CSE P590a
Robotics

Recap and Discussion



Goal of this course

®" Provide an overview of fundamental problems /
techniques in robotics

= Understanding of estimation and decision making in

dynamical systems

=  Probabilistic modeling and filtering
= Deterministic and non-deterministic planning

= Learning for perception and modeling

= Augment model-based understanding with hands-
on experience in deep learning
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Bayesian Filtering, Models

ESTIMATION



z = observation
u = action
x = state

Bayes Filters
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Parametric Sensor Model
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Parametric Kinematics Model

* Robot moves from <7€J,§> to<)‘c',y',§'>.
e Odometry information u = <5mﬂ,5,,0t2,5tm >

5, =(x-%) +(F-y)
%)
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= atan2(y'-y,x'-x) -0




The Prediction-Correction-Cycle
of Kalman Filters
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EKF Linearization
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Particle Filter Projection
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Importance Sampling Principle

We can use a different distribution g to generate samples
from f

By introducing an importance weight w, we can account for
the “differences between g and 1”

w=f/g

proposal(x)
target(X)
samples

probability / weight
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SLAM

ESTIMATION
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Why is SLAM a hard problem?

*SLAM: robot path and map are both unknown

A

L G Q O

*‘Robot path error correlates errors in the map



EKF-SLAM

e Map with N landmarks:(3+2N)-dimensional

Gaussian
X O'f 0, O
J O O-i 0,
Ow Oy O ;
;

Bel(x,,m,) =

® Can handle hundreds of dimensions



Graph-SLAM Idea

X Q

o =0 Yo [x, “g(“-z’x;)f R [x, —g{u,, x,)] ifz _k(!lh ’C«) Q [z —/’l('i‘ﬁ,z-,;-‘fg)]
/ Xy = g (g xR\ g (g, x,)]

[)C; - & (“; s xg})gr -RWI Ika - g(”] s xe)l .
& Lz, —h(m,, x)]" Q7' z,—h(m,, x,)]
z, —h(m, x)|" Q7' [z, —h(m,, x,)]

[z, —h(m, x )V O [z, —h(m,, x)] ="

[X4 - g(umxg)]r R_l [JC# - g(%ex;; H

Sum of all constraints:

S Graphsiam = xé Q, x, + Z[JC! —8(u,x,_, )" R lx, —g(u,.x,_)|+ Z[ —h(m,_ , x, I Z, _h(m( ,X,)]

14



3D Outdoor Mapping

oty .

E T

108 features, 10~ poses, only few secs using cq.
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PLANNING / CONTROL



Deterministic, fully observable




Planning via Cell Decomposition

 Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

'y |

C(s4,S¢) =5

S7
C(s,,S;) = 100

C(s4Sg) =5

replicate it
online

CSE-571: Courtesy of Maxim Likhachev, CMU



Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01



Stochastic, Fully Observable
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Manipulator Control Path

Work space Configuration space






ing with Julia

Beyond Model-Based Reasoning

Cook




Gravity and Onions




Intuitive Physics

® People have intuitive understanding of how things evolve over time,
and how to achieve desired change

® (Qualitatively related to physics underlying a scene: gravity, forces,
friction, mass, size, persistence, rigid and non-rigid motion, ...

® Good enough for control since tightly coupled to perception -->
closed loop control

® Physics based models in robotics generalize well but are not tightly
coupled to perception

e (Can we learn intuitive physics models for robots?

e Ideally suited for closed-loop control since fully grounded in perceptual
experience

e Applicable across a wide range of tasks



Deep learning for robotics

e Extremely flexible and expressive framework for learning from raw
data

e Will dominate many recognition / control tasks, especially well suited for
closed-loop control with complex perception and state spaces

e In robotics, future data provides supervisory signals

e (Challenges
e How to get training data (scalability, safety, overfitting, simulation)?
e How to best combine models and deep learning?
e How to extract / model uncertainty and guarantees?
e Understanding of network structures, training regimes, generalization
capabilities
® Risks
e Students degraded to network and data engineers
e Company or lab with most GPU’s wins
e A toolbox to try new things and revisit tasks from new perspectives



