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Motion/Path Planning

e Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

* Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-P590a: Courtesy of Maxim Likhachev, CMU
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Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):
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Configuration

Piano Movers ~ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials



Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):
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Planned motion for a 6DOF robot arm
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Motion/Path Planning

" Path/Motion Planner |
path
> Controller )
lcammands
map update ' pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)



Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen



Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
 Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (1.€., most likely) environme’fﬂfmt deviates off its path

- plan a single least-cost trajectory under f+- .
- re-plan as new information arrives re-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen



Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal

. tationally MUCH hard
- re-plan if unaccounted events happencomP R R



Example

Urban Challenge Race, CMU team, planning with Anytime D*



Outline

* Deterministic planning

- constructing a graph
- search with A*
- search with D*



Outline

* Deterministic planning

- search with A*
- search with D*



Planning via Cell Decomposition

» Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

»
»

planning map



Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

@ planning map
: search the graph
convert into a graph
Ss stapu, @ @ for a least-cost path
S, @ from s, to S voal



Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S, | S S
1 2 3 @_ @ search the graph

convert into a graph
Ss | Ss M stapu, @ @ for a least-cost path
froms., ., tos

S 5 @ start

planning map

goal




Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

- Problem: transitions difficult to execute on non-holonomic
robots

discretize




Planning via Cell Decomposition

* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

y &

C(s4,S¢) =5

S7
C(s,,s;) = 100

C(s,Sg) =5

replicate it
online

XD



Planning via Cell Decomposition

* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

'y |

C(s4,S¢) =5

S7
C(s,,s;) = 100

C(s,Sg) =5

replicate it
online




Outline

* Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)



A* Search

« Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s {0 Sg,q

/

the cost of a shortest path
from s, to s found so far

h(s)




A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

h(s) -

Ly
U
N
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one popular heuristic function — Euclidean distance



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=00 g= oo
h=2 h=1
g=0 @# g= o
_ h=3 2 h=0
CLOSED = {] .//'
% 1 Sgoa

OP EN = {Sstart}

next state to expand. S, @ 3 @/



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

. J _|_ J

lfg(S ,) ~ g(S) C(S,S ,) g(SZ) > g(Sstart) + C(Sstart:S2)
g(s7) = g(s) + c(s.5); /
insert s~ into OPEN;

CLOSED = {} =0
OPEN = {Sstart} I I i Sgoa
next state to expand. S, 3 @/



A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +clss’)
g(s’) =g(s) +clss’);
insert s~ into OPEN;
g= o0
h=1

@—>@K
CLOSED = {5,,,,} l

OPEN = {SZ}

next state to expand. s, _,@

h2 h]

N‘OQ
I
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g= o0
h=0
S

goa



A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)

gls’) =g(s) +cs,s);

insert s~ into OPEN;
g=3
h=1

CLOSED = {$,,,,52) l @K

OPEN = {s,;s,}

next state to expand.: s, _,@

=2
h2 h]

N‘OQ
I
wc

g= o0
h=0
S

goa



A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=3
h=1
@%
_ ]’l:3 2 h=0
CLOSED = {Sstart)SZ:S]}
OPEN = {54,400/ Sgoa

next state to expand. s, _,@

=2
h2 h]



A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)

gls’) =g(s) +cs,s);

insert s~ into OPEN;
g=3
h=1

@%
CLOSED = {Sstart)SZ)S];S4} I % =0

OPEN = {538 45u1/

next state to expand: Sgoal _,@

=2
h2 h]

N‘OQ
I
wc

S goa



A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=3
h=1
CLOSED = { } A3 @ %5:05
Sstart S22 bS48 o0a
OPEN — {S3} tartS 228 1S S goal I
done @

=2
h2 h]



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 = — 5
h= @ % }3:0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound 3 @/

we can now compute a least-cost path g=2 g=3
h=2 h=1



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 ( : — =5
h= @\ h=0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound 3 @/

we can now compute a least-cost path g=2 g=3
h=2 h=1



A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations



A* Search

* Is guaranteed to return an optimal nath (in fact, for every

expanded state) — P‘hélps with robot deviating off its patii‘. m
if we search with A*
backwards (from goal to start)

e Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal in terms of the
computations

g=1 g=3
h=2 h

|



Eftect of the Heuristic Function

* A* Search: expands states in the order of f = g+4 values




Eftect of the Heuristic Function

* A* Search: expands states in the order of f = g+4 values

for large problems this results in A™* quickly
running out of memory (memory.: O(n))




Eftect of the Heuristic Function

 Weighted A* Search: expands states in the order of f =
g+eh values, ¢ > [ = bias towards states that are closer to
goal

solution is always e-suboptimal.:
cost(solution) < g:cost(optimal solution)

art

o)

§ goal
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e=1.5 e = 1.0 (optimal search)

¢ 1

initial search (e = 2.5) second search (e = 1.5) third search (e = 1.0)



Eftect of the Heuristic Function

 Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > [ = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)



Eftect of the Heuristic Function

e planning in 8D (<x,y> for each foothold)
 heuristic 1s Euclidean distance from the center of the body to the goal location

« cost of edges based on kinematic stablhty of the robot and quality of footholds

ill ”5"'4{\
@lh" H
't WIS

planning with R* (randomized version of weighted A™)

Jjoint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza



Outline

* Deterministic planning

- constructing a graph
- search with A*



Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRV navigating
initially-unknown environment planning map and path

1 ..ﬁ"' : '(p. 5, h
X ‘.\‘(”M /@4;’ .
I8 NI
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):

— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU



Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially
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How to reuse these g-values from one search to
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially
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Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

SSSSS




Anytime Aspects




cost

13,000

11,000

9,000

7,000 !

Anytime Aspects

cost = 133,736
£=3.0
# expands = 1,715

cost = 77,345
e=1.0

# expands = 14,132

0.2 | 0.4 | 0.6
time (secs)



Searching the Graph

* Incremental behavior of Anytime D*:

initial path a path after re-planning

51



Searching the Graph

* Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

v /,,—"/—/
h(S) Sgoal
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Searching the Graph

* In our planner: A(s) = max(h,,,.;,(S), h,,.(s)), where
— h,,.0n(s) — mechanism-constrained heuristic
— h,,,(s) — environment-constrained heuristic

h,...n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics

o-T>
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Searching the Graph

* In our planner: A(s) = max(h,,,.;,(S), h,,.(s)), where
— h,,.0n(s) — mechanism-constrained heuristic
— h,,,(s) — environment-constrained heuristic

h,...n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

\

c"[>' -[>
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Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hop 26,108  1.30
heon 124794  3.49



Example, again

Urban Challenge Race, CMU team, planning with Anytime D*



Trajectory Pre-Computation and
Optimization

S N

x(m) y(m)

(a) (b) z(m) oy  y(m) z(m) (o) y(m)

Optimize (fine-tune) parameters initialized via interpolation









Summary

* Deterministic planning

- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!






