CSE P590a Robotics

Recap and Discussion

Goal of this course

- Provide an overview of fundamental problems / techniques in robotics
- Understanding of estimation and decision making in dynamical systems
 - Probabilistic modeling and filtering
 - Deterministic and non-deterministic planning
 - Learning for perception and modeling
- Augment model-based understanding with handson experience in deep learning

Bayesian Filtering, Models

ESTIMATION

= action **Bayes Filters** = state $Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$ $=\eta P(z_t | x_t, u_1, z_1, ..., u_t) P(x_t | u_1, z_1, ..., u_t)$ **Bayes** $=\eta P(z_t | x_t) P(x_t | u_1, z_1, ..., u_t)$ Markov $= \eta P(z_t | x_t) \int P(x_t | u_1, z_1, \dots, u_t, x_{t-1})$ Total prob. $P(x_{t-1} | u_1, z_1, \dots, u_t) dx_{t-1}$ $= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) P(x_{t-1} | u_1, z_1, \dots, u_t) dx_{t-1}$ Markov $= \eta P(z_t | x_t) \left[P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1} \right]$

= observation

Parametric Sensor Model

Parametric Kinematics Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$. Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\begin{split} \delta_{trans} &= \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2} \\ \delta_{rot1} &= \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\ \delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1} \\ & & \left(\bar{x}, \bar{y}, \bar{\theta} \right) \\ & \left(\bar{x}, \bar{y}, \bar{\theta} \right) \\ & \delta_{rot1} \\ & \delta_{trans} \\ \end{split}$$

The Prediction-Correction-Cycle of Kalman Filters

EKF Linearization

Particle Filter Projection

Importance Sampling Principle

- We can use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"

$$w = f/g$$

SLAM ESTIMATION

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map

EKF-SLAM

 Map with N landmarks:(3+2N)-dimensional Gaussian

$$Bel(x_{t}, m_{t}) = \begin{pmatrix} \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{yl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{\theta}^{2} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta}_{l_{1}} & \sigma_{\theta}_{l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{l_{2}l_{N}} \end{pmatrix} \end{pmatrix}$$

Can handle hundreds of dimensions

Graph-SLAM Idea

Sum of all constraints:

$$J_{\text{GraphSLAM}} = \boldsymbol{x}_{0}^{T} \, \boldsymbol{\Omega}_{0} \, \boldsymbol{x}_{0} + \sum_{t} [\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1})]^{T} \, \boldsymbol{R}^{-1} [\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1})] + \sum_{t} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{m}_{c_{t}}, \boldsymbol{x}_{t})]^{T} \, \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{z}_{t}, \boldsymbol{z}_{t})]^{T} \, \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{z}_{t}, \boldsymbol{z}_{t})]^{T} \, \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{z}_{t}, \boldsymbol{z}_{t})]^{T} \, \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{z}_{t} - \boldsymbol{z}_{t}]^{T} \, \boldsymbol{z}^{T} \, \boldsymbol{z}^$$

3D Outdoor Mapping

10⁸ features, 10⁵ poses, only few secs using cg.

PLANNING / CONTROL

Deterministic, fully observable

Planning via Cell Decomposition

(**S**16

- Graph construction:
 - lattice graph
 - pros: sparse graph, feasible paths
 - cons: possible incompleteness

CSE-571: Courtesy of Maxim Likhachev, CMU

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

Stochastic, Fully Observable

Manipulator Control Path

Work space

Configuration space

Inverse Optimal Control Cost Map 2-D Learning Planner Y (Path to goal)

Beyond Model-Based Reasoning Cooking with Julia

Gravity and Onions

Intuitive Physics

- People have intuitive understanding of how things evolve over time, and how to achieve desired change
- Qualitatively related to physics underlying a scene: gravity, forces, friction, mass, size, persistence, rigid and non-rigid motion, ...
- Good enough for control since tightly coupled to perception --> closed loop control
- Physics based models in robotics generalize well but are not tightly coupled to perception
- Can we learn intuitive physics models for robots?
 - Ideally suited for closed-loop control since fully grounded in perceptual experience
 - Applicable across a wide range of tasks

Deep learning for robotics

- Extremely flexible and expressive framework for learning from raw data
 - Will dominate many recognition / control tasks, especially well suited for closed-loop control with complex perception and state spaces
 - In robotics, future data provides supervisory signals
- Challenges
 - How to get training data (scalability, safety, overfitting, simulation)?
 - How to best combine models and deep learning?
 - How to extract / model uncertainty and guarantees?
 - Understanding of network structures, training regimes, generalization capabilities
- Risks
 - Students degraded to network and data engineers
 - Company or lab with most GPU's wins
- A toolbox to try new things and revisit tasks from new perspectives