CSE-P590a Robotics

Mapping

Types of SLAM-Problems

Grid maps or scans

Sparse landmarks

RGB / Depth Maps

Problems in Mapping

Sensor interpretation

- How do we extract relevant information from raw sensor data?
- How do we represent and integrate this information over time?
- Robot locations have to be known
 How can we estimate them during mapping?

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions
 - Occupancy of individual cells is independent

$$Bel(m_t) = P(m_t | u_1, z_2 ..., u_{t-1}, z_t)$$
$$= \prod_{x, y} Bel(m_t^{[xy]})$$

Robot positions are known!

Inverse Sensor Model for Occupancy Grid Maps

Combination of linear function and Gaussian:

Incremental Updating of Occupancy Grids (Example)

Alternative for Lidar: Counting

• For every cell count

- hits(x,y): number of cases where a beam ended at <x,y>
- misses(x,y): number of cases where a beam passed through <x,y>

$$Bel(m^{[xy]}) = \frac{hits(x, y)}{hits(x, y) + misses(x, y)}$$

• Assumption: P(occupied(x,y)) = P(reflects(x,y))

Occupancy Grids: From scans to maps

Tech Museum, San Jose

- and

occupancy grid map

CAD map

OctoMap

A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems

K.M. Wurm, A. Hornung,

M. Bennewitz, C. Stachniss, W. Burgard

University of Freiburg, Germany

http://octomap.sf.net

Robots in 3D Environments

Mobile manipulation

Humanoid robots

Outdoor navigation

Flying robots

3D Map Requirements

- Full 3D Model
 - Volumetric representation
 - Free-space
 - Unknown areas (e.g. for exploration)
- Can be updated
 - Probabilistic model (sensor noise, changes in the environment)
 - Update of previously recorded maps
- Flexible
 - Map is dynamically expanded
 - Multi-resolution map queries
- Compact
 - Memory efficient
 - Map files for storage and exchange

Pointclouds

- Pro:
 - No discretization of data
 - Mapped area not limited

Contra:

- Unbounded memory usage
- No direct representation of free or unknown space

3D voxel grids

Pro:

- Probabilistic update
- Constant access time

Contra:

- Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory

Octrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes allocated as needed
- Multi-resolution

Octrees

Pro:

- Full 3D model
- Probabilistic
- Flexible, multi-resolution
- Memory efficient

Contra:

 Implementation can be tricky (memory, update, map files, ...)

Open source implementation as C++ library available at http://octomap.sf.net

Probabilistic Map Update

- Clamping policy ensures updatability [Yguel '07] $L(n) \in [l_{\min}, l_{\max}]$
- Update of inner nodes enables multiresolution queries

$$L(n) = \max_{i=1..8} L(n_i)$$

Examples

Cluttered office environment

Map resolution: 2 cm

Examples: Office Building

Freiburg, building 079

Examples: Large Outdoor Areas

Freiburg computer science campus

(292 x 167 x 28 m³, 20 cm resolution)

Examples: Tabletop

Memory Usage

Map dataset	Mapped	Resolution	Memory consumption [MB]			File size [MB]	
	area [m ³]	[m]	Full grid	No compr.	Lossless compr.	All data	Binary
FR-079 corridor	$43.8 \times 18.2 \times 3.3$	0.05	80.54	73.64	41.70	15.80	0.67
		0.1	10.42	10.90	7.25	2.71	0.14
Freiburg outdoor	292 imes 167 imes 28	0.20	654.42	188.09	130.39	49.75	2.00
		0.80	10.96	4.56	4.13	1.53	0.08
New College	250 imes 161 imes 33	0.20	637.48	91.43	50.70	18.71	0.99
(Epoch C)		0.80	10.21	2.35	1.81	0.64	0.05

CSE-P590a Robotics

SLAM: Simultaneous Localization and Mapping

Many slides courtesy of Ryan Eustice, Cyrill Stachniss, John Leonard

The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

SLAM Applications

Underground

Courtesy J. Leona

With only dead reckoning, vehicle pose uncertainty grows without bound

With only dead reckoning, vehicle pose uncertainty grows without bound

With only dead reckoning, vehicle pose uncertainty grows without bound

Mapping with Raw Odometry

Repeat, with Measurements of Landmarks

Courtesy J. Leona

Courtesy J. Leona
Illustration of SLAM with Landmarks

Illustration of SLAM with Landmarks

SLAM Using Landmarks

Test Environment (Point Landmarks)

Courtesy J. Leona

View from Vehicle

SLAM Using Landmarks

- 1. Move
- 2. Sense
- 3. Associate measurements with known features
- 4. Update state estimates for robot and previously mapped features
- 5. Find new features from unassociated measurements
- 6. Initialize new features
- 7. Repeat

MIT Indoor Track

Comparison with Ground Truth

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-and-egg problem

Definition of the SLAM Problem

Given

• The robot's controls $u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$

Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

- Map of the environment m
- Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Three Main Paradigms

Graphbased

Particle filter

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

EKF SLAM: State Representation

- Map with n landmarks: (3+2n)-dimensional Gaussian
- Belief is represented by

EKF SLAM: State Representation

More compactly

EKF SLAM: State Representation

Even more compactly (note:

EKF SLAM: Filter Cycle

- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction

EKF SLAM: Measurement Prediction

EKF SLAM: Obtained Measurement

EKF SLAM: Data Association and Difference Between h(x) and z

EKF SLAM: Update Step

EKF SLAM Correlations

Blue path = true path Red path = estimated path Black path = odometry

- Approximate the SLAM posterior with a highdimensional Gaussian [Smith & Cheesman, 1986] ...
- Single hypothesis data association

Courtesy: M. Montemer

Data Association in SLAM

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
 - EKF SLAM is brittle in this regard
- Pose error correlates data associations

Loop-Closing

- Loop-closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop-closure (whether the closure was correct or not)

Online SLAM Example

Before the Loop-Closure

Courtesy: K. Arras

After the Loop-Closure

Courtesy: K. Arras

Example: Victoria Park Dataset

Courtesy: E. Nebc

Victoria Park: Data Acquisition

Courtesy: E. Nebc

Victoria Park: EKF Estimate

Courtesy: E.49ebc

Victoria Park: EKF Estimate

Courtesy: E. Nebc

Victoria Park: Landmarks

Courtesy: E. Nebc

Victoria Park: Landmark Covariance

Courtesy: E.68ebc

Andrew Davison: MonoSLAM

EKF SLAM Summary

- Quadratic in the number of landmarks:
 O(n²)
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in largescale environments.
- Approximations reduce the computational complexity.

EKF Algorithm

- **1. Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:

3.
$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$
 \leftarrow $\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$
4. $\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ \leftarrow $\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$

5. Correction:

6.
$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} (H_{t} \overline{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1} \qquad \longleftarrow \qquad K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
7.
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - h(\overline{\mu}_{t})) \qquad \longleftarrow \qquad \mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
8.
$$\Sigma_{t} = (I - K_{t} H_{t}) \overline{\Sigma}_{t} \qquad \longleftarrow \qquad \Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

9. Return
$$\mu_t, \Sigma_t$$

 $H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t}$ $G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}$

Literature

EKF SLAM

- "Probabilistic Robotics", Chapter 10
- Smith, Self, & Cheeseman: "Estimating Uncertain Spatial Relationships in Robotics"
- Dissanayake et al.: "A Solution to the Simultaneous Localization and Map Building (SLAM) Problem"
- Durrant-Whyte & Bailey: "SLAM Part 1" and "SLAM Part 2" tutorials

- Full SLAM technique
- Generates probabilistic links
- Computes map only occasionally
- Based on Information Filter form

Information Form

- Represent posterior in canonical form
 - $\Omega = \Sigma^{-1}$ Information matrix

 $\xi = \Sigma^{-1} \mu$ Information vector

 One-to-one transform between canonical and moment representation

$$\Sigma = \Omega^{-1}$$
$$\mu = \Omega^{-1} \xi$$

Information vs. Moment Form

Correlation matrix

Information matrix

Graph-SLAM Idea

Sum of all constraints:

$$J_{\text{GraphSLAM}} = x_0^T \Omega_0 x_0 + \sum_t [x_t - g(u_t, x_{t-1})]^T R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(m_{c_t}, x_t)]^T Q^{-1} [z_t - h(m_{c_t}, x_t)]$$

Graph-SLAM Idea (1)

Graph-SLAM Idea (2)

Graph-SLAM Idea (3)

Graph-SLAM Inference (1)

Graph-SLAM Inference (2)

Graph-SLAM Inference (3)

Mine Mapping

Mine Mapping: Data Associations

Efficient Map Recovery

- Information matrix inversion can be avoided if only best map estimate is required
- Minimize constraint function J_{GraphSLAM} using standard optimization techniques (gradient descent, Levenberg Marquardt, conjugate gradient)

3D Outdoor Mapping

10⁸ features, 10⁵ poses, only few secs using cg.

Map Before Optimization

Map After Optimization

Robot Poses and Scans [Lu and Milios 1997]

- Successive robot poses connected by odometry
 - Laser scan matching yields constraints between poses
- Loop closure based on map patches created from multiple scans

Loop Closure

- Use scan patches to detect loop closure
- Add new position constraints
- Deform the network based on covariances of matches

Before loop closure

After loop closure

Mapping the Allen Center

Graph-SLAM Summary

- Adresses full SLAM problem
- Constructs link graph between poses and poses/landmarks
- Graph is sparse: number of edges linear in number of nodes
- Inference performed by building information matrix and vector (linearized form)
- Map recovered by reduction to robot poses, followed by conversion to moment representation, followed by estimation of landmark positions
- ML estimate by minimization of J_{GraphSLAM}
- Data association by iterative greedy search