CSE-P590a

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

Motion/Path Planning

- Task:
find a feasible (and cost-minimal) path/motion from the current configuration of the robot to its goal configuration (or one of its goal configurations)
- Two types of constraints:
environmental constraints (e.g., obstacles) dynamics/kinematics constraints of the robot
- Generated motion/path should (objective): be any feasible path minimize cost such as distance, time, energy, risk, ...

Motion/Path Planning

Examples (of what is usually referred to as path planning):

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Piano Movers ' problem

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a $6 D O F$ robot arm

Motion/Path Planning

Motion/Path Planning

i.e., deterministic registration or Bayesian update
i.e., Bayesian update (EKF)

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose
- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives
- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose
- Planning approaches:
- deterministic planning:
re-plan every time
sensory data arrives or robot deviates off its path
- assume some (i.e., most likely) environme rıb,
- plan a single least-cost trajectory under th:
- re-plan as new information arrives re-planning needs to be FAST
- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose
- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives
- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
computationally MUCH harder
- re-plan if unaccounted events happen

Example

Urban Challenge Race, CMU team, planning with Anytime D*

Outline

- Deterministic planning
- constructing a graph
- search with A*
- search with D^{*}

Outline

- Deterministic planning
- constructing a graph
- search with A*
- search with D^{*}

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic robots

Planning via Cell Decomposition

- Graph construction:
- lattice graph
outcome state is the center of the corresponding cell

Planning via Cell Decomposition

- Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness
action template

Outline

- Deterministic planning
- constructing a graph
- search with A*
- search with D^{*}
- Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

A* Search

- Computes optimal g-values for relevant states
at any point of time:

> an (under) estimate of the cost
> of a shortest path from s to $s_{\text {goal }}$

A* Search

- Computes optimal g-values for relevant states
at any point of time:

one popular heuristic function - Euclidean distance

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED
if $\begin{aligned} g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\ g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;\end{aligned}$ insert s^{\prime} into OPEN;

CLOSED $=\{ \}$ OPEN $=\left\{s_{\text {start }}\right\}$
next state to expand: $s_{\text {start }}$

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED

$$
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into OPEN; }
\end{aligned}
$$

CLOSED $=\{ \}$ OPEN $=\left\{s_{\text {star }}\right\}$
next state to expand: $s_{\text {start }}$

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED
if $\begin{aligned} g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\ g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;\end{aligned}$ insert s^{\prime} into OPEN;

CLOSED $=\left\{s_{\text {start }}\right\}$ OPEN $=\left\{s_{2}\right\}$ next state to expand: s_{2}

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED
if $\begin{aligned} g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\ g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;\end{aligned}$ insert s ' into OPEN;

CLOSED $=\left\{s_{\text {start }}, s_{2}\right\}$ OPEN $=\left\{s_{1}, s_{4}\right\}$ next state to expand: s_{1}

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED
if $\begin{aligned} g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\ g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;\end{aligned}$ insert s ' into OPEN;

CLOSED $=\left\{s_{\text {start }}, s_{2}, s_{l}\right\}$ OPEN $=\left\{s_{4}, s_{\text {goal }}\right\}$ next state to expand: s_{4}

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED
if $\begin{aligned} g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\ g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;\end{aligned}$ insert s^{\prime} into OPEN;

CLOSED $=\left\{s_{\text {start }}, s_{2}, s_{1}, s_{4}\right\}$ OPEN $=\left\{s_{3}, s_{\text {goal }}\right\}$ next state to expand: $s_{\text {goal }}$

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while $\left(s_{\text {goal }}\right.$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED

$$
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
$$

$$
\text { insert } s^{\prime} \text { into } O P E N
$$

$C L O S E D=\left\{s_{\text {start }}, s_{2}, s_{1}, s_{4}, s_{\text {goal }}\right\}$ OPEN $=\left\{s_{3}\right\}$ done

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while ($s_{\text {goal }}$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED

$$
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
$$

$$
\text { insert } s^{\prime} \text { into } O P E N
$$

for every expanded state $g(s)$ is optimal for every other state $g(s)$ is an upper bound we can now compute a least-cost path

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while ($s_{\text {goal }}$ is not expanded)
remove s with the smallest $[f(s)=g(s)+h(s)]$ from $O P E N$; insert s into CLOSED;
for every successor s^{\prime} of s such that s^{\prime} not in CLOSED

$$
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
$$

$$
\text { insert } s^{\prime} \text { into } O P E N
$$

for every expanded state $g(s)$ is optimal for every other state $g(s)$ is an upper bound we can now compute a least-cost path

A* Search

- Is guaranteed to return an optimal path (in fact, for every expanded state) - optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality - optimal in terms of the computations

A* Search

- Is guaranteed to return an optimal path (in fact, for every expanded state) - r^{2} helps with robot deviating off its pathinn if we search with A^{*}
backwards (from goal to start)
- Performs provably minimal number ot state expansions required to guarantee optimality - optimal in terms of the computations

Effect of the Heuristic Function

- A* Search: expands states in the order of $f=g+h$ values

Effect of the Heuristic Function

- A* Search: expands states in the order of $f=g+h$ values
for large problems this results in A^{*} quickly
running out of memory (memory: $O(n)$)

$S_{\text {goal }}$

Effect of the Heuristic Function

- Weighted A^{*} Search: expands states in the order of $f=$ $g+\varepsilon h$ values, $\varepsilon>1=$ bias towards states that are closer to goal

solution is always ε-suboptimal:
$\operatorname{cost}($ solution $) \leq \varepsilon \cdot \operatorname{cost}($ optimal solution)

Adaptive Real-Time A*

$\epsilon=2.5$

initial search $(\epsilon=2.5)$

$\epsilon=1.5$

second search $(\epsilon=1.5)$

$\epsilon=1.0$ (optimal search)

third search $(\epsilon=1.0)$

Effect of the Heuristic Function

- Weighted A* Search: expands states in the order of $f=$ $g+\varepsilon h$ values, $\varepsilon>l=$ bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 10^{26} states

planning with ARA* (anytime version of weighted A*)

Effect of the Heuristic Function

- planning in 8D ($\langle x, y\rangle$ for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

planning with R^{*} (randomized version of weighted A^{*})
joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

Outline

- Deterministic planning
- constructing a graph
- search with A*
- search with D^{*}

Incremental version of A* (D*/D* Lite)

- Robot needs to re-plan whenever
- new information arrives (partially-known environments or/and dynamic environments)
- robot deviates off its path

Incremental version of A* (D*/D* Lite)

- Robot needs to re-plan whenever
- new information arrives (partially-known environments or/and dynamic environments)
- robot deviates off its path
incremental planning (re-planning): reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU

Motivation for Incremental Version of A*

- Reuse state values from previous searches
cost of least-cost paths to $s_{\text {goal }}$ initially

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	$S_{\text {s.anal }}$	1	2	3
14	13	12	11	10	9	8	7		5	4	3	2	1	1	1	2	3
14	13	12	11	10	9			6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	1	1		7	6	5	4	3	3	3	3	3	3
14	13	12	11	11	1	1	7	6	5	4	4	4	4	4	4	4	4
14	13	12	12	12	12	2	7	6	6	6	5	5	5	5	5	5	5

cost of least-cost paths to $s_{\text {goal }}$ after the door turns out to be closed

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	$S_{\text {soal }}$	1	2	3
15	14	13	12	11	1	1	1	7	6	5	4	3	2	1	1	1	2

Motivation for Incremental Version of A*

- Reuse state values from previous searches
cost of least-cost paths to $s_{\text {goal }}$ initially

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	,	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	5	1	2	3
					9				5	4	3	2	1	1	1	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9				5	4	3	3	2	2	2	2	3

14	13	12	11	10	1	0
14	13	12	11	11	1	
14	13	12	12	12	1	2
					13	
18	$s_{\text {sarrt }}$	16	15	14	14	

cost of least-cost paths to $s_{\text {goal }}$ after the door turns out to be closed

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	$S_{\text {soal }}$	1	2	3
15	14	13	12	11	1	1	1	7	6	5	4	3	2	1	1	1	2

Motivation for Incremental Version of A*

- Reuse state values from previous searches
cost of least-cost paths to $s_{\text {goal }}$ initially

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	S_{8} goal	1	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11	10	9				5	4	3	2	2	2	2	2	3

These costs are optimal g-values if search is done backwards

How to reuse these g-values from one search to cost of least-cost paths to $S_{\text {goal }} \quad$ another? - incremental A*
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 0 & \mathrm{u}\end{array}\right)$

Motivation for Incremental Version of A*

- Reuse state values from previous searches
cost of least-cost paths to $s_{\text {goal }}$ initially

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	$S_{\text {Soal }}$	1	2	3
14	13	12	11	10	9	8	7		5	5	4	3	2	1	1	1	2
14	9	4	3	2	2	2	2	2	3								
14	13	12	11	10	9				5	4	3	3	3	3	3	3	3
14	13	12	11	10	1	0		7	6	5	4	4	4	4	4	4	4
14	13	12	11	11	1	1		7	6	5	5	5	5	5	5	5	5
14	13	12	12	12	12		7	6	6			5	5				

L18 $\mathrm{s}_{\text {sarti }} 16,15,14 \left\lvert\, \frac{13}{14}-7\right.$ Would \# of changed g-values be cost of least-cost paths to $s_{g .}$. very different for forward A^{*} ?

14	13	12	11	10	9	8	7	6	6	0	\breve{c}						
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	1	1	1
2	3																
14	13	12	11		9		7	6	5	4	3	2	1	$S_{\text {soal }}$	1	2	3
15	14	13	12	11	1	1	1	7	6	5	4	3	2	1	1	1	2

Motivation for Incremental Version of A*

- Reuse state values from previous searches
cost of least-cost paths to $s_{\text {goal }}$ initially
 cost of least-cost paths to $\mathrm{o}_{g .}$. deviates off its path?

Incremental Version of A*

- Reuse state values from previous searches

initial search by backwards A^{*}

initial search by D^{*} Lite

second search by D^{*} Lite

														S_{5}			
					5												
								,		-							

Anytime Aspects

Anytime Aspects

Searching the Graph

- Incremental behavior of Anytime D*:

initial path

a path after re-planning

Searching the Graph

- Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal
should be consistent and admissible (never overestimate cost-to-goal)

Searching the Graph

- In our planner: $h(s)=\max \left(h_{\text {mech }}(s), h_{\text {env }}(s)\right)$, where
- $h_{\text {mech }}(s)$ - mechanism-constrained heuristic
- $h_{\text {env }}(s)$ - environment-constrained heuristic

$h_{\text {env }}(s)$ - considers only environment constraints and ignores dynamics

Searching the Graph

- In our planner: $h(s)=\max \left(h_{\text {mech }}(s), h_{\text {env }}(s)\right)$, where
- $h_{\text {mech }}(s)$ - mechanism-constrained heuristic
- $h_{\text {env }}(s)$ - environment-constrained heuristic
$h_{\text {mech }}(s)$ - considers only dynamics constraints and ignores environment
pre-computed as a table lookup for high-res. lattice

$h_{\text {env }}(s)$ - considers only environment constraints and ignores dynamics
computed online by running a $2 D A^{*}$ with late termination

Heuristics

heuristic	states expanded	time (secs)
h	2,019	0.06
$h_{2 D}$	26,108	1.30
$h_{f s h}$	124,794	3.49

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

Trajectory Pre-Computation and
 Optimization

Pre-compute parameters for set of end points

Optimize (fine-tune) parameters initialized via interpolation

Predicting and Avoiding Other Vehicles

Passing and Cost

Summary

- Deterministic planning
- constructing a graph
- search with A*
- search with D^{*}
think twice before trying to use it in real-time
- Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)
think three or four times before trying to use it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

