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LEVERAGING SIMULATION TO 
TEACH OBJECT MANIPULATION 
TASKS
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INGREDIENTS OF A MANIPULATION SYSTEM

§ Task and motion planning 
§ Determine sequence of high-level commands and collision-free trajectories to achieve 

goal configuration

§ State estimation and perception 
§ Infer relevant quantities from sensor data (objects, drawers, doors, manipulator, 

contacts, …)

§ Object grasping and placement
§ Determine good grasps for objects given constraints (gripper, local geometry, 

placement)

§ Trajectory generation and control
§ Real-time, reactive generation of control commands to safely move robot / gripper 

toward goals
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PICK-AND-PLACE KITCHEN MANIPULATION SYSTEM
All objects are known, articulated kitchen model available, no clutter 
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6D OBJECT POSE ESTIMATION
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STATE ESTIMATION VIA 
OPTIMIZATION

State 𝜃 includes camera pose, cabinet doors, drawers, 
object poses, robot base and manipulator

Depth camera: optimize articulation parameters to 
minimize point distance from model

Physical constraints: contacts and non-interpenetration 
added as loss terms

Object detections: decaying loss term

Robot and manipulator pose: decaying loss term

𝐿 𝜃 = 𝐿!"#$% 𝜃 + 𝐿&%'()$((𝜃) + 𝐿*+#+$#(𝜃) + 𝐿,"(+(𝜃) 
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TASK AND MOTION 
PLANNING WITH REACTIVE 
BEHAVIOR EXECUTION

§ TAMP plans over high-level actions, pre-
conditions / effects, and continuous 
trajectories

§ Real-time kitchen, robot and object 
tracking

§ Robust logical-dynamical systems 
perform real-time switching of 
behaviors based on pre-conditions 
computed from state

§ Real-time reactive motion generation 
using Riemannian Motion Policies

[Paxton-Ratliff-Eppner-Fox: IROS-19]

[Garrett-Paxton-Lozano-Perez-Kaelbling-Fox: ICRA-20]

[Cheng-Mukadam-Issac-Birchfield-Fox-Boots-Ratliff: WAFR-18]
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MODEL-FREE GRASPING AND 
PLACING OF UNKNOWN OBJECTS



Model-Based Grasping: Estimate Object Pose and use Inferred Pose to Transform Grasps

MODEL-BASED VS MODEL-FREE GRASPING

Observation

3D Model of Object

Pose Estimation 
Model

Predicted Object 
Pose

R,T

Annotated Grasps

Transform Grasps

Final Grasps



Model-Free Grasping: Directly Predict Final Grasp Pose

MODEL-BASED VS MODEL-FREE GRASPING

Observation
Grasp Generation 

Model 

Grasps



10 

GETTING AN OBJECT OUT OF CLUTTER
Need to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view
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UNKNOWN OBJECT INSTANCE SEGMENTATION
11

RGB

Depth

Fully Convolutional Network

Dense Feature Map

Instance Label for Training

Metric Learning Loss

Intra-cluster
Inter-cluster

Sampled feature
Cluster center

[Y. Xiang, C. Xie, A. Mousavian, D. Fox. Learning RGB-D Feature Embeddings for Unseen 
Object Instance Segmentation. CoRL, 2020]

See also
[Xie-Xiang-Mousavian-Fox: CoRL 2019, T-RO-21]
[Xie-Xiang-Mousavian-Fox: CoRL-21]
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PHOTOREALISTIC SYNTHETIC TRAINING DATA
350K Rendered Images Along with Segmentation and Object Id

[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-Fox, 2023]
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OBJECTSEEKER INSTANCE SEGMENTATION
On Par with SOTA on Tabletop Datasets and SOTA on Non-Tabletop Scenes

[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-Fox, 2023]

ObjectSeeker
350K sim images
3.5M segments

RGB input
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PHYSICS-SIMULATION OF GRASPING
Isaac Sim can Assess Thousands of Grasps in Parallel

Sample Potential Grasps and Run Simulations to Assess Stability 8,872 Objects Annotated with Successful Grasps

ACRONYM: [Eppner-Mousavian-F: ISRR-19, ICRA-21
ContactGraspNet: [Sundermeyer-Mousavian-Triebel-F: ICRA 2021]
GraspNet: [Mousavian-Eppner-F: ICCV-19]
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Contact Graspnet
Generate 6D Grasp Poses from Input Point Clouds

See also: [Mousavian-Eppner-F: ICCV-19]

Contact GraspNet

Optional region of interest

[Sundermeyer-Mousavian-Triebel-F: ICRA 2021]
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88% first attempt grasp success on unknown objects

[6DOF-GraspNet: Mousavian-Eppner-F: ICCV-19]
Code and data available at: https://github.com/NVlabs/6dof-graspnet/

https://github.com/NVlabs/6dof-graspnet/
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External Camera Wrist CameraQuery View

[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-F: 2023]
[Murali-Mousavian-Eppner-Fishman-Fox: ICRA-23]
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External Camera Wrist CameraQuery ViewQuery View External Camera Wrist Camera

8x[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-F: 2023]
[Murali-Mousavian-Eppner-Fishman-Fox: ICRA-23]
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Query View

Wrist Camera

External Camera

Query View

Wrist Camera

External Camera

Query View

Wrist Camera

External Camera

8x

[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-F: 2023]
[Murali-Mousavian-Eppner-Fishman-Fox: ICRA-23]
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Query View

Wrist Camera

External Camera

Query View

Wrist Camera

External Camera

8x[Mousavian-Manuelli-Okorn-Xiang-Eppner-Murali-F: 2023]
[Murali-Mousavian-Eppner-Fishman-Fox: ICRA-23]
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Grasps on 
Object

Grasps filtered by 
CollisionNet

Extending Single Object Grasping to Cluttered Scenes

6-DOF GRASPING FOR CLUTTERED SCENES

[Murali-Mousavian-Eppner-Paxton-Fox, ICRA 2020]

CollisionNet efficiently reasons about gripper collisions with the scene, considering occluded areas as well

Instance segmentation: [Xie-Xiang-Mousavian-Fox: CoRL 2019, T-RO-21]; [Xiang-Xie-Mousavian-Fox: CoRL 2020]; [Xie-Xiang-Mousavian-Fox: CoRL-21]
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GETTING AN OBJECT OUT OF CLUTTER
Deep Network Trained to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view

[Murali-Mousavian-Eppner-Paxton-Fox: ICRA-20]
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GETTING AN OBJECT OUT OF CLUTTER
Deep Network Trained to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view

[Murali-Mousavian-Eppner-Paxton-Fox: ICRA-20]
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GETTING AN OBJECT OUT OF CLUTTER
Deep Network Trained to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view

[Murali-Mousavian-Eppner-Paxton-Fox: ICRA-20]
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GETTING AN OBJECT OUT OF CLUTTER
Deep Network Trained to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view

[Murali-Mousavian-Eppner-Paxton-Fox: ICRA-20]
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GETTING AN OBJECT OUT OF CLUTTER
Deep Network Trained to Segment Scene, Generate Grasps, and Check for Collisions

External view Gripper camera view

[Murali-Mousavian-Eppner-Paxton-Fox: ICRA-20]
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HANDOVER OF UNKNOWN OBJECTS
Continuously Detect Hand/Object, Determine Safe Grasp, and Control

[Chao-Yang-Xiang-Molchanov-Handa-Tremblay-Narang-Van Wyk-Iqbal-Birchfield-Kautz-Fox: CVPR-2021]
[Yang-Paxton-Mousavian-Chao-Cakmak-Fox: ICRA-21]

Tracked objects

Raw videos

Tracking and segmentation of hand and objects enables robot to approach grasps that are safe and stable

Large-scale data set for training and benchmarking hand tracking with object interactions
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LEARNING 
ACTION-CENTRIC ANIPULATION 
WITH LANGUAGE INSTRUCTIONS
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CLIPORT 

TransporterNets 
[Zeng et. al, CoRL-2020]

Efficiently Teach Manipulation Tasks Leveraging Language Instructions

§ TransporterNets learn precise pick-and-place skills

§ Actions specified in visual space

§ No object models, poses, or segmentations needed

§ No semantics, weak generalization, one network per task

§ CLIP generates aligned image and text embeddings

§ Semantics via language-vision training, robust visual features

§ Not immediately suited for manipulation tasks

§ CLIPort combines language reasoning with precise manipulation

§ Inherits manipulation capabilities from TransporterNets

§ Language enables training single, multi-task model

§ Some semantic transfer across tasks

§ Only 2D top-down manipulation (just like TransporterNets)

[Shridhar-Manuelli-Fox: CoRL-2021]

CLIP 
[Radford et. al, 2021]

CLIPort 
[Shridhar et. al, CoRL-2021]



DATA COLLECTION
Folding Task



Data Collection
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Input

Start

End

CLIPort 
[Shridhar et. al, CoRL-2021]
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Input

Pick

Place

CLIPort 
[Shridhar et. al, CoRL-2021]
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Perceiver Actor PERCEIVER ACTOR
Predicting 3D Pose / 3D Orientation of Next Gripper Action

§ Scene representation: 1003  voxels at 1cm resolution (occupancy, color)
§ Input: 203 = 8,000 tokens (each over 53 voxels) and text for task specification
§ Output: Next gripper pose and status (softmax over voxels)

(3D translation at 1cm resolution, 3D rotation at 5deg resolution)

§ Significantly outperforms multi-level U-net structure of C2F-ARM [James etal: CVPR-22]

[Shridhar-Manuelli-Fox: CoRL-2021]
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Perceiver Actor

§ Scene representation: 1003  voxels at 1cm resolution (occupancy, color)
§ Input: 203 = 8,000 tokens (each over 53 voxels) and text for task specification
§ Output: Next gripper pose and status (softmax over voxels)

(3D translation at 1cm resolution, 3D rotation at 5deg resolution)

§ Significantly outperforms multi-level U-net structure of C2F-ARM [James etal: CVPR-22]

PERCEIVER ACTOR
Predicting 3D Pose / 3D Orientation of Next Gripper Action

[Shridhar-Manuelli-Fox: CoRL-2021]
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Perceiver Actor

§ Scene representation: 1003  voxels at 1cm resolution (occupancy, color)
§ Input: 203 = 8,000 tokens (each over 53 voxels) and text for task specification
§ Output: Next gripper pose and status (softmax over voxels)

(3D translation at 1cm resolution, 3D rotation at 5deg resolution)

§ Significantly outperforms multi-level U-net structure of C2F-ARM [James etal: CVPR-22]

PERCEIVER ACTOR
Predicting 3D Pose / 3D Orientation of Next Gripper Action

[Shridhar-Manuelli-Fox: CoRL-2021]
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EXAMPLE EXECUTION: PUT THE TOMATOES IN THE TOP BIN

Single Command Input, at Each Step PerAct Predicts Next Gripper Pose 
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SIMULATION FOR ROBOT 
TRAINING AND DEVELOPMENT
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DOING IT ALL IN SIMULATION
Photorealistic, physically accurate simulation of the kitchen

§ Models of kitchen cabinets, objects, and robot have to be physically accurate 
(masses, frictions, articulations, ...) and photorealistic

§ Isaac Sim with Physics engine (Flex, PhysX)

§ Johnny Costello: that was harder than building model of the death star
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CONTACT-RICH ROBOTIC ASSEMBLY

Automotive assembly [Assembly Magazine, 2021]

Aerospace assembly [Assembly Magazine, 2015]

Industry example [KUKA Robotics, 2016]

Research example [Suárez-Ruiz, et al., 2018]

Manual assembly (status quo) Robotic assembly

[Narang, Storey, Akinola, Macklin, Reist, Wawryzniak, Guo, State, Moravanszky, Lu, Handa, Fox: RSS 2022]
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INDUSTRIAL ASSEMBLY

• Reproducing an established real-world benchmark in simulation

NIST Benchmark for Assembly

Round and rect. pegs/holes
Nuts/bolts

Gear assembly
Electrical connectors

1/350 real-time [Ferguson, et al., 2020]
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FACTORY / INDUSTREAL
GPU-optimized Simulation of Contact-Rich Tasks: 20,000 x Speedup + Higher Precision

3 simulation environments spanning rigid NIST board tasks; includes 7 real-world robot controllers[Narang-Akinola-Guo-Handa-Lu-Macklin-Moravanszky-Reist-State-Storey-Wawrzyniak-F: RSS-22]
[Tang-Lin-Narang-Akinola-Handa-Sukhatme-Ramos-F: RSS-23]
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SIMULATING GRANULAR MEDIA
Material Properties Estimated from Real Data

[Matl-Narang-Baijcsy-Ramos-F: ICRA-20]
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[Huang-Narang-Eppner-Sundaralingam-Macklin-Hermans-F: 
RA-L-22]

[Matl-Narang-Ramos-F: ICRA-20]
[Ramos-Posas-F: RSS-19]

Grasping and squeezing tofu

Tube deformation

Deformable objects and granular 
media

§ Simulation matches real world behavior very well 
(w/ off the shelf material parameters)

§ Sim parameters can be adjusted to real world 
data
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Scaling via Omniverse and Isaac Sim

§ Digprocesses

§ Complete workflows to safely develop, train, and validate

§ Introspection into what the robot observes and is planning

§ ital Twins for designing and programming industrial

Festo PepsiCo

Amazon
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TOWARD OBJECT MANIPULATION WITHOUT EXPLICIT MODELS

§ Explicit object models enable reasoning for complex manipulation tasks, but models are often not 
available and modeling and object pose estimation errors result in brittle execution

§ Learning to map raw observations (s.a. point clouds, images) directly to manipulation relevant 
properties (e.g. segmentation, grasps, collisions, spatial relations) enables robust manipulation of 
unknown objects

§ CLIPort / PerAct: Combining pre-trained language-vision models with manipulation-specific 
representations enables highly data efficient teaching of manipulation tasks using action-centric 
representations

§ Physics-based, photo-realistic simulation of manipulation tasks is within reach

§ Allows safe and scalable training and development leveraging ground truth states for labeling and 
demonstration generation

§ Controlled environments for development and benchmarking


