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Goal of this course

§ Provide an overview of fundamental problems / 
techniques in robotics

§ Understanding of estimation and decision making in 
dynamical systems
§ Probabilistic modeling and filtering
§ Deterministic and non-deterministic planning
§ Learning for perception and modeling

§ Augment model-based understanding with hands-
on experience in deep learning



ESTIMATION
Bayesian Filtering, Models
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Bayes Filters
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Parametric Sensor Model
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Parametric Kinematics Model
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The Prediction-Correction-Cycle
of Kalman Filters
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EKF Linearization

8



Particle Filter Projection



§ We can use a different distribution g to generate samples 
from f

§ By introducing an importance weight w, we can account for 
the “differences between g and f ”

w = f / g

Importance Sampling Principle
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ESTIMATION
SLAM
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Why is SLAM a hard problem?

•SLAM: robot path and map are both unknown 

•Robot path error correlates errors in the map
12
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• Map with N landmarks:(3+2N)-dimensional 
Gaussian

• Can handle hundreds of dimensions

EKF-SLAM
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Graph-SLAM Idea
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3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.
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PLANNING / CONTROL



Deterministic, fully observable
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CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it 
online



Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01



Stochastic, Fully Observable
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Manipulator Control Path

Work space            Configuration space



Inverse Optimal Control 

Learning

Y
(Path to goal)

2-D
Planner

Cost Map



Beyond Model-Based Reasoning
Cooking with Julia



Gravity and Onions



Intuitive Physics
• People have intuitive understanding of how things evolve over time, 

and how to achieve desired change
• Qualitatively related to physics underlying a scene: gravity, forces, 

friction, mass, size, persistence, rigid and non-rigid motion, …
• Good enough for control since tightly coupled to perception --> 

closed loop control

• Physics based models in robotics generalize well but are not tightly 
coupled to perception

• Can we learn intuitive physics models for robots? 
• Ideally suited for closed-loop control since fully grounded in perceptual 

experience
• Applicable across a wide range of tasks



Deep learning for robotics
• Extremely flexible and expressive framework for learning from raw 

data
• Will dominate many recognition / control tasks, especially well suited for 

closed-loop control with complex perception and state spaces
• In robotics, future data provides supervisory signals

• Challenges
• How to get training data (scalability, safety, overfitting, simulation)?
• How to best combine models and deep learning?
• How to extract / model uncertainty and guarantees?
• Understanding of network structures, training regimes, generalization 

capabilities
• Risks

• Students degraded to network and data engineers
• Company or lab with most GPU’s wins

• A toolbox to try new things and revisit tasks from new perspectives


