Learned about: LSH/Similarity search & recommender systems

Search: “jaguar”

Uncertainty about the user’s information need
- Don’t put all eggs in one basket!

Relevance isn’t everything – need diversity!
Many applications need diversity!

- **Recommendation:**
 NETFLIX

- **Summarization:**
 “Robert Downey Jr.”
 WIKIPEDIA

- **News Media:**
Goal: Timeline should express their relationships to other people through events (personal, collaboration, mentorship, etc.)

Why timelines?
- Easier: Wikipedia article is 18 pages long
- Context: Through relationships & event descriptions
- Exploration: Can “jump” to other people/entities
Problem Definition

- **Given:**
 - Relevant *relationships*
 - *Events* that each cover some relationships

- **Goal:** Given a large set of *events*, pick a small subset that explains most known *relationships* (“the timeline”)
Example Timeline

“RDJr starred in Chaplin in 1992 together with Anthony Hopkins.”

Good overview
Why diversity?

- User studies: People hate redundancy!

Iron Man
US Release

Iron Man
Award
Ceremony

Iron Man
EU Release

Iron Man
US Release

Chaplin
Academy
Award N.

Rented Lips
US Release

- Want to see more diverse set of relationships
Diversity as Coverage
Encode Diversity as Coverage

- **Idea:** Encode diversity as coverage problem
- **Example:** Selecting events for timeline
 - Try to cover all important relationships
What is being covered?

- **Q:** What is being covered?
- **A:** Relationships

 Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Downey Jr. starred in *Chaplin* together with Anthony Hopkins

- **Q:** Who is doing the covering?
- **A:** Timeline Events
Suppose we are given a set of events E

- Each event e covers a set $X_e \subseteq U$ of relationships

For a set of events $S \subseteq E$ we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to $\max_{|S| \leq k} F(S)$

- Note: $F(S)$ is a set function: $F(S) : 2^E \to \mathbb{N}$
Maximum Coverage Problem

- **Given universe of elements and sets**
 \[U = \{u_1, \ldots, u_n\} \]
 \[\{X_1, \ldots, X_m\} \subseteq U \]

- **Goal**: Find set of \(k \) events \(X_1 \ldots X_k \) covering most of \(U \)
 - More precisely: Find set of \(k \) events \(X_1 \ldots X_k \) whose size of the union is the largest
Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:

- Start with $S_0 = \{\}$
- For $i = 1 \ldots k$
 - Take event e that max $F(S_{i-1} \cup e)$
 - Let $S_i = S_{i-1} \cup \{e\}$

Example:

- Eval. $F(\{e_1\}), \ldots, F(\{e_m\})$, pick best (say e_1)
- Eval. $F(\{e_1\} \cup \{e_2\}), \ldots, F(\{e_1\} \cup \{e_m\})$, pick best (say e_2)
- Eval. $F(\{e_1, e_2\} \cup \{e_3\}), \ldots, F(\{e_1, e_2\} \cup \{e_m\})$, pick best
- And so on...

$$F(S) = \bigcup_{e \in S} X_e$$
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Goal: Maximize the size of the covered area with two sets

- Greedy first picks A and then C
- But the optimal way would be to pick B and C
Bad News & Good News

- **Bad news:** Maximum Coverage is NP-hard
 - Related to Set Cover Problem

- **Good news:** Good approximations exist
 - Problem has certain *structure* to it that even simple greedy algorithms perform reasonably well
 - Details in 2nd half of lecture

- **Now:** *Generalize* our objective for timeline generation
Issue 1: Not all relationships are created equal

- **Objective values all relationships equally**

\[F(S) = \bigg| \bigcup_{e \in S} X_e \bigg| = \sum_{r \in R} 1 \text{ where } R = \bigcup_{e \in S} X_e \]

- **Unrealistic**: Some relationships are more important than others
 - Use **different weights** ("weighted coverage function")

\[F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \]
Example weight function

- Use **global importance** weights
- How much interest is there?
- Could be measured as
 - \(w(X) = \# \text{ search queries} \) for person X
 - \(w(X) = \# \text{ Wikipedia article views} \) for X
 - \(w(X) = \# \text{ news article mentions} \) for X
Some relationships are **not (very) globally important but (not) highly relevant** to timeline

Need **relevant to timeline** instead of **globally relevant**

\[w(\text{Susan Downey} \mid \text{RDJr}) > w(\text{Justin Bieber} \mid \text{RDJr}) \]
Capturing relevance to timeline

- Can use co-occurrence statistics
 \[w(X \mid RDJr) = \frac{\#(X \text{ and } RDJr)}{\#(RDJr) \times \#(X)} \]
 - Similar: Pointwise mutual information (PMI)
 - How often do X and Y occur together compared to what you would expect if they were independent
 - Accounts for popular entities (e.g., Justin Bieber)
Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?

- **Example**: Robert and Susan Downey
 - **Event 1**: Wedding, August 27, 2005
 - **Event 2**: Minor charity event, Nov 11, 2006

- We need to be able to distinguish these!
Further improvement when we not only score relationships but also **score the event timestamp**

\[F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e) \]

where \(R = \bigcup_{e \in S} X_e \)

- Relationship (as before)
- Timestamps

Again, use co-occurrences for weights \(w_T \)
Co-occurrences on Web Scale

- “Robert Downey Jr” and “May 4, 2012” occurs 173 times on 71 different webpages
- US Release date of *The Avengers*
- Use MapReduce on 10B web pages (10k+ machines)
Complete Optimization Problem

- Generalized earlier coverage function to linear combination of weighted coverage functions

\[F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e) \]

- Goal: \(\max_{|S| \leq k} F(S) \)

- Still NP-hard (because generalization of NP-hard problem)
Next

- How can we **actually optimize** this function?
- What **structure** is there that will help us do this efficiently?

- Any questions so far?
For this optimization problem, Greedy produces a solution S s.t. $F(S) \geq (1-1/e) \cdot OPT$
($F(S) \geq 0.63 \cdot OPT$)

[Nemhauser, Fisher, Wolsey ’78]

Claim holds for functions $F(\cdot)$ which are:

- Submodular, Monotone, Normal, Non-negative

(discussed next)
Submodularity: Definition 1

Definition:
- Set function $F(\cdot)$ is called submodular if:
 For all $P, Q \subseteq U$:
 \[F(P) + F(Q) \geq F(P \cup Q) + F(P \cap Q) \]
Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute $P = A \cup \{d\}$ and $Q = B$ where $A \subset B$ and $d \notin B$

 From before: $F(P) + F(Q) \geq F(P \cup Q) + F(P \cap Q)$

 $F(A \cup \{d\}) + F(B) \geq F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)$

 $F(A \cup \{d\}) + F(B) \geq F(B \cup \{d\}) + F(A)$

 $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$

Common definition of Submodularity
Submodularity: Definition 2

- **Diminishing returns characterization**

\[
F(A \cup d) - F(A) \geq F(B \cup d) - F(B)
\]

Gain of adding \(d\) to a small set \(F(A \cup d) - F(A)\)

Gain of adding \(d\) to a large set \(F(B \cup d) - F(B)\)

- Large improvement
- Small improvement
Submodularity: Diminishing Returns

\[F(A \cup d) - F(A) \geq F(B \cup d) - F(B) \]

Gain of adding \(d \) to a small set

Gain of adding \(d \) to a large set

Adding \(d \) to \(B \) helps less than adding it to \(A \)!

\(\forall A \subseteq B \)
Submodularity: An important property

Let $F_1 \ldots F_M$ be submodular functions and $\lambda_1 \ldots \lambda_M \geq 0$ and let S denote some solution set, then the non-negative linear combination $F(S)$ (defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$
Submodularity: Approximation Guarantee

When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which $F(S) \geq (1-1/e) \cdot OPT$

i.e., $(F(S) \geq 0.63 \cdot OPT)$

[Nemhauser, Fisher, Wolsey ’78]

Claim holds for functions $F(\cdot)$ which are:

- Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$
- Normal: $F(\emptyset) = 0$
- Non-negative: For any A, $F(A) \geq 0$
- In addition to being submodular
Back to our Timeline Problem
Simple Coverage Model

- Suppose we are given a set of events E
 - Each event e covers a set X_e of relationships U
- For a set of events $S \subseteq E$ we define:

 $$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to $\max_{|S| \leq k} F(S)$
 - Cardinality Constraint
- Note: $F(S)$ is a set function: $F(S) : 2^E \rightarrow \mathbb{N}$
Simple Coverage: Submodular?

- Claim: $F(S) = \bigcup_{e \in S} X_e$ is submodular.

Gain of adding X_e to a smaller set

$$F(A \cup X_e) - F(A) \geq F(B \cup X_e) - F(B)$$

Gain of adding X_e to a larger set

$\forall A \subseteq B$
Simple Coverage: Other Properties

- **Claim:** \(F(S) = \left| \bigcup_{e \in S} X_e \right| \) is normal & monotone

- **Normality:** When \(S \) is empty, \(\bigcup_{e \in S} X_e \) is empty.

- **Monotonicity:** Adding a new event to \(S \) can never decrease the number of relationships covered by \(S \).

- **What about non-negativity?**

Monotone: if \(A \subseteq B \) then \(F(A) \leq F(B) \)

Normal: \(F(\{\}) = 0 \)

Non-negative: For any \(A \), \(F(A) \geq 0 \)
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weighted Coverage (Relationships)

\[
F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \quad \text{where} \quad R = \bigcup_{e \in S} X_e
\]

- **Claim:** \(F(S) \) is submodular.
 - Consider two sets \(A \) and \(B \) s.t. \(A \subseteq B \subseteq S \) and let us consider an event \(e \notin B \)
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 1:** \(e \) does not cover any new relationships w.r.t both \(A \) and \(B \)
 \[
 F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B)
 \]
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]

- **Claim**: \(F(S) \) is submodular.

- Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 2**: \(e \) covers some new relationships w.r.t \(A \) but not w.r.t \(B \)
 - \(F(A \cup \{e\}) - F(A) = \nu \) where \(\nu \geq 0 \)
 - \(F(B \cup \{e\}) - F(B) = 0 \)
 - Therefore, \(F(A \cup \{e\}) - F(A) \geq F(B \cup \{e\}) - F(B) \)
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]

- **Claim:** \(F(S) \) is submodular.
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - **Case 3:** \(e \) covers some new relationships w.r.t both \(A \) and \(B \)
 \[F(A \cup \{e\}) - F(A) = \nu \quad \text{where} \quad \nu \geq 0 \]
 \[F(B \cup \{e\}) - F(B) = \mu \quad \text{where} \quad \mu \geq 0 \]
 But, \(\nu \geq \mu \) because \(e \) will always cover fewer new relationships w.r.t \(B \) than w.r.t \(A \) because \(A \subset B \)
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \rightarrow \mathbb{R}^+ \]

where

\[R = \bigcup_{e \in S} X_e \]

- **Claim:** \(F(S) \) is monotone and normal.

- **Normality:** When \(S \) is empty, \(R = \bigcup_{e \in S} X_e \) is empty.

- **Monotonicity:** Adding a new event to \(S \) can never decrease the number of relationships covered by \(S \).
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Weighted Coverage (Timestamps)

\[F(S) = \sum_{e \in S} w_T(t_e) \]

- **Claim:** \(F(S) \) is submodular, monotone and normal

- Analogous arguments to that of weighted coverage (relationships) are applicable
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Complete Optimization Problem

- Generalized earlier coverage function to non-negative linear combination of weighted coverage functions

\[F(S) = F_1(S) + F_2(S) \]

- Goal: \(\max_{|S| \leq k} F(S) \)

- Claim: \(F(A) \) is submodular, monotone and normal

\[R = \bigcup_{e \in S} X_e \]
Complete Optimization Problem

- **Submodularity:** $F(S)$ is a non-negative linear combination of two submodular functions. Therefore, it is submodular too.

- **Normality:**
 \[
 F_1(\emptyset) = 0 = F_2(\emptyset) \\
 F_1(\emptyset) + F_2(\emptyset) = 0
 \]

- **Monotonicity:** Let $A \subseteq B \subseteq S$,
 \[
 F_1(A) \leq F_1(B) \text{ and } F_2(A) \leq F_2(B) \\
 F_1(A) + F_2(A) \leq F_1(B) + F_2(B)
 \]
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Normality</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Lazy Optimization of Submodular Functions
Greedy Solution

Greedy
Marginal gain:
\[F(S \cup x) - F(S) \]

- **Greedy Algorithm is Slow!**
- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime \(O(|U| \times K) \) for selecting \(K \) elements out of the set \(U \)

Add element with highest marginal gain
Speeding up Greedy

- **In round** i:
 - So far we have $S_{i-1} = \{e_1 \ldots e_{i-1}\}$
 - Now we pick an element $e \not\in S_{i-1}$ which maximizes the marginal benefit $\Delta_i = F(S_{i-1} \cup \{e\}) - F(S_{i-1})$

- **Key observation**:
 - *Marginal gain of any element e can never increase!*
 - For every element e: $\Delta_i(e) \geq \Delta_j(e)$ for all iterations $i < j$
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B
\]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B$$

[Leskovec et al., KDD '07]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B$$
Lazy greedy offers significant speed-up over traditional greedy implementations in practice.

[Leskovec et al., KDD ‘07]
References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- UW Research by Jeff Bilmes (ECE)