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Mapping



Types of SLAM-Problems
Grid maps or scans

Sparse landmarks     RGB / Depth Maps



Problems in Mapping

•Sensor interpretation
• How do we extract relevant information

from raw sensor data?
• How do we represent and integrate this 

information over time?

•Robot locations have to be known
• How can we estimate them during 

mapping?



Occupancy Grid Maps

• Introduced by Moravec and Elfes in 1985
• Represent environment by a grid.
• Estimate the probability that a location is 

occupied by an obstacle.
• Key assumptions

• Occupancy of individual cells is independent

• Robot positions are known!
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Occupancy Grid Maps
• Introduced by Moravec and Elfes in 1985
• Represent environment by a grid.
• Estimate the probability that a location is 

occupied by an obstacle.
• Key assumptions

• Occupancy of individual cells is independent

• Robot positions are known!
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Inverse Sensor Model 
for Occupancy Grid Maps
Combination of linear function and Gaussian:



Incremental Updating 
of Occupancy Grids (Example) 



Alternative for Lidar: Counting

• For every cell count
• hits(x,y): number of cases where a beam ended 

at <x,y>
• misses(x,y): number of cases where a beam 

passed through <x,y>

• Assumption: P(occupied(x,y)) = P(reflects(x,y))
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Occupancy Grids: From scans to maps



Tech Museum, San Jose

CAD map occupancy grid map



K.M. Wurm, A. Hornung,
M. Bennewitz, C. Stachniss, W. Burgard

University of Freiburg, Germany

OctoMap
A Probabilistic, Flexible, and Compact 3D 
Map Representation for Robotic Systems

http://octomap.sf.net



Robots in 3D Environments

Flying robotsHumanoid robots

Outdoor navigationMobile manipulation



3D Map Requirements
§ Full 3D Model

§ Volumetric representation
§ Free-space
§ Unknown areas (e.g. for exploration)

§ Can be updated
§ Probabilistic model 

(sensor noise, changes in the environment)
§ Update of previously recorded maps

§ Flexible
§ Map is dynamically expanded 
§ Multi-resolution map queries

§ Compact
§ Memory efficient
§ Map files for storage and exchange



Map Representations

Pointclouds

§ Pro: 
§ No discretization of data
§ Mapped area not limited

§ Contra:
§ Unbounded memory usage
§ No direct representation of free or 

unknown space



Map Representations

3D voxel grids

§ Pro:
§ Probabilistic update
§ Constant access time

§ Contra:
§ Memory requirement

§ Extent of map has to be known
§ Complete map is allocated in memory



Map Representations

Octrees

§ Tree-based data structure
§ Recursive subdivision of 

space into octants
§ Volumes allocated 

as needed

§ Multi-resolution



Map Representations

Octrees
§ Pro:

§ Full 3D model
§ Probabilistic
§ Flexible, multi-resolution
§ Memory efficient

§ Contra:
§ Implementation can be tricky 

(memory, update, map files, …)

§ Open source implementation as C++ library available at http://octomap.sf.net



Probabilistic Map Update

§ Clamping policy ensures updatability [Yguel ‘07]

§ Update of inner nodes enables multi-
resolution queries

0.08 m 0.64 m 1.28 m



Examples
§ Cluttered office environment

Map resolution: 2 cm



Examples: Office Building
§ Freiburg, building 079



Examples: Large Outdoor Areas
§ Freiburg computer science campus 

(292 x 167 x 28 m³, 20 cm resolution)



Examples: Tabletop



Memory Usage
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SLAM: Simultaneous 
Localization and Mapping

Many slides courtesy of Ryan Eustice, 
Cyrill Stachniss, John Leonard
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Given:
§ The robot’s controls
§ Observations of nearby features

Estimate:
§ Map of features
§ Path of the robot

The SLAM Problem

A robot is exploring an 
unknown, static environment.
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SLAM Applications

Indoors

Space

Undersea

Underground



Illustration of SLAM 
without Landmarks

Courtesy J. Leonard

With only dead reckoning, 
vehicle pose uncertainty 
grows without bound
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Illustration of SLAM 
without Landmarks

With only dead reckoning, 
vehicle pose uncertainty 
grows without bound
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Mapping with Raw Odometry



Repeat, with Measurements of 
Landmarks

§ First position: two features 
observed

Courtesy J. Leonard



Illustration of SLAM with 
Landmarks

§ Second position: two new 
features observed

Courtesy J. Leonard



Illustration of SLAM with 
Landmarks

§ Re-observation of first two 
features results in improved 
estimates for both vehicle 
and feature Courtesy J. Leonard



Illustration of SLAM with 
Landmarks

§ Third position: two 
additional features added 
to map

Courtesy J. Leonard



Illustration of SLAM with 
Landmarks

§ Re-observation of first four 
features results in improved 
location estimates for vehicle 
and all features Courtesy J. Leonard



Illustration of SLAM with 
Landmarks

§ Process continues as the 
vehicle moves through the 
environment

Courtesy J. Leonard



SLAM Using Landmarks

MIT Indoor Track

Courtesy J. Leonard



Test Environment (Point Landmarks)

Courtesy J. Leonard



View from Vehicle

Courtesy J. Leonard



1. Move
2. Sense
3. Associate measurements with known features
4. Update state estimates for robot and previously mapped 

features
5. Find new features from unassociated measurements
6. Initialize new features
7. Repeat

SLAM Using Landmarks

MIT Indoor Track



Comparison with Ground 
Truth

odometry

Courtesy J. Leonard
SLAM result



Simultaneous Localization and 
Mapping (SLAM)
§ Building a map and locating the robot in the 

map at the same time
§ Chicken-and-egg problem

map

localize
Courtesy: Cyrill Stachniss



Definition of the SLAM Problem
Given

§ The robot’s controls

§ Observations

Wanted
§ Map of the environment

§ Path of the robot

Courtesy: Cyrill Stachniss



Three Main Paradigms

Kalman 
filter

Particle 
filter

Graph-
based

Courtesy: Cyrill Stachniss



EKF SLAM
§ Application of the EKF to SLAM
§ Estimate robot’s pose and locations of 

landmarks in the environment
§ Assumption: known correspondences
§ State space (for the 2D plane) is

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation
§ Map with n landmarks: (3+2n)-dimensional 

Gaussian
§ Belief is represented by 

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation
§ More compactly

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation
§ Even more compactly (note:                 ) 

Courtesy: Cyrill Stachniss



EKF SLAM: Filter Cycle

1. State prediction
2. Measurement prediction
3. Measurement
4. Data association
5. Update

Courtesy: Cyrill Stachniss



EKF SLAM: State Prediction

Courtesy: Cyrill Stachniss



EKF SLAM: Measurement 
Prediction

Courtesy: Cyrill Stachniss



EKF SLAM: Obtained 
Measurement

Courtesy: Cyrill Stachniss



EKF SLAM: Data Association and 
Difference Between h(x) and z

Courtesy: Cyrill Stachniss



EKF SLAM: Update Step

Courtesy: Cyrill Stachniss
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EKF SLAM Correlations

§ Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] …

§ Single hypothesis data association

Blue path = true path   Red path = estimated path   Black path = odometry

Courtesy: M. Montemerlo
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Data Association in SLAM

§ In the real world, the mapping between 
observations and landmarks is unknown

§ Picking wrong data associations can have 
catastrophic consequences
§ EKF SLAM is brittle in this regard

§ Pose error correlates data associations

Robot pose
uncertainty



Loop-Closing
§ Loop-closing means recognizing an already 

mapped area
§ Data association under

§ high ambiguity
§ possible environment symmetries

§ Uncertainties collapse after a loop-closure 
(whether the closure was correct or not)

Courtesy: Cyrill Stachniss



Online SLAM Example
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Before the Loop-Closure

Courtesy: K. Arras



After the Loop-Closure

Courtesy: K. Arras



Example: Victoria Park Dataset

Courtesy: E. Nebot



Victoria Park: Data Acquisition

Courtesy: E. Nebot
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Victoria Park: EKF Estimate

Courtesy: E. Nebot



Victoria Park: EKF Estimate

Courtesy: E. Nebot



Victoria Park: Landmarks

Courtesy: E. Nebot
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Victoria Park: Landmark Covariance

Courtesy: E. Nebot



Andrew Davison: MonoSLAM
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EKF SLAM Summary

§ Quadratic in the number of landmarks: 
O(n2)

§ Convergence results for the linear case. 
§ Can diverge if nonlinearities are large!
§ Have been applied successfully in large-

scale environments.
§ Approximations reduce the computational 

complexity. 
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Literature
EKF SLAM
§ “Probabilistic Robotics”, Chapter 10
§ Smith, Self, & Cheeseman: “Estimating 

Uncertain Spatial Relationships in Robotics”
§ Dissanayake et al.: “A Solution to the 

Simultaneous Localization and Map Building 
(SLAM) Problem”

§ Durrant-Whyte & Bailey: “SLAM Part 1” and 
“SLAM Part 2” tutorials

Courtesy: Cyrill Stachniss



Graph-SLAM

§ Full SLAM technique

§ Generates probabilistic links

§ Computes map only occasionally

§ Based on Information Filter form
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Information vs. Moment Form

Correlation matrix             Information matrix



Graph-SLAM Idea



Graph-SLAM Idea (1)



Graph-SLAM Idea (2)



Graph-SLAM Idea (3)



Graph-SLAM Inference (1)



Graph-SLAM Inference (2)



Graph-SLAM Inference (3)



Mine Mapping



Mine Mapping: Data Associations



Efficient Map Recovery

§ Information matrix inversion can be avoided 
if only best map estimate is required

§ Minimize constraint function JGraphSLAM using 
standard optimization techniques (gradient 
descent, Levenberg Marquardt, conjugate gradient)



3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.



Map Before Optimization



Map After Optimization



Robot Poses and Scans [Lu and Milios 
1997]

• Successive robot poses
connected by

odometry

• Laser scan matching
yields constraints
between poses

• Loop closure based on 
map patches created
from multiple scans

ijijij QDD +=



Loop Closure

Before loop closure After loop closure

• Use scan patches to detect loop closure
• Add new position constraints
• Deform the network based on covariances of matches



Mapping the Allen Center



Graph-SLAM Summary

§ Adresses full SLAM problem
§ Constructs link graph between poses and 

poses/landmarks
§ Graph is sparse: number of edges linear in number 

of nodes
§ Inference performed by building information 

matrix and vector (linearized form)
§ Map recovered by reduction to robot poses, 

followed by conversion to moment representation, 
followed by estimation of landmark positions 

§ ML estimate by minimization of JGraphSLAM
§ Data association by iterative greedy search


