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 Task: Given a large number (N in the millions or 
billions) of documents, find “near duplicates”

 Problem:

▪ Too many documents to compare all pairs

 Solution: Hash documents so that similar 
documents hash into the same bucket

▪ Documents in the same bucket are then 
candidate pairs whose similarity is then evaluated
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 A k-shingle (or k-gram) is a sequence of k 
tokens that appears in the document

▪ Example: k=2; D1 = abcab

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca}

 Represent a doc by a set of hash values of its 
k-shingles

 A natural similarity measure is then the 
Jaccard similarity:

  sim(D1, D2) = |C1C2|/|C1C2|
▪ Similarity of two documents is the Jaccard similarity of 

their shingles
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 Min-Hashing: Convert large sets into short signatures, 
while preserving similarity: Pr[h(C1) = h(C2)] = sim(D1, D2) 
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Similarities of columns and
signatures (approx.) match!
                   1-3      2-4    1-2   3-4
Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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 Hash columns of the signature matrix M:  
Similar columns likely hash to same bucket

▪ Divide matrix M into b bands of r rows (m=b·r)

▪ Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band
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Points

Signatures: short 
integer signatures that 
reflect point similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

Design a locality sensitive
hash function (for a given

distance metric)

Apply the

“Bands” technique



 The S-curve is where the “magic” happens
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Pr[h(C1) = h(C2)] = sim(D1, D2)

No chance
if t<s

Probability=1 
if t>s

This is what we want!
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By choosing r and b!

T
h
re

s
h

o
ld

 s

Similarity t of two sets



 Remember: b bands, r rows/band
 Let sim(C1 , C2) = s
What’s the prob. that at least 1 band is equal?
 Pick some band (r rows)

▪ Prob. that elements in a single row of 
columns C1 and C2 are equal = s

▪ Prob. that all rows in a band are equal = sr 

▪ Prob. that some row in a band is not equal = 1 - sr 

 Prob. that all bands are not equal  = (1 - sr)b

 Prob. that at least 1 band is equal = 1 - (1 - sr)b
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P(C1, C2 is a candidate pair) = 1 - (1 - sr)b 



 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)
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r = 5, b = 1..50
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 We have used LSH to find similar documents

▪ More specifically, we found similar columns in 
large sparse matrices with high Jaccard similarity

 Can we use LSH for other distance measures?

▪ e.g., Euclidean distances, Cosine distance 

▪ Let’s generalize what we’ve learned!
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 d() is a distance metric if it is a function from pairs of points 
x,y to real numbers such that:

▪ 𝑑 𝑥, 𝑦 ≥  0

▪ 𝑑 𝑥, 𝑦 =  0 𝑖𝑓𝑓 𝑥 =  𝑦

▪ 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥)
▪ 𝑑 𝑥, 𝑦 ≤  𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦) (triangle inequality)

 Jaccard distance for sets = 1 - Jaccard similarity
 Cosine distance for vectors = angle between the vectors
 Euclidean distances:
▪ L2 norm: d(x,y) = square root of the sum of the squares of the 

differences between x  and y  in each dimension
▪ The most common notion of “distance”

▪ L1 norm: sum of absolute value of the differences in each dimension
▪ Manhattan distance = distance if you travel along coordinates only
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 For Min-Hashing signatures, we got a Min-Hash 
function for each permutation of rows

 A “hash function” is any function that allows us 
to say whether two elements are “equal”
▪ Shorthand: h(x) = h(y) means “h  says x and y are equal”

 A family of hash functions is any set of hash 
functions from which we can pick one at 
random efficiently

▪ Example: The set of Min-Hash functions generated 
from permutations of rows (e.g. Universal Hashing)
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 Suppose we have a space S of points with 
a distance metric d(x,y)

 A family H of hash functions is said to be 
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all h H, 
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all h H, 
that h(x) = h(y) is at most p2
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With a LS Family we can do LSH!

Critical assumption
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P[h(x) = h(y1)] ≥ p1 

P[h(x) = h(y2)] ≤ p2

?
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 Let: 

▪ S = space of all sets, 

▪ d = Jaccard distance, 

▪ H is family of Min-Hash functions for all 
permutations of rows

 Then for any hash function h H:
  Pr[h(x) = h(y)]  =  1 - d(x, y)

▪ Simply restates theorem about Min-Hashing 
in terms of distances rather than similarities
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 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

 For Jaccard similarity, Min-Hashing gives a 
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2
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If distance < 1/3

(so similarity ≥ 2/3)

Then probability

that Min-Hash values

agree is > 2/3



 Can we reproduce the 
“S-curve” effect we saw 
before for any LS family?

 The “bands” technique we learned for signature 
matrices carries over to this more general setting

 Can do LSH with any (d1, d2, p1, p2)-sensitive 
family!

 Two constructions:
▪ AND construction like “rows in a band”

▪ OR construction like “many bands”
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 Given family H, construct family H’ consisting 
of r independent functions from H

 For h = [h1,…,hr] in H’, we say
h(x) = h(y) if and only if hi(x) = hi(y) for all i

▪ Note this corresponds to creating a band of size r

 Theorem: If H is (d1, d2, p1, p2)-sensitive, 

then H’ is (d1,d2, (p1)r, (p2)r)-sensitive
 Proof: Use the fact that hi ’s are independent
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1  i  r

Lowers probability for
large distances (Good)

Also lowers probability
for small distances (Bad)



 Independence of hash functions (HFs) really 
means that the prob. of two HFs saying “yes” 
is the product of each saying “yes”

▪ But two particular hash functions could be highly 
correlated

▪ For example, in Min-Hash if their permutations agree in 
99% of entries

▪ However, the probabilities in definition of a 
LSH-family are over all possible members of H, H’ 
(i.e., average case and not the worst case)
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 Given family H, construct family H’ consisting 
of b independent functions from H

 For h = [h1,…,hb] in H’, 
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1  i

 Theorem: If H is (d1, d2, p1, p2)-sensitive, 

then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive
 Proof: Use the fact that hi’s are independent
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 AND makes all probs. shrink, but by choosing r 
correctly, we can make the lower prob. approach 0 
while the higher does not

 OR makes all probs. grow, but by choosing b correctly, 
we can make the higher prob. approach 1 while the 
lower does not
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 By choosing b and r correctly, we can make 
the lower probability approach 0 while the 
higher approaches 1

 As for the signature matrix, we can use the 
AND construction followed by the OR 
construction

▪ Or vice-versa

▪ Or any sequence of AND’s and OR’s alternating
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 r-way AND followed by b-way OR construction
▪ Exactly what we did with Min-Hashing
▪ AND: If bands match in all r values hash to same bucket

▪ OR: Cols that have  1 common bucket → Candidate

 Take points x and y s.t.  Pr[h(x) = h(y)] = s
▪ H will make (x,y) a candidate pair with prob. s

 Construction makes (x,y) a candidate pair with 
probability 1-(1-sr)b          The S-Curve!
▪ Example: Take H and construct H’ by the AND 

construction with r = 4.  Then, from H’, construct H’’ 
by the OR construction with b = 4
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s p=1-(1-s4)4
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r = 4, b = 4  transforms a 

(.2,.8,.8,.2)-sensitive family into a 

(.2,.8,.8785,.0064)-sensitive family.
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 Picking r and b to get desired performance

▪ 50 hash-functions (r = 5, b = 10)
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 Picking r and b to get desired performance

▪ 50 hash-functions (r * b = 50)
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 Apply a b-way OR construction followed by 
an r-way AND construction

 Transforms similarity s (probability p)
into (1-(1-s)b)r

▪ The same S-curve, mirrored horizontally and 
vertically

 Example: Take H and construct H’ by the OR 
construction with b = 4.  Then, from H’, 
construct H’’ by the AND construction 
with r = 4
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s p=(1-(1-s)4)4
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 Example: Apply the (4,4) OR-AND construction 
followed by the (4,4) AND-OR construction

 Transforms a (.2, .8, .8, .2)-sensitive family into 
a (.2, .8, .9999996, .0008715)-sensitive family

▪ Note this family uses 256 (=4*4*4*4) of the 
original hash functions
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 Pick any two distances d1 < d2

 Start with a (d1, d2, (1- d1), (1- d2))-sensitive 
family

 Apply constructions to amplify
(d1, d2, p1, p2)-sensitive family, 
where p1 is almost 1 and p2 is almost 0

 The closer to 0 and 1 we want to get, 
the more hash functions must be used!
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 LSH methods for other distance metrics:

▪ Cosine distance: Random hyperplanes

▪ Euclidean distance: Project on lines

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Points

Signatures: short 
integer signatures that 
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric)

Amplify the family 
using AND and OR 

constructions

Depends on the 

distance function used



Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Data

Signatures: short 
integer signatures that 
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random

Hyperplanes
-1 +1 -1 -1
+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
o

c
u
m

e
n

ts
D

a
ta

 p
o
in

ts

Candidate pairs

Candidate pairs



 Cosine distance = angle between vectors 
from the origin to the points in question
d(A, B) =  = arccos(AB / ǁAǁ·ǁBǁ)
▪ Has range [𝟎, 𝝅]  (equivalently [0,180°])

▪ Can divide  by 𝝅 to have distance in range [0,1]
 Cosine similarity = 1-d(A,B)/ 𝝅

▪ But often defined as cosine sim: cos(𝜃) =
𝐴⋅𝐵

𝐴 𝐵
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 For cosine distance, there is a technique 
called Random Hyperplanes

▪ Technique similar to Min-Hashing 

 Random Hyperplanes method is a 

(d1, d2, (1-d1/𝝅), (1-d2/𝝅))-sensitive family for 
any d1 and d2

 Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2
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 Each vector v determines a hash function hv 
with two buckets

 hv(x) = +1 if vx  0;  = -1 if vx < 0

 LS-family H = set of all functions derived 
from any vector

 Claim: For points x and y, 

 Pr[h(x) = h(y)]  =  1 – d(x,y) / 𝝅
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So: Prob[Red case] = θ / 𝝅
Our claim follows: P[h(x)=h(y)] = 1- θ/𝜋 = 1-d(x,y)/𝜋



 Pick some number of random vectors, and 
hash your data for each vector

 The result is a signature (sketch) of 
+1’s and –1’s for each data point

 Can be used for LSH like we used the 
Min-Hash signatures for Jaccard distance

 Amplify using AND/OR constructions
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 Expensive to pick a random vector in M 
dimensions for large M

▪ Would have to generate M random numbers

 A more efficient approach

▪ It suffices to consider only vectors v
consisting of +1 and –1 components

▪ Why? Assuming data is random, then vectors of +/-1 cover 
the entire space evenly (and does not bias in any way)
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 Idea: Hash functions correspond to lines

 Partition the line into buckets of size a

 Hash each point to the bucket containing its 
projection onto the line

▪ An element of the “Signature” is a bucket id for 
that given projection line

 Nearby points are always close; 
distant points are rarely in same bucket
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 “Lucky” case:

▪ Points that are close 
hash in the same bucket

▪ Distant points end up in 
different buckets

 Two “unlucky” cases:

▪ Top: unlucky 
quantization

▪ Bottom: unlucky 
projection
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Bucket

width a

Randomly

chosen line

Points at

distance d

If d  << a, then

the chance the

points are in the

same bucket is

at least 1 – d/a.

exactly 1 – d/a when the 

randomly chosen line is 

parallel to the line from x 

to y

x

y

d
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Bucket

width a

Points at

distance d

θ

d cos θ

If d >> a, θ must

be close to 90o

for there to be

any chance points

go to the same

bucket.
Then: d cos θ  ≤ a 

Randomly

chosen line



 If points are distance  d < a/2, prob. 
they are in same bucket  ≥ 1- d/a = ½

 If points are distance d > 2a apart, then they 
can be in the same bucket only if  d cos θ ≤ a 

▪ cos θ ≤ ½ 

▪ 60 < θ < 90, i.e., at most 1/3 probability

 Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of 
hash functions for any a

 Amplify using AND-OR cascades
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Data

Signatures: short 
integer signatures that 
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of 
signatures that 
we need to test 
for similarity

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric)

Amplify the family 
using AND and OR 

constructions

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random

Hyperplanes
-1 +1 -1 -1
+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

D
o

c
u
m

e
n

ts
D

a
ta

 p
o
in

ts

Candidate pairs

Candidate pairs



 Property P(h(C1)=h(C2))=sim(C1,C2) of 
hash function h is the essential part of 
LSH, without which we can’t do 
anything

 LS-hash functions transform data to 
signatures so that the bands technique 
(AND, OR constructions) can then be 
applied
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Ed Discussion Board

Recitation sessions:
 Review of linear algebra: April 11, 7:30-8:30 PM, Zoom
 Big data tricks: April 16, 7:30-8:30 PM, Zoom

Deadlines next Wed, 6 PM:
 HW1
 Colab 2 (You can submit many times and will get immediate feedback)

For office hours – please check our website

How to find teammates for project?
 Ed Discussion Board
 Make sure you have a good dataset accessible, in hand

Attendance is required for final project presentations during finals week. 

Please continue to give us feedback (Link to Google form on Ed)

Concern about workload: We respect everyone’s time and responsibilities. Relative to the non-PMP 
version of the course we have reduced homework requirements. Most (theory) questions have partial 
credit opportunities. Nobody expects 100/100 homeworks. Grades will be curved in the end. What is 
most important to us, is to support your learning. 
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