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Types of SLAM-Problems

Grid maps or scans
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Problems in Mapping

® Sensor interpretation

e How do we extract relevant information
from raw sensor data?

e How do we represent and integrate this
information over time?

® Robot locations have to be known

e How can we estimate them during
mapping?



Occupancy Grid Maps

® Introduced by Moravec and Elfes in 1985
® Represent environment by a grid.

® Estimate the probability that a location is
occupied by an obstacle.

® Key assumptions
e Occupancy of individual cells is independent

Bel(mt)=P(mt |1/l1,22 U t)
:HBel(mt[xy])
X,y

e Robot positions are known!




Inverse Sensor Model
for Occupancy Grid Maps

Combination of linear function and Gaussian:

Cocupancy proba bility Qccupancy proba bility




Incremental Updating
of Occupancy Grids (Example)




Alternative for Lidar: Counting

® For every cell count

e hits(x,y): number of cases where a beam ended
at <x,y>

e misses(x,y): number of cases where a beam
passed through <x,y>

hits(x, y)
hits(x, y) + misses(x, )

Bel(m'™®") =

e Assumption: P(occupied(x,y)) = P(reflects(x,y))



Occupancy Grids: From scans to maps




Tech Museum, San Jose

occupandy grid map



OctoMap

Y A Probabilistic, Flexible, and Compact 3D
g Map Representation for Robotic Systems
i
=1

K.M. Wurm, A. Hornung,
E Autonomous
AISé:::::E:“‘ M. Bennewitz, C. Stachniss, W. Burgard

& ., Humanoid
E Robots Lab

__ T University of Frelburg University of Freiburg, Germany

http://octomap.sf.net



Robots in 3D Environments

Humanoid robots Flying robots



3D Map Requirements
Full 3D Model

= Volumetric representation
= Free-space
= Unknown areas (e.g. for exploration)

= Can be updated

= Probabilistic model
(sensor noise, changes in the environment)

= Update of previously recorded maps
Flexible

= Map is dynamically expanded

= Multi-resolution map queries
= Compact

= Memory efficient
= Map files for storage and exchange



Map Representations
Pointclouds
= Pro:

= No discretization of data
= Mapped area not limited

= Contra:
= Unbounded memory usage

= No direct representation of free or
unknown space



Map Representations
3D voxel grids
= Pro:

= Probabilistic update
= Constant access time

= Contra:

= Memory requirement
= Extent of map has to be known
= Complete map is allocated in memory



Map Representations

Octrees

» Tree-based data structure

= Recursive subdivision of
space into octants

= \Volumes allocated
as needed

= Multi-resolution




Map Representations

Octrees

= Pro:
= Full 3D model
= Probabilistic
= Flexible, multi-resolution
= Memory efficient

= Contra:

= Implementation can be tricky
(memory, update, map files, ...)

= Open source implementation as C++ library available at http://octomap.sf.net



Probabilistic Map Update

= Clamping policy ensures updatability [yguel ‘07]

L(n) € [Imin,Imax]

= Update of inner nodes enables multi-
resolution queries

L) = mag L)




Examples

» Cluttered office environment

Map resolution: 2 cm



Examples: Office Building
= Freiburg, building 079




Examples: Large Outdoor Areas

= Freiburg computer science campus
(292 x 167 x 28 m3, 20 cm resolution)




Examples: Tabletop




Memory Usage

Mapped Resolution Memory consumption [MB] File size [MB]
Map dataset
area [m?3] [m] | Full grid No compr. Lossless compr. | All data Binary
) 0.05 80.54 73.64 41.70 15.80 0.67
FR-079 corridor | 43.8 x 18.2 x 3.3
0.1 10.42 10.90 7.25 2.71 0.14
, 0.20 654.42 188.09 130.39 49.75 2.00
Freiburg outdoor | 292 x 167 x 28
0.80 10.96 4.56 4.13 1.53 0.08
New College 0.20 637.48 91.43 50.70 18.71 0.99
250 x 161 x 33
(Epoch C) 0.80 10.21 2.35 1.81 0.64  0.05
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SLAM: Simultaneous
Localization and Mapping

Many slides courtesy of Ryan Eustice,
Cyrill Stachniss, John Leonard



The SLAM Problem

A robot is exploring an
unknown, static environment.

Given:
= The robot’s controls

= Observations of nearby features

Estimate:

= Map of features
= Path of the robot

24



SLAM Applications

Undersea




Illustration of SLAM
without Landmarks
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Mapping with Raw Odometry




Repeat, with Measurements of

Landmarks
C..0 %
= First position:
( observed
.9

two features

Courtesy J. Leon:



Illustration of SLAM with
Landmarks

vAs
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= Second position: two new
< features observed
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Courtesy J. Leon:



Illustration of SLAM with
Landmarks

9 %

/ = Re-observation of first two

< features results in improved
*® estimates for vehicle

an d featu e Courtesy J. Leon:



Illustration of SLAM with

Landmarks

/

/ = Third position: two

< % additional features added
to map
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Courtesy J. Leon:



Illustration of SLAM with
Landmarks

9 %
S s

/ = Re-observation of first four

< X features results in improved
¥ location estimates for vehicle

and all features Courtesy J. Leon:



Illustration of SLAM with

Landmarks
® e
/ﬁ
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» Process continues as the
< vehicle moves through the
.2 environment

a
.

Courtesy J. Leon:



SLAM Using Landmarks

Odometry Profile of the Robot Locations
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Courtesy J. Leon:



Test Environment (Point Landmarks)

Courtesy J. Leon:



View from Vehicle

Courtesy J. Leon:



SLAM Using Landmarks

1. Move
2. Sense
3. Associate measurements with known features

4. Update state estimates for robot and previously mapped
features

5. Find new features from unassociated measurements
6. Initialize new features

time step20, time=1.61

/7. Repeat
8}
6 g .
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Courtesy J. Leon:



Simultaneous Localization and
Mapping (SLAM)

= Building a map and locating the robot in the
map at the same time

= Chicken-and-egg problem

Courtesy: Cyrill Stachni



Definition of the SLAM Problem

Given
= The robot’ s controls

ui-T7 — {ul,UQ,”LL3, -.

= Observations

£1:T — {Zla K2y &3y -

Wanted

= Map of the environment
m

= Path of the robot

Lo:T — {Qfo,wl,wg, ce .

Courtesy: Cyrill Stachni



Three Main Paradigms

Kalman | Graph- Particle
filter based filter

Courtesy: Cyrill Stachni



EKF SLAM

= Application of the EKF to SLAM

= Estimate robot’s pose and locations of
landmarks in the environment

= Assumption: known correspondences
= State space (for the 2D plane) is

o T
v =( z,9,0 M1z, M1y ey My gy Mnpy)
robot’s pose landmark 1 landmark n

Courtesy: Cyrill Stachni



EKF SLAM: State Representation

= Map with n landmarks: (3+2n)-dimensional

Gaussian
= Belief is represented by

[ @ \ [ 0w Ozy Ozo NS i, Wi Oomn,
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0 00z Oy 099  Ofmy., Tom, , TOmn TOmn, .,
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ml,y O-ml ym O-ml,yy 0-9 O-ml’yml,m O-ml’yml’y O-ml,ymn,m O-ml,ymn,y
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Courtesy: Cyrill Stachni



EKF SLAM: State Representation

= More compactly

LR ZCIJRCI}R Za:le Za:Rmn
Ty ZmlxR Zmlml Emlmn
Ty Zmna;R Zmnml Zmnmn

Courtesy: Cyrill Stachni



EKF SLAM: State Representation

= Even more compactly (note: )
TR — I

T 2izr  2gm
| 2 N ——
L 2.

Courtesy: Cyrill Stachni



EKF SLAM: Filter Cycle

o A W NN =

. State prediction

. Measurement prediction
. Measurement

. Data association

. Update

Courtesy: Cyrill Stachni



EKF SLAM: State Prediction

Zmn My

Courtesy: Cyrill Stachni



EKF SLAM: Measurement
Prediction

Courtesy: Cyrill Stachni



EKF SLAM: Obtained
Measurement

/xR /ZaszR Ea;le E:URmn
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L > Courtesy: Cyrill Stachni



EKF SLAM: Data Association and
Difference Between h(x) and z

L > Courtesy: Cyrill Stachni



EKF SLAM: Update Step

/xR /ZszcR Zaszl E:URmn

T ZmlxR Z'mlml Zmlmn
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3 > Courtesy: Cyrill Stachni



EKF SLAM Correlations

T
AN

= true path Red path = estimated path Black path = odometry

= Approximate the SLAM posterior with a high-
dimensional Gaussian smith & Cheesman, 19867 ..

= Single hypothesis data association
Courtesy: M. Montemer



Data Association in SLAM
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uncertainty

= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= EKF SLAM is brittle in this regard
= Pose error correlates data associations

58



Loop-Closing

= Loop-closing means recognizing an already
mapped area

= Data association under
= high ambiguity
= possible environment symmetries

= Uncertainties collapse after a loop-closure
(whether the closure was correct or not)

Courtesy: Cyrill Stachni



Online SLAM Example

(a) (b)

(c) (d)

60



Before the Loop-Closure
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Courtesy: K. Arras



After the Loop-Closure
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Example: Victoria Park Dataset

Courtesy: E. Nebc



Victoria Park: Data Acquisition

Courtesy: E. Nebc



Victoria Park: EKF Estimate
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Courtesy: E.8ebc



Victoria Park: EKF Estimate
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Courtesy: E. Nebc



Victoria Park: Landmarks

Courtesy: E. Nebc



Victoria Park: Landmark Covariance

deviation (meters)
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Courtesy: E.98ebc



Andrew Davison: MonoSLAM




EKF SLAM Summary

= Quadratic in the number of landmarks:
O(n?4)

= Can if nonlinearities are large!

= Have been applied successfully in large-
scale environments.

= Approximations reduce the computational
complexity.

70



EKF Algorithm

1. Extended_Kalman_filter, .2, .4,z ):

2. Prediction:
3. U, = g(ut,,uH) ;lt = Anut—l +Bu,
4. %, =G3_G'+R > =A% A" +R,
5. Correction:
6. Kt =§thT(HtithT +Qt)_1 — Kt =gtCtT(CtitCtT +_Qt)_1
7. H, = /_lt +Kt(Zt __h(ﬁt)) H = H, +Kt(Zt__Ctlut)
8. 2, =(I-KH,)Z 2, = -K,C)%
9. Return gy .» T

Hes 2y Ht — ah(:ut) Gt — ag(uﬁﬂt—l)

ox axt—l

t



Literature

EKF SLAM
= “"Probabilistic Robotics”, Chapter 10

= Smith, Self, & Cheeseman: “Estimating
Uncertain Spatial Relationships in Robotics”

= Dissanayake et al.: “A Solution to the
Simultaneous Localization and Map Building
(SLAM) Problem”

= Durrant-Whyte & Bailey: "SLAM Part 1” and
“SLAM Part 2" tutorials

Courtesy: Cyrill Stachni



Graph-SLAM

Full SLAM technique
Generates probabilistic links
Computes map only occasionally

Based on Information Filter form



Information Form

® Represent posterior in canonical form

Q=YY" Information matrix

& ="'y Information vector

® One-to-one transform between
canonical and moment representation

>=Q"
u=Q"¢



Information vs. Moment Form

n -.- - | | ) I.I.I.l-l o . ..I l-:.
L N ...I. ... I.I.I.I:
o -I -l- L
é o " e e
H I- I.I.:. "
i-h ..l.l.lll.-.-.-.l -.... l.. .- : l...l.:-. i ..-.- - :...:.l. .

Correlation matrix Information matrix



Graph-SLAM Idea

X Q

0 %0 o X, “g(“z’x;)}? R™ [x, = g(uty, x,)] [z, —h(m,, Y«)E Q7'z , —h(m,, x,)|
/ Xy = g (g xR\ g (g, x,)]

[x; - & (“; s x@})gr -RWI Ika - g(”] s xe)} .
& Lz, —h(m,, x)]" Q7' z,—h(m,, x,)]
z, —h(m, x)]" Q7' [z, —h(m,, x,)]

[z, —h(m, x )V O [z, —h(m,, x)] ="

[:X;; - g(umxg)]r R_l [X;; - g(il4ex;3 )}

Sum of all constraints:

S Graphsiam = xé Q, x, + Z[JC, —8(u,x,_, )" R [x, —g(u,.x,_)|+ Z[ —h(m,_ , x, N Q7' Z, _h(m( ,X,)]




Graph-SLAM Idea (1)

E




Graph-SLAM Idea (2)




Graph-SLAM Idea (3)




Graph-SLAM Inference (1)

X, X, X3 X, M,




Graph-SLAM Inference (2)

X

X, Xy X3 X,




Graph-SLAM Inference (3)

X, Xy X3 X,

X




Mine Mapping




Mine Mapping: Data Associations




Efficient Map Recovery

= Information matrix inversion can be avoided
if only best map estimate is required

= Minimize constraint function Jg.;pns.am USING

standard optimization techniques (gradient
descent, Levenberg Marquardt, conjugate gradient)



3D Outdoor Mappin

oty .
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108 features, 10~ poses, only few secs using cg.
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Map After Optimization




Robot Poses and Scans (.. and mitios

1997]

® Successive robot poses
connected by
odometry

1
s mmsm s W wse .‘-:d‘::’ﬂl

® |aser scan matching
yields constraints
between poses

® |Loop closure based on
map patches created
from multiple scans




Loop Closure

® Use scan patches to detect loop closure
e Add new position constraints
e Deform the network based on covariances of matches

Before loop closure After loop closure



Mapping the Allen Center




Graph-SLAM Summary

Adresses full SLAM problem

Constructs link graph between poses and
poses/landmarks

Graph is sparse: number of edges linear in number
of nodes

Inference performed by building information
matrix and vector (linearized form)

Map recovered by reduction to robot poses,
followed by conversion to moment representation,
followed by estimation of landmark positions

ML estimate by minimization of Jgapnsiam
Data association by iterative greedy search



