CSE-P3590a

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

Motion/Path Planning

e Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

* Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-P590a: Courtesy of Maxim Likhachev, CMU

Ing

Motion/Path Plann
Examples (of what 1s usually referred to as path planning)

==

)
pZZl e

NSSES

e

LTI Tec

Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):

4< ~Immovable 4
~}-Obstacles v

V4T |V

A
Goal Configuration

T

Start
Configuration

Piano Movers ~ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):

\ "\\\\\\\\\‘\\\‘,\wﬂ

Planned motion for a 6DOF robot arm

Motion/Path Planning

\ 4

Path/Motion Planner)

path

A

A

A 4

Controller

lcammands

map update pose update

Motion/Path Planning

" Path/Motion Planner |
path
> Controller)
lcammands
map update ' pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)

Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
 Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (1.€., most likely) environme’fﬂfmt deviates off its path

- plan a single least-cost trajectory under f+- .
- re-plan as new information arrives re-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

 Uncertainty can be 1n:
- prior environment (1.€., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal

. tationally MUCH hard
- re-plan if unaccounted events happencomP R R

Example

Urban Challenge Race, CMU team, planning with Anytime D*

Outline

* Deterministic planning

- constructing a graph
- search with A*
- search with D*

Outline

* Deterministic planning

- search with A*
- search with D*

Planning via Cell Decomposition

» Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

»
»

planning map

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

@ planning map
: search the graph
convert into a graph
Ss stapu, @ @ for a least-cost path
S, @ from s, to S voal

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S, | S S
1 2 3 @_ @ search the graph

convert into a graph
Ss | Ss M stapu, @ @ for a least-cost path
froms., ., tos

S 5 @ start

planning map

goal

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

- Problem: transitions difficult to execute on non-holonomic
robots

discretize

Planning via Cell Decomposition

* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

y &

C(s4,S¢) =5

S7
C(s,,s;) = 100

C(s,Sg) =5

replicate it
online

XD

Planning via Cell Decomposition

* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

'y |

C(s4,S¢) =5

S7
C(s,,s;) = 100

C(s,Sg) =5

replicate it
online

Outline

* Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

A* Search

« Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s {0 Sg,q

/

the cost of a shortest path
from s, to s found so far

h(s)

A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

h(s) -

Ly
U
N

6

one popular heuristic function — Euclidean distance

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=00 g= oo
h=2 h=1
g=0 @# g= o
_ h=3 2 h=0
CLOSED = {] .//'
% 1 Sgoa

OP EN = {Sstart}

next state to expand. S, @ 3 @/

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

. J _|_ J

lfg(S ,) ~ g(S) C(S,S ,) g(SZ) > g(Sstart) + C(Sstart:S2)
g(s7) = g(s) + c(s.5); /
insert s~ into OPEN;

CLOSED = {} =0
OPEN = {Sstart} I I i Sgoa
next state to expand. S, 3 @/

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +clss’)
g(s’) =g(s) +clss’);
insert s~ into OPEN;
g= o0
h=1

@—>@K
CLOSED = {5,,,,} l

OPEN = {SZ}

next state to expand. s, _,@

h2 h]

N‘OQ
I
wc

g= o0
h=0
S

goa

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)

gls’) =g(s) +cs,s);

insert s~ into OPEN;
g=3
h=1

CLOSED = {$,,,,52) l @K

OPEN = {s,;s,}

next state to expand.: s, _,@

=2
h2 h]

N‘OQ
I
wc

g= o0
h=0
S

goa

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=3
h=1
@%
_]’l:3 2 h=0
CLOSED = {Sstart)SZ:S]}
OPEN = {54,400/ Sgoa

next state to expand. s, _,@

=2
h2 h]

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)

gls’) =g(s) +cs,s);

insert s~ into OPEN;
g=3
h=1

@%
CLOSED = {Sstart)SZ)S];S4} I % =0

OPEN = {538 45u1/

next state to expand: Sgoal _,@

=2
h2 h]

N‘OQ
I
wc

S goa

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=3
h=1
CLOSED = { } A3 @ %5:05
Sstart S22 bS48 o0a
OPEN — {S3} tartS 228 1S S goal I
done @

=2
h2 h]

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 = — 5
h= @ % }3:0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound 3 @/

we can now compute a least-cost path g=2 g=3
h=2 h=1

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 18 not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
ifg(s’) > g(s) +c(ss)
gls’) =g(s) +cs,s);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 (: — =5
h= @\ h=0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound 3 @/

we can now compute a least-cost path g=2 g=3
h=2 h=1

A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations

A* Search

* Is guaranteed to return an optimal nath (in fact, for every

expanded state) — P‘hélps with robot deviating off its patii‘. m
if we search with A*
backwards (from goal to start)

e Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal in terms of the
computations

g=1 g=3
h=2 h

|

Eftect of the Heuristic Function

* A* Search: expands states in the order of f = g+4 values

Eftect of the Heuristic Function

* A* Search: expands states in the order of f = g+4 values

for large problems this results in A™* quickly
running out of memory (memory.: O(n))

Eftect of the Heuristic Function

 Weighted A* Search: expands states in the order of f =
g+eh values, ¢ > [= bias towards states that are closer to
goal

solution is always e-suboptimal.:
cost(solution) < g:cost(optimal solution)

art

o)

§ goal

G

e=1.5 e = 1.0 (optimal search)

¢ 1

initial search (e = 2.5) second search (e = 1.5) third search (e = 1.0)

Eftect of the Heuristic Function

 Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > [= bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)

Eftect of the Heuristic Function

e planning in 8D (<x,y> for each foothold)
 heuristic 1s Euclidean distance from the center of the body to the goal location

« cost of edges based on kinematic stablhty of the robot and quality of footholds

ill ”5"'4{\
@lh" H
't WIS

planning with R* (randomized version of weighted A™)

Jjoint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

Outline

* Deterministic planning

- constructing a graph
- search with A*

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRV navigating
initially-unknown environment planning map and path

1 ..ﬁ"' : '(p. 5, h
X ‘.\‘(”M /@4;’ .
I8 NI

” L PRE
S
PSR,

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):

— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially

4[13J12[11Ji10]l o[8[7[6l6l6]6[6]6]l6[6]6]6
sl R{nnliololsl7l6l515155515151515
Al 3211109 [S 76544 alalalala]4a
i3l ol s 7165141313133 13]3]3
al13]12(11liol o8l 71l6l5 14132121212 1213
lllnnlwlolsl7lelsals3s2l1 112713
14 13 [12 [11 9 71615 432 101213

5141321 qy1 1213
14131211109 Foty 32" | 2 [2 | 2 | 2 | 3
14131211]10] 9 51433333313
{31211 10 7165 [al4alalalalala]la
14 |13 [12 [11] 11 7165555515 51515
1413121212112 7leleoleleoleleolelele]e
F_IB 7177171717171l 7171717
18 [sczmi16--15-1=14"| 14 S| S|S |8 s 8| 8IS |[S8[8[gs

cost of least-cost paths 10 S,,, after the door turns out to be closed

1411312111109 187]16|6|6[6]6]|6]61|61]6]1]F6
1411312111109 187165 |5 [5]5|5]5[5]515
14131211]10J 9 | 8|7 6|54]14[4]14 1441414
1413)12f11j10y9 (817165413 [3}3]13[3]31]3
1411312 f11j10f9 | 817161543222 [2]21]3
13112 9 | 8 G653t 1 11 | 2 |3
13 | 12 9 7 165 [4131211 |Sqef 1 [21]3
S{4 1321111111213

S1413 (212122213

S|4 1331313131313

S1414(41414(141414

SIS S[S1S 151515715

6 |6 |]6[]6|]6|]6[6]61]6

71\ 7177171771717

8 | 888|888 8 (8

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially

14113112]11]10]9 8|7]6]l]6[6|]6]6|]6]6]6]61]6
4113112111101 981|765 [5]|5]|5]|5]5]51]515
1411312111101 9181765414141 41414(1414
14113112111 (109 | 8| 716|514 ([3 131313 13[31]3
4113]12111j10of9o 8171615141312 1212121213
14113121110 9 | 87 [6 5[4 ([3[2]1 | 1 1213
14] 13112 (11 9 716151432 1 ¥sgq 1 [21]3
slal3lalayTl1127]3
1411312111110 9 Ty oy Sy Zee=2 | 2 1 2 [21213
1411312111101 9 51431302 2l 2 2|3
43110l 6 | Seme . . .
7Y NEN A BV VR BN These costs are optimal g-values if search is
14113 [12]12]12] 12

done backwards

I
18 IS a6 1514 | 14

cost of least-cost paths 10 S,,, after the door turns out to be closed

1413112111109 |18 [7 16
1413121111019 |18 [716
141311211109 | 8|7 1]6
141311211109 | 8|7]6
14113121110} 9 [8 |7] 6
13112 9 L8476
13 | 12 9 7 | 6 Sgoal

f

[o2e] EN] (@) (9] RSN (N | 3] o SI Tl (WO LUS] RSN U/} (@)Y

[oe] N (@) L] L) L) L) L4) LUl () L) L) L | (O) (@)
[o2e] BN (o) (U] BEN BE BEN FEN EE BN BEN B B2 (4] (@)
Io7e] (] (=) (W] KN (%) [3%) [3%) (9% (#%) (%) [3%) 'Y 7] (o
[o7s] EN | ()} (W] HENS (9] [1] [(9] (R]) (15] | []) [F5] FiN ()} (@)
[o7<] EN] (o)} (9] F=NS (UF] [R] ot (ol F2ry [RO (U] BiNY () (@)
[o2s] BN (o) (O] BN (UR] [3] [T Lol Bl [RO LUN] NEN (9] (@)Y

(o] EN] (@) (W] WiN (UF]) | 391 [0] | RS (o] [0 (F5] NEN U] (@)Y
[o2e] EN] (@)} LW/ FEN (UF] (UF] (U5] (UN] (F5] LUF] FN) NEN /] (@)

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially

14113112]11]10]9 8|7]6]l]6[6|]6]6|]6]6]6]61]6
4113112111101 981|765 [5]|5]|5]|5]5]51]515
1411312111101 9181765414141 41414(1414
14113112111 (109 | 8| 716|514 ([3 131313 13[31]3
4113]12111j10of9o 8171615141312 1212121213
14113121110 9 | 87 [6 5[4 ([3[2]1 | 1 1213
14] 13112 (11 9 716151432 1 ¥sgq 1 [21]3
slal3lalayTl1127]3
1411312111110 9 Ty oy Sy Zee=2 | 2 1 2 [21213
1411312111101 9 51431302 2l 2 2|3
43110l 6 | Seme . . .
7Y NEN A BV VR BN These costs are optimal g-values if search is
14113 [12]12]12] 12

3 done backwards
| 18 |s| 16| .| 15 .| 14| 14 ;

How to reuse these g-values from one search to

cost of least-cost paths 10 4.,/ another? — incremental A*
][l l10]ol8 76
a3l ul10lols8 7116
43[R 10[9 876
a1 o 876
alBllulio]ols[7]6
ERNE 0 8176
3112 9 76 Sgoal

f

[ore] EN] (@) (9] BEN (UN] | 387 [P SR Tl (WO) LUN] RSN) ¢

[oe] N (@) L] L) L) L) L4) LUl () L) L) L | (O) (@)
[o2e] BN (o) (U] BEN BE BEN FEN EE BN BEN B B2 (4] (@)
[vle] EN] (@) (W] NEN (FF] LUF] LUN] (FR] SV] (FW] LUN] IEN U/} (@)
[o7s] BN] (@)} (7] BN (%] [\W] [(8] (R]) (85] | R]) [¥S] FiNy 9} (@]
O | [N | =R ||| = o |W || |C
OO [A [+ |92 [E = = = |19 [| = [[€
[oe] BN (@)} (W] EEN (O8] |38 [3] R0 ([S] |07 LVS] FEN W) (d
(v s BN | (@) L] =N OS] (5] (V] LVF] (FF] LFF] V) NaN (] [

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially

4]13[1pJ11Ji0]ol8[7T6]6l6]6l6]6]6[6]6]606
413121110l ol8 7655555551515
4131211109 [8 [7165 44 aalala]a]4a
4131211][10] 98716151433 13[313]31]3
a3l iof1iiolol 8765432222213
a3l ol8 716543211][1][2]3
4 [13 11211 9 7 1615 432[1se[123

0 | 514321 (1123
14 [13 [12 [11] 10 7654131222223
141312 [11[10 51433333313
14 13 [12 [11]10 6|5 44|44 alala]a4
413111 6|15 5 [51sTstzt=st=sl3
1411311212112 6 | <

| 18 |Smm 16+ | 4| 14

cost of least-cost paths to

14113112 [11]10] 9
1411312111 [10] 9
14113112 [11]10] 9
14113112 [11]10] 9
9
9
9

Would # of changed g-values be
.. very different for farwam’ A*?

1411311211]10
' 13112
13 | 12

o
.

f

[vle] EN] (@)Y (W] W=N (FF] | §8] [y SR Tl | RO) LUS] NEN)1

[o%] N] (@ (W (9] (9] (W] (9] (972 (@} () [(W]] ‘o)
[o0s] BN (@)Y (W] BEN RN BE BEN FEN) FEY) AR RN BEN 94 (@)
[ve] EN] (@) (W] =N (FF] LUN] U] (FV] (FV] (FR] [UW] NN 9] 4
[o7s] EN] [@)N W] NS (U%] [R9] [30] | NS (30] | RS) (5] Wi ()}
(o] BN] (@)Y (W] FEN (U] [9] [P0 (o P (RS (U9 BN ()Y
[o2e] BN (@) (9] =N (UN] | 3] [Fol Bl WS LUS] NEN)]

[o2] EN | (@) (W] NEN (UN] [(9] | 39 (W] (NS | RS} (US] BEN)]
OO\]O\JI-IkoJoJJ)quJoJJJka

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 Sy, initially

1411311211110 9 8 7 6 6 6 6 6 6 6 6 6 6
14113121 11[10] 9 8 7 6 5 5 5 5 5 5 5 5 5
4|31 [0 9[8[765 [4]alalalalala]a
4113112111110 9 8 7 6 5 4 3 3 3 3 3 3 3
14113 112(11110] 9 8 7 6 5 4 3 2 2 2 2 2 3
4113112111110 9 8 7 6 5 4 3 2 1 1 1 2 3
1411311211) 7 6 5 4 3 2 1 Ise] 1 2 3

ER 5 4 3 2 ! 1 2 3
14113 112111110 7 6 R) 4 3 2 2 2 2 2 3
1411311211110 5 4 3 3 3 3 3 3 3
141131121111 10 7 6 5 4 4 4 4 4 4 4 4
141131121111 7 6 5 5 £ - -
14113121 12] 12 71 ¢

3 ~ °
A Any work needs to be done if robot

cost of least-cost paths to

14113112 [11]10] 9
1411312111 [10] 9
14113112 [11]10] 9
14113112 [11]10] 9
9
9
9

9%
o
9

deviates off its path?

1411311211]10
' 13112
13 | 12

8
8
8
8
8
8

NN N (NN N

o
.

f

[vle] EN] (@)Y (W] W=N (FF] | §8] [y SR Tl | RO) LUS] NEN)1

(o2e] BN} (@) (W] L4) L] L) L) LUl (B) (O L) L] 4) (@)Y

ore] DN (o)) B4 B PR PR PR B B B BE BE 4] (o)

OO\]O\'JI-IkaUJUJUJUJUJUJJkLII|

[o2e] BN (@)} (W] EEN (U8] [R8] [(0] S]] (18] | S0 (W8] FEN)

[07e] BN (@) (W] =N (FF] | RS] [P S [N) (98] NN (%

[o7] BN] @)Y (W] F=N (9%] [F¥] [F¥] (F¥] §V) (V] [F¥] N=N) 4
[0ls] BN] (@) (9] F=N (FF] [19] [RS] [{0 (3] [N]) [U9] I ()
[070] BN (@)Y (W] F=N (U9] [R] S Pl P (RO) (99 NN (Y

Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

SSSSS

Anytime Aspects

cost

13,000

11,000

9,000

7,000 !

Anytime Aspects

cost = 133,736
£=3.0
expands = 1,715

cost = 77,345
e=1.0

expands = 14,132

0.2 | 0.4 | 0.6
time (secs)

Searching the Graph

* Incremental behavior of Anytime D*:

initial path a path after re-planning

51

Searching the Graph

* Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

v /,,—"/—/
h(S) Sgoal

53

Searching the Graph

* In our planner: A(s) = max(h,,,.;,(S), h,,.(s)), where
— h,,.0n(s) — mechanism-constrained heuristic
— h,,,(s) — environment-constrained heuristic

h,...n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics

o-T>

54

Searching the Graph

* In our planner: A(s) = max(h,,,.;,(S), h,,.(s)), where
— h,,.0n(s) — mechanism-constrained heuristic
— h,,,(s) — environment-constrained heuristic

h,...n(S) — considers only dynamics constraints h,,.(s) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

\

c"[>' -[>

55

Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hop 26,108 1.30
heon 124794 3.49

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

Trajectory Pre-Computation and
Optimization

S N

x(m) y(m)

(a) (b) z(m) oy y(m) z(m) (o) y(m)

Optimize (fine-tune) parameters initialized via interpolation

Summary

* Deterministic planning

- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

