
CSEP 590A: Machine Learning for Big Data Spring 2022

Problem Set 3
Please read the homework submission policies.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code X3WYKY.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/21sp/faq.html
https://www.cs.washington.edu/academics/misconduct


CSEP 590A - Machine Learning for Big Data - Problem Set 3 2

0 HW3 Survey

Please complete HW3 Survey on Gradescope after finishing the homework.

1 Dead Ends in PageRank Computations (28 points)

We learned about PageRank in lecture which is an algorithm for ranking webpages. In this
problem, we are going to focus on dead ends and examine how they affect the PageRank
computations.

Suppose we denote the matrix of the Internet as the n-by-n matrix M , where n is the number
of webpages. Suppose there are k links out of the node (webpage) j, and

Mij =

{
1/k if there is a link from j to i
0 otherwise

For a webpage j that is a dead end (i.e., one having zero links out), the column j is all
zeroes.

Let r = [r1, r2, . . . , rn]> be an estimate of the PageRank vector. In one iteration of the
PageRank algorithm, we compute the next estimate r′ of the PageRank as: r′ = Mr.

Given any PageRank estimate vector r, define w(r) =
∑n

i=1 ri.

(a) [7pts] Suppose the Web has no dead ends. Prove that w(r′) = w(r).

(b) [10pts] Suppose there are still no dead ends, but we use a teleportation probability
(i.e., the probability of jumping to some random page) of 1− β, where 0 < β < 1. The
expression for the next estimate of ri becomes r′i = β

∑n
j=1Mijrj + (1 − β)/n. Under

what conditions will w(r′) = w(r)? Prove your conclusion.

Hint: The conditions required for the equality are related to w(r).

(c) [11pts] Now, let us assume a teleportation probability of 1 − β in addition to the fact
that there are one or more dead ends. Call a node “dead” if it is a dead end and “live”
if not. Assume w(r) = 1. At each iteration, when not teleporting, each live node j
distributes βrj PageRank uniformly across each of the nodes it links to, and each dead
node j distributes rj/n PageRank to all the nodes.

Write the equation for r′i in terms of β, M , r, n, and D (where D is the set of dead
nodes). Then, prove that w(r′) = 1.

What to submit

(i) Proof [1(a)]



CSEP 590A - Machine Learning for Big Data - Problem Set 3 3

(ii) Condition for w(r′) = w(r) and Proof [1(b)]

(iii) Equation for r′i and Proof [1(c)]

2 Implementing PageRank and HITS (30 points)

In this problem, you will learn how to implement the PageRank and HITS algorithms in
Spark. You will be experimenting with a small randomly generated graph (assume that the
graph has no dead-ends) provided in graph-full.txt in the folder pagerank hits/data.

There are 100 nodes (n = 100) in the small graph and 1000 nodes (n = 1000) in the full
graph, and m = 8192 edges, 1000 of which form a directed cycle (through all the nodes)
which ensures that the graph is connected. It is easy to see that the existence of such a cycle
ensures that there are no dead ends in the graph. There may be multiple directed edges
between a pair of nodes, and your solution should treat them as the same edge. The first
column in graph-full.txt refers to the source node, and the second column refers to the
destination node.

Implementation hint: You may choose to store the PageRank vector r either in memory or
as an RDD. Only the matrix of links is too large to store in memory.

(a) PageRank Implementation [15 points]

Assume the directed graph G = (V,E) has n nodes (numbered 1, 2, . . . , n) and m edges, all
nodes have positive out-degree, and M = [Mji]n×n is a an n × n matrix as defined in class
such that for any i, j ∈ J1, nK:

Mji =

{ 1
deg(i)

if (i→ j) ∈ E,
0 otherwise.

Here, deg(i) is the number of outgoing edges of node i in G. If there are multiple edges
in the same direction between two nodes, treat them as a single edge. By the definition of
PageRank, assuming 1−β to be the teleport probability, and denoting the PageRank vector
by the column vector r, we have the following equation:

r =
1− β
n

1 + βMr, (1)

where 1 is the n× 1 vector with all entries equal to 1.

Based on this equation, the iterative procedure to compute PageRank works as follows:

1. Initialize: r(0) = 1
n
1

2. For i from 1 to k, iterate: r(i) = 1−β
n
1 + βMr(i−1)



CSEP 590A - Machine Learning for Big Data - Problem Set 3 4

Run the aforementioned iterative process in Spark for 40 iterations (assuming β = 0.8) and
(the estimate) of the PageRank vector r. In particular, you don’t have to implement the
blocking algorithm from lecture. The matrix M can be large and should be processed as an
RDD in your solution. Compute the following:

• List the top 5 node ids with the highest PageRank scores.

• List the bottom 5 node ids with the lowest PageRank scores.

For a sanity check, we have provided a smaller dataset (graph-small.txt). In that dataset,
the top node has id 53 with value 0.036.

(b) HITS Implementation [15 points]

Assume that the directed graph G = (V,E) has n nodes (numbered 1, 2, . . . , n) and m edges,
all nodes have non-negative out-degree, and L = [Lij]n×n is a an n× n matrix referred to as
the link matrix such that for any i, j ∈ J1, nK:

Lij =

{
1 if (i→ j) ∈ E,
0 otherwise.

Given the link matrix L and scaling factors λ and µ, the hubbiness vector h and the authority
vector a can be expressed using the equations:

h = λLa, a = µLTh (2)

where 1 is the n× 1 vector with all entries equal to 1.

Assume that λ = 1, µ = 1. Then the iterative method to compute h and a is as follows:

1. Initialize h with a column vector (of size n× 1) of all 1’s.

2. Compute a = LTh and scale so that the largest value in the vector a has value 1.

3. Compute h = La and scale so that the largest value in the vector h has value 1.

4. Go to step 2.

Repeat the iterative process for 40 iterations, and obtain the hubbiness and authority scores
of all the nodes (pages). The link matrix L can be large and should be processed as an RDD.
Compute the following:

• List the 5 node ids with the highest hubbiness score.

• List the 5 node ids with the lowest hubbiness score.



CSEP 590A - Machine Learning for Big Data - Problem Set 3 5

• List the 5 node ids with the highest authority score.

• List the 5 node ids with the lowest authority score.

For a sanity check, you should confirm that graph-small.txt has highest hubbiness node
id 59 with value 1 and highest authority node id 66 with value 1.

What to submit

(i) List 5 node ids with the highest and least PageRank scores [2(a)]

(ii) List 5 node ids with the highest and least hubbiness and authority scores [2(b)]

(iii) Upload all the code to Gradescope [2(a) & 2(b)]

3 The Louvain Algorithm for Community Detection

(42 points)

Note: For this question, assume all graphs are undirected and weighted.

The Louvain Algorithm is commonly used for community detection in graphs which can be
especially a good fit for graphs with a hierarchical structure. In this problem, we are going
to understand how the Louvain algorithm works by following the steps of the algorithm.
Furthermore, we are going to focus on how the algorithm works with the hierarchically
structured graphs and how we can evaluate the quality of the communities we discover.

Communities, or clusters of densely linked nodes in a graph, are important elements of
a graph’s structure. Thus, discovering communities from an observed graph can help us
summarize the overall structure of a graph and learn more about the underlying process.
However, finding the “best” set of communities from data is often a difficult problem. One
way to measure how well a network is partitioned into communities is to calculate the number
of within-community edges relative to the number of between-community edges. This can
be formalized using modularity, defined as:

Q =
1

2m

∑
1≤i,j≤n

([
Aij −

didj
2m

]
δ (ci, cj)

)

Where A is the adjacency matrix of a graph G with n vertices and m edges, Aij is the
(i, j)-th entry of A, 2m =

∑
i,j Aij is the sum of all entries in A, di is the degree of node i, δ

is the Kronecker delta, i.e. δ(k, l) = 1 when k = l, otherwise - δ(k, l) = 0, and ci and cj are
the communities of i and j respectively. Here, we assume that communities are disjoint, i.e.
each node can only belong to one community. The modularity of a graph lies in the range
[−1, 1].



CSEP 590A - Machine Learning for Big Data - Problem Set 3 6

Maximizing the modularity of a given graph is a computationally hard problem. The Louvain
algorithm is a popular and efficient heuristic used to solve this problem. It is a greedy
algorithm, meaning that at every step, it will take the path that provides the largest possible
increase to the objective (modularity) at that step. Each pass of the algorithm has two
phases:

• Phase 1 (Modularity Optimization) aims to group nodes in the graph G into
communities in a way that maximizes the modularity of the graph. After the first
pass, the input graph to this step is the graph produced by phase 2 in the previous
pass (see below).

• Phase 2 (Community Aggregation) combines each community into a single node,
producing a new graph H where each node represents a community of nodes in the
graph G. This new graph H is fed into phase 1 in the next pass of the algorithm.

We repeat these two phases until we no longer increase modularity through one pass. The
algorithm proceeds as follows:

Phase 1 (Modularity Optimization)

Input: a graph G = (V,E) with a vertex set V and an edge set E. . The input changes in each
pass of the algorithm; after pass 1 the input is the graph output by phase 2.

Output: a partition of G into communities.

1: Initialize each node i as its own community
2: for each node i ∈ V do
3: Ni ← the set of neighbors of i in G
4: for each node j in Ni do
5: ∆Qj ← the change in modularity when i is assigned to the community of j
6: end for
7: j∗ ← the neighbor that gives the most positive change in modularity ∆Qj∗

8: if ∆Qj∗ > 0 then
9: Assign node i to the community of j∗

10: else
11: Keep node i in its current community
12: end if
13: end for



CSEP 590A - Machine Learning for Big Data - Problem Set 3 7

Phase 2 (Community Aggregation)

Input: a graph G = (VG, EG) with a vertex set VG and an edge set EG; and the communities from
Phase 1.

Output: a graph H = (VH , EH) where each node now represents a community in the Phase 1
graph G.

1: VH ← ∅
2: EH ← ∅
3: for each community C do
4: VH ← VH ∪ {C}
5: end for
6: for each community C do
7: for each community C ′ do
8: e← {C,C ′}
9: if e 6∈ EH then

10: EH ← EH ∪ {e} (including a self-edge if C = C ′)
11: we ←

∑
v∈C
u∈C′

wv,u. . we is the weight assigned to the edge e in the
graph H. Initially, wv,u = 1 for all v and u.

12: end if
13: end for
14: end for

Again, we repeat phases 1 and 2 until no change in modularity occurs. We call each iteration
of phases 1 and 2 one pass of the algorithm. Figure 1 below illustrates the Louvain algorithm.

Figure 1: Example from Blondel et al. showing the two phases of the Louvain algorithm



CSEP 590A - Machine Learning for Big Data - Problem Set 3 8

(a) [12 points] Consider a node i that is in a community all by itself. Let C represent
an existing community in the graph. Node i feels lonely and decides to move into the
community C. This situation can be modeled by a graph (Figure 2) with C represented
by a single node. We observe the following sums of weights:

• Σin =
∑

j,k∈C wj,k - the sum of the weights of edges within C.

• Σtot - the sum of the weights of the edges incident to a vertex in C.

• ki - the sum of weights of edges incident to i (i.e., its weighted degree).

• ki,in/2 - the sum of the weights of the edges between i and a vertex in C, i.e. the
community of i and C are connected by an edge of weight ki,in/2.

• As always, 2m =
∑

i,j Aij is the sum of all entries in the adjacency matrix.

To begin with, C and i are in separate communities (colored green and red respectively).
The third node represents the remainder of the graph.

Figure 2: Before merging, i is an isolated node and C is a community.
The rest of the graph is represented by a single node.

Prove that the modularity gain seen when i merges with C (i.e., the change in modularity
after they merge into one community) is given by:

∆Q =

[
Σin + ki,in

2m
−
(

Σtot + ki
2m

)2
]
−

[
Σin

2m
−
(

Σtot

2m

)2

−
(
ki

2m

)2
]
.

Note that this expression gives us a computationally efficient way to compute the mod-
ularity changes in phase 1.

Hint: Apply the community aggregation step of the Louvain algorithm to simplify the
calculations.

(b) [15 points] Consider the graph G in Figure 3, with 4 cliques of 4 nodes each, arranged
in a ring. Assume all the edges have the same weight value 1. There exists exactly one
edge between any two adjacent cliques. We will manually (by hand) inspect the results
of the Louvain algorithm on this network.

1. [5 points] The first phase of modularity optimization detects each clique as a single
community, so there are 4 communities in total. Thus, the graph H output by the
first pass of the Louvain algorithm is a graph with four nodes, each corresponding



CSEP 590A - Machine Learning for Big Data - Problem Set 3 9

Figure 3: G is a subgraph. The whole graph has 16 nodes (4 cliques with
4 nodes per clique)

to one of the four cliques in G. What are the weights of each edge in the graph H?
Explain.
Hint: Note that the symmetry of the ring structure simplifies the calculation.

2. [4 points] Derive the modularity of the graph H after the first pass of the Louvain
algorithm.

3. [6 points] Show mathematically that the modularity of H would not increase in the
second pass of the algorithm, hence the algorithm terminates.
Hint: Due to the symmetry in H, you only need to calculate a single value of ∆Q.
You may either calculate the modularity directly or extend the result of part (a).

(c) [15 points] Modularity optimization often fails to identify communities smaller than
a certain scale, which is known as the resolution limit problem. We illustrate this
problem using a dataset with ground-truth communities; that is, we have labels for the
“true” communities of the graph. We provide the following undirected YouTube social
network. In the YouTube social network, users can form friendships with each other
and users can create groups which other users can join. We consider such user-defined
groups as ground-truth communities.

We are interested in quantifying how “good” the communities chosen by modularity
by evaluating them via a goodness metric, which we present below. Here we compare
2 scoring functions: (1) modularity (higher is better) (2) cut ratio (lower is better):
f(S) = cS

nS(n−nS)
, where cs is the number of edges crossing the boundary of community

S, nS is the number of nodes in S and n is the number of nodes in the entire graph. Our
goodness metric is density g(S) = 2mS

nS(nS−1)
, where mS is the number of edges within S.



CSEP 590A - Machine Learning for Big Data - Problem Set 3 10

Note that density favors small, highly connected communities; hence, we expect that
scoring functions that do poorly with smaller communities will not perform well with
respect to this metric, and that scoring functions that can accurately identify smaller
communities will have strong performance with respect to this goodness metric. Thus,
this creates a good test case for the resolution limit of modularity. From the definition,
we could see cut ratio has already taken community size into account.

We run the following experiment: the file youtube community top1000.txt in the folder
louvain/data contains the top 1000 ground-truth communities. For each community
scoring function f , we rank the ground-truth communities by decreasing score of f . So,
lower values of rank correspond to the “better” communities by each scoring function,
whereas higher values of rank correspond to the “worse” communities under each scoring
function. We measure the cumulative running average value of the goodness metric g
of the top-k ground-truth communities under the ordering induced by f . Intuitively, a
perfect community scoring function would rank the communities in decreasing order of
the goodness metric, and thus the cumulative running average of the goodness metric
would decrease monotonically with k.

You have been provided a skeleton in the file PartitionQuality.py in the folder lou-

vain/code. Your task is to complete the functions community modularity, cut ratio,
and density. Then, run the file, which executes the functions you have written and ap-
plies them to the YouTube dataset. Submit the plot density.jpg produced by the code
as part of your write-up. Interpret the plot you produce. Which metric is performing
better for this dataset? Using 2-3 sentences, explain why this might be the case.
Hint: For the first ground-truth community in youtube community top1000.txt, the
modularity is approximately 2.15×10−5, the cut ratio is approximately 1.39×10−4, and
the density is approximately 3.62× 10−2.

What to submit

(i) Proof of 3(a).

(ii) Answers to the 3 subparts of 3(b).

(iii) The plot density.jpg produced by your code and an interpretation thereof. [3(c)]

(iv) Upload your completed implementation of PartitionQuality.py to Gradescope.


	HW3 Survey
	Dead Ends in PageRank Computations (28 points)
	Implementing PageRank and HITS (30 points)
	The Louvain Algorithm for Community Detection (42 points)

