample size grows as the stream grows

 Sampling a fixed-size sample

▪ Reservoir sampling

 Counting the number of 1s in the last N
elements

▪ Exponentially increasing windows

▪ Extensions:

▪ Number of 1s in any last k (k < N) elements

▪ Sums of integers in the last N elements

5/22/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 47

	Slide 1: Mining Data Streams (Part 1)
	Slide 3: New Topic: Infinite Data
	Slide 4: Data Streams
	Slide 5: The Stream Model
	Slide 6: Side note: SGD is a Streaming Alg.
	Slide 7: General Stream Processing Model
	Slide 8: Problems on Data Streams
	Slide 9: Problems on Data Streams
	Slide 10: Applications (1)
	Slide 11: Applications (2)
	Slide 12: Sampling from a Data Stream: Sampling a fixed proportion
	Slide 13: Sampling from a Data Stream
	Slide 14: Sampling a Fixed Proportion
	Slide 15: Problem with Naïve Approach
	Slide 16: Solution: Sample Users
	Slide 17: Generalized Solution
	Slide 18: Sampling from a Data Stream: Sampling a fixed-size sample
	Slide 19: Maintaining a fixed-size sample
	Slide 20: Solution: Fixed Size Sample
	Slide 21: Proof: By Induction
	Slide 22: Proof: By Induction
	Slide 23: Queries over a (long) Sliding Window
	Slide 24: Sliding Windows
	Slide 25: Sliding Window: 1 Stream
	Slide 26: Counting Bits (1)
	Slide 27: Counting Bits (2)
	Slide 28: An attempt: Simple solution
	Slide 29: DGIM Method
	Slide 30: Idea: Exponential Windows
	Slide 31: What’s Good?
	Slide 32: What’s Not So Good?
	Slide 33: Fixup: DGIM method
	Slide 34: DGIM: Timestamps
	Slide 35: DGIM: Buckets
	Slide 36: Representing a Stream by Buckets
	Slide 37: Example: Bucketized Stream
	Slide 38: Updating Buckets (1)
	Slide 39: Updating Buckets (2)
	Slide 40: Example: Updating Buckets
	Slide 41: How to Query?
	Slide 42: Example: Bucketized Stream
	Slide 43: Error Bound: Proof Sketch
	Slide 44: Further Reducing the Error
	Slide 45: Extensions
	Slide 46: Extensions
	Slide 47: Summary

