Mining Data Streams
(Part 2)

CSEP590A Machine Learning for Big Data
Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

This Lecture

More algorithms for streams:
(1) Filtering a data stream: Bloom filters
Select elements with property x from stream

(2) Counting distinct elements: Flajolet-Martin

Number of distinct elements in the last k elements
of the stream

(3) Estimating moments: AMS method

Estimate std. dev. of last k elements

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

(1) Filtering Data Streams

Fi

5/18/22

ltering Data Streams

Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream are in S

Obvious solution: Hash table

But suppose we do not have enough memory to
store all of § in a hash table

E.g., we might be processing millions of filters
on the same stream

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Applications

Example: Email spam filtering

We know 1 billion “good” email addresses
Or, each user has a list of trusted addresses
If an email comes from one of these, it is NOT spam
Publish-subscribe systems
You are collecting lots of messages (news articles)
People express interest in certain sets of keywords

Determine whether each message matches user’s interest
Content filtering:
You want to make sure the user does not see the same ad
multiple times
Web cache filtering:

Has this piece of content been requested before? Then
cache it now.

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 6

First Cut Solution (1)

Given a set of keys S that we want to filter
Create a bit array B of n bits, initially all Os
Choose a hash function h with range [0,n)
Hash each member of s € S to one of
n buckets, and set that bit to 1, i.e., B[h(s)]=1
Hash each element a of the stream and
output only those that hash to bit that was
setto1l

Output a if B[h(a)] ==

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

First Cut Solution (2)

\

Hash
func h
N
0010001011000

Drop the item.

Output the item since it may be in S.
ltem hashes to a bucket that at least
one of the items in S hashed to.

Bit array B

It hashes to a bucket set
to 0 soitis surely notin S.

Creates false positives but no false negatives

If the item is in § we surely output it, if not we may
still output it

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 8

5/18/22

First Cut Solution (3)

5/18

/22

|S| =1 billion email addresses
|B|= 1GB = 8 billion bits

If the email address is in S, then it surely
hashes to a bucket that has the bit set to 1,
so it always gets through (no false negatives)

Approximately 1/8 of the bits are setto 1, so
about 1/8" of the addresses not in S get
through to the output (false positives)

Actually, less than 1/8th, because more than one
address might hash to the same bit

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Analysis: Throwing Darts (1)

5/18

/22

More accurate analysis for the number of
false positives

Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

In our case:
Targets = bits/buckets
Darts = hash values of items

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Analysis: Throwing Darts (2)

We have m darts, n targets
What is the probability that a target gets at
least one dart?

Equals 1/e Equivalent
as N —»o0 /
< v
n(m/n)
1-1(1-=1/n

Probability some \

target X not hit Probability at

by a dart L
yadar least one dart Approximation is

hits target X especially accurate
when n is large

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 11

Analysis: Throwing Darts (3)

Fraction of 1s in the array B =
= probability of false positive =1 — e™/n

Example: 10° darts, 8:10° targets

Fractionof 1sinB=1-e1/8=0.1175
= Compare with our earlier estimate: 1/8 = 0.125

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

12

Bloom Filter

Consider: |S| =m, |B| =n
Use k independent hash functions hy,..., h,
Initialization:

Set B to all Os
Hash each element s € § using each hash function h;,
set B[h,(s)] =1 (foreachi=1,.., k) (note: we have a

single array B!)

Run-time:

When a stream element with key x arrives

If B[h,(x)] =1foralli=1,..., kthen declare that xisin S
That is, x hashes to a bucket set to 1 for every hash function h,(x)

Otherwise discard the element x

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 13

Bloom Filter — Analysis

What fraction of the bit vector B are 1s?
Throwing k-m darts at n targets
So fraction of 1s is (1 — e*km/n)

But we have k independent hash functions
and we only let the element x through if all k

hash element x to a bucket of value 1

So, false positive probability = (1 — e™k™/n)k

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Bloom Filter — Analysis (2)

0.2

m = 1 billion, n = 8 billion |
k=1:(1-e'8)=01175 _*
k =2:(1-e/4)2=0.0493

e pro

o
&

What happens as we
keep increasing k?

o ¢
Ig T

False positiv
8

o
S

[[I [i [[i
0 2 4 6 8 10 12 14 16 18 2

Number of hash functions, k

Optimal value of k: n/m In(2)
In our case: Optimal k=81n(2) =5.54 =6
= Error atk =6: (1 — e3/4)5=0.0216

Optimal k: k which gives the lowest false positive probability

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 15

Bloom Filter: Wrap-up

Bloom filters allow for filtering / set membership
Bloom filters guarantee no false negatives, and
use limited memory

Great for pre-processing before more
expensive checks

Suitable for hardware implementation
Hash function computations can be parallelized

s it better to have 1 big B or k small Bs?
It is the same: (1 — e*™/")k s, (1 — e ™/(n/K))k

But keeping 1 big B is simpler

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

16

(2) Counting Distinct Elements

Counting Distinct Elements

Problem:

Data stream consists of a universe of elements
chosen from a set of size N

Maintain a count of the number of distinct
elements seen so far

Obvious approach:
Maintain the set of elements seen so far

That is, keep a hash table of all the distinct
elements seen so far

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

18

Applications

How many different words are found among
the Web pages being crawled at a site?

Unusually low or high numbers could indicate
artificial pages (spam?)

How many different Web pages does each
customer request in a week?

How many distinct products have we sold in
the last week?

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

19

Using Small Storage

5/1

8/22

Real problem: What if we do not have space
to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error,
but limit the probability that the error is large

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Flajolet-Martin Approach

Pick a hash function h that maps each of the
N elements to at least log, N bits

For each stream element a, let r(a) be the
number of trailing Os in h(a)

r(a) = position of first 1 counting from the right
" E.g., say h(a) =12, then 12 is 1100 in binary, so r(a) = 2
Record R = the maximum r(a) seen

R = max, r(a), over all the items a seen so far

Estimated number of distinct elements = 2R

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Why It Works: Intuition

Rough intuition why Flajolet-Martin works:
h(a) hashes a with equal prob. to any of N values

Then h(a) is a sequence of log, N bits,

where 2 fraction of all as have a tail of r zeros
= About 50% of as hash to ***0

= About 25% of as hash to **00

= So, if we saw the longest tail of r=2 (i.e., item hash
ending *100) then we have probably seen
about 4 distinct items so far

So, it takes to hash about 2" items before we
see one with zero-suffix of length r

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 22

Why It Works: More formally

Now we show why Flajolet-Martin works

Formally, we will show that probability of
finding a tail of r zeros:

Goesto lif m > 27

Goesto 0 if m «< 27

where m is the number of distinct elements
seen so far in the stream

Thus, 27 will almost always be around m!

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

23

Why It Works: More formally

What is the probability that a given h(a) ends
in at least r zeros? It is 27

h(a) hashes elements uniformly at random

Probability that a random number ends in
at least r zeros is 2
Then, the probability of NOT seeing a tail

of length r among m distinct elements:

1-2"")"
_— f
Prob. that given h(a) ends
Prob. all m elements in fewer than r zeros

end in fewer than r zeros.

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Why It Works: More formally

Note: (1-27")"=(1-2")" " ' me™
Prob. of NOT finding a tail of length r is:
" If m << 2, then prob. tends to 1
= (1_2—”)m ~ e"’”z_r —]1 as m/2'—>0
= So, the probability of finding a tail of length r tends to 0
“ If m>> 2", then prob. tendsto 0
“1-2")Y"=e™ =0 as m/2'—>w
= So, the probability of finding a tail of length rtendsto 1

Thus, 2% will almost always be around m!

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 25

Why It Doesn’t Work

E[2R] is actually infinite

Observing R has some probability

Probability halves when R — R+1, but value doubles

Each possible large R contributes to exp. value
Workaround involves using many hash functions h,
and getting many samples of R,
How are samples R, combined?

Average? What if one very large value 2Ki?
Median? All estimates are a power of 2

Solution:

= Partition your samples into small groups
= Take the median of groups

* Then take the average of the medians

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 26

(3) Computing Moments

Generalization: Moments

Suppose a stream has elements chosen
from a set A of N values

Let m; be the number of times value i occurs
in the stream

The kt* (frequency) moment is

ZieA (mi)k

This is the same way as moments are defined in statistics. But
there one typically “centers” the moment by subtracting the mean.

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 28

Special Cases

ZieA (ml')k

0t"moment = number of distinct elements

The problem just considered
15 moment = count of the numbers of
elements = length of the stream

Easy to compute, so not particularly useful
2"Y moment = surprise number S =
a measure of how uneven the distribution is

Very useful

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

29

Moments

Third Moment is Skew:

A A

Negative Skew Positive Skew

Fourth moment: Kurtosis

peakedness (width of peak), tail weight, and lack
of shoulders (distribution primarily peak and tails,
not in between).

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 30

Example: Surprise Number

Measure of how uneven the distribution is

Stream of length 100
11 distinct values

ltem counts m;: 10,9,9,9,9,9,9,9,9,9,9
Surprise S =910

ltem counts m.: 90,1,1,1,1,1,1,1,1,1,1
Surprise $ = 8,110

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

[Alon, Matias, and Szegedy]

AMS Method

AMS method works for all moments
Gives an unbiased estimate
We will just concentrate on the 2" moment

Will generalize later
We pick and keep track of many variables X:

For each variable X we store X.el and X.val

X.el corresponds to the item i
X.val corresponds to the count m; of item i

Note this requires a count in main memory,
so number of Xs is limited

: _ 2
Our goal is to compute S =), m;

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 33

One Random Variable (X)

How to set X.val and X.el?

Assume stream has length n (we relax this later)

Pick some random time t (t<n) to start,
so that any time is equally likely

Let at time t the stream have item i. We set X.el = i
Then we maintain count ¢ (X.val = ¢) of the number
of is in the stream starting from the chosen time t
Then the estimate of the 2" moment (}}; m?) is:
S=fX) =n2-c-1)
" Note, we will keep track of multiple Xs, (X;, X,,... X)
and our final estimate willbe S = 1/k Z}‘f(Xj)

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 34

Expectation Analysis

1 2 3 4 m,

Count: 1T 2
e e ———_ e
a

Stream: a a b b b a b
2"d momentis § =), m?
¢, ... number of times item at time t appears
from time t onwards (¢c,=m,, ¢c,=m -1, c;=m,)
1 n
E[f(X)] — _Z —1n(2Ct T 1) mi}otahlcountof
item i in the stream

(we are assuming

- Z n (1 + 3 *° + Zml - 1) stream has length n)
\ Time t when Time t when
Group times Tlr:neltwh.en the penultimate the firstiis
by the value the last/1s iis seen (¢;=2) seen (c;=m))
seen (C;=1)

seen

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 35

Expectation Analysis

Count: 1T 2 3 Ma

Stream: a a b b b a b a

E[f0] ==%in (1+3+5+-+2m; — 1)
Little side calculation: (1 +3 +5+ -+ 2m; — 1) =
F™ (2 — 1) = 2 2D

Then E[f(X)] =-3,; n (n;)?

—-m; = (m;)°

so, E[f(X)] = 3;(m)> = S
We have the second moment (in expectation)!

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

Higher-Order Moments

For estimating k' moment we essentially use the
same algorithm but change the estimate f(X):
For k=2 we used n (2-:c - 1)
For k=3 we use: n (3:c?-3c+1) (where c=X.val)
Why?
For k=2: Rememberwehad (1+3+5+ -+ 2m; — 1)
and we showed terms 2¢-1 (for c=1,...,m) sum to m?
ct1(2c— 1) =3, c? = ¥iti(c — 1) =m?
So:2c—1=c*—-(c—-1)>
For k=3:c3-(c-1)3=3c?-3c+1
Generally: Estimate f(X) = n (c® — (c — 1)%)

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 37

Combining Samples

In practice:
Compute f(X) = n(2c- 1) for
as many variables X as you can fit in memory
Average them in groups

Take median of averages

Problem: Streams never end

We assumed there was a number n,
the number of positions in the stream

But real streams go on forever, so n is
a variable — the number of inputs seen so far

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

38

Streams Never End: Fixups

5/18/22

(1) The variables X have n as a factor —

keep n separately; just hold the count in X

(2) Suppose we can only store k counts.

We must throw some Xs out as time goes on:
Objective: Each starting time t is selected with
probability k/n
Solution: (fixed-size / reservoir sampling!)

Choose the first k times for k variables

When the nth element arrives (n > k), choose it with
probability k/n

If you choose it, throw one of the previously stored
variables X out, with equal probability

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

39

Problems on Data Streams

Filtering a data stream

Select elements with property x from the stream
Counting distinct elements

Number of distinct elements in the stream
Estimating moments

Estimate avg./std. dev. of elements in stream

5/18/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

40

5/18/22

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a

41

