Announcements:
- Today: HA2-due / HW3 release
- Al homeworks, including HW2, will be due Sunday 23:59pm (no late periods)
- Or think of it as 4 free late days for everyone per homework
- We will do our best to grade even faster!
- We moved a OH to Friday but there will not be a weekend OH.
- Colab 4 due date extended to Sunday night (was not on Gradescope initially)
- Same for future colabs
- Watch out for homework 2 feedback poll

- Project proposals — TAs will reach out with feedback

- Ed: Green checkmark means instructors “endorse” the answer
- Sun May 9 — Project Milestone deadline extended by three days

(make sure to have dataset in hand/disk and demonstrate preliminary efforts)

Link Analysis:
TrustRank and Web Spam

CSEP590A Machine Learning for Big Data
Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Midterm feedback

4/27/22

Positive: lectures, slides, lecture recordings, office
hours, homeworks, collabs, suggested (optional)
reading help you learn

Negative: workload

Action:
All colabs and hw deadlines extended + OH change

We have dropped one problem from HW3 and HW4
relative to previous years

We replaced problems with more practice oriented
simpler, shorter problems.

Checked in with Allen School and PMP leadership —
recommendation was not to make any further changes
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Grades so far

Review Grades for HW1 @ REGRADE REQUESTS CLOSED @ GRADES NOT PUBLISHED

0 10 20 30 40 50 60 70 80 90 10¢

MINIMUM MEDIAN MAXIMUM MEAN STD DEV ©

45.0 95.5 100.0 90.21 11.78

You do not need to get 100/100! It's okay not to finish everything.

Last year average homework was 85% -- at this average everyone got good grades

Project proposal grades also quite high!
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New Topic: Graph Data!
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Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Graph Data: Information Nets

Chemistry

o
| ChE; ) |
overlap , &c overlap
with ME; CivE with
right side left side

. Specialties
Infectious P

y Diseases

Humanities

Earth Sciences

Citation networks and Maps of science
[Borner et al., 2012]
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Graph Data: Communication Networks

4/27/22

domain2

. .router

domain3

Internet

-*|domain1
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Graph Data: Technological Networks

KRORINGSHENGA
A
: .‘ - f‘ i~ s X ﬁ
m&“ﬂ v Ve ; ~n 5. e ~
a =7y : at
asﬂ&ﬂ ;!" ”,,,. 2

Seven Brldges of Konigsberg

[Euler, 1735]
Return to the starting point by traveling each
link of the graph once and only once.
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Web as a Graph

4/27/22

Web as a directed graph:

Nodes: Webpages

Edges: Hyperlinks

| teach a
class on
data

mining.

CS547:
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SIG building
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\_/
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Web as a Graph

4/27/22

Nodes: Webpages

Edges: Hyperlinks

| teach a
class on
data

Web as a directed graph:

MiNings
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CS547:
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Computer
Science
Department
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Washington
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Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college

| teach at
Univ. of X

USNews
Featured

Colleges
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Broad Question

%o 5 YAHOO! & 9 &

- HLAG YANCO A?
B S L R ———— L Rt i L (LA

How to organize the Web? & .o wicein-@ -

| ](Fewch ) Optons
First try: Human curated Ut -
Web directories SR E

Yahoo, DMOZ, LookSmart e e

Second try: Web Search

TexOndy Yakoo = Cosaidere

Information Retrieval investigates:
Find relevant docs in a small
and trusted set

= Newspaper articles, Patents, etc.

But: Web is huge, full of untrusted documents,
random things, web spam, etc.
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Web Search: 2 Challenges

2 challenges of web search:
(1) Web contains many sources of information
Who to “trust”?

Trick: Trustworthy pages may point to each other!

(2) What is the “best” answer to query
“newspaper”?
No single right answer

Trick: Pages that actually know about newspapers
might all be pointing to many newspapers
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Ranking Nodes on the Graph

4/27

/22

All web pages are not equally “important”

thispersondoesnotexist.com vs. www.uw.edu

There is a large diversity
in the web-graph

node connectivity.

Let’s rank the pages by
the link structure!



https://thispersondoesnotexist.com/
http://www.uw.edu/

Link Analysis Algorithms

We will cover the following Link Analysis
approaches for computing importances
of nodes in a graph:

Page Rank
Topic-Specific (Personalized) Page Rank

Web Spam Detection Algorithms

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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PageRank:
The “Flow” Formulation



Links as Votes

Idea: Links as votes
Page is more important if it has more links
" In-coming links? Out-going links?

Think of in-links as votes:

www.uw.edu has millions in-links

thispersondoesnotexist.com has a few hundreds (?) in-links

Are all in-links equal?

Links from important pages count more
Recursive question!

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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https://thispersondoesnotexist.com/

Intuition — (1)

4/27/22

Web pages are important if people visit them
a lot.

But we can’t watch everybody using the Web.
A good surrogate for visiting pages is to
assume people follow links randomly.

Leads to random surfer model:

Start at a random page and follow random out-
links repeatedly, from whatever page you are at.

PageRank = limiting probability of being at a page.
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Intuition — (2)

4/27/22

Solve the recursive equation: “importance of a
page = its share of the importance of each of its
predecessor pages”

Equivalent to the random-surfer definition of
PageRank

Technically, importance = the principal
eigenvector of the transition matrix of the Web
A few fix-ups needed
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Example: PageRank Scores




Simple Recursive Formulation

4/27

/22

Each link’s vote is proportional to the

importance of its source page

If page j with |mportance r; has n out-links,

each link gets ; votes

Page j's own importance is the sum of the
votes on its in-links




PageRank: The “"Flow"” Model

A “vote” from an important
page is worth more

A page is important if it is
pointed to by other important
pages

Define a “rank” r; for page j

_Z_

l—)]

d; ... out-degree of node i
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Solving the Flow Equations o

equations:
v 2Dy T
3 equations, 3 unknowns, L0 Yz 2
2//r, r
no constants : o= +Tm
. . —0 .
= No unique solution 2 r :76!

= All solutions equivalent modulo a scale factor
Additional constraint forces uniqueness:
"y +rgt+r, =1

= Solution:r,, =—, r, = = Tm =3
Gaussian elimination method works for
small examples, but we need a better
method for large web-size graphs

We need a new formulation!
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PageRank: Matrix Formulation

Stochastic adjacency matrix M

Let page i has d; out-links

. 1
fi — j,then M = else M;, =0

L[] [ ] i [ ]
* M is a column stochastic matrix
Columns sumto 1

Rank vector 7: vector with an entry per page
r; is the importance score of page {

The flow equations can be written v, = Z—

M.r z—>]
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Example

v,
= Remember the flow equation: 7; = Z—’
= Flow equation in the matrix form i~/ d,

M-r=r
= Suppose page i links to 3 pages, including j

l
J
I‘,- B
1/3
M r

I ] — r
|
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Example: Flow Equations & M

r, =ry,/2+r,/2
r, =r,/2+r,
r,=1r,/2

72

72

72

72

M-r

72
/2
0

2

V2
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Eigenvector Formulation

The flow equations can be written
r=M:-r

So the rank vector r is an eigenvector of the

stochastic web matrix M

Starting from any vector u, the limit M(M(.. M(M u)))
is the long-term distribution of the surfers.

The math: limiting distribution = principal NOTE: x is an

eigenvector of M = PageRank. eigenvector with

the corresponding

Note: If r satisfies the equation r = Mr, eigenvalue A if:
then ris an eigenvector of M with eigenvalue 1 Ax = Ax

We can now efficiently solve for r!
The method is called Power iteration
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Power Iteration Method

Given a web graph with n nodes, where the

nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme
Suppose there are N web pages
Initialize: r® = [1/N,....,1/N]T P D =

J

Iterate: rt*) =M - ¢(t) ey

V.(t)

i

d; .... out-degree of node |

Stop when |ritt—¢lt)| < ¢

1X|1 = 21<ien|Xi| is the L1 norm
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
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PageRank: How to solve?

4/27/22

Power lteration:
Setr; = 1/N

1:r'; =), .-
J Zlﬁjdi

y a m

y| Vs 0

al 0 1

i m| O %! 0

2:r =17

Goto 1

Example:

1/3

1/3
1/3

lteration O, 1, 2, ...

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/cse

ry =r,/2+r,/2

r, =ry/2+r,

r,=1r,/2

p590a
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PageRank: How to solve?

4/27/22

Power lteration: > = =
y| Vs 0

Set T = 1/N al B | o | 1
ry m| 0 | % | 0

1:r'; =), .-
J Zlﬁjdi

ry =r,/2+r,/2

. _ !/
2:r =71 r, =ry/2+r,
Goto 1 r,=r,/2
Example:
ry’ 1/3 1/3 5/12  9/24 2/5
r, | = 1/3 3/6 1/3 11/24 ... 2/5
I | 1/3 1/6 3/12  1/6 1/5

lteration O, 1, 2, ...

Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Random Walk Interpretation

Imagine a random web surfer:

At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random po= Z

V.

I

. . A~4 ()
Ends up on some page j linked from i i=J “out
Process repeats indefinitely
Let:

p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page i at time t

So, p(t) is a probability distribution over pages

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 37



The Stationary Distribution

Where is the surfer at time #+1?
Follows a link uniformly at random
p(t+1)= M- p(t) p(t+1)=M- p(t)
Suppose the random walk reaches a state
p(t+1)= M- p(t) = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, r is a stationary distribution for
the random walk
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Existence and Uniqueness

= A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what is
the initial probability distribution at timet=0
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PageRank:
The Google Formulation



PageRank: Three Questions

(7)
(t+1) V. N
r] o Z d equivalently I/' — Mr

I— ] 1

Does this converge?
Does it converge to what we want?

Are results reasonable?

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a
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Does this converge?

(4)

> (t+1) . ’/;
e( Q rj o Z d

=] 1

Example:
r, _ 1 0 1

r 0 1 0 1

lteration O, 1, 2, ...

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a 42



Does it converge to what we want?

(4)

(t+1) v,
00 -5

=] 1

Example:
r, _ 1 0 0 0

I, 0 1 0 O

lteration O, 1, 2, ...
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PageRank: Problems
Dead end
2 problems:
(1) Dead ends: Some pages
have no out-links

Random walk has “nowhere” to go to
M o ” .
Such pages cause importance to “leak out”  Spider i

(2) Spider traps:
(all out-links are within the group)
Random walk gets “stuck” in a trap
And eventually spider traps absorb all importance

4/27/22 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a a4



Problem: Spider Traps

® a m
Power lteration: ’
Y2 Vs 0
Setr; =1 G N
. 0 V2 1
T = Ziﬁjz . .
l m is a spider trap r, =ry/2 +r,/2

= And iterate e
a Ty
r,=r,/2+r,

Example:
1, 173 2/6  3/12 5/24 0
r, [ = 13 16 212 324 ... 0
) 113 3/6 712 16/24 1

lteration O, 1, 2, ...

All the PageRank score gets “trapped” in node m.
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The Google solution for spider traps: At each
time step, the random surfer has two options
With prob. g, follow a link at random
With prob. 1-f, jump to some random page

L is typically in the range 0.8 t0 0.9
Surfer will teleport out of spider trap
within a few time steps
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Problem: Dead Ends

Power Iteration: /LA,
y| Vs 0
Setrj=1 al % | 0| 0
r; m| 0 | % | 0
T = Zisjg,
= And iterate hTh2EN
r, =r,/2
r,=1r,/2
Example:
1, 113 2/6  3/12 5/24 0
r, | = /3 1/6 2/12 324 ... 0
T /3  1/6 1/12 2/24 0

lteration O, 1, 2, ...

Here the PageRank score “leaks” out since the matrix is not stochastic.
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Solution: Always Teleport!

Teleports: Follow random teleport links with
probability 1.0 from dead-ends

Adjust matrix accordingly

—

y a m y a m
y| Y% % 0 y| Y% % Y
al 0 0 al 0 s
m| O %z 0 m| O /s s
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?
Spider-traps are not a problem, but with traps
PageRank scores are not what we want
Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps
Dead-ends are a problem

The matrix is hot column stochastic so our initial
assumptions are not met

Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go
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Solution: Random Teleports

Google’s solution that does it all:
At each step, random surfer has two options:

With probability g, follow a link at random
With probability 1-8, jump to some random page

PageRank equation [Brin-Page, 98]

d; ... out-degree

_2 rl 1 1 fnode |

1—]

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.
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The Google Matrix

PageRank equation [Brin-Page, ‘98]
- Z 1 + (1 1

1>
The Google Matrix A: [1/N]uy-..N by N matrix

1 where all entries are 1/N
A=pM+1-p)|+]
N NXN

We have a recursive problem: r =4 -r
And the Power method still works!
What is 8?

In practice =0.8,0.9 (make 5 steps on avg., jump)
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Random Teleports (3 = 0.8)

[1/N]nxn

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

15

M
1/21/2 0
1/2 0 0| +0.:2
0 172 1
y |7/15 715 1/15
a [7/15 1/15 1/
m|1/15 7/15 13/15
A
y 1/3 033 024 0.26 7/33
a = 1/3 020 020 0.18 ...  5/33
m 1/3 046 052 0.56 21/33
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How do we actually compute
the PageRank?



Computing PageRank

Key step is matrix-vector multiplication
rnew = A . rold

Easy if we have enough main memory to

hold A, rold pnew

Say N =1 billion pages

We need 4 bytes for A =B-M+(1-B) [1/N]yan
each entry (say) Y 15 0 1/31/3 173
- : A=0.8 % 0 0+0.2[1/31/31/3
2 billion entries for 0 % 1 13173 13
vectors, approx 8GB
Matrix A has N2 entries 715 7/15 1/15
1018 is a large number! = [7/15 1/15 1/15

1/15 7/15 13/15
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Rearranging the Equation

1-6
r =A-r, whereA;; = f Mj; +—=
_ N
rp = 1=1Aji T
_ vN 1-F
ry = l:]_[ﬁM]l__ N] Ty
N 1-B oN
= Xi=1 P Mj; -1 N 2i=1"i
1-— .
=YV B My +=E sinceyr =1
1_
Soweget:r=p M- -r + [—ﬁ
N In
Note: Here we assume M [X]x ... a vector of length N with all entries x

has no dead-ends
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Sparse Matrix Formulation

We just rearranged the PageRank equation

e[

= where [(1-B)/N]y is a vector with all N entries (1-B)/N

M is a sparse matrix! (with no dead-ends)

10 links per node, approx 10N entries
So in each iteration, we need to:
Compute reV = S M - ro'd
Add a constant value (1-B)/N to each entry in r"ew

* Note if M contains dead-ends then },; 7“" < 1 and
we also have to renormalize r"eV so that it sums to 1
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PageRank: The Complete Algorithm

Input: Graph G and parameter
Directed graph G (can have spider traps and dead ends)

Parameter
Output: PageRank vector r

Set: r-"ld ==
] N

repeat until convergence: ), ; ‘r

new

new __ old < ¢

]
. i r’new Z ﬁ old
J: i—j
r'i" =0 ifin- degree of jis0

= Now re-insert the leaked PageRank:
Vj: rnew— ’new+— where: S = 3, ; 'Y

« pold — ,.new

If the graph has no dead-ends then the amount of leaked PageRank is 1-B8. But since we have dead-ends

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Some Problems with PageRank

Measures generic popularity of a page
Biased against topic-specific authorities

Solution: Topic-Specific PageRank (after break)
Uses a single measure of importance

Other models of importance

Solution: Hubs-and-Authorities
Susceptible to Link spam

Artificial link topographies created in order to
boost page rank

Solution: TrustRank (after break)
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