Large-Scale Machine Learning (2)
Supervised Learning

- Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - **Real number**: Regression
 - **Categorical**: Classification
 - **Complex object**:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class: $\{+1, -1\}$, or a real number
Supervised Learning

- **Task:** Given data \((X,Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)

- **Strategy:** Estimate \(y = f(x)\) on \((X, Y)\).

 Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

 - The “hope” is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts well \(Y\) but is unable to predict \(Y'\)

- We want to build a model that **generalizes** well to unseen data
Formal Setting

1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

- Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$
- The loss $L(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[L]$
Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data.
Minimizing the Loss

- **Goal:** Minimize the expected loss
 \[\min_f \mathbb{E}_P[\mathcal{L}] \]

- But, we don’t have access to \(P \) but only to training sample \(D \):
 \[\min_f \mathbb{E}_D[\mathcal{L}] \]

- So, we minimize the average loss on the training data:
 \[\min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i) \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
ML == Optimization

- **Given:**
 - A set of \(N \) training examples
 - \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
 - A loss function \(\mathcal{L} \)

- **Choose the model:** \(f_w(x) = w \cdot x + b \)

- **Find:**
 - The weight vector \(w \) that minimizes the expected loss on the training data

\[
J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
\]
Problem: Loss

- Problem: Step-wise Constant 0-1-Loss function

Derivative is either 0 or not differentiable
Approximating the Loss

- Approximating the expected loss by a smooth function
 - Replace the original objective function by a surrogate loss function. E.g., **hinge loss**:

\[
\tilde{J}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)}))
\]

When \(y = 1\):
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:
- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x^{(1)}_i, \ldots, x^{(d)}_i)\)
 - \(x^{(j)}_i\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 - \(w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}\)

Which is best linear separator (defined by \(w, b\))?
Distance from the separating hyperplane corresponds to the “confidence” of prediction.

Example:
- We are more sure about the class of A and B than of C.
Maximum Margin

- **Margin γ:** Distance of closest example from the decision line/hyperplane.

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- Remember: The Dot product

$$A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta$$
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = \|A\|\|B\| \cos \theta \]
- **What is $w \cdot x_1$, $w \cdot x_2$?**

 ![Diagram](image)

 In this case
 \[\gamma_1 \approx \|w\|^2 \]

 In this case
 \[\gamma_2 \approx 2\|w\|^2 \]

- **So, γ roughly corresponds to the margin**
 - **Bottom line**: Bigger γ, bigger the separation

5/11/22
What is the margin?

Let:

- Line \(L: \mathbf{w} \cdot \mathbf{x} + b = 0 \)
- \(\mathbf{w} = (w^{(1)}, w^{(2)}) \)
- Point \(\mathbf{A} = (x^{(1)}_A, x^{(2)}_A) \)
- Point \(\mathbf{M} \) on a line = \((x^{(1)}_M, x^{(2)}_M)\)

\[
d(A, L) = |A\mathbf{H}|
= |(A - M) \cdot \mathbf{w}|
= |(x^{(1)}_A - x^{(1)}_M) w^{(1)} + (x^{(2)}_A - x^{(2)}_M) w^{(2)}|
= |x^{(1)}_A w^{(1)} + x^{(2)}_A w^{(2)} + b|
= |\mathbf{w} \cdot \mathbf{A} + b|
\]

Remember \(x^{(1)}_M w^{(1)} + x^{(2)}_M w^{(2)} = -b \) since \(\mathbf{M} \) belongs to line \(L \)

Note we assume \(||\mathbf{w}||_2 = 1 \)
Largest Margin

- Prediction: \(\text{sign}(w \cdot x + b) \)
- "Confidence" = \((w \cdot x + b) y\)
- For i-th datapoint: \(\gamma_i = (w \cdot x_i + b) y_i \)
- Want to solve: \(\max_{w,b} \min_i \gamma_i \)
- Can rewrite as: \(\max_{w,y,b} \gamma \)

\[
s.t. \forall i, \ y_i (w \cdot x_i + b) \geq \gamma
\]
Support Vector Machine

- **Maximize the margin:**
 - Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\text{max } \gamma \\
\text{subject to } \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]

- \(\gamma \) is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, \(d+1\) support vectors (for \(d\) dim. data)
Problem:
- Let \((w \cdot x + b) y = \gamma\)
 then \((2w \cdot x + 2b) y = 2\gamma\)
- Scaling \(w\) increases margin!

Solution:
- Work with normalized \(w\):
 \[
 \gamma = \left(\frac{w}{||w||} \cdot x + b\right) y
 \]
- Let’s also require support vectors \(x_j\) to be on the plane defined by:
 \[
 w \cdot x_j + b = \pm 1
 \]

\[||w|| = \sqrt{\sum_{j=1}^{d} (w(j))^2}\]
Canonical Hyperplane: Solution

- Want to maximize margin!
- **What is the relation between** \(x_1\) **and** \(x_2\)?
 - \(x_1 = x_2 + 2\gamma \frac{w}{||w||}\)
 - We also know:
 - \(w \cdot x_1 + b = +1\)
 - \(w \cdot x_2 + b = -1\)
 - So:
 - \(w \cdot x_1 + b = +1\)
 - \(w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1\)
 - \(w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1\)

\[
\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||^2}
\]

Note:
\[
w \cdot w = ||w||^2
\]
Maximizing the Margin

- We started with
 \[\max_{w, \gamma} \gamma \]
 \[\text{s.t. } \forall i, \ y_i (w \cdot x_i + b) \geq \gamma \]
 But \(w \) can be arbitrarily large!

- We normalized and...
 \[\arg \max \gamma = \arg \max \frac{1}{\|w\|} = \arg \min \|w\| = \arg \min \frac{1}{2} \|w\|^2 \]

- Then:
 \[\min_{w, b} \frac{1}{2} \|w\|^2 \]
 \[\text{s.t. } \forall i, \ y_i (w \cdot x_i + b) \geq 1 \]
 This is called SVM with “hard” constraints
Non-linearly Separable Data

- **If data is not separable** introduce penalty:

 \[
 \min_{w,b} \frac{1}{2} \|w\|^2 + C \cdot (\# \text{ number of mistakes})
 \]

 subject to \(\forall i, y_i (w \cdot x_i + b) \geq 1 \)

 - Minimize \(\|w\|^2 \) plus the number of training mistakes
 - Set \(C \) using cross validation

- **How to penalize mistakes?**
 - All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** \(\xi_i \)

\[
\min_{w, b, \xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i
\]

s.t. \(\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i \)

- If point \(x_i \) is on the wrong side of the margin then get penalty \(\xi_i \)

For each data point:
If margin \(\geq 1 \), don’t care
If margin < 1, pay linear penalty
Slack Penalty C

$$\min_{w,b,\xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- **What is the role of slack penalty C:**
 - $C=\infty$: Only want to w, b that separate the data
 - $C=0$: Can set ξ_i to anything, then $w=0$ (basically ignores the data)
How do we obtain the Natural Form?

Previously

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i
\]

Solve for \(\xi \):

\[
\xi_i \geq 1 - y_i \cdot (w \cdot x_i + b) \\
\xi_i \geq 0 \\
\Rightarrow \xi_i \geq \max(0, 1 - y_i \cdot (w \cdot x_i + b))
\]

Natural form:

\[
\arg \min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]
Support Vector Machines

- SVM in the “natural” form

\[
\arg \min_{w, b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]

Margin

Empirical loss L (how well we fit training data)

Regularization parameter

- SVM uses “Hinge Loss”:

\[
\min_{w, b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i
\]

Hinge loss: \(\max\{0, 1-z\} \)

0/1 loss

0/1 penalty

-1 0 1 2

z = y_i \cdot (x_i \cdot w + b)
Support Vector Machines: How to estimate the parameters?
Want to estimate w and b!

Problem: Solvers are inefficient for big data!

Use a quadratic solver:
- Minimize quadratic function
- Subject to linear constraints
- “Common” optimization problems: $\min \frac{1}{2} w \cdot w + c \cdot \sum_{i=1}^{n} \xi_i$ subject to $y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i$

Standard way: Use a solver!
- Solver: software for finding solutions to “common” optimization problems
SVM: How to estimate w?

- **Want to minimize** $J(w,b)$:

$$J(w, b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x^{(j)}_i + b \right) \right\}$$

- **Empirical loss** $L(x_i, y_i)$

- **Compute the gradient** $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla J^{(j)} = \frac{\partial J(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = \begin{cases} 0 & \text{if } y_i (w \cdot x_i + b) \geq 1 \\ -y_i x^{(j)}_i & \text{else} \end{cases}$$
Gradient descent:

Iterate until convergence:
- For $j = 1 \ldots d$
 - Evaluate: $\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 - Update: $w^{(j)}' \leftarrow w^{(j)} - \eta \nabla J^{(j)}$
- $w \leftarrow w^{'}$

Problem:
- Computing $\nabla J^{(j)}$ takes $O(n)$ time!
 - n ... size of the training dataset

η...learning rate parameter
C... regularization parameter
SVM: How to estimate \(w \)?

- **Stochastic Gradient Descent**
 - Instead of evaluating gradient over all examples, evaluate it for each *individual* training example

 \[
 \nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
 \]

- **Stochastic gradient descent:**

 Iterate until convergence:
 - For \(i = 1 \ldots n \)
 - For \(j = 1 \ldots d \)
 - **Compute:** \(\nabla J^{(j)}(x_i) \)
 - **Update:** \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updated model only after all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of SGD, and efficiency of BGD.
Support Vector Machines: Example
Example: Text categorization

- **Dataset:**
 - **Reuters RCV1** news document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - \(n = 781,000\) training examples (documents)
 - 23,000 test examples
 - \(d = 50,000\) features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Example: Text categorization

Questions:

1. Is **SGD** successful at minimizing $J(w,b)$?
2. How quickly does **SGD** find the min of $J(w,b)$?
3. What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast Linear SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

1. **SGD-SVM** is successful at minimizing the value of $J(w,b)$
2. **SGD-SVM** is super fast
3. **SGD-SVM** test set error is comparable
Optimization “Accuracy”

For optimizing $J(w,b)$ within reasonable quality
SGD-SVM is super fast
What about multiple classes?

- **Idea 1:**
 One against all
 Learn 3 classifiers
 - $+ \text{ vs. } \{o, -\}$
 - $- \text{ vs. } \{o, +\}$
 - $o \text{ vs. } \{+, -\}$

 Obtain:
 $$w_+ b_+, \ w_- b_-, \ w_o b_o$$

- **How to classify?**
 - Return class c
 $$\text{arg max}_c \ w_c x + b_c$$
Learn 1 classifier: Multiclass SVM

- **Idea 2:** Learn 3 sets of weights simultaneously!
 - For each class c estimate w_c, b_c
 - Want the correct class y_i to have highest margin:
 \[
 w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i \text{, } \forall i
 \]
Multiclass SVM

- **Optimization problem:**

\[
\min_{w,b} \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^n \xi_i \\
\forall c \neq y_i, \forall i \\
w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i \quad \xi_i \geq 0, \forall i
\]

- To obtain parameters \(w_c, b_c\) (for each class \(c\))
 we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
ML Parallelization
Why Large-Scale ML?

- **The Unreasonable Effectiveness of Data**
 - In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision.

- **Findings:**
 - Performance increases logarithmically based on volume of training data.
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains.

- **Large datasets + large ML models => amazing results!!**

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML.

- Today’s lecture: Multiclass SVMs, Neural Networks (especially Deep ones), etc. can leverage both **Data Parallelism and Model Parallelism**.
 - State-of-the-art Deep Neural Networks for visual recognition tasks (e.g., ImageNet challenge) or NLP can have **more than 1 billion parameters!**
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model
Parameter Server

\[p' = p + \Delta p \]

- Parameter Server: **Key/Value store**
- **Keys** index the model parameters (e.g., weights)
- **Values** are the parameters of the ML model (e.g., a neural network)

Systems challenges:
- High bandwidth
- Synchronization
- Fault tolerance
Parameter Server

Parameter Server $p' = p + \Delta p$

Why do parallel updates work?
Async SGD

- **Key idea:** don’t synchronize, just overwrite parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, just **without locking!**

- **In theory,** Async SGD converges, but a slower rate than the serial version.
- **In practice,** when gradient updates are sparse (i.e., high dimensional data), **same convergence!**

- Recht et al. “**HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent**”, 2011
HOGWILD!

1. Initialize w in shared memory // in parallel, do
2. for $i = \{1, \ldots, p\}$ do
3. while TRUE do
4. if stopping criterion met then
5. break
6. end
7. end
8. Sample j from $1, \ldots, n$ uniformly at random.
9. Compute $f_j(w)$ and $\nabla f_j(w)$ using whatever w is currently available.
10. Let e_j denote non-zero indices of x_i
11. for $k \in e_j$ do
12. $w(k) \leftarrow w(k) - \alpha \left(\nabla f_j(w) \right)_k$
13. end
14. end

<= P is the number of partitions / processors

Component-wise gradient updates (relies on sparsity)

SGD
Asynchronous Distributed SGD

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts

Google, “Large Scale Distributed Deep Networks” [2012]

All ingredients together:
- Model and Data parallelism
- Async SGD

Dawn of modern Deep Learning
Example Implementations

- Google: Tensorflow Distributed Training
- Uber: Horovod
- Ray (UC Berkeley)
 - Ray is a general-purpose framework for parallel and distributed Python.
 - Spark isn’t optimized for these low latency communication workflow.
 - 15 lines of python for parameter server
- Mu Li et al. Scaling Distributed Machine Learning with the Parameter Server. OSDI 2014