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• CS103 Winter 2016 at Stanford, “Guide to Proofs”: http://stanford.io/2dexnf9.

• Eugenia Cheng, “How to write proofs: a quick guide”: https://deopurkar.github.io/

teaching/algebra1/cheng.pdf.

• “Quick tour to Basic Probability Theory”: http://snap.stanford.edu/class/cs224w-2015/
recitation/prob_tutorial.pdf.

1 Proof Techniques

In this section, we will review several mathematical techniques for writing rigorous proofs.
They are useful in the field of machine learning when we want to formally state and verify
some theoretical properties of our proposed algorithms.

1.1 Terminologies

• Definition: an explanation of the mathematical concept in words.

• Conjecture: a statement that we think might be true and can be proven (but hasn’t
been proven yet).

• Theorem: a key statement/result that has been rigorously proved.

• Proof: a valid argument for showing why a statement/result is true.

• Premise: a condition for the theorem.

• Lemma: a small theorem (or preliminary result) used in proving the main theorems
or other true statements.

• Proposition: a less important but interesting true statement with a short proof.

• Corollary: a true statement that is a simple deduction from a theorem or proposition.
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• Axiom: a basic assumption about a mathematical situation, which is also a statement
that we assume to be true.

1.2 Universal and Existence Statements

Universal statement: To prove a universal statement, like “the square of any odd number
is odd”, it is always easy to show that this is true for some specific cases – for example,
32 = 9, which is an odd number, and 52 = 25, which is another odd number. However, to
rigorously prove the statement, we must show that it works for all odd numbers, which is
difficult as we cannot enumerate all of them.

On the contrary, if we want to disprove a universal statement, we only need to find one
counterexample. For instance, if we want to disprove the statement “the square of any odd
number is even”, it suffices to provide a specific example of an odd number whose square is
not even. (For example, 32 = 9, which is not an even number.)

As a summary, it leads to a rule of thumb for proving or disproving

• To prove a universal statement, we must show that it works for all cases.

• To disprove a universal statement, it suffices to find one counterexample.

Example 1. Prove that the square of any odd number is odd.

Proof. Let x be an arbitrary odd number. By definition, an odd number is an integer that
can be written in the form 2k+1 for some integer k. This means that we can write x = 2k+1,
where k is some integer. Thus,

x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since k is an integer, 2k2+2k is also an integer, so we can write x2 = 2ℓ+1, where ℓ = 2k2+2k
is an integer. Therefore, x2 is odd.

Since the above argument works for any odd number x, we have shown that the square of
any odd number is odd.

Remark 1. Using the statement that “the square of any odd number is odd” as an example,
we showcase how to prove a universal statement. In particular, we pick an arbitrary odd
number x and try to prove the statement for that number. In the proof, we cannot assume
anything about x other than that it is an odd number. (In other words, we cannot simply
set x to be a specific number, like 3, because then our proof might rely on special properties
of the number 3 that do not generalize to all odd numbers).

Existence statement: The above rule of thumb is reversed when it comes to the “existence”
statements. For example, if the statement to be proved is that “there exists at least one odd
number whose square is odd, then proving the statement just requires finding one specific
case, e.g., 32 = 9, while disproving the statement would require showing that none of the
odd numbers have squares that are odd.
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1.3 Special Proof Techniques

In addition to the technique of “picking an arbitrary element”, here are several other tech-
niques commonly seen in proofs.

Proof by contrapositive: Consider the statement that

(a) “If it is raining today, then I do not go to class.”

This is logically equivalent to the statement that

(b) “If I go to class, then it is not raining today.”

Therefore, if we want to prove statement (a), then it suffices (or equivalent) to prove state-
ment (b). Statement (b) is called the contrapositive of statement (a).

It is worth mentioning that statement (a) is not logically equivalent to the statement:

(c) “If I do not go to class, then it is raining today.”

which is a converse of statement (a). This non-equivalence is also known as the fallacy of
the converse.

Example 2. Let x be an integer. Prove that x2 is an odd number if and only if x is an odd
number.

Proof. The “if and only if” in this statement requires us to prove both directions of the
implication. First, we must prove that (⇒) if x is an odd number, then x2 is an odd number.
Then, we should also prove that (⇐) if x2 is an odd number, then x is an odd number.

As we already proved the first statement (⇒) in Example 1, we only need to prove the
second statement (⇐). The second statement is logically equivalent to its contrapositive, so
it suffices to prove that “if x is an even number, then x2 is even.”

Suppose x is an even number. Then, we can write x = 2k for some integer k. It implies that
x2 = 4k2 = 2(2k2). Since k is an integer, 2k2 is also an integer, so we can write x2 = 2ℓ for
the integer ℓ = 2k2. By definition, this means that x2 is an even number.

Proof by contradiction: When proving a statement by contradiction, we would assume
that our statement is not true and then derive a contradiction. This is a special case of prov-
ing by contrapositive (where our “if” is all of mathematics, and our “then” is the statement
to be proved).

Example 3. Prove that
√
2 is irrational.

Proof. Suppose that
√
2 was rational. By definition, this means that

√
2 can be written

as m/n for some integers m and n. Since
√
2 = m/n, it follows that 2 = m2/n2, which

in turn shows that m2 = 2n2. Now any square number x2 must have an even number of
prime factors, since any prime factor found in the first x must also appear in the second x.
Therefore, m2 must have an even number of prime factors. However, since n2 must also have
an even number of prime factors, and 2 is a prime number, 2n2 must have an odd number of
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prime factors. This is a contradiction, since we claimed that m2 = 2n2, and no number can
simultaneously have an even number of prime factors and an odd number of prime factors.
Therefore, our initial assumption was wrong, and

√
2 must be irrational.

Proof by cases: Sometimes, it might be difficult to prove the entire theorem at once. As a
result, we consider splitting the proof into several cases and proving the theorem separately
for each case.

Example 4. Let n be an integer. Show that if n is not divisible by 3, then n2 = 3k + 1 for
some integer k.

Proof. If n is not divisible by 3, then either n = 3m+ 1 or n = 3m+ 2 for some integer m.

Case 1: Suppose n = 3m + 1. Then n2 = (3m + 1)2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1.
Since 3m2 + 2m is an integer, it follows that we can write n2 = 3k + 1 for k = 3m2 + 2m.

Case 2: Suppose n = 3m+2. Then n2 = (3m+2)2 = 9m2+12m+4 = 9m2+12m+3+1 =
3(3m2 + 4m+ 1) + 1. Hence, we can write n2 = 3k + 1 for k = 3m2 + 4m+ 1.

Since Case 1 and Case 2 reflect all possible possibilities, the proof is completed.

1.4 Proof by induction

We can prove a statement by induction when showing that the statement is valid for all
positive integers n. Note that this is not the only situation in which we can use induction,
and that induction is (usually) not the only way to prove a statement for all positive integers.

To use induction, we need to establish two results:

(i) Base case: The statement is true when n = 1.

(ii) Inductive step: If the statement is true for n = k, then the statement is also true for
n = k + 1.

It allows for an infinite chain of implications:

• The statement is true for n = 1

• If the statement is true for n = 1, then it is also true for n = 2

• If the statement is true for n = 2, then it is also true for n = 3

• If the statement is true for n = 3, then it is also true for n = 4

• . . .

Together, these implications prove the statement for all positive integer values of n. (It does
not prove the statement for non-integer values of n, or values of n less than 1.)

Example 5. Prove that 1 + 2 + · · ·+ n = n(n+ 1)/2 for all integers n ≥ 1.
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Proof. We proceed by induction.

Base case: If n = 1, then the statement becomes 1 = 1(1 + 1)/2, which is true.

Inductive step: Suppose that the statement is true for n = k. This means 1+2+ · · ·+k =
k(k + 1)/2. We want to show the statement is true for n = k + 1, i.e.,

1 + 2 + · · ·+ k + (k + 1) = (k + 1)(k + 2)/2.

By the induction hypothesis (i.e., because the statement is true for n = k), we have 1 + 2+
· · · + k + (k + 1) = k(k + 1)/2 + (k + 1). This equals (k + 1)(k/2 + 1), which is equal to
(k + 1)(k + 2)/2. This proves the inductive step.

Therefore, the statement is true for all integers n ≥ 1.

1.4.1 Strong induction

Strong induction (or complete induction) is a useful variant of induction. Here, the inductive
step is changed to

(i) Base case: The statement is true when n = 1.

(ii) Inductive step: If the statement is true for all values of 1 ≤ n < k, then the statement
is also true for n = k.

This also produces an infinite chain of implications:

• The statement is true for n = 1

• If the statement is true for n = 1, then it is true for n = 2

• If the statement is true for both n = 1 and n = 2, then it is true for n = 3

• If the statement is true for n = 1, n = 2, and n = 3, then it is true for n = 4

• . . .

Strong induction works on the same principle as weak induction, but is generally easier to
prove theorems under its stronger induction hypothesis.

Definition 1. A prime number (or a prime) is a natural number strictly greater than 1 that
is not a product of two smaller natural numbers. A natural number greater than 1 that is
not prime is called a composite number.

Example 6. Prove that every integer n greater than or equal to 2 can be factored into prime
numbers.

Proof. We proceed by (strong) induction.

Base case: If n = 2, then n is a prime number, and its factorization is itself.

Inductive step: Suppose that k is some integer larger than 2, and assume that the state-
ment is true for all numbers n < k. Then, there are two cases:
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Case 1: k is prime. Then, its prime factorization is k itself.

Case 2: k is composite. This means that it can be decomposed into a product xy, where x
and y are both greater than 1 and less than k. Since x and y are both less than k, both x and
y can be factored into prime numbers (by the inductive hypothesis). That is, x = p1 · · · ps
and y = q1 · · · qt, where p1, . . . , ps and q1, . . . , qt are prime numbers.

Thus, k can be written as (p1 . . . ps) · (q1 . . . qt), which is a factorization into prime numbers.
It also completed the proof of the statement.

2 Useful Results in Calculus

The definition of the exponential function states that

ex = lim
n→∞

(
1 +

x

n

)n
.

In particular, it indicates that lim
n→∞

(
1 + 1

n

)n
= e and lim

n→∞

(
1− 1

n

)n
= 1

e
.

Gamma Function and Stirling’s Formula: For x ∈ (0,∞), the Gamma function is
Γ(x) =

∫∞
0

tx−1e−tdt. While the exact value of Γ(x + 1) is intractable for some x ∈ (0,∞),
one can approximate Γ(x+ 1) when x is large by Stirling’s formula:

lim
x→∞

Γ(x+ 1)

(x/e)x
√
2πx

= 1.

This implies that when x = n is a sufficiently large integer, we can approximate Γ(n+1) = n!
by

√
2πn

(
n
e

)n
. More precisely, the following bound for n! holds for all n ≥ 1 rather than

only asymptotically:

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n .

3 Basic Probability Theory

Parts of this section are adapted from Chapter 1 of Casella and Berger (2002) and lecture
notes of STAT 512 at UW by Professor Yen-Chi Chen’s 1 and Professor Michael D. Perlman
(Perlman, 2020).

3.1 Probability Space

Sample space: The sample space Ω is the collection of all possible outcomes of a random
experiment. For example, if we roll a die with 6 faces, then the sample space will be
{1, 2, 3, 4, 5, 6}.

1See http://faculty.washington.edu/yenchic/20A_stat512.html.

6

http://faculty.washington.edu/yenchic/20A_stat512.html


CSE 547 / STAT 548 – Review of Proof Techniques and Probability 03/17/2024

Events: A subset of the sample space, A ⊂ Ω, is called an event. For example, the event
“the number from the above die is less than 4” can be represented by the subset {1, 2, 3}.
The event “we roll a 6 from the above die” can be represented by the subset {6}.

σ-algebra2: While the collection of all possible events (i.e., all subsets of Ω) is sometimes
too large to define a valid probability space, we introduce the concept of σ-algebra F as a
collections of subsets of Ω satisfying:

(A1) (Nonemptiness) Ω ∈ F and ∅ ∈ F , where ∅ is the empty set.

(A2) (Closure under complementation) If A ∈ F , then Ac ∈ F .

(A3) (Closure under countable unions) If A1, A2, ... ∈ F , then ∪∞
i=1Ai ∈ F .

The subsets of Ω in F are said to be measurable, and (Ω,F) is called measurable space.

Probability measure: A probability measure (or probability function) P is a mapping
from σ-algebra F to real numbers in [0, 1] satisfying the following three axioms:

• P (A) ≥ 0 for all A ∈ F .

• P (Ω) = 1

• If A1, A2, ... ∈ F are mutually exclusive events, then P (∪∞
i=1Ai) =

∑n
i=1 P (Ai).

The triplet (Ω,F , P ) is called a probability space.

Example 7. For a fair dice with 6 faces, we can define the probability function as:

P ({we roll the face i}) = 1

6
for i = 1,..., 6.

Any event in the probability space can be represented as unions of these six disjoint events.
For instance,

P (we roll an odd number) =
1

6
+

1

6
+

1

6
=

1

2
.

Note that we can add probabilities here because the events {we roll the face 1}, {we roll the face 3},
and {we roll the face 5} are disjoint.

3.2 Properties of Probability Measure

Theorem 1 (Principle of inclusion-exclusion). Let (Ω,F , P ) be a probability space. Given
two subsets A,B ∈ F that are not necessarily disjoint, we have that

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. We can derive this theorem from the probability axioms. Note that A ∪ B can be
split into three disjoint events: A \B = A ∩Bc, A ∩B, and B \ A = B ∩ Ac. Furthermore,
A can be split into A \B and A ∩B, and B can be split into B \ A and A ∩B. Thus,

P (A ∪B) = P (A \B) + P (A ∩B) + P (B \ A)
2This is an advanced concept and can be skipped.
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= P (A \B) + P (A ∩B) + P (B \ A) + P (A ∩B)− P (A ∩B)

= P (A) + P (B)− P (A ∩B)

The result follows.

Example 8. Suppose k is chosen uniformly at random from the integer set {1, 2, . . . , 100}.
(This means that the probability of getting each integer is 1/100.) Find the probability that
k is divisible by 2 or 5.

Solution. By the principle of inclusion-exclusion (Theorem 1),

P ({k is divisible by 2 or 5}) = P ({k is divisible by 2}) + P ({k is divisible by 5})
− P ({k is divisible by both 2 and 5}) .

There are 50 numbers divisible by 2, 20 numbers divisible by 5, and 10 numbers divisible by
10 (i.e., divisible by both 2 and 5). Therefore, the probability is

P ({k is divisible by 2 or 5}) = 50

100
+

20

100
− 10

100
= 0.6.

Theorem 2 (Union bound or Boole’s inequality). Let (Ω,F , P ) be a probability space. For
any collection of n events A1, . . . , An ∈ F , we have that

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai).

Proof. We can prove this result by induction (for finite n).

Base case: When n = 1, the statement becomes P (A1) ≤ P (A1), which is true.

Inductive step: Suppose that the statement is true for n = k. We must prove that the
statement is true for n = k + 1. Note that

k+1⋃
i=1

Ai =

(
k⋃

i=1

Ai

)
∪ Ak+1

and by the principle of inclusion-exclusion (Theorem 1),

P

(
k+1⋃
i=1

Ai

)
≤ P

(
k⋃

i=1

Ai

)
+ P (Ak+1).

By the induction hypothesis, the first term is less than or equal to
∑k

i=1 P (Ai). Hence,

P

(
k+1⋃
i=1

Ai

)
≤

k+1∑
i=1

P (Ai).

The proof is completed.
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Example 9. Suppose that the chance of winning a Mega Million is 1 in 100000 every time
a person buys a lottery ticket. If Tim buys one ticket every day of the year, how likely will
he win the Mega Million at least once?

Answer. The union bound will not tell us the exact probability for Tim winning the Mega
Million. However, it gives us an upper bound of this probability as 365/100000.

Other useful properties of probability measure: Let (Ω,F , P ) be a probability space.

• If A ⊂ B, then P (A) ≤ P (B). More generally, P (B \ A) = P (B)− P (A ∩B).

• For any A ⊂ F and some mutually exclusive C1, C2, ... with ∪∞
i=1Ci = Ω,

P (A) =
∞∑
i=1

P (A ∩ Ci).

• Monotone continuity : For a sequence of subsets {An}∞n=1 ⊂ F with An ⊂ An+1 for all

n, we have that P

(
∞⋃
n=1

An

)
= lim

n→∞
P (An). Similarly, if An ⊃ An+1 for all n, we have

that P

(
∞⋂
n=1

An

)
= lim

n→∞
P (An).

3.3 Conditional Probability, Independence, and Bayes’ Rule

We motivate the concept of conditional probability through the following example.

Example 10. Suppose that you are administering the GRE, and you discover that 2.5% of
students get a perfect score on the math section.3 By itself, this is not a very useful statistic,
because the scores on the math section vary substantially by major. You dive a little deeper
and find that 7.5% of physical sciences students get a perfect score, 6.3% of engineering
students get a perfect score, and most other majors do substantially worse.

In the language of conditional probability, we would say that the probability of getting a
perfect score conditional on engineering majors is 6.3%, i.e.,

P (perfect score | engineering major) = 0.063.

If we want to compute this probability, we would take the number of engineering majors
that receive a perfect score, and divide it by the total number of engineering majors. This
is equivalent to computing the formula:

P (perfect score | engineering major) =
P (perfect score ∩ engineering major)

P (engineering major)
.

In general, we can replace “perfect score” and “engineering major” with any two events and
obtain the formal definition of conditional probability.

3See https://www.ets.org/s/gre/pdf/gre_guide_table4.pdf for a breakdown by specific majors. For
some reason, computer science is counted as part of the physical sciences, and not as engineering.
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Conditional Probability: For two events A and B with P (B) > 0, the conditional prob-
ability of A given B is defined as:

P (A|B) =
P (A ∩B)

P (B)
.

Notice that when the event B is fixed, P (·|B) is another probability measure.

Example 11. Suppose that we toss a fair coin three times. What is the probability that all
three tosses come up heads, given that the first toss came up heads?

Answer. This probability is

P ({all three tosses come up heads and the first toss came up heads})
P ({the first toss came up heads})

=
1/8

1/2
=

1

4
.

Independence and conditional independence: Two events A and B are independent if

P (A|B) = P (A) or equivalently, P (A ∩B) = P (A) · P (B).

In other words, the occurrence of event B does not affect the probability that event A
happens.

For three events A,B,C, we say that A and B are conditionally independent given C if

P (A ∩B|C) = P (A|C) · P (B|C).

There are no implications between independence and conditional independence!!

Bayes’ rule: Given an event A and some mutually exclusive events B1, ..., Bk with ∪k
i=1Bi =

Ω, the Bayes’ rule states that

P (Bj|A) =
P (Bj ∩ A)

P (A)
=

P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

for all j = 1, ..., k.

Example 12. Suppose that 5% of students enrolled in CSE 547 at UW will get 4.0, and
a student with 4.0 in CSE 547 has 80% chance of getting recruited by Google. A student
without getting 4.0 in CSE 547 still has 40% chance of getting recruited by Google. What
is the probability of a student getting 4.0 in CSE 547, given that he/she has been recruited
by Google?

Answer. By Bayes’ Rule,

P (Get 4.0 | Recruited by Google)

=
P (Recruited by Google | Get 4.0) · P (Get 4.0)

P (Recruited by Google)

=
P (Recruited by Google | Get 4.0) · P (Get 4.0)

P (Recruited by Google
∣∣Get 4.0)P (Get 4.0) + P (Recruited by Google

∣∣Not get 4.0)P (Not get 4.0)

=
0.8× 0.05

0.8× 0.05 + 0.4× 0.95

≈ 9.52%.
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3.4 Random variables

Random variable: Let (Ω,F , P ) be a probability space and R = (−∞,∞) be the set of
all real numbers. A random variable X : Ω → R is a (measurable) function satisfying

X−1 ((−∞, c]) := {ω ∈ Ω : X(ω) ≤ c} ∈ F for all c ∈ R.

The probability that X takes on a value in a Borel set4 B ⊂ R is written as:

P (X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}) .

Example 13. Suppose that we are tossing three fair coins. Let X be the number of coins
that come up heads. Then, P (X = 0) = 1/8.

Cumulative distribution function (CDF): The CDF F : R → [0, 1] of a random variable
X is a right continuous and nondecreasing function with left limits satisfying

F (x) := P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) .

In particular, lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Probability mass function (PMF) and probability density function (PDF):

• If the range X ⊂ R of a random variable X is countable, it is called a discrete random
variable, whose distribution can be characterized by the PMF as:

P (X = x) = F (x)− lim
ϵ→0+

F (x− ϵ) for all x ∈ X .

• If the range X ⊆ R of a random variable X has an absolutely continuous CDF F , then
we can describe its distribution through the PDF as:

p(x) = F ′(x) =
d

dx
F (x).

In this case, F (x) = P (X ≤ x) =
∫ x

−∞ p(u) du, and P (X = x) = 0 for a single number
x ∈ R.

3.5 Expectation and Variance

Expectation: The expected value (or mean) of a random variable X with range X ⊂ R can
be interpreted as a weighted average.

• For a discrete random variable, E(X) =
∑
x∈X

x · P (X = x).

• For a continuous random variable with PDF pX , E(X) =
∫∞
−∞ x · pX(x) dx

4A Borel set in R is a set that can be formed from open sets through the operations of countable
unions/intersections and complements.
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Example 14. Suppose that Tim’s happiness scores 10 when it is sunny outside and 2 when
it is raining outside. It is sunny 60% of the time at Seattle and raining 40%. What is the
expected value of Tim’s happiness at Seattle?

Answer. 10× 0.6 + 2× 0.4 = 6.8.

Linearity of expectation: If X, Y are two random variables and a is a constant in R, then

E(X + Y ) = E(X) + E(Y ) and E(aX) = a · E(X).

This is true even if X and Y are not independent.

Variance and covariance: The variance of a random variable measures how far away it
is, on average, from the mean. It is defined as

Var(X) = E[(X − E[X])2] = E(X2)− E(X)2.

The covariance between random variables X, Y is defined as:

Cov(X, Y ) = E [(X − E(X)) (Y − E(Y ))] .

For a random variableX and a constant a ∈ R, we have Var(X+a) = Var(X) and Var(aX) =
a2·Var(X). We do not have Var(X+Y ) = Var(X)+Var(Y ) unlessX and Y are uncorrelated
(which means they have covariance 0). In particular, independent random variables are
always uncorrelated, although the reverse doesn’t hold in general.

Pearson’s correlation coefficient: For two random variables X and Y , their (Pearson’s)
correlation coefficient is defined as:

ρXY = Cor(X, Y ) =
Cov(X, Y )√

Var(X) · Var(Y )
,

where ρXY ∈ [−1, 1] by the Cauchy-Schwarz inequality; see Section 3.7. It measures the
linear relation between two random variables.

3.6 Known Probability Distributions

3.6.1 Discrete random variables

Bernoulli: If X is a Bernoulli random variable denoted by X ∼ Bernoulli(p), then

P (X = 1) = p and P (X = 0) = 1− p.

A Bernoulli random variable with parameter p can be interpreted as a coin flip that comes
up heads with probability p and tails with probability 1− p. We know that

E(X) = p and Var(X) = p(1− p).

Binomial: If X is a binomial random variable denoted by X ∼ Binomial(n, p), then

P (X = k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, ..., n.

12
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A binomial random variable with parameters n and p models the number of successes in n
trials, each of which has a successful probability p. When n = 1, it reduces to a Bernoulli
random variable. We know that

E(X) = np and Var(X) = np(1− p).

Geometric: If X is a geometric random variable denoted by X ∼ Geometric(p), then

P (X = k) = (1− p)k−1p for k = 0, 1, ....

A geometric random variable with parameter p models the number of trials until the first
success occurs, where each trial has a successful probability p. We know that

E(X) =
1

p
and Var(X) =

1− p

p2
.

Poisson: If X is a Poisson random variable denoted by X ∼ Poisson(λ), then

P (X = k) =
λke−λ

k!
for k = 0, 1, ....

A Poisson random variable often appears in counting processes. For instance, the number
of laser photons hitting a detector in a particular time interval can be modeled as a Poisson
random variable. We know that

E(X) = λ and Var(X) = λ.

Indicator random variable: For an event A, an indicator random variable takes value 1
when A occurs and 0 otherwise, i.e.,

IA =

{
1 if event A occurs

0 otherwise

The expectation of an indicator random variable is just the probability of the event occurring,
i.e.,

E[IA] = 1 · P (IA = 1) + 0 · P (IA = 0)

= P (IA = 1)

= P (A),

and its variance is Var(IA) = P (A) [1− P (A)].

Multinomial: Suppose that Z is a categorical random variable with range {1, ..., k} and
P (Z = j) = pj for j = 1, ..., k. We generate independently and identically distributed data
Z1, ..., Zn with the above distribution and take

Xj =
n∑

i=1

I{Zi=j} = Number of observations in Category j.

13
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Then, the random vector X = (X1, ..., Xk) follows a multinomial distribution denoted by
X ∼ Multinomial(n; p1, ..., pk) with

∑k
j=1 pj = 1, whose PMF is given by

P (X1 = x1, ..., Xk = xk) =
n!

x1! · · ·xk!
· px1

1 · · · pxk
k .

Here, X takes integer values within a simplex
{
(x1, ..., xk) ∈ {0, 1, ..., k}n :

∑n
j=1 xj = n

}
.

3.6.2 Continuous random variables

Uniform: If X is a uniform random variable over the interval [a, b] denote by X ∼
Uniform[a, b], then its PDF is given by

p(x) =
1

b− a
· I[a,b](x) =

{
1

b−a
a ≤ x ≤ b,

0 otherwise.

We know that

E(X) =
a+ b

2
and Var(X) =

(b− a)2

12
.

Normal: If X is a normal random variable with parameters µ and σ2 denoted by X ∼
N(µ, σ2), then its PDF is given by

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where x ∈ (−∞,∞). We know that

E(X) = µ and Var(X) = σ2.

Cauchy: IfX is a Cauchy random variable with parameters µ, σ2 denoted byX ∼ Cauchy(µ, σ2),
then its PDF is given by

p(x) =
1

πσ

[
σ2

σ2 + (x− µ)2

]
,

where x ∈ (−∞,∞). Note that both the expectation and variance of a Cauchy distribution
do not exist. The parameter µ represents its median.

Student’s t: If X is a Student’s t random variable with parameter ν > 0 denoted by
X ∼ t(ν), then its PDF is given by

p(x) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + x2

ν

)− ν+1
2

,

where x ∈ (−∞,∞). The parameter ν > 0 is also called degrees of freedom. Note that
when ν = 1, the Student’s t distribution reduces to a Cauchy distribution. The expectation
of X ∼ t(ν) is 0 for ν > 1 and undefined for 0 < ν ≤ 1. The variance of X ∼ t(ν) is

Var(X) =


ν

ν−2
for v > 2,

∞ for 1 < ν ≤ 2,

undefined for 0 < ν ≤ 1.

14
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Exponential: If X is an exponential random variable with parameter λ denoted by X ∼
Exp(λ), then its PDF is given by

p(x) = λe−λx · I[0,∞)(x).

We know that

E(X) =
1

λ
and Var(X) =

1

λ2
.

A double exponential random variable Y satisfies that |Y | ∼ Exp(λ), so its PDF is given by

p(y) =
λ

2
e−λ|y| with y ∈ (−∞,∞).

In particular, E(Y ) = 0 and Var(Y ) = 2
λ2 . Sometimes, Y is also called a Laplace random

variable5.

Gamma: A Gamma random variable X is characterized by two parameters α, λ > 0 and
has a PDF

p(x) =
λα

Γ(α)
xα−1e−λx · I[0,∞)(x),

where Γ(α) =
∫∞
0

uα−1e−udu is the Gamma function; see Section 2. We denote X ∼
Gamma(α, λ) and have that

E(X) =
α

λ
and Var(X) =

α

λ2
.

Beta: A Beta random variable X with parameters α, β > 0 has its PDF as:

p(x) =
1

B(α, β)
xα−1(1− x)β−1 · I[0,1](x),

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

. Given that the Beta random variable X ∼ Beta(α, β) has a

continuous distribution on [0, 1], it is often used to model a ratio or probability. We know
that

E(X) =
α

α + β
and Var(X) =

αβ

(α + β)2(α + β + 1)
.

Logistic: A logistic random variable X with parameters α ∈ R, β > 0 has its CDF with the
form of a logistic function as:

F (x) = P (X ≤ x) =
1

1 + e−α−βx
.

Thus, its PDF is given by

p(x) =
d

dx
F (x) =

βe−α−βx

(1 + e−α−βx)2
=

βeα+βx

(1 + eα+βx)2
.

5See https://en.wikipedia.org/wiki/Laplace_distribution.
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Dirichlet: A Dirichlet random vector Z = (Z1, ..., Zk) generalizes the Beta distribution to
its multivariate version (or extend the multinomial distribution to its continuous version).

It has a PDF defined on the simplex
{
(z1, ..., zk) ∈ [0, 1]k :

∑k
i=1 zi = 1

}
as:

p(z1, ..., zk;α1, ..., αk) =
1

B(α)

k∏
i=1

zαi−1
i ,

where α = (α1, ..., αk) with αi > 0, i = 1, ..., k is a k-dimensional parameter vector. The
Dirichlet distribution is particularly useful in modeling the prior probabilities of a multino-
mial distribution that generates the latent topics of a document (Blei et al., 2003). When

Z ∼ Dirichlet(α1, ..., αk), its mean vector is E(Z) =
(

α1∑k
i=1 αi

, . . . , αk∑k
i=1 αi

)
.

3.7 Inequalities

Markov’s inequality: Let X be a nonnegative random variable. Then, for any ϵ > 0,

P (X ≥ ϵ) ≤ E(X)

ϵ
.

Proof. For any ϵ > 0, we consider splitting the expectation E(X) into two parts as:

E(X) = E
(
X · I{X≥ϵ}

)
+ E

(
X · I{X<ϵ}

)
≥ E

(
X · I{X≥ϵ}

)
≥ E

(
ϵ · I{X≥ϵ}

)
= ϵ · P (X ≥ ϵ).

The result follows by dividing ϵ > 0 on both sides of the above inequality.

Chebyshev’s inequality: Let X be a random variable with Var(X) < ∞. Then, for any
ϵ > 0,

P (|X − E(X)| ≥ ϵ) ≤ Var(X)

ϵ
.

The Chebyshev’s inequality can be proved by applying Markov’s inequality to the non-
negative random variable [X − E(X)]2. It is a simple instance of general concentration
inequalities that give a probabilistic bound on the deviation of X away from its mean.

Chernoff bound: Suppose that there is a constant b > 0 such that the moment generating
function φ(λ) = E

[
eλ(X−µ)

]
of a random variable X exists when λ ≤ |b|, where µ = E(X).

Given that

P [(X − µ) > t] = P
[
eλ(X−µ) ≥ eλt

]
≤

E
[
eλ(X−µ)

]
eλt

for any λ ∈ [0, b],

we can optimize our choice of λ to obtain the Chernoff bound as:

P [(X − µ) > t] ≤ inf
λ∈[0,b]

E
[
eλ(X−µ)

]
eλt

.
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Cauchy-Schwarz inequality: Given two random variables X and Y ,

|E(XY )|2 ≤ E(X2) · E(Y 2),

where equality holds if and only if either P (X = 0) = 0, or P (Y = 0) = 0, or P (X = cY ) = 1
for some nonzero constant c ∈ R. A useful corollary of the Cauchy-Schwarz inequality is
that

|Cov(X, Y )|2 ≤ Var(X)Var(Y ).

Hölder inequality: Given two random variables X and Y ,

E|XY | ≤ (E|X|p)
1
p (E|Y |q)

1
q ≡ ||X||p ||Y ||q

with p, q ∈ [1,∞] and 1
p
+ 1

q
= 1, where equality holds if and only if P (|X|p = c|Y |q) = 1 for

some nonzero constant c. Specifically, when p = ∞, ||X||∞ = inf {M ≥ 0 : P (|X| > M) = 0}.

Minkowski Inequality: Given two random variables X and Y ,

[E|X + Y |p]
1
p ≤ [E|X|p]

1
p + [E|Y |p]

1
p

for p ∈ [1,∞), where equality holds if and only if P (X = cY ) = 1 for some nonzero constant
c, or P (Y = 0) = 1, or P (X = 0) = 1.

Jensen’s Inequality: Given a convex function φ and a random variable X,

φ (E(X)) ≤ E [φ(X)] ,

where equality holds if and only if either P (X = c) = 1 for some constant c or for every line
a+ bx that is tangent to φ at E(X), P (φ(x) = a+ bx) = 1.

4 Big O and OP Symbols

In machine learning, big O and little o symbols are used to characterize the time or space
complexity of our algorithm with respect to the sample size or data dimension. In general,
these symbols describe the growth rate of functions as follows.

Let f(x) be the function to be estimated on R and g(x) be the comparison function that is
strictly positive when x is large on R.

Big O symbol: We write f(x) = O (g(x)) if there exist constants M > 0 and x0 > 0 such
that6

|f(x)| ≤ M · g(x) for all x ≥ x0.

Using the limit superior notation, we know that

f(x) = O (g(x)) ⇐⇒ lim sup
x→∞

|f(x)|
g(x)

< ∞.

6See https://en.wikipedia.org/wiki/Big_O_notation.
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Notice that lim sup
x→∞

h(x) = lim
x0→∞

[
sup
x≥x0

f(x)

]
.

Little o symbol: Similarly, we write f(x) = o (g(x)) if for any ϵ > 0, there exists a constant
x0 > 0 such that

|f(x)| ≤ ϵ · g(x) for all x ≥ x0.

Under the limit notation, we have that

f(x) = o (g(x)) ⇐⇒ lim
x→∞

|f(x)|
g(x)

= 0.

Big Ω symbol: Sometimes, depending on the context, we may encounter the big Ω symbol
in machine learning literature. In most cases, the definition of f(x) = Ω (g(x)) follows from
Knuth (1976), so we write f(x) = Ω (g(x)) if there exist constants m > 0 and x0 such that

|f(x)| ≥ m · g(x) for all x ≥ x0,

or equivalently,

f(x) = Ω (g(x)) ⇐⇒ lim inf
n→∞

f(x)

g(x)
> 0.

Taking into account the randomness of input data, it may not be possible to bound a
quantity or random variable in our algorithm through the above big O and little o symbols.
We introduce the OP and oP symbols7 to handle the stochastic rate of convergence for a
sequence of random variables {Xn}∞n=1; see also Section 2.2 in van der Vaart (1998).

Little oP symbol: We writeXn = oP (an) for a sequence of constants {an}∞n=1 if
Xn

an
converges

to 0 in probability as n → ∞. That is, for any ϵ > 0,

Xn = oP (an) ⇐⇒ lim
n→∞

P

(∣∣∣∣Xn

an

∣∣∣∣ ≥ ϵ

)
= 0.

Big OP symbol: We write Xn = OP (an) for a sequence of constants {an}∞n=1 if Xn

an
is

bounded in probability when n is large. That is, for any ϵ > 0, there exist a constant M > 0
and an integer N > 0 such that

Xn = OP (an) ⇐⇒ P

(∣∣∣∣Xn

an

∣∣∣∣ > M

)
< ϵ when n > N.

5 Basic Optimization and Lagrange Multiplier

For given function f, gi, hj : Rn → R, a (mathematical) optimization problem has the fol-
lowing form

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., p.

(1)

7See https://en.wikipedia.org/wiki/Big_O_in_probability_notation.
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Here, we call x ∈ Rn the optimization variable, f the objective function, gi(x) ≤ 0, i =
1, ...,m the inequality constraints, and hj(x) = 0, j = 1, ..., p the equality constraints.

Unconstrained Optimization: If there are no constraints (i.e., m = p = 0), then we say
that the problem (1) is unconstrained. Solving the unconstrained optimization problem is
relatively easy. When the objective function f is differentiable, we can compute its gradient
∇f(x) and set it to 0 for a equation ∇f(x) = 0 whose roots consist of a candidate set of
solutions. Practically, we will discuss how to use the (stochastic) gradient descent algorithm
to solve for a solution/minimizer x∗ in the lecture (Lecture 14: Large-Scale Machine Learning
II).

Constrained Optimization: The general optimization problem (1) with constraints is
more difficult to handle. A general approach is to convert (1) into an unconstrained op-
timization problem using the method of Lagrange multipliers. We define the Lagrangian
L : Rn × Rm × Rp → R associated with the problem (1) as:

L(x,λ,ν) = f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

νjhj(x). (2)

We refer to λ = (λ1, ..., λm)
T ∈ Rm and ν = (ν1, ..., νp)

T ∈ Rp as the Lagrange multipliers.

Case 1: If there are no inequality constraints, then the Lagrangian (2) becomes

L(x,ν) = f(x) +

p∑
j=1

νjhj(x),

and we can find the minimizer of f by identifying the stationary points of L. This means
that we set all the partial derivatives of L to 0 and solve the following system of equations:

∂

∂x
L(x,ν) = ∇f(x)+

p∑
j=1

νj∇hj(x) = 0 and
∂

∂νj
L(x,ν) = hj(x) = 0 for j = 1, ..., p.

However, not all the stationary points yield a solution of the original problem, as the method
of Lagrange multipliers only gives a necessary condition for optimality in constrained prob-
lems. Thus, we need to verify whether a yielded solution x̃ is a minimizer or not by checking
other sufficient conditions (if exist) or comparing f(x̃) with the values of f (in a neighbor-
hood of x̃).

Case 2: If there are some inequality constraints, then we define the Lagrange dual function
D : Rm × Rp → R as the minimum value of the Lagrangian over x as:

g(λ,ν) = inf
x∈Rn

L(x,λ,ν) = inf
x∈Rn

[
f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

νjhj(x)

]
. (3)
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When the Lagrangian is unbounded below in x, the dual function takes on the value −∞.
The dual function will provide lower bounds on the optimal value p∗ of the original problem
(1), i.e., for any λ ⪰ 0 and any ν ∈ Rp, we have that

g(λ,ν) ≤ p∗.

Here, λ ⪰ 0 means that each entry of λi, i = 1, ...,m is bigger or equal to 0. Under some con-
ditions (such as Slater’s condition8), the above equality holds, and by Karush–Kuhn–Tucker
(KKT) conditions9, we can relate the solution to the primal problem (1) with the solution
to its dual problem

max
(λ,ν)∈Rm×Rp

g(λ,ν)

subject to λ ⪰ 0.
(4)

See Chapter 5 of Boyd and Vandenberghe (2004) for more details.

Remark 2. Since the dual function is the pointwise infimum of a family of affine functions
of (λ,ν), it is concave, even when the problem (1) is not convex.
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