CSE-571 Sampling-Based Motion Planning

Slides based on those from Pieter Abbeel, Zoe McCarthy Many images from Lavalle, Planning Algorithms

Solve by Nonlinear Optimization for Control?

• Could try by, for example, following formulation:

$$\begin{array}{ll} \min_{u,x} & (x_T - x_G)^\top (x_T - x_G) \\ \text{s.t.} & x_{t+1} = f(x_t, u_t) \quad \forall t \\ & u_t \in \mathcal{U}_t \\ & x_t \in \mathcal{X}_t \\ & x_0 = x_S \end{array}$$

• Or, with constraints, (which would require using an infeasible method):

$$\begin{array}{ll} \min_{u,x} & \|u\| \\ \text{s.t.} & x_{t+1} = f(x_t, u_t) \ \forall t \\ & u_t \in \mathcal{U}_t \\ & x_t \in \mathcal{X}_t \\ & x_0 = x_S \\ & X_T = x_G \end{array}$$

• Can work surprisingly well, but for more complicated problems can get stuck in infeasible local minima

Helicopter path planning

Cartpole swing-up

Acrobot

Motion Planning: Outline

- Configuration Space
- Probabilistic Roadmap
- Rapidly-exploring Random Trees (RRTs)
- Extensions
- Smoothing

Configuration Space (C-Space)

- = { x | x is a pose of the robot }
- obstacles \rightarrow configuration space obstacles

Motion planning

 $\rightarrow \varphi_{\text{shou}}$

Configurations are sampled by picking coordinates at random

Configurations are sampled by picking coordinates at random

Sampled configurations are tested for collision

The collision-free configurations are retained as milestones

Each milestone is linked by straight paths to its nearest neighbors

Each milestone is linked by straight paths to its nearest neighbors

The collision-free links are retained as local paths to form the PRM

The start and goal configurations are included as milestones

The PRM is searched for a path from s to g

Probabilistic Roadmap

- Initialize set of points with X_S and X_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X_s to X_G in the graph
 - Alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component

PRM Example 1

PRM Example 2

PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.

- Cons:
 - Required to solve 2-point boundary value problem
 - Build graph over state space but no focus on generating a path

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

How to Sample

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region


```
GENERATE_RRT(x_{init}, K, \Delta t)
       \mathcal{T}.init(x_{init});
  1
  2
       for k = 1 to K do
              x_{rand} \leftarrow \text{RANDOM\_STATE}();
  3
              x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T});
  4
              u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near});
  \mathbf{5}
 6
              x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
             \mathcal{T}.add\_vertex(x_{new});
  7
             \mathcal{T}.add\_edge(x_{near}, x_{new}, u);
 8
 9
       Return \mathcal{T}
```

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly

Source: LaValle and Kuffner 01

RRT Practicalities

- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing

- SELECT_INPUT(X_{rand}, X_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences.
 This set could be random, or some well chosen set of primitives.

RRT Extension

No obstacles, holonomic:

• With obstacles, holonomic:

 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

Bi-directional RRT

• Volume swept out by unidirectional RRT:

• Volume swept out by bi-directional RRT:

Difference more and more pronounced as dimensionality increases

Multi-directional RRT

 Planning around obstacles or through narrow passages can often be easier in one direction than the other

RRT*

- Asymptotically optimal
- Main idea:
 - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent

RRT*

Algorithm 6: RRT*	
1 V	$Y \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;$
2 for $i = 1, \ldots, n$ do	
3	$x_{\text{rand}} \leftarrow \texttt{SampleFree}_i;$
4	$x_{ ext{nearest}} \leftarrow \texttt{Nearest}(G = (V, E), x_{ ext{rand}});$
5	$x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x_{\text{rand}}) ;$
6	${f if} \ {\tt ObtacleFree}(x_{ m nearest},x_{ m new}) \ {f then}$
7	$X_{\text{near}} \leftarrow \texttt{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});$
8	$V \leftarrow V \cup \{x_{\text{new}}\};$
9	$x_{\min} \leftarrow x_{\mathrm{nearest}}; c_{\min} \leftarrow \mathtt{Cost}(x_{\mathrm{nearest}}) + c(\mathtt{Line}(x_{\mathrm{nearest}}, x_{\mathrm{new}}));$
10	foreach $x_{near} \in X_{near}$ do// Connect along a minimum-cost path
11	$ \qquad \qquad$
12	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
13	$E \leftarrow E \cup \{(x_{\min}, x_{\mathrm{new}})\};$
14	for each $x_{\text{near}} \in X_{\text{near}}$ do // Rewire the tree
15	$ \texttt{if CollisionFree}(x_{\texttt{new}}, x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{new}}) + c(\texttt{Line}(x_{\texttt{new}}, x_{\texttt{near}})) < \texttt{Cost}(x_{\texttt{near}}) \\ \texttt{if CollisionFree}(x_{\texttt{new}}, x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{new}}) + c(\texttt{Line}(x_{\texttt{new}}, x_{\texttt{near}})) < \texttt{Cost}(x_{\texttt{near}}) \\ \texttt{if CollisionFree}(x_{\texttt{new}}, x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{new}}) + c(\texttt{Line}(x_{\texttt{new}}, x_{\texttt{near}})) < \texttt{Cost}(x_{\texttt{near}}) \\ \texttt{if CollisionFree}(x_{\texttt{new}}, x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{new}}) + c(\texttt{Line}(x_{\texttt{new}}, x_{\texttt{near}})) < \texttt{Cost}(x_{\texttt{near}}) \\ \texttt{if CollisionFree}(x_{\texttt{new}}, x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{new}}, x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}, x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) \land \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) \\ \texttt{Cost}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}})) + c(\texttt{Line}(x_{\texttt{near}}) + c(\texttt{Line}(x_{\texttt{near}}) + c(Line$
	then $x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}});$
16	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
17 return $G = (V, E);$	

Source: Karaman and Frazzoli

RRT*

Source: Karaman and Frazzoli

Source: Karaman and Frazzoli

Real Time RRT*

(a) RRT* run 1

(b) RRT* run 1

Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

- \rightarrow In practice: do smoothing before using the path
- Shortcutting:
 - along the found path, pick two vertices X_{t1}, X_{t2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Additional Resources

- Marco Pavone (<u>http://asl.stanford.edu/</u>):
 - Sampling-based motion planning on GPUs: <u>https://arxiv.org/pdf/1705.02403.pdf</u>
 - Learning sampling distributions: <u>https://arxiv.org/pdf/1709.05448.pdf</u>
- Sidd Srinivasa (<u>https://personalrobotics.cs.washington.edu/</u>)
 - Batch informed trees: <u>https://robotic-esp.com/code/bitstar/</u>
 - Expensive edge evals: <u>https://arxiv.org/pdf/2002.11853.pdf</u>
- Adam Fishman / Dieter Fox (<u>https://rse-lab.cs.washington.edu/</u>)
 - Motion Policy Networks: <u>https://mpinets.github.io/</u>
- Lydia Kavraki (<u>http://www.kavrakilab.org/</u>)
 - Motion in human workspaces: <u>http://www.kavrakilab.org/nsf-nri-1317849.html</u>