Submodular Optimization

Tim Althoff
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

Motivation

Learned about: LSH/Similarity search & recommender systems

Search: "jaguar"

- Uncertainty about the user's information need
 - Don't put all eggs in one basket!
- Relevance isn't everything need diversity!

Many applications need diversity!

Recommendation: NETFLIX

Summarization:

 "Robert Downey Jr."
 WIKIPEDIA

News Media:

Automatic Timeline Generation

Person

Timeline

 Goal: Timeline should express their relationships to other people through events (personal, collaboration, mentorship, etc.)

Why timelines?

- Easier: Wikipedia article is 18 pages long
- Context: Through relationships & event descriptions
- Exploration: Can "jump" to other people/entities

Problem Definition

- Given:
 - Relevant relationships
 - Events that each cover some relationships

 Goal: Given a large set of events, pick a small subset that explains most known relationships ("the timeline")

Example Timeline

Why diversity?

User studies: People hate redundancy!

Iron Man US Release **Iron Man** Award

Ceremony

Iron Man EU Release VS

Iron Man US Release **Chaplin**Academy
Award N.

Rented LipsUS Release

Want to see more diverse set of relationships

Diversity as Coverage

Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
- Example: Selecting events for timeline
 - Try to cover all important relationships

What is being covered?

- Q: What is being covered?
- A: Relationships

Downey Jr. starred in *Chaplin* together with Anthony Hopkins

- Q: Who is doing the covering?
- A: Timeline Events

Simple Coverage Model

- Suppose we are given a set of events E
 - ${\color{red} \bullet}$ Each event ${\color{red} \bullet}$ covers a set $X_e \subseteq U$ of relationships

• For a set of events $S \subset E$ we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to $\max_{|S| \le k} F(S)$ Cardinality Constraint
- Note: F(S) is a set function: $F(S): 2^E \to \mathbb{N}$

Maximum Coverage Problem

• Given universe of elements $U=\{u_1,\ldots,u_n\}$ and sets $\{X_1,\ldots,X_m\}\subseteq U$

U: all relationships X_i: relationships covered by event i

- Goal: Find set of k events X₁...X_k covering most of U
 - More precisely: Find set of k events $X_1...X_k$ whose size of the union is the largest

Simple Heuristic: Greedy Algorithm:

- Start with $S_0 = \{\}$
- For i = 1...k
 - Take event **e** that max $F(S_{i-1} \cup e)$
 - Let $S_i = S_{i-1} \cup \{e\}$

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

Example:

- Eval. F({e₁}), ..., F({e_m}), pick best (say e₁)
- Eval. F({e₁} u {e₂}), ..., F({e₁} u {e_m}), pick best (say e₂)
- Eval. F({e₁, e₂} u {e₃}), ..., F({e₁, e₂} u {e_m}), pick best
- And so on...

When Greedy Heuristic Fails?

- Goal: Maximize the size of the covered area with two sets
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Bad News & Good News

- Bad news: Maximum Coverage is NP-hard
 - Related to Set Cover Problem
- Good news: Good approximations exist
 - Problem has certain structure to it that even simple greedy algorithms perform reasonably well
 - Details in 2nd half of lecture

Now: Generalize our objective for timeline generation

Issue 1: Not all relationships are created equal

Objective values all relationships equally

$$F(S) = \left| \bigcup_{e \in S} X_e \right| = \sum_{r \in R} 1 \text{ where } R = \bigcup_{e \in S} X_e$$

- Unrealistic: Some relationships are more important than others
 - use different weights ("weighted coverage function")

$$F(S) = \sum_{r \in R} w(r) \qquad w: R \to \mathbb{R}^+$$

Example weight function

- Use global importance weights
- How much interest is there?
- Could be measured as
 - w(X) = # search queries for person X
 - w(X) = # Wikipedia article views for X
 - w(X) = # news article mentions for X

Captain America

Anthony Hopkins

Gwyneth Paltrow

Susan Downey

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Better weight function

Captain America

Justin Bieber

Susan Downey

Tim Althoff

Applying global importance weights

Captain America

<u>Justin Bieber</u>

Susan Downey

- Some relationships are not (very) globally important but (not) highly relevant to timeline
- Need relevant to timeline instead of globally relevant

w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

Capturing relevance to timeline

- Can use co-occurrence statistics w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))
 - Similar: Pointwise mutual information (PMI)
 - How often do X and Y occur together compared to what you would expect if they were independent
 - Accounts for popular entities (e.g., Justin Bieber)

Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?
- Example: Robert and Susan Downey
 - Event 1: Wedding, August 27, 2005
 - Event 2: Minor charity event, Nov 11, 2006
- We need to be able to distinguish these!

Scoring of event timestamps

 Further improvement when we not only score relationships but also score the event timestamp

$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e) \quad \text{where} \quad R = \bigcup_{e \in S} X_e$$

Relationship (as before)

Timestamps

Again, use co-occurrences for weights w_T

Co-occurrences on Web Scale

- "Robert Downey Jr" and "May 4, 2012" occurs 173 times on 71 different webpages
- US Release date of *The Avengers*
- Use MapReduce on 10B web pages (10k+ machines)

Complete Optimization Problem

 Generalized earlier coverage function to linear combination of weighted coverage functions

$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)$$
 where $R = \bigcup_{e \in S} X_e$

- Goal: $\max_{|S| \le k} F(S)$
- Still NP-hard (because generalization of NP-hard problem)

Next

- How can we actually optimize this function?
- What structure is there that will help us do this efficiently?

Any questions so far?

Approximate Solution

For this optimization problem, <u>Greedy</u> produces a solution S s.t. $F(S) \ge (1-1/e)*OPT$ $(F(S) \ge 0.63*OPT)$ [Nemhauser, Fisher, Wolsey '78]

- Claim holds for functions F(·) which are:
 - Submodular, Monotone, Normal, Non-negative (discussed next)

Submodularity: Definition 1

Definition:

Set function F(·) is called submodular if: For all P,Q⊆U:

$$F(P) + F(Q) \ge F(P \cup Q) + F(P \cap Q)$$

Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute $P = A \cup \{d\}$ and Q = B where $A \subseteq B$ and $d \notin B$ in the definition above

From before: $F(P) + F(Q) \ge F(P \cup Q) + F(P \cap Q)$

$$F(A \cup \{d\}) + F(B) \ge F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)$$

$$F(A \cup \{d\}) + F(B) \geq F(B \cup \{d\}) + F(A)$$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$

Common definition of Submodularity

Submodularity: Definition 2

Diminishing returns characterization

$$F(A \cup d) - F(A) \ge F(B \cup d) - F(B)$$
Gain of adding d to a small set
Gain of adding d to a large set

Submodularity: Diminishing Returns

Gain of adding **d** to a small set

Gain of adding **d** to a large set

Submodularity: An important property

Let $F_1 ext{ ... } F_M$ be submodular functions and $\lambda_1 ext{ ... } \lambda_M \geq 0$ and let S denote some solution set, then the non-negative linear combination F(S) (defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$

Submodularity: Approximation Guarantee

When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which $F(S) \ge (1-1/e)*OPT$ i.e., $(F(S) \ge 0.63*OPT)$

[Nemhauser, Fisher, Wolsey '78]

- Claim holds for functions F(·) which are:
 - Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$
 - Normal: F({})=0
 - Non-negative: For any A, $F(A) \ge 0$
 - In addition to being submodular

Back to our Timeline Problem

Simple Coverage Model

- Suppose we are given a set of events E
 - ${\color{red} \bullet}$ Each event ${\color{red} \mathbf{e}}$ covers a set X_e of relationships ${\bf U}$

• For a set of events $S \subset E$ we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to $\max_{|S| \le k} F(S)$ Cardinality Constraint
- Note: F(S) is a set function: $F(S): 2^E \to \mathbb{N}$

Simple Coverage: Submodular?

• Claim: $F(S) = \left| \bigcup_{e \in S} X_e \right|$ is submodular.

Gain of adding X_e to a smaller set

Gain of adding X_e to a larger set

$$F(A \cup X_e) - F(A) \geq F(B \cup X_e) - F(B)$$

$$\forall A \subset B$$

Simple Coverage: Other Properties

• Claim:
$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$
 is normal & monotone

- Normality: When S is empty, $\bigcup_{e \in S} X_e$ is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.
- What about non-negativity?

Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$

Normal: F({})=0

Non-negative: For any A, $F(A) \ge 0$

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	√			
Monotonicity	√			
Normality	√			

$$F(S) = \sum_{r \in R} w(r) \qquad w: R o \mathbb{R}^+ \qquad \stackrel{ ext{where}}{R = igcup_{e \in S} X_e}$$

- Claim: F(S) is submodular.
 - Consider two sets A and B s.t. A ⊆ B ⊆ S and let us consider an event e ∉ B
 - Three possibilities when we add e to A or B:
 - Case 1: e does not cover any new relationships w.r.t both A and B

$$F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B)$$

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

- Claim: F(S) is submodular.
 - Three possibilities when we add e to A or B:
 - Case 2: e covers some new relationships w.r.t A but not w.r.t B

$$F(A \cup \{e\}) - F(A) = v \text{ where } v \ge 0$$

 $F(B \cup \{e\}) - F(B) = 0$
Therefore, $F(A \cup \{e\}) - F(A) \ge F(B \cup \{e\}) - F(B)$

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

- Claim: F(S) is submodular.
 - Three possibilities when we add e to A or B:
 - Case 3: e covers some new relationships w.r.t both A and B

$$F(A \cup \{e\}) - F(A) = v \text{ where } v \ge 0$$

$$F(B \cup \{e\}) - F(B) = u \text{ where } u \ge 0$$

But, $v \ge u$ because e will always cover fewer new relationships w.r.t B than w.r.t A because $A \subseteq B$

$$F(S) = \sum_{r \in R} w(r)$$
 $w: R o \mathbb{R}^+$ where $R = igcup_{e \in S} X_e$

- Claim: F(S) is monotone and normal.
- Normality: When S is empty, $R = \bigcup_{e \in S} X_e$ is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	√		
Monotonicity	\checkmark	\checkmark		
Normality	\checkmark	√		

Weighted Coverage (Timestamps)

$$F(S) = \sum_{e \in S} w_T(t_e)$$

Claim: F(S) is submodular, monotone and normal

 Analogous arguments to that of weighted coverage (relationships) are applicable

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	√	√	
Monotonicity	\checkmark	\checkmark	√	
Normality	\checkmark	√	√	

Complete Optimization Problem

 Generalized earlier coverage function to nonnegative linear combination of weighted coverage functions

$$F(S) = F_1(S) + F_2(S)$$

where
$$R = \bigcup X_e$$

 $e \in S$

- Goal: $\max_{|S| \le k} F(S)$
- Claim: F(A) is submodular, monotone and normal

Complete Optimization Problem

- Submodularity: F(S) is a non-negative linear combination of two submodular functions.
 Therefore, it is submodular too.
- Normality: $F_1(\{\}) = 0 = F_2(\{\})$ $F_1(\{\}) + F_2(\{\}) = 0$
- Monotonicity: Let $A \subseteq B \subseteq S$, $F_1(A) \le F_1(B)$ and $F_2(A) \le F_2(B)$ $F_1(A) + F_2(A) \le F_1(B) + F_2(B)$

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	√	√	\checkmark
Monotonicity	\checkmark	\checkmark	√	√
Normality	\checkmark	√	√	\checkmark

Lazy Optimization of Submodular Functions

Greedy Solution

Greedy

Marginal gain: $F(S \cup x)-F(S)$

Add element with highest marginal gain

- Greedy Algorithm is Slow!
- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime O(|U| * K) for selecting K elements out of the set U

Speeding up Greedy

In round i:

- So far we have $S_{i-1} = \{e_1 ... e_{i-1}\}$
- Now we pick an element e ∉ S_{i-1} which maximizes the marginal benefit Δ_i = F(S_{i-1} U {e}) − F(S_{i-1})
- Key observation:
 - Marginal gain of any element e can never increase!
 - For every element e:
 Δ_i (e) ≥ Δ_i(e) for all iterations i < j

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

Upper bound on Marginal gain Δ_1

 $A_1 = \{a\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

Upper bound on Marginal gain Δ_2

 $A_1 = \{a\}$

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

Upper bound on Marginal gain Δ_2

 $A_1 = \{a\}$

 $A_2 = \{a,b\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$

Speed Up of Lazy Greedy Algorithm

 Lazy greedy offers significant speed-up over traditional greedy implementations in practice.

References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- ICML Tutorial: http://submodularity.org/submodularity-icml-part1slides-prelim.pdf
- Learning and Testing Submodular Functions: http://grigory.us/cis625/lecture3.pdf
- UW Research by Jeff Bilmes (ECE)