
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

 Task: Given a large number (N in the millions or
billions) of documents, find “near duplicates”

 Problem:

▪ Too many documents to compare all pairs

 Solution: Hash documents so that similar
documents hash into the same bucket

▪ Documents in the same bucket are then
candidate pairs whose similarity is then evaluated

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 A k-shingle (or k-gram) is a sequence of k
tokens that appears in the document

▪ Example: k=2; D1 = abcab

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca}

 Represent a doc by a set of hash values of its
k-shingles

 A natural similarity measure is then the
Jaccard similarity:

 sim(D1, D2) = |C1C2|/|C1C2|
▪ Similarity of two documents is the Jaccard similarity of

their shingles
Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Min-Hashing: Convert large sets into short signatures,
while preserving similarity: Pr[h(C1) = h(C2)] = sim(D1, D2)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Similarities of columns and
signatures (approx.) match!
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation

1212

1412

2121

 Hash columns of the signature matrix M:
Similar columns likely hash to same bucket

▪ Divide matrix M into b bands of r rows (m=b·r)

▪ Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

r rows

b bands

Buckets

Matrix M
Similarity

P
ro

b
.
o
f

s
h
a
ri

n
g

≥
 1

 b
u

c
k
e
t

T
h
re

s
h

o
ld

 s

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Points

Signatures: short
integer signatures that
reflect point similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a locality sensitive
hash function (for a given

distance metric)

Apply the

“Bands” technique

 The S-curve is where the “magic” happens

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Similarity t of two sets

P
ro

b
a
b
ili

ty
 o

f
s
h

a
ri
n

g

 ≥
 1

 b
u

c
k
e
t

Remember:

Probability of

equal hash-values

= similarity

This is what 1 hash-code gives you

Pr[h(C1) = h(C2)] = sim(D1, D2)

No chance
if t<s

Probability=1
if t>s

This is what we want!

How to get a step-function?

By choosing r and b!

T
h
re

s
h

o
ld

 s

Similarity t of two sets

 Remember: b bands, r rows/band
 Let sim(C1 , C2) = s
What’s the prob. that at least 1 band is equal?
 Pick some band (r rows)

▪ Prob. that elements in a single row of
columns C1 and C2 are equal = s

▪ Prob. that all rows in a band are equal = sr

▪ Prob. that some row in a band is not equal = 1 - sr

 Prob. that all bands are not equal = (1 - sr)b

 Prob. that at least 1 band is equal = 1 - (1 - sr)b

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

P(C1, C2 is a candidate pair) = 1 - (1 - sr)b

 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity, s

P
ro

b
. s

h
ar

in
g

 a
 b

u
ck

et

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

r = 1..10, b = 1

P
ro

b
(C

a
n
d
id

a
te

 p
a

ir
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
(C

a
n
d
id

a
te

 p
a

ir
)

r = 1, b = 1..10

r = 5, b = 1..50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 10, b = 1..50

Similarity

prob = 1 - (1 - t r)b

Given a fixed

threshold s.

We want choose

r and b such

that the

P(Candidate

pair) has a

“step” right

around s.

Signatures:
short vectors
that represent
the sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 We have used LSH to find similar documents

▪ More specifically, we found similar columns in
large sparse matrices with high Jaccard similarity

 Can we use LSH for other distance measures?

▪ e.g., Euclidean distances, Cosine distance

▪ Let’s generalize what we’ve learned!

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 d() is a distance metric if it is a function from pairs of points
x,y to real numbers such that:

▪ 𝑑 𝑥, 𝑦 ≥ 0

▪ 𝑑 𝑥, 𝑦 = 0 𝑖𝑓𝑓 𝑥 = 𝑦

▪ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
▪ 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality)

 Jaccard distance for sets = 1 - Jaccard similarity
 Cosine distance for vectors = angle between the vectors
 Euclidean distances:
▪ L2 norm: d(x,y) = square root of the sum of the squares of the

differences between x and y in each dimension
▪ The most common notion of “distance”

▪ L1 norm: sum of absolute value of the differences in each dimension
▪ Manhattan distance = distance if you travel along coordinates only

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 For Min-Hashing signatures, we got a Min-Hash
function for each permutation of rows

 A “hash function” is any function that allows us
to say whether two elements are “equal”
▪ Shorthand: h(x) = h(y) means “h says x and y are equal”

 A family of hash functions is any set of hash
functions from which we can pick one at
random efficiently

▪ Example: The set of Min-Hash functions generated
from permutations of rows (e.g. Universal Hashing)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Suppose we have a space S of points with
a distance metric d(x,y)

 A family H of hash functions is said to be
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all h H,
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all h H,
that h(x) = h(y) is at most p2

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

With a LS Family we can do LSH!

Critical assumption

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

y2

d1
d2

x

y1

For all h H,
P[h(x) = h(y1)] ≥ p1

P[h(x) = h(y2)] ≤ p2

?

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

P
r[

h
(x

)
=

 h
(y

)]

Distance d(x,y)

d1 d2

p2

p1

Small distance,

high probability

Large distance,

low probability

of hashing to

the same value

Distance

threshold t

Notice distance on x-axis, not similarity,
hence the S-curve is mirrored!

 Let:

▪ S = space of all sets,

▪ d = Jaccard distance,

▪ H is family of Min-Hash functions for all
permutations of rows

 Then for any hash function h H:
 Pr[h(x) = h(y)] = 1 - d(x, y)

▪ Simply restates theorem about Min-Hashing
in terms of distances rather than similarities

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

 For Jaccard similarity, Min-Hashing gives a
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

If distance < 1/3

(so similarity ≥ 2/3)

Then probability

that Min-Hash values

agree is > 2/3

 Can we reproduce the
“S-curve” effect we saw
before for any LS family?

 The “bands” technique we learned for signature
matrices carries over to this more general setting

 Can do LSH with any (d1, d2, p1, p2)-sensitive
family!

 Two constructions:
▪ AND construction like “rows in a band”

▪ OR construction like “many bands”
Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Similarity t

P
ro

b
.
o
f

s
h
a
ri

n
g

a
 b

u
c
k
e
t

 Given family H, construct family H’ consisting
of r independent functions from H

 For h = [h1,…,hr] in H’, we say
h(x) = h(y) if and only if hi(x) = hi(y) for all i

▪ Note this corresponds to creating a band of size r

 Theorem: If H is (d1, d2, p1, p2)-sensitive,

then H’ is (d1,d2, (p1)r, (p2)r)-sensitive
 Proof: Use the fact that hi ’s are independent

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

1 i r

Lowers probability for
large distances (Good)

Also lowers probability
for small distances (Bad)

 Independence of hash functions (HFs) really
means that the prob. of two HFs saying “yes”
is the product of each saying “yes”

▪ But two particular hash functions could be highly
correlated

▪ For example, in Min-Hash if their permutations agree in
99% of entries

▪ However, the probabilities in definition of a
LSH-family are over all possible members of H, H’
(i.e., average case and not the worst case)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Given family H, construct family H’ consisting
of b independent functions from H

 For h = [h1,…,hb] in H’,
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1 i

 Theorem: If H is (d1, d2, p1, p2)-sensitive,

then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive
 Proof: Use the fact that hi’s are independent

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Raises probability for
small distances (Good)

Raises probability for
large distances (Bad)

 AND makes all probs. shrink, but by choosing r
correctly, we can make the lower prob. approach 0
while the higher does not

 OR makes all probs. grow, but by choosing b correctly,
we can make the higher prob. approach 1 while the
lower does not

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AND

r=1..10, b=1

P
ro

b
.
s
h
a

ri
n
g

 a
 b

u
c
k
e
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
.
s
h
a

ri
n
g

 a
 b

u
c
k
e
t

OR

r=1, b=1..10

Similarity of a pair of items Similarity of a pair of items

 By choosing b and r correctly, we can make
the lower probability approach 0 while the
higher approaches 1

 As for the signature matrix, we can use the
AND construction followed by the OR
construction

▪ Or vice-versa

▪ Or any sequence of AND’s and OR’s alternating

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 r-way AND followed by b-way OR construction
▪ Exactly what we did with Min-Hashing
▪ AND: If bands match in all r values hash to same bucket

▪ OR: Cols that have 1 common bucket → Candidate

 Take points x and y s.t. Pr[h(x) = h(y)] = s
▪ H will make (x,y) a candidate pair with prob. s

 Construction makes (x,y) a candidate pair with
probability 1-(1-sr)b The S-Curve!
▪ Example: Take H and construct H’ by the AND

construction with r = 4. Then, from H’, construct H’’
by the OR construction with b = 4

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

s p=1-(1-s4)4

.2 .0064

.3 .0320

.4 .0985

.5 .2275

.6 .4260

.7 .6666

.8 .8785

.9 .9860

r = 4, b = 4 transforms a

(.2,.8,.8,.2)-sensitive family into a

(.2,.8,.8785,.0064)-sensitive family.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Similarity s

P
ro

b
(c

a
n

d
id

a
te

 p
a
ir

)

 Picking r and b to get desired performance

▪ 50 hash-functions (r = 5, b = 10)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area X: False Negative rate

These are pairs with sim > s but the X

fraction won’t share a band and then

will never become candidates. This

means we will never consider these

pairs for (slow/exact) similarity

calculation!

Green area Y: False Positive rate

These are pairs with sim < s but

we will consider them as candidates.

This is not too bad, we will consider

them for (slow/exact) similarity

computation and discard them.

Similarity s

P
ro

b
(C

a
n
d
id

a
te

 p
a

ir
)

T
h
re

s
h

o
ld

 s

 Picking r and b to get desired performance

▪ 50 hash-functions (r * b = 50)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=2, b=25

r=5, b=10

r=10, b=5

T
h
re

s
h

o
ld

 s

Similarity s

P
ro

b
(C

a
n
d
id

a
te

 p
a

ir
)

 Apply a b-way OR construction followed by
an r-way AND construction

 Transforms similarity s (probability p)
into (1-(1-s)b)r

▪ The same S-curve, mirrored horizontally and
vertically

 Example: Take H and construct H’ by the OR
construction with b = 4. Then, from H’,
construct H’’ by the AND construction
with r = 4

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

s p=(1-(1-s)4)4

.1 .0140

.2 .1215

.3 .3334

.4 .5740

.5 .7725

.6 .9015

.7 .9680

.8 .9936

The example transforms a

(.2,.8,.8,.2)-sensitive family into a

(.2,.8,.9936,.1215)-sensitive family

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Similarity s

P
ro

b
(c

a
n

d
id

a
te

 p
a
ir

)

 Example: Apply the (4,4) OR-AND construction
followed by the (4,4) AND-OR construction

 Transforms a (.2, .8, .8, .2)-sensitive family into
a (.2, .8, .9999996, .0008715)-sensitive family

▪ Note this family uses 256 (=4*4*4*4) of the
original hash functions

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Pick any two distances d1 < d2

 Start with a (d1, d2, (1- d1), (1- d2))-sensitive
family

 Apply constructions to amplify
(d1, d2, p1, p2)-sensitive family,
where p1 is almost 1 and p2 is almost 0

 The closer to 0 and 1 we want to get,
the more hash functions must be used!

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 LSH methods for other distance metrics:

▪ Cosine distance: Random hyperplanes

▪ Euclidean distance: Project on lines

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Points

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

Depends on the

distance function used

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Data

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random

Hyperplanes
-1 +1 -1 -1
+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
o

c
u
m

e
n

ts
D

a
ta

 p
o
in

ts

Candidate pairs

Candidate pairs

 Cosine distance = angle between vectors
from the origin to the points in question
d(A, B) = = arccos(AB / ǁAǁ·ǁBǁ)
▪ Has range [𝟎, 𝝅] (equivalently [0,180°])

▪ Can divide by 𝝅 to have distance in range [0,1]
 Cosine similarity = 1-d(A,B)/ 𝝅

▪ But often defined as cosine sim: cos(𝜃) =
𝐴⋅𝐵

𝐴 𝐵

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

A

B

AB

‖B‖

- Has range -1…1 for

general vectors

- Range 0..1 for

non-negative vectors

(angles up to 90°)

 For cosine distance, there is a technique
called Random Hyperplanes

▪ Technique similar to Min-Hashing

 Random Hyperplanes method is a

(d1, d2, (1-d1/𝝅), (1-d2/𝝅))-sensitive family for
any d1 and d2

 Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Each vector v determines a hash function hv
with two buckets

 hv(x) = +1 if vx 0; = -1 if vx < 0

 LS-family H = set of all functions derived
from any vector

 Claim: For points x and y,

 Pr[h(x) = h(y)] = 1 – d(x,y) / 𝝅

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

x

y

Look in the

plane of x

and y.

θ
Hyperplane

normal to v’.

Here h(x) ≠ h(y)

v’

Hyperplane

normal to v.

Here h(x) = h(y)

v

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

So: Prob[Red case] = θ / 𝝅
Our claim follows: P[h(x)=h(y)] = 1- θ/𝜋 = 1-d(x,y)/𝜋

 Pick some number of random vectors, and
hash your data for each vector

 The result is a signature (sketch) of
+1’s and –1’s for each data point

 Can be used for LSH like we used the
Min-Hash signatures for Jaccard distance

 Amplify using AND/OR constructions

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Expensive to pick a random vector in M
dimensions for large M

▪ Would have to generate M random numbers

 A more efficient approach

▪ It suffices to consider only vectors v
consisting of +1 and –1 components

▪ Why? Assuming data is random, then vectors of +/-1 cover
the entire space evenly (and does not bias in any way)

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 Idea: Hash functions correspond to lines

 Partition the line into buckets of size a

 Hash each point to the bucket containing its
projection onto the line

▪ An element of the “Signature” is a bucket id for
that given projection line

 Nearby points are always close;
distant points are rarely in same bucket

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

 “Lucky” case:

▪ Points that are close
hash in the same bucket

▪ Distant points end up in
different buckets

 Two “unlucky” cases:

▪ Top: unlucky
quantization

▪ Bottom: unlucky
projection

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

v
v

Line

Buckets of size a

v v

v
v

v v

v
v

v
v

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

v v

v
v

v
v

vv

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Bucket

width a

Randomly

chosen line

Points at

distance d

If d << a, then

the chance the

points are in the

same bucket is

at least 1 – d/a.

exactly 1 – d/a when the

randomly chosen line is

parallel to the line from x

to y

x

y

d

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Bucket

width a

Points at

distance d

θ

d cos θ

If d >> a, θ must

be close to 90o

for there to be

any chance points

go to the same

bucket.
Then: d cos θ ≤ a

Randomly

chosen line

 If points are distance d < a/2, prob.
they are in same bucket ≥ 1- d/a = ½

 If points are distance d > 2a apart, then they
can be in the same bucket only if d cos θ ≤ a

▪ cos θ ≤ ½

▪ 60 < θ < 90, i.e., at most 1/3 probability

 Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a

 Amplify using AND-OR cascades

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Data

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random

Hyperplanes
-1 +1 -1 -1
+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
o

c
u
m

e
n

ts
D

a
ta

 p
o
in

ts

Candidate pairs

Candidate pairs

 Property P(h(C1)=h(C2))=sim(C1,C2) of
hash function h is the essential part of
LSH, without which we can’t do
anything

 LS-hash functions transform data to
signatures so that the bands technique
(AND, OR constructions) can then be
applied

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Ed Discussion Board

Recitation sessions:
 Review of linear algebra: April 11, 7:30-8:30 PM, Zoom
 Big data tricks: April 16, 7:30-8:30 PM, Zoom

Deadlines next Wed, 6 PM:
 HW1
 Colab 2 (You can submit many times and will get immediate feedback)

For office hours – please check our website

How to find teammates for project?
 Ed Discussion Board
 Make sure you have a good dataset accessible, in hand

Attendance is required for final project presentations during finals week.

Please continue to give us feedback (Link to Google form on Ed)

Concern about workload: We respect everyone’s time and responsibilities. Relative to the non-PMP
version of the course we have reduced homework requirements. Most (theory) questions have partial
credit opportunities. Nobody expects 100/100 homeworks. Grades will be curved in the end. What is
most important to us, is to support your learning.

4/8/2025 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 67

	Slide 2: Theory of Locality Sensitive Hashing
	Slide 3: Recap: Finding similar documents
	Slide 4: Recap: The Big Picture
	Slide 6: Recap: Shingles
	Slide 7: Recap: Minhashing
	Slide 8: Recap: LSH
	Slide 9: Today: Generalizing Min-hash
	Slide 10: The S-Curve
	Slide 11: How Do We Make the S-curve?
	Slide 12: Picking r and b: The S-curve
	Slide 13: S-curves as a func. of b and r
	Slide 14: Theory of LSH
	Slide 15: Theory of LSH
	Slide 16: Distance Metric
	Slide 20: Families of Hash Functions
	Slide 21: Locality-Sensitive (LS) Families
	Slide 22: A (d1,d2,p1,p2)-sensitive function
	Slide 23: A (d1,d2,p1,p2)-sensitive function
	Slide 24: Example of LS Family: Min-Hash
	Slide 25: Example: LS Family – (2)
	Slide 26: Amplifying a LS-Family
	Slide 27: Amplifying Hash Functions: AND and OR
	Slide 28: AND of Hash Functions
	Slide 29: Subtlety Regarding Independence
	Slide 30: OR of Hash Functions
	Slide 31: Effect of AND and OR Constructions
	Slide 32: Combine AND and OR Constructions
	Slide 33: Composing Constructions
	Slide 35: Table for Function 1-(1-s4)4
	Slide 36: How to choose r and b
	Slide 37: Picking r and b: The S-curve
	Slide 38: Picking r and b: The S-curve
	Slide 39: OR-AND Composition
	Slide 41: Table for Function (1-(1-s)4)4
	Slide 42: Cascading Constructions
	Slide 45: Summary
	Slide 46: LSH for other distance metrics
	Slide 47: LSH for other Distance Metrics
	Slide 48: Summary of what we will learn
	Slide 49: Cosine Distance
	Slide 50: LSH for Cosine Distance
	Slide 51: Random Hyperplanes
	Slide 52: Proof of Claim
	Slide 53: Proof of Claim
	Slide 55: Signatures for Cosine Distance
	Slide 56: How to pick random vectors?
	Slide 57: LSH for Euclidean Distance
	Slide 58: Projection of Points
	Slide 59: Multiple Projections
	Slide 60: Projection of Points
	Slide 61: Projection of Points
	Slide 62: A LS-Family for Euclidean Distance
	Slide 65: Summary
	Slide 66: Two Important Points
	Slide 67: Announcements

