
A01TX1106989.fm Page 55 Monday, March 21, 2005 10:26 AM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2005 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Congress Control Number 2005921847

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd. A CIP catalogue record for this book is available from
the British Library.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to rkinput@microsoft.com.

Microsoft, Active Directory, ActiveX, Microsoft Press, MSDN, MSN, Visual Basic, Win32, Windows, Win-
dows Media, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned herein
may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Martin DelRe
Project Editor: Karen Szall
Copy Editor: Victoria Thulman
Technical Editor: Mitch Tulloch
Indexer: Tony Ross and Lee Ross

SubAsy Part No. X11-06988
Body Part No. X11-06989

Contents at a Glance

1 Performance Monitoring Overview . 1

2 Performance Monitoring Tools . 125

3 Measuring Server Performance . 235

4 Performance Monitoring Procedures. 313

5 Performance Troubleshooting. 401

6 Advanced Performance Topics . 537

v

Contents

About the Author . xi

Acknowledgments . xiii

Introduction. xv

Document Conventions . xv

Resource Kit Companion CD . xvi

1 Performance Monitoring Overview . 1

Introducing Performance Monitoring . 2

Learning About Performance Monitoring . 3

Proactive Performance Monitoring . 4

Diagnosing Performance Problems. 5

Scalability. 8

Performance Monitoring Concepts . 12

Definitions . 13

Bottlenecks . 22

Utilization Law . 28

Queue Time and Utilization . 29

Little’s Law . 33

Conclusions . 36

System Architecture . 37

Using the Performance Monitor . 37

Operating Systems . 38

Processors . 43

Memory and Paging . 61

The I/O Subsystem . 89

Network Interfaces . 98

Summary . 123

2 Performance Monitoring Tools . 125

Summary of Monitoring Tools . 126

Performance Statistics . 126

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

vi Contents

Event Traces . 127

Load Generating and Testing. 128

Administrative Controls . 128

Required Security for Tool Usage . 128

Performance Monitoring Statistics . 133

Performance Objects. 134

Performance Counters . 140

System Monitor . 144

Viewing a Chart in Real Time. 145

Changing the Sampling Interval . 146

Creating a Custom Monitoring Configuration . 147

Saving Real-Time Data . 148

Customizing How Data Is Viewed . 149

Tips for Working with System Monitor . 151

Task Manager . 154

Working with Task Manager . 155

Monitoring Applications. 156

Monitoring Processes . 157

Monitoring Performance . 161

Monitoring the Network . 163

Monitoring Users . 167

Automated Performance Monitoring . 168

Performance Logs and Alerts. 168

Counter Logs . 169

Tips for Working with Performance Logs and Alerts . 178

Creating Performance Logs Using Logman. 178

Managing Performance Logs. 191

Using the Relog Tool . 192

Using Typeperf Queries . 200

Windows Performance Monitoring Architecture . 207

Performance Library DLLs . 207

Performance Counter Text String Files . 208

Performance Data Helper Processing. 208

Disable Performance Counters . 210

Remote Monitoring . 210

Event Tracing for Windows. 212

Event Tracing Overview . 212

Contents vii

Using Log Manager to Create Trace Logs . 217

Event Trace Reports . 224

Alerts . 225

Configuring Alerts . 226

Configuring Alert Notification . 229

Windows System Resource Manager. 233

Network Monitor . 233

3 Measuring Server Performance . 235

Using Performance Measurements Effectively. 237

Identifying Bottlenecks . 237

Management by Exception. 238

Key Performance Indicators . 241

System and Application Availability . 241

Processor Utilization . 242

Monitoring Memory and Paging Rates . 256

Monitoring Disk Operations . 279

Managing Network Traffic . 292

Maintaining Server Applications . 297

Terminal Services . 310

4 Performance Monitoring Procedures . 313

Understanding Which Counters to Log . 314

Background Performance Monitoring . 314

Management Reporting . 315

Capacity Planning. 316

Daily Server Monitoring Procedures . 316

Daily Counter Logs . 317

Using Alerts Effectively . 330

Daily Management Reporting . 338

Historical Data for Capacity Planning . 346

Automated Counter Log Processing . 354

Using a SQL Server Repository . 365

Using the System Monitor Console with SQL Server . 366

How to Configure System Monitor to Log to SQL Server 367

Counter Log Database Schema . 369

Querying the SQL Performance Database . 373

viii Contents

Capacity Planning and Trending . 379

Organizing Data for Capacity Planning . 380

Forecasting Techniques . 383

Counter Log Scenarios . 388

Logging Local Counters . 388

Monitoring Remote Servers in Real Time . 392

Troubleshooting Counter Collection Problems . 395

Missing Performance Counters . 396

Restoring Corrupt Performance Counters . 400

5 Performance Troubleshooting. 401

Bottleneck Analysis . 402

Baseline Data . 402

Current Performance Levels . 403

Resource Utilization and Queue Length . 403

Decomposition. 404

Analysis Procedures . 404

Understanding the Problem . 404

Analyzing the Logged Performance Data . 404

Analyzing Performance Data Interactively. 405

Fine-Grained Analysis Tools . 405

What to Check Next in the Enterprise . 406

Processor Troubleshooting . 406

Resource Utilization and Queue Length . 407

Decomposition. 409

Identifying a Runaway Process by Using Task Manager 413

Identifying a Runaway Process by Using a Counter Log 416

Memory Troubleshooting. 430

Counters to Evaluate When Troubleshooting Memory Performance 431

What to Check Next When Troubleshooting Memory Performance 434

Excessive Paging . 435

Virtual Memory Shortages . 448

32-Bit Virtual Memory Addressing Limits . 456

Disk Troubleshooting. 464

Disk Performance Expectations . 466

Diagnosing Disk Performance Problems . 489

Contents ix

Network Troubleshooting . 509

Counters to Log When Troubleshooting Network Performance 509

Counters to Evaluate When Troubleshooting Network Performance 511

LAN Performance . 514

WAN Performance . 526

6 Advanced Performance Topics . 537

Processor Performance . 538

Instruction Execution Throughput. 539

Time-Slicing Revisited . 546

Multiprocessors. 548

Memory Performance . 608

Extended Virtual Addressing in 32-Bit Machines . 608

64-Bit Virtual Memory. 621

Forecasting Memory Requirements . 622

The System Monitor Automation Interface . 628

Adding the System Monitor ActiveX Control to a Web Page 629

Customizing the System Monitor ActiveX Control . 630

Configuring the System Monitor ActiveX Control Display Type 632

Configuring the System Monitor ActiveX Control Sampling Rate 634

Manually Retrieving Performance Data . 634

Configuring the System Monitor ActiveX Control’s Appearance 636

Configuring the System Monitor ActiveX Control Color Schemes 637

Configuring the System Monitor ActiveX Control Font Styles 638

Adding Performance Counters to the System Monitor ActiveX Control 639

Configuring System Monitor ActiveX Control Performance Counters. 640

Removing Performance Counters from the
System Monitor ActiveX Control . 641

Using Counter Paths to Track Individual Performance Counters 642

Creating a Web Page for Monitoring Performance . 643

Drag-and-Drop Support . 645

Glossary . 649

Index . 681

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

xi

About the Author
Mark Friedman is the president and CEO of Demand Technology Software (DTS) in
Naples, Florida, and is responsible for the development of Microsoft® Windows
Server™ performance monitoring and capacity planning tools for large-scale enter-
prises. Mark founded DTS in 1996, and the company became a Microsoft ISV partner
in 1997. He has been programming on the Windows platform since 1990.

Mark founded OnDemand Software in 1994 and was chairman of the board of direc-
tors of that company when it was sold to Seagate Technology in the spring of 1996.
OnDemand developed and marketed utility software, including the award-winning
WinInstall software distribution package. Between 1987–1991, he was a director of
product development at Landmark Systems and responsible for the design and devel-
opment of TMON/MVS, a leading mainframe performance monitoring product.

Mark is a recognized expert in computer performance, disk and tape performance,
and storage management. He is the author of over 100 technical articles and papers on
these subjects. He co-authored (with Dr. Odysseas Pentakalos) the book Windows
2000 Performance Guide (O’Reilly, 2002). Mark’s training seminars, lectures, and pub-
lished work are highly regarded for their technical quality and depth, and he is
esteemed for his ability to communicate complex technical topics in plain, concise
terms.

He holds a master’s degree in computer science from Temple University.

xiii

Thank you to those who contributed to the Microsoft Windows Server 2003 Performance
Guide and Microsoft Windows Server 2003 Troubleshooting Guide.

Technical Writing Lead: David Stern

Writers: Mark Friedman, Tony Northrup, David Stern, Brit Weston

Editors: Carolyn Eller, Paula Younkin, Julia Ziobro

Project Manager: Cliff Hall

Production Lead: Jim Bevan

Art Production: Chris Blanton, David Hose, Jon Billow

Technical Contributors: Jee Fung Pang, Iain Frew, Neel Jain, Inder Sethi, Brad
Waters, Bruce Worthington Ahmed Talat, Tom Hawthorn, Adam Berkan, Oscar Omar
Garza Santos, Rick Vicik, Kathy Sestrap, David Stern, Jon Wojan, Ben Christenbury,
Steve Patrick, Greg Cottingham, Rick Anderson, Khalil Nasser, Darrell Gorter, Andrew
Ritz, Jeremy Cahill, Rob Haydt, Jonathan V. Smith, Matt Holle, Jamie Schwartz, Keith
Hageman, Terence Hosken, Karan Mehra, Tony Donno, Joseph Davies, Greg Marshall,
Jonathan Schwartz, Chittur Subbaraman, Clark Nicholson, Bob Fruth, Lara Sosnosky,
Charles Anthe, Tim Lytle, Adam Edwards, Simon Muzio, Mike Hillberg, Vic Heller,
Prakash Rao, Ilan Caron, Shy Cohen, Ashwin Palekar, Matt Desai, Mahmood Dhalla,
Joseph Dadzie, David Cross, Jiandong Ruan, Stephane St-Michel, Kamen Moutafov,
KC Lemson, Jim Cavalaris, Jeff Westhead, Glenn Pittaway, Stephen Hui, Davide Mas-
sarenti, David Kruse, Chris Evans, Brian Granowitz, David Lee, Neta Amit, Avi
Shmueli, Jim Thatcher, Pung Xu, Steve Olsson, Ran Kalach, Brian Dewey, V Raman,
Paul Mayfield, David Eitelbach, Jaroslav Dunajsky, Alan Warwick, Pradeep Madhavar-
apu, Kahren Tevosyan, Huei Wang, Ido Ben-Shachar, Florin Teodorescu, Michael
Hills, Fred Bhesania, Randy Aull, Sachin Seth, Chris Stackhouse, David Fields, Stuart
Sechrest, Landy Wang, Duane Thomas, Lisa Cipriano, Kristin Thomas, Stewart Cox,
Joseph Davies, Pilar Ackerman, Cheryl Jenkins

From the Microsoft Press editorial team, the following individuals contributed to the
Microsoft Windows Server 2003 Performance Guide:

Product Planner: Martin DelRe

Project Editor: Karen Szall

Technical Reviewer: Mitch Tulloch

Copy Editor: Victoria Thulman

Production Leads: Dan Latimer and Elizabeth Hansford

Indexers: Tony Ross and Lee Ross

Art Production: Joel Panchot and William Teel

xv

Introduction

Welcome to Microsoft® Windows Server™ 2003 Performance Guide.

The Microsoft Windows 2003 Server Resource Kit consists of seven volumes and a single
compact disc (CD) containing tools, additional reference materials, and an electronic
version of the books (eBooks).

The Microsoft Windows Server 2003 Performance Guide is your technical resource for
optimizing the performance of computers and networks running on the Microsoft
Windows Server 2003 operating system. Windows Server 2003 provides a compre-
hensive set of features that helps you automate the management of most workloads
and configurations. It also provides a powerful set of performance monitoring tools
and performance-oriented settings that you can use to fine-tune system performance.
Use this guide to gain a basic understanding of performance concepts and strategies
so that you can optimize the speed, reliability, and efficiency of your Windows Server
2003 operating system.

Document Conventions
Reader alerts are used throughout the book to point out useful details.

Reader Alert Meaning

Tip A helpful bit of inside information on specific tasks or functions

Note Alerts you to supplementary information

Important Provides information that is essential to the completion of a task

Caution Important information about possible data loss, breaches of security, or
other serious problems

Warning Information essential to completing a task, or notification of potential
harm

xvi Introduction

The following style conventions are used in documenting command-line tasks
throughout this guide.

Resource Kit Companion CD
The companion CD includes a variety of tools and resources to help you work more
efficiently with Microsoft Windows® clients and servers.

Note The tools on the CD are designed to be used on Windows Server 2003 or
Windows XP (or as specified in the documentation of the tool).

The Resource Kit companion CD includes the following:

■ The Microsoft Windows Server 2003 Resource Kit tools—a collection of tools and
other resources that help you to efficiently harness the power of Windows
Server 2003. Use these tools to manage Microsoft Active Directory® directory
services, administer security features, work with the registry, automate recurring
jobs, and perform many other tasks. Use the Tools Help documentation to dis-
cover and learn how to use these administrative tools.

■ Windows Server 2003 Technical Reference—documentation that provides com-
prehensive information about the technologies included in the Windows Server
2003 operating system, including Active Directory and Group Policy, as well as
core operating system, high availability and scalability, networking, storage, and
security technologies.

■ Electronic version (eBook) of this guide as well as an eBook of each of the other
volumes in the Microsoft Windows Server 2003 Resource Kit.

■ EBooks of Microsoft Encyclopedia of Networking, Second Edition, Microsoft Ency-
clopedia of Security, Internet Information Services (IIS) 6 Resource Kit, and Microsoft
Scripting Self-Paced Learning Guide.

■ Sample chapters from the Assessing Network Security and Microsoft Windows
Server 2003 PKI and Certificate Security books.

Element Meaning

Bold font Characters that you type exactly as shown, including commands
and parameters. User interface elements also appear in boldface
type.

Italic font Variables for which you supply a specific value. For example, File-
name.ext can refer to any valid file name.

Monospace font Code samples.

%SystemRoot% Environment variables.

Introduction xvii

■ VBScript Essentials Videos—videos from the Microsoft Windows Administrator’s
Automation Toolkit.

■ A link to the eLearning site where you can access free eLearning clinics and
hand-on labs.

■ An online book survey that gives you the opportunity to comment on your
Resource Kit experience as well as influence future Resource Kit publications.

Resource Kit Support Policy

Microsoft does not support the tools supplied on the Microsoft Windows Server 2003
Resource Kit CD. Microsoft does not guarantee the performance of the tools, or any
bug fixes for these tools. However, Microsoft Press provides a way for customers who
purchase Microsoft Windows Server 2003 Resource Kit to report any problems with the
software and receive feedback for such issues. To report any issues or problems, send
an e-mail message to rkinput@microsoft.com. This e-mail address is only for issues
related to Microsoft Windows Server 2003 Resource Kit and any of the volumes within
the Resource Kit. Microsoft Press also provides corrections for books and companion
CDs through the World Wide Web at http://www.microsoft.com/learning/support/.
To connect directly to the Microsoft Knowledge Base and enter a query regarding a
question or issue you have, go to http://support.microsoft.com. For issues related to
the Microsoft Windows Server 2003 operating system, please refer to the support
information included with your product.

1

Chapter 1

Performance Monitoring
Overview

In this chapter:

Introducing Performance Monitoring . 2

Performance Monitoring Concepts . 12

System Architecture. 37

Summary . 123

Comprehensive measurement data on the operation and performance of computers
running the Microsoft Windows Server 2003 operating system makes these systems
easy to manage. Windows Server 2003 provides powerful and comprehensive features
that manage the performance of most workloads and configurations automatically.
The presence of these advanced features means you usually do not need to intervene
manually to try and coax better performance out of your Windows Server 2003 con-
figuration. Nevertheless, the automatic management facilities might not be optimal in
every case. For those situations in which the performance of applications is slow or
otherwise less than optimal, you can use a variety of tunable, performance-oriented
settings to gain better performance. How to use the most important settings that are
available to fine-tune your Windows Server 2003 machines is one of the main areas of
discussion in Chapter 6, “Advanced Performance Topics,” in this book.

Caution There are many performance settings and tuning parameters that you
can use in Windows Server 2003. The wrong values for these performance and tun-
ing settings can easily do your system more harm than good. Changing the system’s
default settings should be attempted only after a thorough study has convinced you
that the changes contemplated are likely to make things better. How to conduct a
study to determine this is one of the important topics discussed throughout this sec-
tion of the book.

When your performance is not optimal, Windows Server 2003 provides a rich set of
tools for monitoring the performance of a computer system and its key components.
These components include the hardware (for example, the processor, disks, and

2 Microsoft Windows Server 2003 Performance Guide

memory); the network; the operating system and its various services; the major Server
subsystems (for example, security, file, print, Web publishing, database, and messag-
ing); and the specific application processes that are executing. Rest assured that what-
ever role your Windows Server 2003 machine is configured to play in your
environment, your machine will be capable of providing ample information about its
operating characteristics and performance. This chapter shows you how to use this
information effectively to solve a wide variety of problems, from troubleshooting a per-
formance problem to planning for the capacity required to support a major new appli-
cation running on your Windows Server 2003 farm.

This chapter introduces the major facilities for performance monitoring in Windows
Server 2003. It begins by describing the empirical approach that experienced com-
puter performance analysts should adopt to address performance problems. It then
reviews the key concepts that apply whenever you are diagnosing computer perfor-
mance. Because computer performance deals with measurements and their relation-
ship to each other, some of the discussion concerns these mathematical relations.

The central topic in this chapter is an introduction to computer system architecture
from a primarily performance point of view. This introduction focuses on how Win-
dows Server 2003 works so that you will be able to use the performance statistics it
generates more effectively. It also introduces the most important performance
counters that are available for the major system components on your Windows Server
2003 computers. It discusses what these measurements mean and explains how they
are derived. A more comprehensive discussion of the most important performance
statistics is provided in Chapter 3, “Measuring Server Performance,” in this book.

Introducing Performance Monitoring
Configuring and tuning computer systems for optimal performance are perennial
concerns among system administrators. Users of Windows Server 2003 applications
who rely on computer systems technology to get important work done are naturally
also concerned about good performance. When computer performance is erratic or
the response time of critical applications is slow, these consumers are forced to work
less efficiently. For example, customers visiting a .NET e-commerce Web site facing
elongated response times might become dissatisfied and decide to shop elsewhere.

The ability to figure out why a particular system configuration is running slowly is a
desirable skill that is partly science and partly art. Whatever level of skill or artistry
you possess, gathering the performance data is a necessary first step to diagnosing
and resolving a wide range of problems. Determining which data to collect among all
the performance statistics that can be gathered on a Windows Server 2003 machine is

Chapter 1: Performance Monitoring Overview 3

itself a daunting task. Knowing which tool to choose among the different tools sup-
plied with Windows Server 2003 to gather the performance data you need is another
important skill to learn. Finally, learning to understand and interpret the performance
data that you gather is another valuable area of expertise you must cultivate. This sec-
tion of this book is designed to help you with all these aspects of performance moni-
toring. Although reading this chapter and the related chapters in this book will not
immediately transform you into a performance wizard, it will provide the background
necessary for you to acquire that knowledge and skill.

Learning About Performance Monitoring

This introductory chapter looks at the basics of performance monitoring by explain-
ing how a Windows Server 2003 computer system works. It provides an overview of
the performance data that is available and what it can be used for. If you are experi-
enced with performance monitoring, you might want to skim through this chapter
and move to a more challenging one. Figure 1-1 provides a basic roadmap for the
chapters of this book and can help you decide where to start your reading.

Figure 1-1 Chapter roadmap

Ch1. Performance
Monitoring Overview

Concepts and
Definitions.

System Architecture:
Processors, Memory,

Disks, and Networking.

Ch4. Performance
Monitoring Procedures

Daily Monitoring
Best Practices:

Alerts, Management
Reporting,

Capacity Planning,
Stress Testing

New Applications.
Troubleshooting

Counter Log
Collection Problems.

Ch5. Performance
Troubleshooting

Analysis Procedures.
Processor, Memory,
Disk, and Network
Troubleshooting.

Ch2. Performance
Monitoring Tools

System Monitor Console
Performance Logs

and Alerts:
Counter Logs,

Traces, and Alerts.

Ch3. Measuring Server
Performance

Key Performance
Indicators:

Processors, Memory
and Paging,

Disks, Networking,
and Applications.

Ch6. Advanced
Performance Topics
Instruction Execution

Architectures,
Multiprocessor

Scalability, Extended
Virtual Addressing.

System Monitor
Automation Interface.

4 Microsoft Windows Server 2003 Performance Guide

Proactive Performance Monitoring

Experienced drivers are careful to monitor their vehicles’ gas gauges on a regular basis
so that they know how much gas is left in the tank and can stop to refuel before the
tank runs dry. That, of course, is the idea behind the gas gauge in the first place—to
monitor your fuel supply so that you take action to avert a problem before it occurs.
No one would want a gas gauge that waited until after the car had stopped to
announce, “By the way, you are out of gas.”

Unfortunately, many system administrators wait until after a computer has started to
experience problems to begin monitoring its performance. When you discover that
the computer has, say, run out of disk space, it is already too late to take corrective
action that would have averted the problem in the first place. Had you been monitor-
ing performance on a regular basis as part of your routine systems management pro-
cedures, you would have known in advance that disk space was beginning to run low.
You would have been able to take steps to prevent the problem from occurring.
Instead of using performance monitoring to react to problems once they occur, use
proactive measures to ensure that the systems you are responsible for remain capable
of delivering acceptable levels of performance at all times.

Tip Don’t neglect performance monitoring until after something bad happens. Use
proactive measures to find and correct potential performance problems before they
occur.

Understanding the capabilities of the hardware and software that Windows Server
2003 manages is crucial to this goal. The computer and network hardware that you
can acquire today are extremely powerful, but they still have a finite processing capac-
ity. If the applications you are responsible for push hard against the capacity limits of
the equipment you have installed, critical performance problems are likely to occur.
You need to understand how to identify capacity constraints and what you can do
about them when you encounter them. For example, it might be possible to upgrade
to even more powerful hardware or to configure two or more machines into a cluster
that can spread the work from a single machine over multiple ones. But to relieve a
capacity constraint, you must first be able to identify it by having access to perfor-
mance monitoring data that you can understand and know how to analyze.

The overall approach championed throughout this book favors developing proactive
procedures to deal with potential performance and capacity problems in advance.
This approach focuses on continuous performance monitoring, with regular reporting
procedures to identify potential problems before they flare up and begin to have an

Chapter 1: Performance Monitoring Overview 5

impact on daily operations. This book provides detailed guidelines that will allow you
to implement proven methods. These techniques include:

■ Baselining and other forms of workload characterization

■ Stress testing new applications and hardware configurations before deploying
them on a widespread scale

■ Establishing and reporting service level objectives based on the reasonable service
expectations of your applications

■ Management by exception to focus attention on the most serious performance-
related problems

■ Trending and forecasting to ensure that service level objectives can be met in the
future

These are all proven techniques that can successfully scale to an enterprise level. This
book will describe step-by-step procedures that you can implement—what data to col-
lect, what alert thresholds to set, what statistical measures to report, and so on, so that
you can establish an effective program of regular performance monitoring for your
installation. Of course, as you grow more confident in your ability to analyze the per-
formance statistics you gather, you will want to modify the sample procedures
described here. Once you understand better what you are doing, you will be able to
tailor these procedures to suit your environment better.

Diagnosing Performance Problems

Even with effective proactive monitoring procedures in place across your network of
Windows Server 2003 machines, you can still expect occasional flare-ups that will call
for immediate and effective troubleshooting. It is likely that no amount of proactive
monitoring will eliminate the need for all performance troubleshooting. This book
also emphasizes the practical tools, tips, and techniques that you will use to diagnose
and solve common performance problems.

Wherever possible, this book tries to give you clear-cut advice and simple procedures
to follow so that you can quickly diagnose and resolve many common performance
problems. However, a simple cookbook approach to performance monitoring will
take you only so far. Because the Windows Server 2003 systems, applications, and
configurations you manage can be quite complex, the proactive performance proce-
dures that you establish are subject to at least some of that complexity. (For more
information about these performance procedures, see Chapter 4, “Performance Mon-
itoring Procedures,” in this book.) Some of the following factors can complicate the
performance monitoring procedures you implement:

6 Microsoft Windows Server 2003 Performance Guide

■ Complex and expensive hardware configurations Windows Server 2003 sup-
ports a wide range of environments, from simple 32-bit machines with a single
processor, to more complex 64-bit machines with up to 512 GB of RAM and
attached peripherals, to symmetric multiprocessing (SMP) architectures sup-
porting up to 64 processors, and even specialized Non-Uniform Memory Access
(NUMA) architecture machines. These advanced topics are discussed in detail
in Chapter 6, “Advanced Performance Topics.”

■ The number of systems that must be managed Developing automated perfor-
mance monitoring procedures that can scale across multiple machines and
across multiple locations is inherently challenging. For complex environments,
you might need even more powerful tools than those discussed in this book,
including the Microsoft Operations Manager (MOM), a Microsoft product that
provides comprehensive event management, proactive monitoring and alerting,
and reporting and trend analysis for Windows Server System-based networks.
For more information about MOM, see http://www.microsoft.com/mom/.

■ The complexity of the applications that run on Windows Server 2003 Some of
the complex application environments your Windows Server 2003 machines
must support include multi-user Terminal Services configurations, the .NET
Framework of application run-time services, Microsoft Internet Information
Services (IIS) Web server, the Microsoft SQL Server database management
system, and the Microsoft Exchange Server messaging and collaboration
server application. Each of these applications might require specialized pro-
cedures to gather and analyze performance data that is specific to these envi-
ronments. In addition, these servers’ applications can be clustered so that
application processing is distributed across multiple server machines. Many
of the application subsystems have specific configuration and tuning options
that can have an impact on performance levels. In many instances, the appli-
cation-specific knowledge to solve a specific SQL Server or Exchange perfor-
mance problem is beyond the scope of the book. Where possible, other
useful books, resources, and white papers that deal with Microsoft server
application performance are referenced.

Each of these factors can add complexity to any performance problem diagnosis task.
The best solutions to problems of this type are likely to be dependent on highly spe-
cific aspects of your configuration and workload. In addition to providing simple rec-
ipes for resolving common performance issues, this book also attempts to supply you
with the basic knowledge and skills that will allow you to deal with more complex
problems. As you gain confidence in the effectiveness of the methods and analytic
techniques that are described here, you will learn to identify and resolve more difficult
and more complex performance problems.

Chapter 1: Performance Monitoring Overview 7

Overhead Considerations

One of the challenges of performance monitoring in the Windows Server 2003 envi-
ronment is that the system configuration, the hardware, and the application software
can be quite complex, as discussed. The challenge in complex environments is to col-
lect the right amount of performance monitoring data so that you can diagnose and
solve problems when they occur.

Caution You must always be careful to ensure that the performance data you
gather does not put so great a burden on the machine you are monitoring that you
actually contribute to the performance problem you are trying to fix. You must also be
careful to avoid collecting so much performance data that it greatly complicates the
job of analyzing it.

These and other related considerations are aspects of the problem of performance
monitoring overhead. By design, the performance monitoring procedures recom-
mended here gather data that has a high degree of usefulness and a low impact on the
performance of the underlying system. Nevertheless, it is not always possible for per-
formance monitoring procedures to be both efficient and effective at diagnosing spe-
cific problems. The performance data you need to solve a problem might be
voluminous as well as costly to gather and analyze. There are often difficult tradeoffs
decisions that need to be made. You will always need to carefully assess the tradeoffs,
and exercise good judgment about which data to collect and at what cost.

Important In a crisis, overhead considerations pale beside the urgent need to
troubleshoot a problem that is occurring. The normal rules about limiting the impact
of performance monitoring do not apply in a crisis.

In Chapter 2, “Performance Monitoring Tools,” in this book, the architecture of the
main performance monitoring interfaces that Windows Server 2003 uses is discussed.
The mechanisms built into Windows Server 2003 to capture performance statistics,
gather them from different system components, and return them to various perfor-
mance monitoring applications like the built-in Performance Monitor application will
be described in detail. Once you understand how performance monitoring in Win-
dows Server 2003 works, you should be able to make an informed decision about
what costly performance data to gather and when it is justified to do so.

8 Microsoft Windows Server 2003 Performance Guide

Crisis Mode Interventions

You are probably familiar with the crisis mode you and your Information Technology
(IT) organization are plunged into when an urgent performance problem arises.
When a Windows Server 2003 machine responsible for some mission-critical applica-
tion misbehaves, alarms of various kinds start to spread through the IT technical sup-
port group. In the initial stages, there are likely to be many agitated callers to your
organization’s Help Desk function that services the user community. If the crisis is
prolonged, established escalation procedures start to increase the visibility of the key
role your department plays in maintaining a stable systems environment. Many self-
appointed “experts” in this or that aspect of computer performance eventually con-
vene to discuss the situation. Your efforts to resolve the problem quickly are suddenly
thrust into the spotlight. Senior managers who never seemed very interested in your
job function before are now anxious to hear a detailed account of your activities to
solve the current crisis.

During a crisis, it is important that cooler heads prevail. Instead of jumping to a con-
clusion about what caused the current problem, begin by gathering and analyzing
focused data about the problem. Windows Server 2003 includes many tools that are
specifically designed to gather data to solve particular performance problems. Chap-
ter 5, “Performance Troubleshooting,” documents the use of many special purpose
tools that you might only need to use in a crisis.

Normally, the performance monitoring procedures recommended in Chapter 5, “Per-
formance Monitoring Procedures,” are designed to gather performance data without
having a major impact on the performance of the underlying system. In crisis mode,
however, normal overhead considerations do not apply. If costly data gathering will
potentially yield crucial information about a critical performance problem, the normal
overhead considerations usually do not apply.

Scalability

Computer equipment today is extremely powerful, yet performance problems have
not disappeared. The computing resources you have in place are finite. They have def-
inite limits on their processing capability. Scalability concerns how those finite limita-
tions impact performance. Computer professionals worry about scalability because in
their experience, many computer systems encounter performance problems as the
number of users of those systems grows. When computer professionals are discussing
application or hardware scalability, they are concerned with root computer perfor-
mance and capacity planning issues.

Chapter 1: Performance Monitoring Overview 9

Figure 1-2 shows two scalability curves. The left-hand y-axis represents a measure of
performance workload throughput—it could be database transactions per second, disk
I/Os per second, Web visitors per hour, or e-mail messages processed per minute. The
horizontal x-axis shows the growth in the number of users of this application.

Figure 1-2 Ideal vs. actual application scalability

The “Ideal,” or dotted, line is a straight line that shows performance increasing linearly
as a function of the number of users. This is the ideal that computer engineers and
designers strive for. As the number of concurrent users of an application grows, the
user experience does not degrade because of elongated or erratic response times. The
“Actual,” or solid, line models the performance obstacles that an actual system
encounters as the workload grows. Initially, the actual throughput curve diverges very
little from the ideal case. But as the number of users grows, actual performance levels
tend to be nonlinear with respect to the number of users. As more users are added and
the system reaches its capacity limits, the throughput curve eventually plateaus, as
illustrated in the figure.

Frequently, when computer applications are initially deployed, the number of users
is quite small. Because the current system is not close to reaching its capacity limits,
performance appears to scale linearly. But as users are added and usage of the appli-
cation grows, performance problems are inevitably encountered. This is a core con-
cern whenever you are planning for an application deployment that must
accommodate a large number of users. Because computer hardware and software have
finite processing limits, this nonlinear behavior—which is evidence of some form of
performance degradation—can be expected at some point as the number of users
grows. The focus of computer capacity planning, for instance, is to determine at what

Application scalability

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400
Users

Th
ro

ug
hp

ut
Actual Ideal

10 Microsoft Windows Server 2003 Performance Guide

point, as the number of users grows, this performance degradation begins to interfere
with the smooth operation of this application.

Inevitably, computer systems reach their capacity limits, and at that point, when more
users are added, these systems no longer scale linearly. The focus of computer capac-
ity planning for real-world workloads, of course, is to anticipate at what point serious
performance degradation can be expected. After you understand the characteristics of
your workload and the limitations of the computer environment in which it runs, you
should be able to forecast the capacity limits of an application server.

In many instances, you can use stress-testing tools to simulate a growing workload
until you encounter the capacity limits of your hardware. In simulated benchmark
runs, using a stress-testing tool, from which the throughput curves in Figure 1-2 are
drawn, the number of users is increased steadily until the telltale signs of nonlinear
scalability appear. Stress testing your important applications to determine at what
point serious performance degradation occurs is one effective approach to capacity
planning. There are also analytic and modeling approaches to capacity planning that
are effective. The mathematical relationships between key performance measure-
ments, which are discussed in the next section of this chapter, form the basis for these
analytic approaches.

For example, suppose you are able to measure the following:

■ The current utilization of a potentially saturated resource like a processor, disk,
or network adaptor

■ The average individual user’s resource demand that contributes to that
resource’s utilization

■ The rate at which the number of application users is increasing

Using a simple formula called the Utilization Law, which is defined later in this chap-
ter, you will be able to estimate the number of users necessary to drive the designated
resource to its capacity limits, at which point that resource is bound to become a per-
formance bottleneck. By both stress testing your application and using analytic model-
ing techniques, you can predict when the resource will reach its capacity limits. Once
you understand the circumstances that could cause the resource to run out of capac-
ity, you can formulate a strategy to cope with the problem in advance.

Chapter 1: Performance Monitoring Overview 11

Caution Many published articles that discuss application scalability display graphs
of performance levels that are reported as a function of an ever-increasing number of
connected users, similar to Figure 1-2. These articles often compare two or more sim-
ilar applications to show which has the better performance. They are apparently
intended to provide capacity planning guidance, but unless the workload used in the
tests matches your own, the results of these benchmarks might have little applicability
to your own specific problems.

Experienced computer performance analysts understand that nonlinear scalability is
to be expected when you reach the processing capacity at some bottlenecked
resource. You can expect that computer performance will cease to scale linearly at
some point as the number of users increases. As the system approaches its capacity
limits, various performance statistics that measure the amount of work being per-
formed tend to level off. Moreover, computer systems do not degrade gracefully.
When a performance bottleneck develops, measures of application response time
tend to increase very sharply. A slight increase in the amount of work that needs to be
processed, which causes a very sharp increase in the response time of the application,
is often evidence of a resource bottleneck. This nonlinear relationship between utiliza-
tion and response time is also explored in the next section.

Being able to observe a capacity constraint that limits the performance of some real-
world application as the load increases, as illustrated in Figure 1-2, is merely the start-
ing point of computer performance analysis. Once you understand that a bottleneck
is constraining the performance of the application, your analysis should proceed to
identify the component of the application (or the hardware environment that the
application runs in) that is the root cause of the constraint. This book provides guid-
ance on how to perform a bottleneck analysis, a topic that is discussed in Chapter 5,
“Performance Troubleshooting,” but you should be prepared—this step might require
considerable effort and skill.

After you find the bottleneck, you can then proceed to consider various steps that
could relieve this capacity constraint on your system. This is also a step that might
require considerable effort and skill. The alternatives you evaluate are likely to be very
specific to the problem at hand. For example, if you determine that network capacity
is a constraint on the performance of one of your important applications, you will

12 Microsoft Windows Server 2003 Performance Guide

need to consider practical approaches for reducing the application’s network load, for
example, compressing data before it is transmitted over the wire, or alternately, add-
ing network bandwidth. You might also need to weigh both the potential cost and the
benefits of the alternatives proposed before deciding on an effective course of action
to remedy the problem. Some factors you might need to consider include:

■ How long it will take to implement the change and bring some desperately
needed relief to the situation

■ How long the change will be effective, considering the current growth rate in the
application’s usage

■ How to pay for the change, assuming there are additional costs involved in
making the change (for example, additional hardware or software that must
be procured)

Bottleneck analysis is a proven technique that can be applied to diagnose and resolve
a wide variety of performance problems. Your success in using this technique
depends on your ability to gather the relevant performance statistics you will need to
understand where the bottleneck is. Effective performance monitoring procedures are
a necessary first step. Understanding how to interpret the performance information
you gathered is also quite important.

In benchmark runs, simulated users continue to be added to the system beyond the
system’s saturation point. Because these scalability articles report on the behavior of
only simulated “users,” they can safely ignore the impact on real customers and how
these customers react to a computer system that has reached its capacity limits. In real
life, system administrators must deal with dissatisfied customers who react harshly to
erratic performance conditions. There might also be serious economic considerations
associated with performance degradations. Workers who rely on computer systems to
get their daily jobs done on time will lose productivity. Customers who rely on your
applications might become so frustrated that they start to turn to your competitors for
better service. When important business applications reach the limits of their scalabil-
ity using current hardware and software, one of those crisis-mode interventions dis-
cussed earlier is likely to ensue.

Performance Monitoring Concepts
This section introduces the standard computer performance terminology that will be
used in this book. Before you can apply the practices and procedures that are recom-
mended in Chapter 4, “Performance Monitoring Procedures,” it is a good idea to

Chapter 1: Performance Monitoring Overview 13

acquire some familiarity with these basic computer measurement concepts. By neces-
sity, several mathematical formulas are introduced. These formulas are intended to
illustrate the basic concepts used in computer performance analysis. Readers who are
interested in a more formal mathematical presentation should consult any good com-
puter science textbook on the subject.

Computers are electronic machines designed to perform calculations and other types
of arithmetic and logical operations. The components of a computer system—its cen-
tral processing unit (CPU) or processor, disks, network interface card, and so on—that
actually perform the work are known generically as the computer’s resources. Each
resource has a finite capacity to perform designated types of work. Customers generate
work requests for the server machine (or machines) to perform. In this book we are
concerned primarily with Windows Server 2003 machines designed to service
requests from multiple customers. In analyzing the performance of a particular com-
puter system with a given workload, we need to measure the following:

■ The capacity of those machines to perform this work

■ The rate at which the machines are currently performing it

■ The time it takes to complete specific tasks

The next section defines the terms that are commonly used to describe computer per-
formance and capacity and describes how they are related to each other.

Definitions

Most computer performance problems can be analyzed in terms of resources, queues,
service requests, and response time. This section defines these basic performance
measurement concepts. It describes what they mean and how they are related.

Two of the key measures of computer capacity are bandwidth and throughput. Band-
width is a measure of capacity, which is the rate at which work can be completed,
whereas throughput measures the actual rate at which work requests are completed.
Scalability, as discussed in the previous section, is often defined as the throughput of
the machine or device as a function of the total number of users requesting service.
How busy the various resources of a computer system get is known as their utilization.
How much work each resource can process at its maximum level of utilization is
defined as its capacity.

The key measures of the time it takes to perform specific tasks are queue time, service
time, and response time. The term latency is often used in an engineering context to

14 Microsoft Windows Server 2003 Performance Guide

refer to either service time or response time. Response time will be used consistently
here to refer to the sum of service time and queue time. In networks, another key mea-
sure is round trip time, which is the amount of time it takes to send a message and
receive a confirmation message (called an Acknowledgement, or ACK for short) in reply.

When a work request arrives at a busy resource and cannot be serviced immediately,
the request is queued. Queued requests are subject to a queue time delay before they
are serviced. The number of requests that are delayed waiting for service is known as
the queue length.

Note The way terms like response time, service time, and queue time are defined
here is consistent with the way these same terms are defined and used in Queuing
Theory, which is a formal, mathematical approach used widely in computer perfor-
mance analysis.

Elements of a Queuing System

Figure 1-3 illustrates the elements of a simple queuing system. It depicts customer
requests arriving at a server for processing. This example illustrates customer requests
for service arriving intermittently. The customer requests are for different amounts of
service. (The service request arrival rate and service time distributions are both non-
uniform.) The server in the figure could be a processor, a disk, or a network interface
card (NIC). If the device is free when the request arrives, it goes into service immedi-
ately. If the device is already busy servicing some previous request, the request is
queued. Service time refers to the time spent at the device while the request is being
processed. Queue time represents the time spent waiting in the queue until the server
becomes available. Response time is the sum of both service time and queue time.
How busy the server gets is its utilization.

Figure 1-3 The elements of a queuing system

Service
time

Queue
time

Response time

Queue
Server

Service Requests

Arrival Rate Distribution

Chapter 1: Performance Monitoring Overview 15

The computer resource and its queue of service requests depicted in Figure 1-3 leads
to a set of mathematical formulas that can characterize the performance of this queu-
ing system. Some of these basic formulas in queuing theory are described later. Of
course, this model is too simple. Real computer systems are much more complicated.
They have many resources, not only one, that are interconnected. At a minimum, you
might want to depict some of these additional resources, including the processor, one
or more disks, and the network interface cards. Conceptually, these additional com-
ponents can be linked together in a network of queues. Computer scientists can suc-
cessfully model the performance of complex computer systems using queuing
networks such as the one depicted in Figure 1-4. When specified in sufficient detail,
queuing networks, similar to the one illustrated, can model the performance of com-
plex computer systems with great accuracy.

Figure 1-4 A network of queues

Service
Requests

Processor
Queue

Disk

Disk
Queue

Disk
Queue

Disk
Queue

Disk Disk

NICCPU

16 Microsoft Windows Server 2003 Performance Guide

Note Not all the hardware resources necessary for a computer system to function
are easily represented in a simple queuing model like the one depicted in Figure 1-4.
The memory that a computer uses is one notable resource missing from this simple
queuing model. Physical memory, or RAM, is not utilized in quite the same way as
other resources like CPUs and disks. Cache buffering is another important element
that might not be easy to characterize mathematically. Computer scientists use much
more complex queuing models to represent a complex machine environment and all
its critical resources accurately. For example, virtual memory overflowing to the pag-
ing file is usually represented indirectly as an additional disk I/O workload. If an ele-
ment is important to performance, computer scientists usually find a way to represent
it mathematically, but those more complex representations are beyond the scope of
this chapter.

Bandwidth

Bandwidth measures the capacity of a link, bus, channel, interface, or the device itself
to transfer data. Bandwidth is usually measured in either bits/second or bytes/second
(where there are 8 bits in a data byte). For example, the bandwidth of a 10BaseT
Ethernet connection is 10 megabits per second (Mbps), the bandwidth of an ultra SCSI
disk is 160 megabytes per second (MBps), and the bandwidth of the PCI-X 64-bit 100
megahertz (MHz) bus is 800 MBps.

Bandwidth usually refers to the maximum theoretical data transfer rate of a device
under ideal operating conditions. Therefore, it is an upper-bound on actual perfor-
mance. You are seldom able to measure a device actually performing at its full rated
bandwidth. Devices cannot reach their advertised performance level because overhead
is often associated with servicing work requests. For example, you can expect operat-
ing system overhead, protocol message processing time, and a delay in disk position-
ing to absorb some of the available bandwidth for each request to read or write a disk.
These overhead factors mean that the application can seldom use the full rated band-
width of a disk for data transfer. As another example, various overheads associated
with network communication protocols reduce the theoretical capacity of a 100 Mbps
Fast Ethernet link to significantly less than 10 MBps. Consequently, discussing effec-
tive bandwidth or effective capacity—the amount of work that can be accomplished
using the device under real-world conditions—is usually more realistic.

Throughput

Throughput measures the rate that work requests are completed, from the point of
view of some observer. Examples of throughput measurements include the number of
reads per second from the disk or file system, the number of instructions per second
executed by the processor, HTTP requests processed by a Web server, and transac-
tions per second that can be processed by a database engine.

Chapter 1: Performance Monitoring Overview 17

Throughput and bandwidth are very similar. Bandwidth is often construed as the
maximum capacity of the system to perform work, whereas throughput is the current
observed rate at which that work is being performed.

Utilization

Utilization measures the fraction of time that a device is busy servicing requests, usu-
ally reported as a percent busy. Utilization of a device varies from 0 through 1, where
0 is idle and 1 (or 100 percent) represents utilization of the full bandwidth of the
device. It is customary to report that the processor or CPU is 75 percent busy, or the
disk is 40 percent busy. It is not possible for a single device to ever be greater than 100
percent busy.

Measures of resource utilization are common in Windows Server 2003. Later in this
chapter, many of the specific resource utilization measurements that you are able to
gather on your Windows Server 2003 machines will be described. You can easily find
out how busy the processors, disks, and network adaptors are on your machines. You
will also see how these utilization measurements are derived by the operating system,
often using indirect measurement techniques that save on overhead. Knowing how
certain resource utilization measurements are derived will help you understand how
to interpret them.

Monitoring the utilization of various hardware components is an important element
of any capacity planning exercise. If an application server is currently processing 60
transactions per second with a CPU utilization measured at 20 percent, the server
apparently has considerable reserve capacity to process transactions at an even higher
rate. On the other hand, a server processing 60 transactions per second running at a
CPU utilization of 98 percent is operating at or near its maximum capacity.

In forecasting your future capacity requirements based on current performance levels,
understanding the resource profile of workload requests is very important. If you are
monitoring an IIS Web server, for example, and you measure processor utilization at
20 percent busy and the transaction rate at 50 HTTP GET Requests per second, it is
easy to see how you might create the capacity forecast shown in Table 1-1.

Table 1-1 Forecasting Linear Growth in Processor Utilization as a Function of
the Service Request Arrival Rate

HTTP GET Requests/Sec % Processor Time

50 20%

100 40%

150 60%

200 80%

250 100%

18 Microsoft Windows Server 2003 Performance Guide

The measurements you took and the analysis you performed enabled you to antici-
pate that having to process 250 HTTP GET Requests per second at this Web site
would exhaust the current processor capacity. This conclusion should then lead you
to start tracking the growth of your workload, with the idea of recommending addi-
tional processor capacity as the GET Request rate approaches 200 per second, for
example.

You have just executed a simple capacity plan designed to cope with the scalability
limitations of the current computer hardware environment for this workload. Unfor-
tunately, computer capacity planning is rarely quite so simple. For example, Web
transactions use other resources besides the CPU, and one of those other resources
might reach its effective capacity limits long before the CPU becomes saturated.

And there are other complicating factors. One operating assumption in this simple
forecast is that processing one HTTP GET Request every second in this environment
requires 0.4 percent processor utilization, on average. This assumption is based on
your empirical observation of the current system. Other implicit assumptions in this
approach include:

■ Processor utilization is a simple, linear function of the number of HTTP GET
Requests being processed

■ The service time distribution for processor at the processor per HTTP GET
Request—the amount of processor utilization per request—remains constant

Unfortunately, these implicit assumptions might not hold true as the workload grows.
Because of caching effects, for example, the amount of processor time per request
might vary as the workload grows. If the caching is very effective, the amount of pro-
cessor time per request could decrease. If the caching loses effectiveness as the work-
load grows, the average amount of processor time consumed per request might
increase. You will need to continue to monitor this system as it grows to see which of
these cases holds.

The component functioning as the constraining factor on throughput—in this case,
the processor when 250 HTTP GET Requests per second are being processed—is des-
ignated as the bottlenecked device. If you improve performance at the bottlenecked
device—by upgrading to a faster component, for example—you are usually able to
extend the effective capacity of the computer system to perform more work.

Tip Measuring utilization is often very useful in detecting system bottlenecks. Bot-
tlenecks are usually associated with processing constraints at some overloaded device.
It is usually safe to assume that devices observed operating at or near their 100 per-
cent utilization limits are bottlenecks, although things are not always that simple, as
discussed later in this chapter.

Chapter 1: Performance Monitoring Overview 19

It is not always easy to identify the bottlenecked device in a complex computer system
or a network of computer systems. For example, 80 or 90 percent utilization is not
necessarily the target threshold for all devices. Some computer equipment like disk
drives perform more efficiently under heavier loads. These and other anomalies make
the straight-line projections shown in Table 1-1 prone to error if load-dependent servers
are involved.

Service Time

Service time measures how long it takes to process a specific customer work request.
Engineers alternatively often speak of the length of time to process a request as the
device’s latency, which is another word for delay. For example, memory latency mea-
sures the amount of time the processor takes to fetch data or instructions from RAM
or one of its internal memory caches. Other related measures of service time are the
turnaround time for requests, usually ascribed to longer running tasks such as disk-to-
tape backup runs. The round trip time is an important measure of network latency
because when a request is sent to a destination across a communications link using
the Transmission Control Protocol/Internet Protocol (TCP/IP), the sender must wait
for a reply.

The service time of a file system request, for example, will vary based on whether the
request is cached in memory or requires a physical disk operation. The service time
will also vary according to whether it is a sequential read of the disk, a random read of
the disk, or a write operation. The expected service time of the physical disk request
also varies depending on the block size of the request. These workload dependencies
demand that you measure disk service time directly instead of rely on projections that
are based on some idealized model of disk performance.

The service time for a work request is generally assumed to be constant, a simple func-
tion of the device’s speed or its capacity. Though this is largely true, under certain cir-
cumstances, device service times can vary as a function of utilization. Using intelligent
scheduling algorithms, it is often possible for processors and disks to work more effi-
ciently at higher utilization rates. You are able to observe noticeably better service
times for these devices when they are more heavily utilized. Some aspects of these
intelligent scheduling algorithms are described in greater detail later in this chapter.

The service time spent processing an ASP.NET Web-based application request can be
broken down into numerous processing components—for example, time spent in the
application program, time spent during processing by .NET Framework components,
time spent in the operating system, and time spent in database processing. For each
one of these subcomponents, the application service time can be further decomposed
into time spent at various hardware components, for example, the CPU, the disk, and

20 Microsoft Windows Server 2003 Performance Guide

the network. Decomposition is an important technique used in computer performance
analysis to relate a workload to its various hardware and software processing compo-
nents. To decompose application service times into their component parts, you must
understand how busy various hardware components are and, specifically, how work-
loads contribute to that utilization. This can be very challenging for many Windows
Server 2003 transaction processing applications because of their complexity. You will
need to gather detailed trace data to accurately map all the resources used by applica-
tions to the component parts of individual transactions.

Response Time

Response time is the sum of service time and queue time:

response time = service time + queue time

Mathematically, this formula is usually represented as follows:

W = Ws + Wq

where W is latency, Ws is the service time, and Wq is the queue time.

Response time includes both the device latency and any queuing delays that accrue
while the request is queued waiting for the device. At heavily utilized devices, queue
time is likely to represent a disproportionate amount of the observed response time.
Queue time is discussed in greater detail in the next section.

Transaction response time also refers to the amount of time it takes to perform some
unit of work, which can further be decomposed into the time spent using (and some-
times waiting to use) various components of a computer system. Because they best
encapsulate the customer’s experience interacting with an application hosted on a
Windows Server 2003 machine, measures of application response time are among the
most important measures in computer performance and capacity planning. Wherever
possible, management reports detailing application response times are preferable to
reports showing the utilization of computer resources or their service times.

Queue Time

When a work request arrives at a busy resource and cannot be serviced immediately,
the request is queued. Requests are subject to a queue time delay once they begin to
wait in a queue before being serviced.

Queue time arises in a multi-user computer system like Windows Server 2003
because important computer resources are shared. Shared resources include the pro-
cessor, the disks, and network adaptors. This sharing of devices is orchestrated by the
operating system using locking structures in a way that is largely transparent to the
individual programs you are running. The operating system guarantees the integrity

Chapter 1: Performance Monitoring Overview 21

of shared resources like the processor, disks, and network interfaces by ensuring that
contending applications can access them only serially, or one at a time. One of the
major advantages of a multi-user operating system like Windows Server 2003 is that
resources can be shared safely among multiple users.

When a work request to access a shared resource that is already busy servicing
another request occurs, the operating system queues the request and queue time
begins to accumulate. The one aspect of sharing resources that is not totally transpar-
ent to programs executing under Windows Server 2003 is the potential performance
impact of resource sharing. Queuing delays occur because shared resources have mul-
tiple applications attempting to access these resources in parallel. Significant delays at
a constrained resource are apt to become visible. If there is significant contention for
a shared resource because two or more programs are attempting to use it at the same
time, performance might suffer. When there is a performance problem on a local Win-
dows workstation, only one user suffers. When there is a performance problem on a
Windows Server 2003 application server, a multitude of computer users can be
affected.

On a very heavily utilized component of a system, queue time can become a very sig-
nificant source of delay. It is not uncommon for queue time delays to be longer than
the amount of time actually spent receiving service at the device. No doubt, you can
relate to many real-world experiences where queue time is significantly greater than
service time. Consider the time you spend waiting in line in your car at a tollbooth.
The amount of time it takes you to pay the toll is often insignificant compared to the
time you spend waiting in line. The amount of time spent waiting in line to have your
order taken and filled at a fast-food restaurant during the busy lunchtime period is
often significantly longer than the time it takes to process your order. Similarly, queu-
ing delays at an especially busy shared computer resource can be prolonged. It is
important to monitor the queues at shared resources closely to identify periods when
excessive queue time delays are occurring.

Important Measurements of either the queue time at a shared resource or the
queue length are some of the most important indicators of performance you will
encounter.

Queue time can be difficult to measure directly without adding excessive measure-
ment overhead. Direct measurements of queue time are not necessary if both the ser-
vice time and the queue depth (or queue length) can be measured reliably and
accurately. If you know the queue length at a device and the average service time, the
queue time delay can be estimated reliably, as follows:

queue time = average queue length × average service time

22 Microsoft Windows Server 2003 Performance Guide

This simple formula reflects the fact that any queued request must wait for the request
currently being serviced to complete.

Actually, this formula overestimates queue time slightly. On average, the queue time of
the first request in the queue is only one half of the service time. Subsequent requests
that arrive and find the device busy and at least one other request already in the queue
are then forced to wait. Therefore, a better formula is:

queue time = ((queue length−1) × average service time) + (average service time÷2)

Of course, service time is not always so easy to measure either. However, service time
can often be computed using the Utilization Law in cases where it cannot be mea-
sured directly but the device utilization and arrival rate of requests are known.

Not all computer resources are shared on Windows Server 2003, which means that
these unshared devices have no queuing time delays. Input devices like the mouse
and keyboard, for example, are managed by the operating system so that they are
accessible by only one application at a time. These devices are buffered to match the
speed of the people operating them because they are capable of generating interrupts
faster than the application with the current input focus can process their requests.
Instead of queuing these requests, however, the operating system device driver rou-
tines for the keyboard and mouse discard extraneous interrupts. The effect is that lit-
tle or no queue time delay is associated with these devices.

Bottlenecks

One of the most effective methods used to tune performance is systematically to iden-
tify bottlenecked resources and then work to remove or relieve them. When the
throughput of a particular system reaches its effective capacity limits, the system is
said to be bottlenecked. The resource bottleneck is the component that is functioning
at its capacity limit. The bottlenecked resource can also be understood as the resource
with the fastest growing queue as the number of users increases.

Important Empirically, you can identify the bottlenecked resource that serves to
constrain system scalability as the resource that saturates first or the one with the fast-
est growing queue. The goal of performance tuning is to create a balanced system
with no single bottlenecked resource in evidence. A balanced system is one in which
no resource saturates before any other as the load increases, and all resource queues
grow at the same rate. In a balanced system, queue time delays are minimized across
all resources, leading to performance that is optimal for a given configuration and
workload.

Chapter 1: Performance Monitoring Overview 23

Understanding that a computer system is operating at the capacity limit of one of its
components is important to know. It means, for example, that no amount of tweaking
the tuning parameters is going to overcome the capacity constraint and allow the sys-
tem to perform more work. You need more capacity, and any other resolution short of
providing some capacity relief is bound to fall short!

Once you identify a bottlenecked resource, you should follow a systematic approach
to relieve that limit on performance and permit more work to get done. You might
consider these approaches, for example:

■ Optimizing the application so that it runs more efficiently (that is, utilizes less
bandwidth) against the specific resource

■ Upgrading the component of the system that is functioning at or near its effec-
tive bandwidth limits so that it runs faster

■ Balancing the application across multiple resources by adding more processors,
disks, network segments, and so on, and processing it in parallel

Possibly, none of these alternatives for relieving a capacity constraint will succeed in
fixing the problem quick enough to satisfy your users. In these cases, it might be
worthwhile to resort to tweaking this or that system or application tuning parameter
to provide some short-term relief. The most important settings for influencing system
and application performance in Windows Server 2003 are discussed in Chapter 6,
“Advanced Performance Topics.” There are also many run-time settings associated
with applications such as Exchange or Internet Information Services (IIS) that can
impact performance. Many application-oriented optimizations are documented in
other Resource Kit publications or in white papers available at http://
www.microsoft.com.

A number of highly effective performance optimizations are built into Windows
Server 2003. These settings are automatic, but there might be additional adjustments
that are worthwhile for you to consider making manually. These manual adjustments
are discussed in Chapter 6, “Advanced Performance Topics.” Some of the built-in per-
formance optimizations employ intelligent scheduling algorithms. Keep in mind that
scheduling algorithms have a better opportunity to improve performance only when
enough queued requests are outstanding that it makes a difference which request the
operating system schedules next. Consequently, the busier the resource is, the greater
the impact on performance these performance optimizations have. The next section
explains how these scheduling algorithms work.

Managing Queues for Optimal Performance

If multiple requests are waiting in a queue, the queuing discipline is what determines
which request is serviced next. Most queues that humans occupy when they are wait-

24 Microsoft Windows Server 2003 Performance Guide

ing for service are governed by the principle of fairness. A fair method of ordering the
queue is First Come, First Serve (FCFS). This is also known as a FIFO queue, which
stands for First In, First Out. This principle governs how you find yourself waiting in
a bank line to cash a check, for example. FIFO is considered fair because no request
that arrives after another can be serviced before requests that arrived earlier are them-
selves satisfied. Round robin is another fair scheduling algorithm where customers
take turns receiving service.

Unfair scheduling algorithms Fair scheduling policies do not always provide opti-
mal performance. For performance reasons, the Windows Server 2003 operating sys-
tem does not always use fair scheduling policies for the resource queues it is
responsible for managing. Where appropriate, Windows Server 2003 uses unfair
scheduling policies that can produce better results at a heavily loaded device. The
unfair scheduling algorithms that are implemented make it possible for devices such
as processors and disks to work more efficiently under heavier loads, for example.

Priority queuing with preemptive scheduling Certain work requests are
regarded as higher priority than others. If both high priority and low priority requests
are waiting in the queue, it makes sense for the operating system to schedule the
higher priority work first. On Windows Server 2003, queued requests waiting for the
processor are ordered by priority, with higher priority work taking precedence over
lower priority work.

The priority queuing scheme used to manage the processor queue in Windows Server
2003 has at least one additional feature worth considering here. The processor hard-
ware is also used to service high priority interrupts from devices. Devices such as disks
interrupt the processor to signal that an I/O request that was initiated earlier is now
complete. When a device interrupt occurs, the processor stops executing the current
program thread and begins to immediately service the device that generated the
higher priority interrupt. (The interrupted program thread is queued and resched-
uled to resume execution after the interrupt is serviced.) Higher priority work that is
scheduled to run immediately and interrupts a lower priority thread that is already
running is called preemptive scheduling. Windows Server 2003 uses both priority queu-
ing and preemptive scheduling to manage the system’s processor queue. The priority
queuing scheme used by the operating system to manage the processor queue is
reviewed in more detail later in this chapter.

Priority queuing has a well-known side effect that becomes apparent when a resource
is very heavily utilized. If there are enough higher priority work requests to saturate
the processor, lower priority requests might get very little service. This is known as
starvation. When a resource is saturated, priority queuing ensures that higher priority

Chapter 1: Performance Monitoring Overview 25

work receives preferred treatment, but lower priority work can suffer from starvation.
Lower priority work could remain delayed in the queue, receiving little or no service
for extended periods. The resource utilization measurements that are available on
Windows Server 2003 for the processor allow you to assess whether the processor is
saturated, what work is being performed at different priority levels, and whether low
priority tasks are suffering from starvation.

Serving shorter requests first An important result of Queuing Theory is that when
queued requests can be sorted according to the amount of service time that will be
needed to complete the request, higher throughput is achieved if the shorter work
requests are serviced first. This is the same sort of optimization that supermarkets use
when they have shoppers sort themselves into two sets of queues based on the num-
ber of items in their shopping carts. In scheduling work at the processor, for example,
this sorting needs to be done based on the expected service time of the request,
because the actual duration of a service request is not known in advance. Windows
Server 2003 implements a form of dynamic sorting that boosts the priority of proces-
sor service requests that are expected to be short and reduces the priority of requests
that are expected to take longer. Another situation in which queued requests are
ordered by the shortest service time first is when Serial ATA or SCSI disks are enabled
for tagged command queuing.

For all the benefit these intelligent scheduling algorithms confer, it is important to
realize that reordering the device queue can have a significant performance impact
only when there is a long queue of work requests that can be rearranged. Computer
systems on which these scheduling algorithms are most beneficial have a component
that is saturated for an extended period of time, allowing lengthy lines of queued
requests to build up which can then be sorted. Such a system is by definition out of
capacity. Reducing the queue depth at the bottlenecked device by adding capacity, for
example, is a better long-term solution. You should configure machines with sufficient
capacity to service normal peak loads so that lengthy queues that can be sorted opti-
mally are the exception, not the rule. While intelligent scheduling at a saturated
device can provide some relief during periods of exceptional load, its effectiveness
should never divert your attention from the underlying problem, which is a shortage
of capacity at the resource where the queue is being manipulated so favorably.

Bottleneck Analysis

To make the best planning decisions, a traditional approach is to try and understand
hardware speeds and feeds—how fast different pieces of equipment are capable of run-
ning. This approach, however, is much more difficult than it sounds. For example, it

26 Microsoft Windows Server 2003 Performance Guide

certainly sounds like a SCSI disk attached to a 20-MBps SCSI-2 adapter card would
run much slower than one attached to an 80-MBps UltraSCSI-3 adapter card.
UltraSCSI-3 sounds like it should beat an older SCSI-2 configuration every time. But
the fact is that there might be little or no practical difference in the performance of the
two configurations. One reason there might be no difference is because the disk might
transfer data only at 20 MBps anyway, so the extra capacity of the UltraSCSI-3 bus is
never being utilized.

Important A complex system can run only as fast as its slowest component. This is
the principle that underlies the technique of bottleneck analysis.

The principle that a complex system will run only as fast as its slowest component
forms the basis for a very useful analysis technique called bottleneck analysis. The slow-
est device in a configuration is often the weakest link. Find it and replace it with a
faster component, and you have a good chance of improving performance. Replacing
some component other than the bottleneck device with a faster component will not
appreciably improve performance. This theory sounds good, of course, but you prob-
ably noticed that the rule does not tell you how to go about finding this component.
Given the complexity of many modern computer networks, this seemingly simple
task is actually quite complicated.

In both theory and practice, performance tuning is the process of locating the bottle-
neck in a configuration and removing it—somehow. The system’s performance will
improve until the next bottleneck manifests, which you can then identify and remove.
Easing a bottleneck for an overloaded resource usually entails replacing it with a
newer, faster version of the same component. For example, if network bandwidth is a
constraint on performance, upgrade the configuration from 10 Mb Ethernet to 100
Mb Fast Ethernet. If the network actually is the bottleneck, performance should
improve.

A system in which all the bottlenecks have been removed can be said to be a balanced
system. All the components in a balanced system are at least capable of handling the
flow of work from component to component without excessive delays building up at
any one particular component. For a moment, think of the network of computing
components where work flows from one component (the CPU) to another (the disk),
back again, then to another (the network) and back again to the CPU, as depicted in
Figure 1-5. When different workload processing components are evenly distributed
across the hardware devoted to doing the processing, that system is balanced.

You can visualize a balanced system (and not one that is simply over-configured) as
one in which workload components are evenly distributed across the processing

Chapter 1: Performance Monitoring Overview 27

resources. If there are delays, the work that is waiting to be processed is also evenly
distributed in the system. Work that is evenly distributed around the system waiting
to be processed is illustrated in Figure 1-5. Suppose you could crank up the rate at
which requests arrive to be serviced. (Think of SQL Server requests to a Windows
Server 2003 database, for example, or logon requests to an Active Directory authenti-
cation server.) If the system is balanced, you will observe that work waiting to be pro-
cessed remains evenly distributed across system components, as shown in Figure 1-5.

Figure 1-5 A balanced system

If instead you observe something like what is depicted in Figure 1-6, where many
more requests are waiting behind just one of the disks, you have identified with some
authority the component that is the bottleneck in the configuration. When work
backs up behind a bottlenecked device, delays there can cascade, causing delays to
build up elsewhere in the configuration. Because the manner in which work flows
through the system might be complicated, a bottlenecked resource can impact pro-
cessing at other components in unexpected ways. Empirically, it is sufficient to
observe that work accumulates behind the bottlenecked device at the fastest rate as the
workload rate increases. Replacing this component with a faster processing compo-
nent should improve the rate that work that can flow through the entire system.

Service
Requests

Processor
Queue

Disk

Disk
Queue

Disk
Queue

Disk
Queue

Disk Disk

NICCPU

28 Microsoft Windows Server 2003 Performance Guide

Figure 1-6 A bottlenecked system

Utilization Law

The utilization of a device is the product of the observed rate in which requests are
processed and the service time of those requests, as follows:

utilization = completion rate × service time

This simple formula relating device utilization, the request completion rate (or
throughput), and the service time is known as the Utilization Law. Service time is
often difficult to measure, but the Utilization Law makes it possible to measure the
throughput rate and the utilization of a disk, for example, and derive the disk service
time. A disk that processes 30 input/output (I/O) operations per second with an aver-
age service time of 10 milliseconds is busy processing requests 30 × 0.010 sec = 300
milliseconds of utilization every second, or 30 percent busy.

Utilization, by definition, is limited to 0–100 percent device-busy. If it is not possible for
a device to be more than 100 percent utilized, what happens when requests arrive at a
device faster than they can be processed? The answer, of course, is that requests for ser-
vice that arrive faster than they can be serviced must be queued. A related question—
the relationship between queue time and utilization—is explored later in this chapter.

Service
Requests

Processor
Queue

Disk

Disk
Queue

Disk
Queue

Disk
Queue

Disk Disk

NICCPU

Chapter 1: Performance Monitoring Overview 29

There is no substitute for direct measurements of device or application throughput,
service time, and utilization. But the Utilization Law allows you to measure two of the
three terms and then derive the remaining one. Many of the device utilization mea-
surements reported in Windows Server 2003 are derived by taking advantage of the
Utilization Law.

Queue Time and Utilization

If a request A arrives at an idle resource, request A is serviced immediately. If the
resource is already busy servicing request B when request A arrives, request A is
queued for service, forced to wait until the resource becomes free. It should be appar-
ent that the busier a resource gets, the more likely a new request will encounter a busy
device and be forced to wait in a queue. This relationship between utilization and
queue time needs to be investigated further. The insights revealed by a branch of math-
ematics known as Queuing Theory can shed light on this interesting relationship.

Queuing Theory is a branch of applied mathematics that is widely used to model com-
puter system performance. It can be used, for example, to predict how queue time
might behave under load. Only very simple queuing models will be discussed here.
These simple models relate the following:

■ Server utilization (resources are termed servers)

■ Rate at which work requests arrive

■ Service time of those requests

■ Amount of queue time that can be expected as the load on the resource varies

Caution These simple models do not represent reality that closely and are used
mainly because they are easy to calculate. However, experience shows that these sim-
ple queuing models can be very useful in explaining how many of the computer per-
formance measurements you will encounter behave—albeit up to a point.

You need to understand some of the important ways these simple models fail to reflect
the reality of complex computer systems so that you are able to use these mathematical
insights wisely. Simple queuing models, as depicted in Figure 1-3, are characterized by
three elements: the arrival rate of requests, the service time of those requests, and the
number of servers to service those requests. If those three components can be mea-
sured, simple formulas can be used to calculate other interesting metrics. Both the
queue length and the amount of queue time that requests are delayed while waiting for
service can be calculated using a simple formula known as Little’s Law. Queue time
and service time, of course, can then be added together to form response time, which is
usually the information you are most interested in deriving.

30 Microsoft Windows Server 2003 Performance Guide

Arrival Rate Distribution

To put the mathematics of simple Queuing Theory to work, it is necessary to know
both the average rate that requests arrive and the distribution of arrivals around the
average value. The arrival rate distribution describes whether requests are spaced out
evenly (or uniformly) over the measurement interval or whether they tend to be
bunched together, or bursty. When you lack precise measurement data on the arrival
rate distribution, it is usually necessary to assume that the distribution is bursty (or
random). A random arrival rate distribution is often a reasonable assumption, espe-
cially if many independent customers are generating the requests. A large population
of users of an Internet e-business Web site, for example, is apt to generate a randomly
distributed arrival rate. Similarly, a Microsoft Exchange Server servicing the e-mail
requests of employees from a large organization is also likely to approximate a ran-
domly distributed arrival rate.

But it is important to be careful. The independence assumption can also be a very
poor one, especially when the number of customers is very small. Consider, for exam-
ple, a disk device with only one customer, such as a back-up process or a virus scan.
Instead of having random arrivals, a disk back-up process schedules requests to disk
one after another in a serial fashion. A program execution thread from a back-up pro-
gram issuing disk I/O requests will generally not release another I/O request until the
previous one completes. When requests are scheduled in this fashion, it is possible for
a single program to drive the disk to virtually 100 percent utilization levels without
incurring any queuing delay. Most throughput-oriented disk processes routinely vio-
late the independence assumption behind simple queuing models because they
schedule requests to the disk serially. As a consequence, a simple queuing model of
disk performance is likely to seriously overestimate the queue time at a disk device
being accessed by a few customers that are scheduling their requests serially.

Service Time Distribution

It is also necessary to understand both the average service time for requests and the
distribution of those service times around the average value. Again, lacking precise
measurement data, it is simple to assume that the service time distribution is also ran-
dom. It will also be useful to compare and contrast the case where the service time is
relatively constant, or uniform.

The two simple cases illustrated in Figure 1-7 are denoted officially as M/M/1 and M/
D/1 queuing models. The standard notation identifies the following:

arrival rate distribution/service time distribution/number of servers

where M is an exponential, or random distribution; D is a uniform distribution; and 1
is the number of servers (resources).

Chapter 1: Performance Monitoring Overview 31

Figure 1-7 Graphing response time as a function of utilization

Both curves in Figure 1-7 show that the response time of a request increases sharply as
the server utilization increases. Because these simple models assume that service time
remains constant under load (not always a valid assumption), the increase in
response time is a result solely of increases in the request queue time. When device
utilization is relatively low, the response time curve remains reasonably flat. But by the
time the device reaches 50 percent utilization, in the case of M/M/1, the average
queue length is approximately 1. At 50 percent utilization in an M/M/1 model, the
amount of queue time that requests encounter is equal to the service time. To put it
another way, at approximately 50 percent busy, you can expect that queuing delays
lead to response times that are double the amount of time spent actually servicing the
request. Above 50 percent utilization, queue time increases even faster, and more and
more queue time delays accumulate. This is an example of an exponential curve,
where queue time (and response time) is a nonlinear function of utilization. As
resources saturate, queue time comes to dominate the application response time that
customers experience.

The case of M/D/1 shows queue time for a uniform service time distribution that is
exactly 50 percent of an M/M/1 random service time distribution with the same aver-
age service time. Reducing the variability of the service time distribution works to
reduce queue time delays. Many tuning strategies exploit this fact. If work requests
can be scheduled in a way to create a more uniform service time distribution, queue
time—and response time—are significantly reduced. That is why supermarkets, for
example, separate customers into two or three sets of lines based on the number of
items in their shopping carts. This smoothes out the service time distribution in the
supermarket checkout line and reduces the overall average queue time for shoppers
that are waiting their turn.

Response time as a function of utilization
(assumes constant service time = 10)

10

20

30

40

50

60

0 25 50 75 100
Utilization (percent)

Re
sp

on
se

 t
im

e

M/M/1 M/D/1

32 Microsoft Windows Server 2003 Performance Guide

Queue Depth Limits

One other detail of the modeling results just discussed should be examined. Techni-
cally, these results are for open network queuing models that assume the average arrival
rate of new requests remains constant no matter how many requests are backed up in
any of the queues. Mathematically, open queuing models assume that the arrival rate
of requests is sampled from an infinite population. This is an assumption that is made
to keep the mathematics simple. The formula used to derive the queue time from utili-
zation and service time for an M/M/1 model in Figure 1-7 is shown here:

Wq = (Ws × u) / (1 − u)

In this formula, u is the device utilization, Ws is the service time, and Wq is the queue
time.

The corresponding formula for an M/D/1 model where the service time distribution
is uniform is this:

Wq = (Ws × u) / (1 − u) / 2

The practical problem with this simplifying assumption is that it predicts the queue
length growing at a faster rate than you are likely to observe in practice. Mathemati-
cally, both these formulas show extreme behavior as the utilization, u, approaches 100
percent. (As u approaches 1, the denominator in both formulas approaches 0.) This
produces a right-hand tail to the queue length distribution that rises hyper exponen-
tially to infinity as a resource saturates.

In practice, when a bottleneck is evident, the arrival rate of new requests slows down
as more and more customers get stuck in the system, waiting for service. It takes a
more complicated mathematical approach to model this reality. Closed network queu-
ing models are designed to reflect this behavior. In a closed model, there is an upper
limit on the customer population. Examples of such an upper limit in real life include
the number of TCP sessions established that sets an upper limit on the number of net-
work requests that can be queued for service. In dealing with the processor queue,
there is an upper limit on the queue depth based on the number of processing threads
in the system eligible to execute. This upper limit on the size of the population creates
a practical limit on maximum queue depth. If 200 processing threads are defined, for
example, it is impossible for the processor queue depth (representing threads that are
queued for service) to exceed 199. The practical limit on the processor queue depth is
even lower. Because many processing threads are typically idle, a more practical upper
limit on the processor queue depth you are likely to observe is the number of process-
ing threads that are eligible to run, that is, those threads not in a voluntary Wait state.
The number of processing threads that are currently eligible to run, in fact, sets a prac-
tical upper limit on the processor queue depth. Once every thread that is eligible to
run is stuck in the processor queue, jammed up behind a runaway thread in a high
priority loop, for example, no new requests for processor service are generated.

Chapter 1: Performance Monitoring Overview 33

Though closed network queuing models are much more capable of modeling reality
than the simple open models, they lead to sets of simultaneous equations that need to
be solved, and the mathematics is beyond the scope of this chapter. You can learn
more about these equations and the techniques for solving them in any good com-
puter science textbook on the subject. The point of this discussion is to provide some
advice on when to use the simple equations presented here. The simple formulas for
M/M/1 and M/D/1 open queuing models suffice for many capacity planning exer-
cises that do not require a precise solution. However, they break down when there is
a saturated resource. Up until the point when server utilization starts to approach 100
percent, the simple open models generally do a reasonably good job of predicting the
behavior you can observe in practice.

Little’s Law

A mathematical formula known as Little’s Law relates response time and utilization.
In its simplest form, Little’s Law expresses an equivalence relation between response
time (W), the arrival rate (λ), and the number of customer requests in the system (Q),
which is also known as the queue length:

Q = λ × W

Note that in this context, the queue length Q refers both to customer requests in ser-
vice (Qs) and waiting in a queue (Qq) for processing. In Windows Server 2003, there
are several opportunities to take advantage of Little’s Law to estimate the response
time of applications where only the arrival rate and queue length are known. For the
record, Little’s Law is a very general result that applies to a large class of queuing mod-
els. It allows you to estimate response time in a situation in which measurements for
both the arrival rate and the queue length are available. Note that Little’s Law itself
provides no insight into how the response time (W) is broken down into the service
time (Ws) and the queue time delay (Wq).

Unfortunately, defining suitable boundaries for transactions in Windows applications
is very difficult, which is why there are not more direct measurements of response
time available in Windows Server 2003. Using Little’s Law, in at least one instance
(discussed later in this book) it is possible to derive reliable estimates of response time
from the available measurements.

The response time to service a request at a resource is usually a nonlinear function of
its utilization. This nonlinear relation between response time and utilization that usu-
ally holds is known as Little’s Law. Little’s Law explains why linear scalability of appli-
cations is so difficult to achieve. It is a simple and powerful construct, with many
applications to computer performance analysis. However, don’t expect simple formu-
las like Little’s Law to explain everything in computer performance. This chapter, for
example, will highlight several common situations where intelligent scheduling algo-
rithms actually reduce service time at some computer resources the busier the

34 Microsoft Windows Server 2003 Performance Guide

resource gets. You cannot apply simple concepts like Little’s Law unreflexively to
many of the more complicated situations you can expect to encounter.

Response Time Revisited

As the utilization of shared components increases, processing delays tend to be
encountered more frequently. When the network is heavily utilized and Ethernet col-
lisions occur, for example, network interface cards are forced to retransmit packets. As
a result, the service time of individual network requests elongates. The fact that
increasing the rate of requests often leads to processing delays at busy shared compo-
nents is crucial. It means that you should expect that as the load on your server rises
and bottlenecks in the configuration start to appear, the overall response time associ-
ated with processing requests will not hold steady. Not only will the response time for
requests increase as utilization increases, but that response time will likely increase in
a nonlinear relationship with respect to utilization. In other words, as the utilization of
a device increases slightly from 80 percent to 90 percent busy, you might observe that
the response time of requests doubles, for example.

Response time, then, encompasses both the service time at the device processing the
request and any other delays encountered waiting for processing. Formally, response
time is defined as

response time = service time + queue time

where queue time (Wq) represents the amount of time a request waits for service. In
general, at low levels of utilization, there is minimal queuing, which allows device ser-
vice time to dictate response time. As utilization increases, however, queue time
increases nonlinearly and, soon, grows to dominate response time.

Note Although this discussion focuses on the behavior of a queue at a single
resource, network queuing models allow you to step back and analyze the response
time of customer transactions at a higher level. The customer transaction must first be
decomposed into a series of service demands against a set of related resources—how
many times, on average, each transaction uses each of the disks, for example. Then the
response time of the high-level transaction can be modeled as the sum of the
response times at each individual resource.

Conceptually, a client transaction can be represented using a workstation component,
a network transmission component, and a server component. Each of these subcom-
ponents can be further understood as having a processor component, a disk compo-
nent, and a network component, and so on. To track down the source of a
performance problem, you might need measurement data on every one of the
resources involved in processing the request.

Queues are essentially data structures where requests for service are parked until they
can be serviced. Examples of queues abound in Windows Server 2003, and measures

Chapter 1: Performance Monitoring Overview 35

showing the queue length or the amount of time requests wait in the queue for pro-
cessing are some of the most important indicators of performance bottlenecks you are
likely to find. The Windows Server 2003 queues that will be discussed here include
the operating system’s thread scheduling queue, logical and physical disk queues, the
network interface queue, and the queue of Active Server Pages (ASP) and ASP.NET
Web server requests. Little’s Law shows how the rate of requests, the response time,
and the queue length are related. This relationship allows us to calculate, for example,
average response times for ASP.NET requests even though Windows Server 2003 does
not report the average response time of these applications directly.

Preventing Bottlenecks

With regular performance monitoring procedures, you will be able to identify devices
with high utilizations that lead to long queues in which requests are delayed. These
devices are bottlenecks throttling system performance. Intuitively, what can you do
about a bottleneck once you discover one? Several forms of preventive medicine can
usually be prescribed:

1. Upgrade to a faster device, if available.

2. Balance the workload across multiple devices, if possible.

3. Reduce the load on the device by tuning the application, if possible.

4. Change scheduling parameters to favor cherished workloads, if possible.

These are hardly mutually exclusive alternatives. Depending on the situation, you
might want to try more than one of them. Common sense should dictate which of
these alternatives you try first. Which change will have the greatest impact on perfor-
mance? Which configuration change is the least disruptive? Which is the easiest to
implement? Which is possible to back out in case it makes matters worse? Which
alternative involves the least additional cost? Sometimes, the choices are fairly obvi-
ous, but often these are not easy questions to answer.

Measuring Performance

Response time measurements are also important for another reason. For example, the
response time for a Web server is the amount of time between the instant that a client
selects a hyperlink and the requested page is returned and displayed on her monitor.
Because it reflects the user’s perspective, the overall response time is the performance
measure of greatest interest to the users of a computer system. It is axiomatic that long
delays cause user dissatisfaction with the users’ computer systems, although this is
usually not a straightforward relationship either. Human factors research, for
instance, indicates that users might be bothered more by long, unexpected delays
than by consistently long response times that they can become resigned to endure.

36 Microsoft Windows Server 2003 Performance Guide

Conclusions

This section showed how the scalability concerns of computer performance analysts
can be expressed in formal mathematical terms. Queuing systems represent computer
workloads in the form of resources and their queues and customer requests for ser-
vice. The total amount of time a customer waits for a request for service to complete is
the response time of the system. Response time includes both time in service at the
resource and the time delayed in the resource queue waiting for service. A complex
computer system can be represented as a network of interconnected resources and
queues.

The utilization of a resource is the product of the average service time of requests and
the request rate. This relationship, which is known as the Utilization Law, allows you
to calculate the service time of disk I/O requests from the measured utilization of the
disk and the rate of I/O completions.

Queue time is often a significant factor delaying service requests. Consequently, min-
imizing queue time delays is an important performance and tuning technique. A for-
mula known as Little’s Law expresses the number of outstanding requests in the
system, which includes queued requests, as the product of the arrival rate and
response time. Queue time tends to increase exponentially with respect to utilization.
The device with the fastest growing queue as the workload grows becomes the bottle-
neck that constrains performance and limits scalability. Identifying the bottlenecked
device in a configuration that is performing poorly is another important technique in
performance and tuning. Only configuration and tuning actions that improve service
time or reduce queuing at the bottlenecked device can be effective at relieving a capac-
ity constraint. Any other configuration or tuning change that you make will prove
fruitless.

The formulas that were discussed in this section are summarized in Table 1-2.

Table 1-2 Formulas Used in Computer Performance Analysis

Formula Derivation

Response time response time = service time + queue time

Utilization Law utilization = service time × arrival rate

Queue time as a function of
queue length and service time

queue time = ((queue length−1) × average ser-
vice time) + (average service time/2)

Queue time as a function of
utilization and service time: (M/M/1)

queue time = (service time × utilization) /
(1 − utilization)

Queue time as a function of
utilization and service time: (M/D/1)

queue time = (service time × utilization) /
(1 − utilization) / 2

Little’s Law queue length = arrival rate × response time

Chapter 1: Performance Monitoring Overview 37

The Utilization Law and Little’s Law are especially useful when you have measure-
ment data for two of the terms shown in the equation and can use the equations to
derive the third term. The simple open queuing model formulas are mainly useful
conceptually to demonstrate how response time is related to utilization, modeling the
behavior of a bottlenecked system where one or more resources are saturated. The pri-
mary method used in computer performance and tuning is bottleneck analysis, which
uses measurement data to identify saturated resources and then works to eliminate
them systematically.

System Architecture
To use the performance monitoring tools provided with Windows Server 2003 effec-
tively requires a solid background in computer systems architecture. This is knowl-
edge that often takes systems administrators years of experience to acquire. This
section discusses the aspects of computer architecture that are particularly important
in understanding how to use the Windows Server 2003 performance tools effectively.
Among the topics addressed in this section are how Windows Server 2003 thread
scheduling at the processor works, how the system manages virtual memory and pag-
ing, Windows Server 2003 networking services, and the Windows Server 2003 I/O
Manager.

This section describes the basic architectural components of a Windows Server 2003
machine, emphasizing performance-related issues. Discussing these topics here is
intended to introduce a complex subject, providing the basic background you need to
pursue these more complex topics further, particularly as you begin to explore the
performance monitoring tools available to you in Windows Server 2003. Aspects of
the operating system that are most important in diagnosing and resolving perfor-
mance problems are emphasized throughout.

The introductory material presented here is a prerequisite to the discussion in Chap-
ter 3, “Measuring Server Performance,” which describes the most important perfor-
mance statistics that can be gathered. This introductory material also provides the
background necessary to understand the information presented in Chapter 5, “Perfor-
mance Troubleshooting.”

Using the Performance Monitor

The discussion of each major component of the Windows Server 2003 operating sys-
tem focuses on the measurements that are available to help you understand how your
computer is performing.

38 Microsoft Windows Server 2003 Performance Guide

Tip The best way to learn about computer performance is through direct observa-
tion. Look for sections marked as Tips that invite you to follow along with the discus-
sion. Use the built-in Performance Monitor tool to examine the performance counters
that are directly related to the topic you are reading about.

The Performance Monitor is probably the most important tool that you will use to
diagnose performance problems on a Windows Server 2003 machine. Complete doc-
umentation about using this and other performance monitoring tools is available in
Chapter 2, “Performance Monitoring Tools,” in this book. To access the Performance
Monitor, from the Run menu, type perfmon, or click Performance on the Administra-
tive Tools menu.

Performance data in the Performance Monitor is organized into objects, which, in turn,
contain a set of related counters. To open a selection menu so that you can access the
current values of the counters, click the plus sign (+) on the button bar that allows
you to add counters to a real-time display. The names of the counters to watch are ref-
erenced in each Tip section, which look like the Tip that follows. A simple object-
name\counter-name convention is used here to identify the counter. For example, Pro-
cessor\% Processor Time identifies a counter called % Processor Time that you will
find under the Processor object. A complete guide to the syntax for Performance Mon-
itor counters is also provided in Chapter 2, “Performance Monitoring Tools.”

Tip You can observe the performance of your machine in action using the System
Monitor console, which runs a desktop application called Performance Monitor. To
access the System Monitor console, open the Administrative Tools menu and select
Performance. You can watch the current values of many performance statistics using
this tool.

Performance statistics are organized into objects and counters. To add counters to the
current Performance Monitor Chart View, click the Add counters button, identified by
a plus sign (+), to select the counter values you want to observe.

Complete documentation about using the System Monitor console is available in
Chapter 2, “Performance Monitoring Tools.”

Operating Systems

Windows Server 2003 is an operating system program especially designed to run
enterprise and departmental-level server applications on a wide range of computers. A
computer system includes hardware components such as a central processing unit
(CPU, or processor, for short) that performs arithmetic and logical operations, a mem-
ory unit that contains active programs and data, at least one disk drive where com-
puter data files are stored permanently, a network interface to allow the computer to

Chapter 1: Performance Monitoring Overview 39

communicate with other computers, a video display unit that provides visual feed-
back, and a keyboard and mouse to allow for human input. An operating system is a
control program, a piece of software that allows you to utilize the computer system.
An operating system is required to run your computer hardware configuration.

Like many other examples of operating systems software, Windows Server 2003 pro-
vides many important control functions, such as these:

■ Supports Plug and Play services that allow it to recognize, install, and configure
new peripherals such as printers, fax machines, scanners, and tape back-up
devices.

■ Secures the use of your computers against misappropriation by unauthorized
users.

■ Allows you to install and run many popular computer applications. In addition,
it is capable of running multiple application programs at any one time, known
as multithreading.

■ Allows your programs to store and access data files on local disks. In addition, it
allows you to set up and maintain file and print servers so that you can easily
share data files and printers with other attached users.

■ Allows you to set up and maintain Web servers so that other users can interact
and communicate using Internet protocols and other Web services.

Moreover, Windows Server 2003 is designed to function as an application server. It
can be configured to serve many roles, including a domain controller responsible for
security and authentication services; a database server running Microsoft SQL Server,
a database management system (DBMS); a messaging server running the Exchange
messaging and collaboration program; and a Web server running the Internet Infor-
mation Services (IIS) application.

Windows Server 2003 is designed to run on a wide range of computer hardware con-
figurations, including advanced multiprocessor systems costing millions of dollars.
Many of the advanced capabilities of Windows Server 2003 are discussed in Chapter
6, “Advanced Performance Topics.” From a performance perspective, some of the
most important aspects of the Windows Server 2003 operating system are the
advanced hardware functions it supports.

Figure 1-8 shows the basic structure of the Windows Server 2003 operating system
and its most important components. Operating system components run in a pro-
tected mode enforced by the hardware, known as Privileged state or Kernel mode. Ker-
nel mode programs, such as device drivers, can access hardware components directly.
Applications running in User mode cannot—they access hardware components indi-
rectly by calling the operating system services that are responsible for managing hard-
ware devices.

40 Microsoft Windows Server 2003 Performance Guide

Figure 1-8 The main components of the Windows Server 2003 operating system

The full set of operating system services is known as the Executive, which reflects its
role as a control program. Some of the major components of the Executive are dis-
cussed further later in this chapter. A more detailed account of the operating system
structure and logic is provided in Microsoft Windows Server 2003 Resource Kit Trou-
bleshooting Guide.

Components

Operating system components run in Kernel mode. These components include the
kernel, the Executive, and the device drivers, as illustrated in Figure 1-8. Kernel mode
is a method of execution that allows code to access all system memory and the full set

Executive

User
Privileged

User
Process

Win32k.
sys

Video
Driver

Services

Server/Redirector

Ntoskrnl.sys

Hal.sys

Processor.sys

Object
Manager

Process
Manager

Virtual
Memory
Manager

Security
Local

Procedure
Call

Security
Subsystem

Encryption
Subsystem

Win32
Subsystem

Winlogon

NBT

Network
Protocol Stack

TCP/UDP

IP

NDIS
Driver

I/O
Manager

Device
Drivers

File
System
Drivers

I/O Manager
Stack

HARDWARE

Chapter 1: Performance Monitoring Overview 41

of processor instructions. The differential access allowed to Kernel mode and User
mode processes is enforced by the processor architecture. User mode components are
limited to using the set of interfaces provided by the Kernel mode components to
interact with system resources.

The kernel itself, contained in Ntoskrnl.exe, is the core of the Windows Server 2003
layered architecture. The kernel performs low-level operating system functions,
including thread scheduling, dispatching interrupts, and dispatching exceptions. The
kernel controls the operating system’s access to the processor or processors. The ker-
nel schedules different blocks of executing code, called threads, for the processors to
keep them as busy as possible and to maximize efficiency. The kernel also synchro-
nizes activities among Executive-level subcomponents, such as I/O Manager and Pro-
cess Manager, and plays a role in troubleshooting by handling hardware exceptions
and other hardware-dependent functions.

The kernel works closely with the hardware abstraction layer (HAL). The HAL encap-
sulates services that allow the operating system to be very portable from one hard-
ware platform to another. It is the principal layer of software that interacts with the
processor hardware directly. It provides hardware-dependent implementations for
services like thread dispatching and context switching, interrupt processing, instruc-
tion-level serialization, and inter-processor signaling. But it hides the details of these
implementations from the kernel. An example HAL function is translating a serializa-
tion primitive like a spin lock into a hardware-specific instruction sequence that will
test and set a data word in memory in an uninterruptible, atomic operation. The HAL
exports abstract versions of these services that can be called by the kernel, as well as
other Kernel mode programs, allowing them to be written in a manner that is inde-
pendent of the specific hardware implementation. Kernel mode components can gain
access to very efficient HAL spin lock services, for example, without needing to know
how these services are actually implemented on the underlying hardware. The HAL
also provides routines that allow a single device driver to support the same device on
all platforms. Having this hardware abstraction layer between other operating system
functions and specific processor hardware is largely responsible for the ease with
which the Windows Server 2003 operating system can support so many different pro-
cessor architectures.

Another hardware-oriented module, Processr.sys, contains routines to take advantage
of processor power management interfaces, where they exist.

The Executive provides higher-level operating system functions than the kernel, includ-
ing Plug and Play services, power management, memory management, process and
thread management, and security. The Memory Manager, for example, plays a major
role in memory and paging performance, as will be discussed in more detail later.

42 Microsoft Windows Server 2003 Performance Guide

The Win32k.sys module consolidates support for the elements of the Windows Graph-
ical User Interface (GUI) into a set of highly optimized routines. These routines reside
inside the operating system to improve the performance of desktop applications.

The operating system also contains a complete TCP/IP network protocol stack and an
I/O Manager stack for communicating with peripheral devices such as disks, tape
drives, DVD players, and CD players. The video driver that communicates directly
with the graphics display adapter also resides inside the Executive and runs in Privi-
leged mode. The network file server and file server client, respectively Server and Redi-
rector, are services that have major Kernel mode components that run inside the
Executive.

Functions

Figure 1-8 also shows several important operating system functions that run in User
mode outside the Executive. These include the security subsystem, Smss.exe, and the
encryption service contained in Lsass.exe. There are even some Windows graphical
user interface (GUI) functions that reside in the client/server subsystem, Csrss.exe. A
number of other operating system service processes also perform a variety of valuable
functions. Finally, the Windows Logon process, Winlogon.exe, is responsible for
authenticating user logons, which are required to establish a desktop session running
the GUI shell.

Note Application programs running in User mode are restricted from accessing
protected mode memory locations, except through standard operating system calls.
To access a protected mode operating system service, User mode applications call the
Ntdll.dll communications module that executes a state switch to Kernel mode before
calling the appropriate Kernel mode service. Application programs running in User
mode are also restricted from accessing memory locations associated with other User
mode processes. Both of these restrictions protect the integrity of the Windows Server
2003 system from inadvertent damage by a User mode program. This is why some
applications that were designed to run on earlier versions of the DOS or Windows
operating systems might not run on Windows Server 2003.

Many important Windows Server 2003 performance considerations revolve around
the operating system’s support and interaction with hardware components. These
include the processor, memory, disks, and network interfaces. In the next sections,
the way the operating system manages these hardware components is discussed,
along with the most important performance ramifications.

Chapter 1: Performance Monitoring Overview 43

Processors

At the heart of any computer is a central processing unit (CPU), or simply the proces-
sor for short. The processor is the hardware component responsible for computation—
it is a machine that performs arithmetic and logical operations that are presented to it
in the form of computer instructions. These instructions are incorporated into com-
puter programs, which are loaded into the computer’s memory and become the soft-
ware that the machine executes. Windows Server 2003 runs on a wide variety of 32-
bit and 64-bit processors that vary in speed and architecture. In this section, several
important aspects of processor performance in a Windows Server 2003 machine are
discussed.

Windows Server 2003 is a computer software program like any other, except that it is
designed to interface directly with the computer hardware and control it. The operat-
ing system loads first, using a bootstrap program (or boot, for short) that gains con-
trol of the machine a little at a time. After the operating system program initializes, it
is responsible for loading any additional programs that are scheduled to run. These
include the services that are scheduled to be loaded automatically immediately follow-
ing the operating system kernel initialization and, finally, the Winlogon process that
allows you access to the Windows desktop. For a more detailed account of the boot
process of operating system initialization, see the Microsoft Windows Server 2003
Resource Kit Troubleshooting Guide.

The operating system detects the presence of other hardware resources that are
attached to the computer such as memory, disks, network interfaces, and printers,
and loads the device driver programs that control access to them. Device drivers that
are loaded become part of the operating system. The Plug and Play facilities of Win-
dows Server 2003 allow the operating system to detect and support any additional
hardware devices that you happen to connect to the computer at any time after it is up
and running.

The operating system is also responsible for determining what other programs are
actually run on the computer system. This involves a Scheduler function for running
applications fast and efficiently. The Scheduler is responsible for selecting the next
program thread for the processor to execute and setting the processor controls that
allow the selected thread to run.

Threads

A thread is the unit of execution in Windows Server 2003. Every process address space
has one or more execution threads that contain executable instructions. There are
both operating system threads (or kernel threads) and application program threads
that the operating system keeps track of. A thread can be in one of several, mutually
exclusive Execution states, as illustrated in Figure 1-9.

44 Microsoft Windows Server 2003 Performance Guide

Figure 1-9 Thread Execution state

A thread can be:

■ Running The running thread is the set of computer instructions the processor
is currently executing. The processor hardware is capable of executing only one
set of instructions at a time; so, at any one time, only one thread is executing per
processor.

■ Ready A ready thread is one that is eligible to be executed but is waiting for the
processor to become free before it actually can execute. The operating system
stores the handles of all ready threads in the processor Ready queue, where they
are ordered by priority. The priority scheme used in Windows Server 2003 is
described a little later.

■ Waiting A waiting thread is not eligible to run. It is blocked. It remains loaded
in the computer while it is blocked from running until an event that the thread
is waiting for occurs. When a waiting thread unblocks, it transitions to the
Ready state. Blocked threads are frequently waiting for an I/O executing on an
external device to complete.

Note When a peripheral device such as a disk or a network interface card fin-
ishes an operation that it was previously instructed to perform, the device inter-
rupts the processor to demand servicing. You can observe the rate that
interrupts occur on your machine by accessing the Interrupts/sec counter in the
Processor object.

Context switches Computers are loaded with many program threads that all
require execution at the same time. Yet only one program thread can actually execute
at a time. This is known as multiprogramming or multithreading. The Windows Server
2003 operating system, of course, keeps track of all the program threads that are

Ready

Running

Wait

Chapter 1: Performance Monitoring Overview 45

loaded and their Execution state. As soon as a running thread blocks—usually because
it needs to use one of the devices—the Scheduler function selects among the eligible
threads that are ready to run. The Scheduler selects the ready thread with the highest
priority waiting in the Ready queue to run next. It then sets the control registers on
the processor that determine which program thread executes next and passes control
to the thread selected so that its instructions do execute next. This operation is known
as a context switch. A context switch occurs whenever the operation system passes con-
trol from one executing thread to another. Switching threads is one of the functions
that the HAL implements because the mechanics of a context switch are processor-
specific.

Tip Accessing a counter called System\Context switches/sec allows you to observe
the rate at which context switches occur on your machine. You can also observe the
rate at which individual program threads execute by accessing the Thread\Context
switches/sec counter.

There is also a Thread\Thread State counter that tells you the current Execution state
of every thread.

Once a thread is running, it executes continuously on the processor until one of the
following events occurs:

■ A high priority interrupt occurs, signaling that an external device has completed
an operation that was initiated previously.

■ The thread voluntarily relinquishes the processor. This is usually because the
thread needs to perform I/O or is waiting on a lock or a timer.

■ The thread involuntarily relinquishes the processor, usually because it incurred
a page fault, which requires the system to perform I/O on its behalf. Page fault
resolution is discussed in detail in a later section of this chapter.

■ A maximum uninterrupted execution time limit is reached. This is known as a
time slice. At the end of a time slice, the thread remains in the Ready state. The
Scheduler returns a thread that has exhausted its time-slice on the processor to
the Ready queue and then proceeds to dispatch the highest priority thread that
is waiting in the Ready queue. If the long-running thread that was executing is
still the highest priority thread on the Ready queue, it will receive another time
slice and be scheduled to run next anyway. Time-slicing is discussed in greater
detail later in this chapter.

Multithreading The basic rationale for multithreading is that most computing
tasks do not execute instructions continuously. After a typical program thread exe-
cutes for some period of time, it often needs to perform an input/output (I/O) opera-
tion like reading information from the disk, printing some text or graphics to a
printer, or drawing on the video display. While a program thread is waiting for this

46 Microsoft Windows Server 2003 Performance Guide

input/output function to complete, it is not necessary for the program to hang on to
the processor. An operating system that supports multithreading saves the status of a
thread that is waiting, restores its status when it is ready to resume execution, and
tries to find something else that can run in the meantime.

I/O devices are much slower than the processor, and I/O operations typically take a
long time compared to CPU processing. A single I/O operation to a disk might take 5
or 10 milliseconds, which means that the disk is capable of executing perhaps 100 or
so such operations per second. Printers, which are even slower, are usually rated in
pages printed per minute. In contrast, processors typically execute an instruction at
least every one or two clock cycles, where you might be running processors capable of
running at 1500–3000 million cycles per second. During the time that one thread is
delayed doing one disk I/O operation, the processor could be executing some
30,000,000 instructions on behalf of another thread.

Although it leads to more efficient utilization of the processor, multithreading actually
slows down individual execution threads because they are not allowed to run uninter-
rupted from start to finish. In other words, when the thread that was waiting becomes
ready to execute again, it is quite possible for it to be delayed because some higher pri-
ority thread is in line ahead of it. Selecting eligible threads from the Ready queue in
order by priority is an attempt to ensure that more important work is delayed the least.

Preemptive scheduling Like other multiprogrammed operating systems, Windows
Server 2003 manages multiple program threads that are all running concurrently. Of
course, only one program can execute at a time on the processor. Threads selected to run
by the Windows Server 2003 Scheduler execute until they block, normally because they
need to perform an I/O operation to access a device or are waiting for a lock or a timer. Or
they execute until an interrupt occurs, which usually signals the completion of an event
that a blocked thread was waiting for. After a thread is activated following an interrupt,
Windows Server 2003 boosts the dispatching priority of that thread. This means that the
thread that was being executed at the time the interrupt occurred is likely to be preempted
by the now higher priority thread that was waiting for the interrupt to occur. Preemptive
scheduling of higher priority work can delay thread execution, but it typically helps to
balance processor utilization across CPU and I/O bound threads.

Note Thread priority is boosted following an interrupt and decays over time as the
thread executes. This dynamic thread scheduling priority scheme in Windows Server
2003 works with time-slicing to help ensure that a CPU-bound thread cannot monop-
olize the processor when other Ready threads are waiting.

Thread state When an I/O operation completes, a thread that was blocked
becomes eligible to run again. This scheme means that a thread alternates back and
forth between three states: the Ready state where it is eligible to execute, the Running
state where it actually executes instructions, and a Wait state where it is blocked from

Chapter 1: Performance Monitoring Overview 47

executing. Logically, a Thread state transition diagram like the one in Figure 1-9 mod-
els this behavior.

How Windows Server 2003 Tells Time
The way that Windows Server 2003 tells time is crucial to many of the perfor-
mance measurements that the operating system takes. To understand how the
operating system tells time, you must differentiate between several types of
machine hardware “clocks.”

The first clock is the machine instruction execution clock cycle, which is mea-
sured in MHz. The machine’s instruction execution clock is a good indicator of
relative processor speed, but is not accessible externally. The operating system
has no access to the machine instruction execution clock.

Standard Windows timer services create a virtual system clock in 100 nanosec-
ond units. Because this time unit might or might not map easily into the
machine’s real-time clock hardware, maintaining the virtual clock is a HAL func-
tion. These timer services are built around a periodic native clock interrupt,
which is set to occur every 10 milliseconds. Even though the granularity of the
clock is in 100 nanosecond units, a clock “tick” actually occurs only once every
10 milliseconds. This is the most familiar form of clock services available in Win-
dows Server 2003. Programmers, for example, call the SetTimer application pro-
gramming interface (API) function to receive a notification for a specific virtual
clock interrupt. You can get access to the standard clock interval value by calling
GetSystemTimeAdjustment.

There are important operating system functions that work off this standard
clock interrupt. The first is the Scheduler function that checks the current run-
ning thread and performs the % Processor Time accounting that is discussed in
this section. A second Scheduler function checks to see whether the running
thread has exhausted its time slice.

The clock interrupt that drives the standard timer services relies on a native sys-
tem clock, normally a hardware function provided by a chipset external to the
processor. This is also known as the High Precision clock because the native sys-
tem clock usually has significantly higher resolution than the standard Win-
dows timer services. The precise granularity of the native system clock is specific
to the external clock hardware. Win32 programmers can get access to a high
precision clock using QueryPerformanceCounter and QueryPerformanceFrequency.
For example, consider http://support.microsoft.com//kb/172338. In this exam-
ple, the standard 10-millisecond clock timer does not offer enough resolution to
time an instruction loop with sufficient granularity.

48 Microsoft Windows Server 2003 Performance Guide

Tip A thread that is blocked is waiting for some system event to occur. The event
signals that the transition from Waiting to Ready can occur. The Thread\Wait Reason
counter shows the reason threads are blocked. You will find that most threads are
waiting for a signal from the operating system Executive, which corresponds to a
Thread\Wait Reason value of 7. The operating system activates a thread that is waiting
on an event and makes it Ready to run when that event occurs. Common events
include waiting for a clock timer to expire; waiting for an I/O to complete; or waiting
for some requested system service, such as authentication or encryption, to complete.

Interrupt Processing

An interrupt is a signal from an external device to the processor. Hardware devices
raise interrupts to request servicing immediately.

When an I/O request to a disk device, for example, is initiated, the device processes
the request independently of the processor. When the device completes the request, it
raises an interrupt to signal the processor that the operation has completed. This sig-
nal is treated as a very high priority event: the device is relatively slow compared to the
processor, the device needs attention, and some other user might be waiting for the
device to become free. When the processor recognizes the interrupt request (IRQ), it
does the following:

1. It stops whatever it is doing immediately (unless it is already servicing a higher
priority interrupt request).

2. The device’s Interrupt Service Routine (ISR) is dispatched to begin processing
the interrupt. The Interrupt Service Routine is a function of the device driver.

3. The ISR saves the status of the current running thread. This status information
is used to restore the interrupted thread to its previous Execution state the next
time it is selected to run.

4. The ISR stops the device from interrupting and then services the device that
raised the interrupt.

This is why the process is known as an interrupt: the normal flow of thread execution
is interrupted. The thread that was running when the interrupt occurred returns to
the Ready queue. It might not be the thread the Scheduler selects to run following
interrupt processing. In addition, interrupt processing is likely to add another thread
to the Ready queue, namely the thread that was waiting for the event to occur.

Note The thread execution status information that the ISR saves is also known as the
thread context. The thread context includes the thread’s set of machine registers, the ker-
nel stack, a thread environment block, and a user stack in the address space of the
thread’s process. For more information about the thread context, see the Platform SDK.

Chapter 1: Performance Monitoring Overview 49

In Windows Server 2003, one consequence of an interrupt occurring is a likely reor-
dering of the Scheduler Ready queue following interrupt processing. The device
driver that completes the interrupt processing supplies a boost to the priority of the
application thread that transitions from Waiting to Ready when the interrupt process-
ing completes. Interrupt processing juggles priorities so that the thread made ready to
run following interrupt processing is likely to be the highest thread waiting to run in
the Ready queue. Consequently, the application thread that had been waiting for an
I/O request to complete is likely to receive service at the processor next.

Voluntary Wait

A thread voluntarily relinquishes the processor when it issues an I/O request and
then waits for the request to complete. Other voluntary waits include a timer wait, or
waiting for a serialization signal from another thread. A thread issuing a voluntary
wait enters the Wait state. This causes the Windows Server 2003 Scheduler to select
the highest priority task waiting in the Ready queue to execute next. Threads with a
Wait State Reason value of 7, waiting for a component of the Windows 2000 Execu-
tive, are in the voluntary Wait state.

Involuntary Wait

Involuntary waits are usually associated with virtual memory management. For exam-
ple, a thread enters an involuntary Wait state when the processor attempts to execute
an instruction that references data in a buffer that happens not to be currently resi-
dent in physical memory (or RAM). Because the instruction indicated cannot be exe-
cuted, the processor generates a page fault interrupt, which the Virtual Memory
Manager (VMM) must resolve by allocating a free page in memory, reading the appro-
priate page containing the necessary instruction or data into memory from disk, and
re-executing the failed instruction.

A currently running thread encountering a page fault is promptly suspended with the
thread context reset to re-execute the failing instruction. The suspended task is placed
in an involuntary Wait state until the page requested can be brought into memory and
the instruction executed successfully. At that point, the Virtual Memory Manager
component of the operating system is responsible for resolving the page fault and
transitioning the thread from the Wait state back to Ready. Virtual memory and Pag-
ing are topics that are revisited later in this chapter.

Tip There are several Thread Wait Reason values that correspond to virtual memory
involuntary waits. See the Thread\Thread Wait Reason Explain text for more details.
When you are able to observe threads delayed with these Wait Reasons, it is usually a
sign that there is excessive memory management overhead, an indication that the
machine has a shortage of RAM, which forces the memory management routines to
work harder.

50 Microsoft Windows Server 2003 Performance Guide

Time-Slicing

A running thread that almost never needs to perform I/O or block waiting for an event
is not allowed to monopolize the processor completely. Without intervention from
the Scheduler, some very CPU-intensive execution threads will attempt to do this.
There is also the possibility that a program bug will cause the thread to go into an infi-
nite loop in which it will attempt to execute continuously. Either way, the Windows
Server 2003 Scheduler will eventually interrupt the running thread if no other type of
interrupt occurs. If the thread is not inclined to relinquish the processor voluntarily,
the Scheduler eventually forces the thread to return to the Ready queue. This form of
processor sharing is called time-slicing, and it is designed to prevent a CPU-bound task
from dominating the use of the processor for an extended period of time. Without
time-slicing, a high priority CPU-intensive thread could indefinitely delay other
threads waiting in the Ready queue. The Scheduler implements time-slicing using a
high-priority clock timer interrupt that is set to occur at regular intervals to check on
the threads that are running. For more information about this clock interrupt, see
“How Windows Server 2003 Tells Time” sidebar.

When a thread’s allotted time slice is exhausted, the Windows Server 2003 Scheduler
interrupts it and looks for another Ready thread to dispatch. Of course, if the inter-
rupted thread still happens to be the highest priority Ready thread (or the only Ready
thread), the Scheduler is going to select it to run again immediately. The Scheduler
also lowers the priority of any thread that was previously boosted when the thread
executes for the entire duration of its time-slice. This further reduces the likelihood
that a CPU-intensive thread will monopolize the processor. This technique of boost-
ing the relative priority of threads waiting on device interrupts and reducing the pri-
ority of CPU-intensive threads helps to ensure that a CPU-bound thread cannot
monopolize the processor when other Ready threads are waiting.

The duration of a thread’s time-slice is established by default. Under Windows Server
2003, the time slice value is a long interval, which usually benefits long-running
server application threads. Longer time slices lead to less overhead from thread con-
text switching. Shorter time slices generally benefit interactive work. You might con-
sider changing the default time slice value to a shorter interval on a Windows Server
2003 machine that was used predominantly for interactive work under Terminal Ser-
vices, for example. The time-slice settings and criteria for changing them are discussed
in Chapter 6, “Advanced Performance Topics.”

Chapter 1: Performance Monitoring Overview 51

Note The Scheduler uses a simple but flexible mechanism for making sure that run-
ning threads do not execute continuously for more than their allotted time-slice. At
the time the Scheduler initially selects a thread to run, the thread receives an initial
time-slice allotment in quantums. The quantum corresponds to the periodic clock
interrupt interval. During each periodic clock interval that the thread is found running,
the Scheduler subtracts several quantums from the allotment. When the thread has
exhausted its time allotment—that is, the number of quantums it has remaining falls
to zero—the Scheduler forces the thread to return to the Ready queue.

Idle Thread

When the current thread that is running blocks, often because of I/O, the Windows
Server 2003 Scheduler finds some other thread that is ready to run and schedules it
for execution. What if no other program threads are ready to run?

If no threads are ready to run, the Windows Server 2003 Scheduler calls a HAL rou-
tine known as the Idle thread. The Idle thread is not a true thread, nor is it associated
with a real process. There is also no Scheduling priority associated with the Idle
thread. In reality, the Idle thread is a bookkeeping mechanism that is provided to
allow the operating system to measure processor utilization.

Normally, the Idle thread routine will execute a low priority instruction loop continu-
ously until the next interrupt occurs, signaling that there is real work to be done. But,
for example, if the processor supports power management, the Idle thread routine
will eventually call the Processr.sys module to instruct the processor to change to a
state where it consumes less power. The way the Idle thread is implemented is dis-
cussed in greater detail in Chapter 5, “Performance Troubleshooting.”

Accounting for Processor Usage

Windows Server 2003 uses a sampling technique to account for processor usage at
the thread, process, and processor level. The operating system allows the built-in sys-
tem clock to generate a high priority interrupt periodically, normally 100 times per
second. During the servicing of this periodic interval interrupt, the Interrupt Service
Routine checks to see which thread was running when the interrupt occurred. The
ISR then increments a timer tick counter field (a timer tick is 100 nanoseconds) in the
Thread Environment Block to account for the processor usage during the last interval

52 Microsoft Windows Server 2003 Performance Guide

between periodic interrupts. Note that all the processor time during the interval is
attributed to the thread that was executing when the periodic clock interrupt
occurred. This is why the % Processor Time measurements Windows Server 2003
makes should be interpreted as sampled values.

Tip Use the Thread\% Processor Time counter to see how much processor time a
thread accumulates. This data is also rolled up to the process level where you can
watch a similar Process\% Processor Time counter. Because the sampling technique
used to account for processor usage requires a respectable number of samples for any
degree of accuracy, the smallest data collection interval that System Monitor allows is
1 second.

Because the periodic clock interrupt is very high priority, it is possible to account for
processor usage during the Interrupt state as well as threads running in either the
Privileged state or the User state.

Tip The portion of time that a thread is executing in User mode is captured as
Thread\% User Time. Privileged mode execution time is captured in the Thread\%
Privileged Time counter. % User Time and % Privileged Time are also measured at the
Process and Processor levels.

The periodic clock interrupt might also catch the processor when it was previously
executing the Idle thread function in either the HAL or the Processr.sys routine.
The Idle thread is allowed to accumulate processor utilization clock tick samples
exactly like real threads. By subtracting the amount of time the periodic clock inter-
val routine found the system running the Idle thread from 100 percent, it becomes
possible to calculate accurately how busy the processor is over any extended
period of observation.

Note Think of the Idle thread as a bookkeeping mechanism instead of a true exe-
cution thread. The Processor\% Processor Time counter is calculated by subtracting
the amount of time the system found that the Idle thread was running from 100 per-
cent. On a multiprocessor machine, there are separate bookkeeping instances of the
Idle thread, each dedicated to a specific processor. The _Total instance of the Processor
object actually reports the average % Processor Time across all processors during the
interval.

There are two additional subcategories of processor time usage that Windows Server
2003 breaks out. The % Interrupt Time represents processor cycles consumed in

Chapter 1: Performance Monitoring Overview 53

device driver Interrupt Service Routines, which process interrupts from attached
peripherals such as the keyboard, mouse, disks, and network interface cards. Inter-
rupt processing was discussed earlier in this section. This is work performed at very
high priority, typically while other interrupts are disabled. It is captured and reported
separately not only because of its high priority, but also because it is not easily associ-
ated with any particular User mode process.

Windows Server 2003 also tracks the amount of time device drivers spend executing
deferred procedure calls (DPCs), which also service peripheral devices, but run with
interrupts enabled. DPCs represent higher priority work than other system calls and
kernel thread activity. Note that both ISRs and DPCs are discussed later in this chap-
ter when the priority queuing mechanism in Microsoft Windows Server 2003 is
described in more detail.

Note % DPC Time is also included in % Privileged Time. Like % Interrupt Time, it is
only available at the Processor level. When the periodic clock interval catches the sys-
tem executing an ISR or a DPC, it is not possible to associate this interrupt processing
time with any specific User or Kernel mode thread.

Transient threads and processes Although it is usually very accurate, the sampling
technique that the operating system uses to account for processor usage can miss
some of what is happening on your system. Watch out for any transient threads and
processes that execute for so little time that you can miss them entirely. Once a thread
terminates, the processor timer ticks it has accumulated are also destroyed. This is
also true at the process level. When a process terminates, all its associated threads are
destroyed. At the next Performance Monitor collection interval, there is no evidence
that process or thread ever existed!

Tip If you discover that too much of the % Processor Time you gather at the pro-
cessor level is unaccounted for at the process or thread level, your machine might be
running many transient processes. Examine the process Elapsed Time counter to
determine whether you have a large number of transient processes that execute very
quickly. Increase the rate of Performance Monitor data collection until the sample rate
is less than 1/2 the average elapsed time of your transient processes. This will ensure
that you are gathering performance data rapidly enough to catch most of these tran-
sient processes in action.

Increasing the Performance Monitor data collection sample rate also has overhead
considerations, which are discussed in Chapter 2, “Performance Monitoring Tools.”

54 Microsoft Windows Server 2003 Performance Guide

Normalizing CPU time All the % Processor Time utilization measurements that the
operating system gathers are reported relative to the processing power of the hard-
ware. When you use a measurement that reports the processor as being, say, 60 per-
cent, the logical question to ask is “Percent of what?” This is a good question to ask
because you can expect a program running on a 1 GHz Pentium to use three times the
amount of processor time as the same program running on a 3 GHz Pentium
machine.

For comparisons across hardware, normalizing CPU seconds based on a standard hard-
ware platform can be useful. Fortunately, both Intel and AMD microprocessors identify
their clock speed to the initialization NTDETECT routine. Use the System item in Con-
trol Panel to determine the clock speed of the processor installed in your machine.
This clock speed value is also stored in the Registry in the ~MHz field under the
HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor key. When it is avail-
able, a ProcessorNameString can also be found there that provides similar information.

Processor Ready Queue

The System\Processor Queue Length counter is another important indicator of pro-
cessor performance. This is an instantaneous peek at the number of Ready threads
that are currently delayed waiting to run. The Processor Queue Length counter is
reported only at the system level because there is a single Scheduler Dispatch Queue
containing all the threads that are ready to run that is shared by all processors on a
multiprocessor. (The operating system does maintain separate queue structures per
processor, however, to enhance performance of the Scheduler on a multiprocessor.)
The Thread State counter in the Thread object, as discussed earlier, indicates which
threads at the moment are waiting for service at the processor or processors.

When the processor is heavily utilized, there is a greater chance that large values for
the Processor Queue Length can also be observed. The longer the queue, the longer
the delays that threads encounter waiting to execute.

Keep in mind when you are comparing processor utilization and Processor Queue
Length that the former represents a continuously sampled value, whereas the latter
represents a single observation reflecting the measurement taken at the last periodic
clock interval. For example, if you gather performance measurements once per second,
the processor utilization statistics reflect about 100 samples per second. In contrast,
the System\Processor Queue Length counter is based only on the last of these sam-
ples. This discontinuity can distort the relationship between the two measurements.

Note When the system is lightly utilized, you might see unexpectedly large values
of the Processor Queue Length counter. This is an artifact of the way the counter is
derived using the periodic clock interval.

Chapter 1: Performance Monitoring Overview 55

Priority Queuing

Three major processor dispatching priority levels determine the order in which Ready
threads are scheduled to run. The highest priority work in the system is performed at
Interrupt priority by ISRs. The next highest priority is known as Dispatch level. Dis-
patch level is where high priority systems routines known as asynchronous procedure
calls (APCs) and deferred procedure calls (DPCs) run. Finally, there is the Passive Dis-
patch level where both Kernel mode and User mode threads are scheduled. As illus-
trated in Figure 1-10, the three major processor dispatching priority levels determine
the order in which Ready threads are scheduled to run.

Figure 1-10 The overall priority scheme

Interrupt priority Interrupts are subject to priority. The interrupt priority scheme is
determined by the hardware, but in the interest of portability, the priority scheme is
abstracted by the Windows Server 2003 HAL. During interrupt processing, interrupts
from lower priority interrupts are disabled—or masked, in hardware terminology—so
that they remain pending until the current interrupt processing routine completes.
Lower priority devices that attempt to interrupt the processor while it is running dis-
abled for interrupts remain pending until the ISR routine finishes and once again
enables the processor for interrupts. Following interrupt processing, the operating

System shutdown routine

System power-down routine

Interprocessor signaling ISR

Highest IRQ Level

Interprocessor IRQ

IRQ Level 1

Dispatch Level

APC Level

Real-time (fixed)
(16-31)

Dynamic
(1-15)

Zero Page Thread

In
te

rr
up

t
Le

ve
l

D
is

p
at

ch
 L

ev
el

Pa
ss

iv
e

D
is

p
at

ch
 L

ev
el

(S
ch

ed
ul

er
)

Clock ISR routine

Device n ISR routine

Device 1 ISR routine

Deferred procedure calls

Asynchronous procedure calls

Clock IRQ Level

IRQ Level n

56 Microsoft Windows Server 2003 Performance Guide

system resets the processor to return to its normal operating mode, where it is once
again able to receive and process interrupt signals.

Note Running in Disabled mode has some important consequences for Interrupt
Service Routines. Because interrupts are disabled, the ISR cannot sustain a page fault,
something that would normally generate an interrupt. A page fault in an ISR is a fatal
error. To avoid page faults, device drivers allocate memory-resident work areas from
the system’s Nonpaged pool. For a more detailed discussion of the Nonpaged pool,
see the section entitled “System Working Set,” later in this chapter.

Hardware device interrupts are serviced by an Interrupt Service Routine, or ISR,
which is a standard device driver function. Device drivers are extensions of the oper-
ating system tailored to respond to the specific characteristics of the devices they
understand and know how to control. The ISR code executes at the interrupt level pri-
ority, with interrupts disabled at the same level or lower level. An ISR is high priority
by definition because it interrupts the regularly scheduled thread and executes until it
voluntarily relinquishes the processor (or is itself interrupted by a higher priority
interrupt).

Deferred procedure calls For the sake of performance, ISRs should perform the
minimum amount of processing necessary to service the interrupt in Disabled mode.
Any additional device interrupt-related processing that can be performed with the sys-
tem once again enabled for interrupts is executed in a routine that the ISR schedules
to run after interrupts are re-enabled. This special post-interrupt routine is called a
deferred procedure call (DPC).

After all pending interrupts are cleared, queued DPCs are dispatched until the DPC
queue itself is empty.

Tip For each processor, % Interrupt Time and % DPC Time counters are available.
Both % Interrupt Time and % DPC Time are also included in the % Privileged Time
counter. If you want to report on % Interrupt Time and % DPC Time separately, make
sure you then subtract them from % Privileged Time.

Thread dispatching priority After all interrupts are cleared and the DPC queue is
empty, the Windows Server 2003 Scheduler is invoked. The Scheduler examines the
Ready queue, selects the highest priority ready thread, and instructs the processor to
begin executing that thread.

Chapter 1: Performance Monitoring Overview 57

Threads that are ready to run are ordered by priority. Thread dispatching priority is a
number that ranges from zero through 31. The higher the number, the higher the pri-
ority. The thread dispatching priority scheme is illustrated in Figure 1-11. Zero is the
lowest priority and is reserved for use by the system zero page thread. The priority val-
ues 1–31 are divided into two sections, called the dynamic range (1–15) and the real-
time range (16–31). Priority values in the range of 16–31 are used by many operating
system kernel threads. They are seldom used by normal User mode applications.
Real-time priorities are fixed values.

The remaining priorities with values from 1 through 15 are known as the dynamic pri-
ority range. When a User mode process is created, it begins life at the Normal base pri-
ority, which corresponds to a priority of 8. A priority of 8 is the midpoint of the
dynamic range. The base priority of a process can be adjusted by making a call to the
SetPriorityClass Win32 API function. Using SetPriorityClass, you can choose among
the following base priorities: idle, below normal, normal, above normal, and high, as
shown in Figure 1-11. (Below Normal and Above Normal are seldom used.)

Figure 1-11 Base priorities and their ranges

Low
est

Below
N

orm
al

A
b

ove

Below
N

orm
al

A
b

ove
H

ig
hest

Low
est/

H
ig

hest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

System
 Zero Pag

e Thread

D
ynam

ic Id
le

Idle

Low
est

Below
N

orm
al

A
b

ove
H

ig
hest

Normal

Low
est

Below
N

orm
al

A
b

ove
H

ig
hest

Below
Normal

Above
Normal

High

Low
est

Below
N

orm
al

A
b

ove
H

ig
hest

Real-time

Low
est

Below
N

orm
al

A
b

ove
H

ig
hest

D
ynam

ic Tim
e C

ritical
Real-tim

e Tim
e Id

le

Dynamic Range

Ready QueueReady Queue

Real-time Range

Real-tim
e Tim

e C
ritical

Win32
Base Priority

58 Microsoft Windows Server 2003 Performance Guide

Note Priority 0 is reserved for exclusive use by the operating system’s zero page
thread. This is a low priority thread that places zero values in free memory pages. The
Idle Thread, which is a bookkeeping mechanism rather than an actual execution
thread, has no priority level associated with it.

Threads inherit the base priority of the process when they are created, but they can
adjust their priority upward or downward from the base setting dynamically during
run time. Within each dynamic priority class, five priority adjustments can be made at
the thread level by calling SetThreadPriority. These adjustments are highest, above nor-
mal, normal, below normal, and lowest. They correspond to +2, +1, +0, −1, and −2 pri-
ority levels above or below the base level, as illustrated in Figure 1-11. The Win32 API
also provides for two extreme adjustments within the dynamic range to either time-
critical, or priority 15, and idle, or priority 1.

Tip You can monitor a thread’s Base Priority and its Priority Current, the latest pri-
ority level of the thread. Current priority is subject to adjustment in the dynamic
range, with a boost applied to the priority of a thread transitioning from a voluntary
Wait to Ready. Boosted thread scheduling priority decays over time. At the process
level, you can monitor a Process’s Base Priority.

The thread priority adjustments allow an application designer to give threads per-
forming time-critical work like managing the application’s main window or respond-
ing to keyboard and mouse events higher dispatching priority than other threads
processing within the application. On the other hand, threads performing longer-run-
ning background processes can be set to priorities below normal. An application
might even expose a tuning parameter that allows a system administrator to deter-
mine what the dispatching priority of a process or some of its threads should be. Sev-
eral of these Dispatch priority tuning parameters are discussed in Chapter 6,
“Advanced Performance Topics.”

When there is no higher priority interrupt processing, DPCs, or APCs to dispatch, the
Windows Server 2003 Scheduler scans the Ready queue to find the highest priority
ready thread to run next. Ready threads at the same priority level are ordered in a
FIFO (First In, First Out) queue so that there are no ties. This type of scheduling
within the priority level is also called round robin. Round robin, as noted earlier, is con-
sidered a form of fair scheduling.

Dynamic priority adjustments Priorities in the 1–15 range are called dynamic
because they can be adjusted based on their current behavior. A thread that relin-
quishes the processor voluntarily usually has its priority boosted when the event it is
waiting for finally occurs. Boosts are cumulative, although it is not possible to boost a

Chapter 1: Performance Monitoring Overview 59

thread above priority 14, the next-to-highest priority level in the dynamic range. (This
leaves priority level 15 in the dynamic range available for time-critical work.)

Threads that have their priority boosted are also subject to decay back to their current
base. Following a dynamic priority boost, a thread in the Running state has its priority
reduced over time. As a boosted priority of a running thread decays over time, priority
is never pushed below its original base priority. At the expiration of its time slice, a
running thread is forced to return to the Ready queue. At the end of its time slice,
thread priority is reset to the level prior to its original boost.

Tip Using the System Monitor console, you can observe these thread dynamic pri-
ority adjustments in action. Observe the Thread\ Priority Current counter for all the
threads of an application like Microsoft Internet Explorer while you are using it to
browse the Web. You will see that the current priority of some of the threads of the
Internet Explorer process are constantly being adjusted upward and downward, as
illustrated.

These priority adjustments only apply to threads in the dynamic range—that is why it
is known as the “dynamic” range, as Figure 1-12 illustrates. The effect of these
dynamic adjustments is to boost the priority of threads waiting on I/O devices and
lower the priority of long running threads. This approximates the Mean Time To Wait
scheduling algorithm, which optimizes processor throughput and minimizes proces-
sor queuing.

Figure 1-12 Dispatching priorities in the dynamic range are subject to
dynamic adjustment

60 Microsoft Windows Server 2003 Performance Guide

Caution Because these thread adjustments are made automatically thousands of
time per second based on current thread execution behavior, they are likely to be
much more effective than almost any static priority scheme that you can devise your-
self. Override the priority adjustments that the operating system makes automatically
only after a thorough study and careful consideration.

There are no priority adjustments made for threads running in the real-time range.

Important You normally do not need to worry much about the detailed mecha-
nisms that the Windows Server 2003 Scheduler uses unless:

■ The processor is very busy for extended periods of time

■ There are too many threads delayed in the Ready queue

When these two conditions are true, the processor itself is a potential performance
bottleneck. Troubleshooting processor bottlenecks is one of the topics discussed in
Chapter 5, “Performance Troubleshooting.”

If you are experiencing a processor bottleneck, you might consider adjusting the
default settings that govern time-slicing. These settings are discussed in Chapter 6,
“Advanced Performance Topics.”

Although it is seldom necessary to fine-tune Scheduler parameters like the length of a
time slice, Windows Server 2003 does expose one tuning parameter in the Registry
called Win32PrioritySeparation. When to use the Win32PrioritySeparation setting is dis-
cussed in Chapter 6, “Advanced Performance Topics.”

Processor Affinity

On machines with multiple processors, there are additional thread scheduling consid-
erations. By default, Windows Server 2003 multiprocessors are configured symmetri-
cally. Symmetric multiprocessing means that any thread can be dispatched on any
processor. ISRs and DPCs for processing external device interrupts can also run on
any available processor when the configuration is symmetric.

Even though symmetric multiprocessing is easy and convenient, it is not always opti-
mal from a performance standpoint. Multiprocessor performance will often improve if
very active threads are dispatched on the same physical processors. The key to this
performance improvement is the cache techniques that today’s processors utilize to
speed up instruction execution rates. Processor caches store the contents of fre-
quently accessed memory locations. These caches—and there are several—are high-
speed buffers located on the microprocessor chip. Fetching either instructions or data
from a cache is several times faster than accessing RAM directly.

Chapter 1: Performance Monitoring Overview 61

When an execution thread is initially loaded on the processor following a context
switch, the processor cache is empty of the code and data areas associated with the
thread. This is known as cache cold start. Time-consuming memory fetches slow down
instruction execution rates during a cache cold start until some time afterwards as the
cache begins to fill up with the code and data areas the thread references during the
execution interval. Over time, the various processor caches become loaded with the
thread’s frequently accessed data, and the instruction execution rate accelerates.

Because the performance difference between a cache cold start and a warm start is
substantial, it is worthwhile to use a thread’s history to select among the available pro-
cessors where the thread can be scheduled to run. Instead of always experiencing a
slow cache cold start, a thread dispatched on the same physical processor where it
executed last might experience a faster cache warm start. Some of the data and
instructions from memory that the thread accesses might still be in the processor
caches from the last time the thread was running.

Windows Server 2003 uses the thread’s history on a multiprocessor to make its sched-
uling decisions. Favoring one of the processors out of the many that could be avail-
able for thread dispatching on a multiprocessor is known as processor affinity. The
physical processor where the thread was dispatched last is known as the thread’s ideal
processor. If the ideal processor is available when a thread is selected to run, the thread
is dispatched on that processor. This is known as soft affinity, because if the thread’s
ideal processor is not available—it is already busy running a thread of equal or higher
priority—the thread will be dispatched on a less than ideal, but still available proces-
sor. If the ideal processor is busy, but it is running a lower priority thread, the lower
priority thread is pre-empted.

Windows Server 2003 also supports hard affinity in which certain threads can be
restricted to being dispatched on a subset of the available processors. Hard proces-
sor affinity can be an important configuration and tuning option to use for larger
multiprocessor configurations, but it needs to be used with care. More information
about using hard processor affinity is available in Chapter 6, “Advanced Perfor-
mance Topics.”

Memory and Paging

Random access memory (RAM) is an essential element of your computer. Programs
are loaded from disk into memory so that they can be executed. Each memory location
has a unique address, allowing instructions to access and modify the data that is stored
there. Data files stored on the disk must first be loaded into memory before instruc-
tions to manipulate and update that data can be executed. In this section, several
important performance-related aspects of memory usage and paging are discussed.

62 Microsoft Windows Server 2003 Performance Guide

Physical memory (or real memory) needs to be distinguished from virtual memory.
Only specific operating system kernel functions access and operate on physical mem-
ory locations directly on a machine running Windows Server 2003. Application pro-
grams use virtual memory instead, addressing memory locations indirectly.

Virtual memory addressing is a hardware feature of all the processors that Windows
Server 2003 supports. Supporting virtual memory requires close cooperation
between the hardware and the operating system software. The operating system is
responsible for mapping virtual memory addresses to physical memory locations so
that the processor hardware can translate virtual addresses to physical ones as pro-
gram threads execute. Virtual memory addressing also allows executing programs to
reference larger ranges of memory addresses than might actually be installed on the
machine. The operating system is responsible for managing the contents of physical
memory so that this virtual addressing scheme runs as efficiently as possible.

Virtual Addressing

Virtual memory is a feature supported by most advanced processors. Hardware sup-
port for virtual memory includes a hardware mechanism to map from logical (that is,
virtual) memory addresses that application programs reference to physical memory
hardware addresses. When an executable program’s image file is first loaded into
memory, the logical memory address range of the application is divided into fixed size
chunks called pages. As these logical pages are referenced by an executing program,
they are then mapped to similar-sized physical pages that are resident in physical
memory. This mapping is dynamic so that the operating system can ensure that fre-
quently referenced logical addresses reside in physical memory, while infrequently
referenced pages are relegated to paging files on secondary disk storage.

Virtual memory addressing allows executing processes to co-exist in physical memory
without any risk that a thread executing in one process can access physical memory
belonging to another. The operating system creates a separate and independent vir-
tual address space for each individual process that is launched. On 32-bit processors,
each process virtual address space can be as large as 4 GB. On 64-bit processors, pro-
cess virtual address spaces can be as large as 16 terabytes in Windows Server 2003.
Note that each process virtual address space must allow for the range of virtual
addresses that operating system functions use. For example, the 4-GB process virtual
address space on 32-bit machines is divided by default into a 2-GB range of private
addresses that User mode threads can address and a 2-GB range of system addresses
that only kernel threads can address. Application program threads can access only vir-
tual memory locations associated with their parent process virtual address space. A
User mode thread that attempts to access a virtual memory address that is in the sys-
tem range or is outside the range of currently allocated virtual addresses causes an
Access violation the operating system will trap.

Chapter 1: Performance Monitoring Overview 63

Virtual memory systems work well because for executing programs to run, they sel-
dom require all their pages to be resident in physical memory concurrently. The active
subset of virtual memory pages associated with a single process address space that is
currently resident in RAM is known as the process’s working set because those are the
active pages the program references as it executes. With virtual memory, only the
active pages associated with a program’s current working set remain resident in phys-
ical memory. On the other hand, virtual memory systems can run very poorly when
the working sets of active processes greatly exceed the amount of RAM that the com-
puter contains. Serious performance problems can arise when physical memory is
over-committed. Windows Server 2003 provides virtual and physical memory usage
statistics so that you can recognize when an acute shortage of physical memory leads
to performance problems.

Page Tables

Virtual memory addresses are grouped into fixed-size blocks of memory called pages.
The virtual memory pages of a process are backed by pages in physical memory that
are the same size. Page Tables, built and maintained by the operating system, are used
to map virtual memory pages to physical memory. The processor hardware specifies
the size of pages and the format of the Page Tables that are used to map them. This
mapping is dynamic, performed on demand by the operating system as threads run-
ning in the process address space access new virtual memory locations. Because avail-
able RAM is allocated for active pages on demand, virtual memory systems use RAM
very efficiently.

One advantage of virtual memory addressing is that separate application programs
loaded into RAM concurrently are both isolated and protected from each other when
they run. Threads associated with a process can reference only the physical memory
locations that correspond to the process’s unique set of virtual memory pages. This
makes it impossible for a bug in one program to access memory in another executing
program’s virtual address space. Another advantage is that User mode programs can
be written largely independently of how much RAM is actually installed on any partic-
ular machine. A process can be written to reference a uniform-sized virtual address
space regardless of how much physical memory is present on the machine.

Virtual memory addresses are assigned to physical memory locations on demand,
which has a number of implications for the performance of virtual memory machines.
The Memory Manager component of the Windows Server 2003 Executive is responsi-
ble for building and maintaining process address space Page Tables. The Memory
Manager is also responsible for managing physical memory effectively. It attempts to
ensure that an optimal set of pages for each running process—its working set of active
pages—resides in RAM.

64 Microsoft Windows Server 2003 Performance Guide

Note Working set pages are the active pages of a process address space currently
backed by RAM. These are resident pages. Nonresident pages are virtual memory
addresses that are allocated but not currently backed by RAM. Committed pages are
those that have Page Table entries (PTEs). Committed pages can be either resident or
nonresident.

Virtual memory addressing makes life easier for programmers because they no longer
have to worry about how much physical memory is installed. Virtual memory always
makes it appear as if 4 GB of memory is available to use. Virtual memory addressing
is also transparent to the average application programmer. User mode threads never
access anything but virtual memory addresses.

The Virtual Memory Manager performs several vital tasks in support of virtual
addressing. It constructs and maintains the Page Tables. Page Tables are built for each
process address space. The function of the Page Tables is to map logical program vir-
tual addresses to physical memory locations. The location of a process’s set of Page
Tables is passed to the processor hardware during a context switch. The processor
loads them and refers to them to perform virtual-to-physical address translation as it
executes the thread’s instruction stream. This is illustrated in Figure 1-13.

Figure 1-13 Virtual-to-physical address translation

Another key role the operating system plays is to manage the contents of physical
memory effectively. VMM implements a Least Recently Used (LRU) page replacement
policy to ensure that frequently referenced pages remain in physical memory. VMM
also attempts to maintain a pool of free or available pages to ensure that pages faults
can be resolved rapidly. Whenever physical memory is in short supply, the VMM page
replacement policy replenishes the supply of free (available) pages.

Virtual
Address Space

Virtual
Address Space

Physical Memory

Page Tables

Chapter 1: Performance Monitoring Overview 65

When the virtual pages of active processes overflow the size of RAM, the Memory
Manager tries to identify older, inactive pages that are usually better candidates to be
removed from RAM and stored on disk instead. The Memory Manager maintains a
current copy of any inactive virtual memory pages in the paging file. In practice, this
means that the operating systems checks to see whether a page that it temporarily
removes from a process working set has been modified since the last time it was
stored on the paging file. If the page is unchanged—that is, the current copy is cur-
rent—there is no need to copy its contents to disk again before it is removed.

If the Memory Manager succeeds in keeping the active pages of processes in RAM,
then virtual memory addressing is largely transparent to User processes. If there is not
enough RAM to hold the active pages of running processes, there are apt to be perfor-
mance problems. If a running thread accesses a virtual memory address that is not
currently backed by RAM, the hardware generates an interrupt signaling a page fault.
The operating system must then resolve the page fault by accessing the page on disk,
reading it into a free page in RAM, and then re-executing the failed instruction. The
running thread that has encountered the page fault is placed in an involuntary Wait
state for the duration of the page fault resolution process, including the time it takes to
copy the page from disk into memory.

Page Fault Resolution

The most serious performance issues associated with virtual memory are the execu-
tion delays that programs encounter whenever they reference virtual memory loca-
tions that are not in the current set of memory-resident pages. This event is known as
a page fault. A program thread that incurs a page fault is forced into an involuntary
Wait state during page fault resolution for the entire time it takes the operating system
to find the specific page on disk and restore it to physical memory.

When a program execution thread attempts to reference an address on a page that is
not currently resident in physical memory, a hardware interrupt occurs that halts the
executing program. If the page referenced is not currently resident in RAM, the
instruction referencing it fails, creating an addressing exception that generates an inter-
rupt. An operating system Interrupt Service Routine gains control following the inter-
rupt and determines that the address referenced was valid, but that the page
containing that address is not currently resident in RAM. The operating system then
must remedy this situation by locating a copy of the desired page on secondary stor-
age, issuing an I/O operation to the paging file, and copying the designated page from
disk into a free page in RAM. Once the page has been copied successfully, the operat-
ing system re-dispatches the temporarily halted program, allowing the program
thread to continue its normal execution cycle.

66 Microsoft Windows Server 2003 Performance Guide

Note If a User program accesses an invalid memory location because of a logic
error, for example, that references an uninitialized pointer, an addressing exception
similar to a page fault occurs. The same hardware interrupt is raised. It is up to the
Memory Manager’s ISR that gets control following the interrupt to distinguish
between the two situations.

The performance of User mode application programs suffers when there is a shortage
of RAM and too many page faults occur. It is also imperative that page faults be
resolved quickly so that page fault resolution does not delay the execution of program
threads unduly.

Note For the sake of simplicity, the discussion of virtual memory addressing and
paging in this chapter generally ignores the workings of the system file cache. The sys-
tem file cache uses Virtual Memory Manager functions to manage application file
data. The system file cache automatically maps open files into a portion of the system
virtual address range and then uses the process working set memory management
mechanisms discussed in this section to keep the most active portions of current files
resident in physical memory. Cache faults in Windows Server 2003 are a type of page
fault that occurs when an executing program references a section of an open file that
is not currently resident in physical memory. Cache faults are resolved by reading the
appropriate file data from disk or, in the case of a file stored remotely, accessing it
across the network. On many file servers, the system file cache is one of the leading
consumers of both virtual and physical memory.

Available Bytes pool The Windows Server 2003 Memory Manager maintains a
pool of available (free) physical memory pages to resolve page faults quickly. When-
ever the pool is depleted, the Memory Manager replenishes its buffer of available RAM
by trimming older—that is, less frequently referenced—pages of active processes and
writing these to disk. If available RAM is adequate, executing programs seldom
encounter page faults that delay their execution, and the operating system has no dif-
ficulty maintaining a healthy supply of free pages. If the system is short on physical
memory, high page fault rates can occur, slowing down the performance of executing
programs considerably.

The operating system might be unable to maintain an adequate pool of available RAM
if there is less physical memory than the workload requires. This is a situation that
you can recognize by learning to interpret the memory performance statistics that are
available.

Chapter 1: Performance Monitoring Overview 67

Tip The primary indicator of a shortage of RAM is that the pool of Available Bytes,
relative to the size of RAM, is too small. Just as important are the number of paging
operations to and from disk, a Memory counter called Memory\Pages/sec. When
physical memory is over-committed, your system can become so busy moving pages
in and out of RAM that it is not accomplishing much in the way of real work.

Server applications that attempt to allocate as much RAM as possible further compli-
cate matters. These programs, among them SQL Server and Exchange Server, attempt
to grab as much RAM as they can. They communicate and coordinate with the Mem-
ory Manager to determine whether it is a good idea to try and allocate more memory
for database buffers. When you are running these server applications, RAM should
always look like it is almost full. The only way to tell that you could use more RAM on
the system is to look inside these applications and see how effectively they are using
the database buffers they have allocated.

Note Some people like to think of RAM as serving as a cache buffer for virtual
memory addresses. Like most caching schemes, there is usually a point of diminishing
return when adding more and more RAM to your system. All the virtual memory
pages that processes create do not have to be resident in RAM concurrently for per-
formance to be acceptable.

Performance considerations In a virtual memory computer system, some page
fault behavior—for instance, when a program first begins to execute—is inevitable. You
do not need to eliminate paging activity completely. You want to prevent excessive pag-
ing from impacting performance.

Several types of performance problems can occur when there is too little physical
memory:

■ Too many paging operations to disk Too many page faults that result in disk
operations lead to excessive program execution delays. This is the most straight-
forward performance problem associated with virtual memory and paging.
Unfortunately, it is also the one that requires the most intense data gathering to
diagnose.

■ Disk contention Virtual memory machines that sustain high paging rates to
disk might also encounter disk performance problems. The disk I/O activity
because of paging might contend with applications attempting to access their
data files stored on the same disk as the paging file. The most common sign of
a memory shortage is seeing disk performance suffer because of disk conten-
tion. Even though it is a secondary effect, it is often easier to recognize.

68 Microsoft Windows Server 2003 Performance Guide

Tip The Memory Pages/sec counter reports the total number of pages being
moved in and out of RAM. Compare the number Pages/sec to the total number
of Logical Disk\Disk Transfers/sec for the paging file disk. If the disk is saturated
and Pages/sec represents 20–50 percent or more of total Disk transfers/sec,
paging is probably absorbing too much of your available I/O bandwidth.

■ A general physical memory shortage User programs compete for access to avail-
able physical memory. Because physical memory is allocated to process virtual
address spaces on demand, when memory is scarce, all running programs can
suffer.

Note Memory does not get utilized like other shared computer resources.
Unlike processors, disks, and network interfaces, it is not possible to measure
memory request rates, service times, queue time, and utilization factors. For
example, a page in RAM is either occupied or free. While memory is occupied,
it is 100 percent utilized. While it is occupied, it is occupied exclusively by a vir-
tual memory page from a single process address space. How long memory
remains occupied depends on how often it is being accessed and what other
memory accesses are occurring on the system. When memory locations are no
longer active, they might still remain occupied for some time. None of these
usage characteristics of memory is analogous to the way computer resources
like processors, disks, and network interfaces are used.

A severe shortage of physical memory can seriously impact performance. Moving
pages back and forth between disk and memory consumes both processing and disk
capacity. A system forced to use too many CPU and disk resources on virtual memory
management tasks and too few on the application workload is said to be thrashing.
The image that the term thrashing conjures up is a washing machine so overloaded
with clothes that it expends too much energy sloshing laundry around without suc-
ceeding in getting the clothes very clean. Troubleshooting memory bottlenecks is one
of the topics discussed at length in Chapter 5, “Performance Troubleshooting.”

The solution to most paging problems is to install more physical memory capacity to
reduce the amount of paging to disk that needs to occur. If you cannot add memory
capacity immediately, you can take other effective steps to minimize the performance
impact of an acute memory shortage. For instance, you might be able to reduce the
number and size of processes that are running on the system or otherwise reduce the
physical memory demands of the ones that remain. Because a memory shortage often
manifests itself as disk contention, you can also attack the problem by improving disk
performance to the paging file. Possible remedies include:

Chapter 1: Performance Monitoring Overview 69

■ Defining additional paging files across multiple (physical) disks

■ Reducing disk contention by removing other heavily accessed files from the pag-
ing file physical disk or disks

■ Upgrading to faster disks

These disk tuning strategies will speed up page fault resolution for the page faults that
do occur or increase the effective disk bandwidth to allow the system to sustain
heavier paging rates. Disk performance is discussed in greater detail later in this chap-
ter in “The I/O Subsystem” section. Disk tuning strategies are discussed in depth in
Chapter 5, “Performance Troubleshooting.”

Committed Pages

The operating system builds page tables on behalf of each process that is created. A
process’s page tables get built on demand as virtual memory locations are accessed,
potentially mapping the entire virtual process address space range. The Win32 Virtu-
alAlloc API call provides both for reserving contiguous virtual address ranges and com-
mitting specific virtual memory addresses. Merely allocating virtual memory does not
trigger building Page Table entries because you are not yet accessing the virtual mem-
ory address range to store data.

Reserving a range of virtual memory addresses is something your application might
want to do in advance for a data file or other data structure that needs to be mapped
into contiguous virtual storage addresses. Only later, when those virtual addresses are
accessed, is physical memory allocated to allow the program access to those reserved
virtual memory pages. The operating system constructs a Page Table entry to map the
virtual address into RAM. Alternatively, a PTE points to the address of the page where
it is stored on one of the paging files. The paging files that are defined allow virtual
memory pages that will not all fit in RAM to spill over onto disk.

Committing virtual memory addresses causes the Virtual Memory Manager to ensure
that the process address space requesting the memory will be able to access it. This is
accomplished by charging the request against the system’s commit limit. Any unre-
served and unallocated process virtual memory addresses are considered free.

Commit Limit The Commit Limit is the upper limit on the total number of Page
Table entries the operating system will build on behalf of all running processes. The
virtual memory Commit Limit prevents the system from creating a virtual memory
page that cannot fit somewhere in either RAM or the paging files.

70 Microsoft Windows Server 2003 Performance Guide

Note The number of PTEs that can be built per process is limited by the width of a
virtual address. For machines using a 32-bit virtual address, there is a 4-GB limit on the
size of the process virtual address space. A 32-bit machine with a 4-bit Physical
Address Extension (PAE) can be configured with more than 4 GB of RAM, but process
virtual address spaces are still limited to 4 GB. Machines with 64-bit virtual addressing
allow the operating system to build process address spaces larger than 4 GB. Windows
Server 2003 builds process address spaces on 64-bit machines that can be as large as
16 TB. For more information about 64-bit addressing, see Chapter 6, “Advanced Per-
formance Topics.”

The Commit Limit is the sum of the amount of physical memory, plus the size of the
paging files, minus some system overhead. When the Commit Limit is reached, a pro-
cess can no longer allocate virtual memory. Programs making routine calls to VirtualA-
lloc to allocate memory will fail.

Paging file extension Before the Commit Limit is reached, Windows Server 2003
will alert you to the possibility that virtual memory could soon be exhausted. When-
ever a paging file becomes nearly full, a distinctive warning message, shown in Figure
1-14, is issued to the console. Also generated is a System Event log message with an ID
of 26 that documents the condition.

Figure 1-14 Out of Virtual Memory console error message

Chapter 1: Performance Monitoring Overview 71

Following the instructions in the error message directs you to the Virtual Memory
control (Figure 1-15) from the Advanced tab of the System item in Control Panel,
where additional paging files can be defined or the existing paging files can be
extended (assuming disk space is available and the page file does not already exceed
its 4-GB upper limit). Note that this extension of the paging file occurs immediately
while the system is running—it is not necessary to reboot the system.

Figure 1-15 The Virtual Memory dialog for configuring the location and size
of the paging files

Windows Server 2003 creates an initial paging file automatically when the operating
system is first installed. The default paging file is built on the same logical drive where
Windows Server 2003 is installed. The initial paging file is built with a minimum allo-
cation equal to 1.5 times the amount of physical memory. It is defined by default so
that it can extend to approximately two times the initial allocation.

The Virtual Memory dialog illustrated in Figure 1-15 allows you to set initial and max-
imum values that define a range of allocated paging file space on disk for each paging
file created. When the system appears to be running out of virtual memory, the Mem-
ory Manager will automatically extend a paging file that is running out of space, has a
range defined, and is currently not at its maximum allocation value. This extension, of
course, is also subject to space being available on the specified logical disk. The auto-
matic extension of the paging file increases the amount of virtual memory available
for allocation requests. This extension of the Commit Limit might be necessary to
keep the system from crashing.

72 Microsoft Windows Server 2003 Performance Guide

Warning Windows Server 2003 supports a maximum of 16 paging files, each of
which must reside on distinct logical disk partitions. Page files are named Pagefile.sys
and are always created in the root directory of a logical disk. On 32-bit systems, each
paging file can hold up to 1 million pages, so each can be as large as 4 GB on disk. This
yields an upper limit on the amount of virtual memory that can be allocated, 16 × 4
GB, or 64 GB, plus whatever amount of RAM is installed on the machine.

Extending the paging file automatically might have some performance impact. When
the paging file allocation extends, it no longer occupies a contiguous set of disk sec-
tors. Because the extension fragments the paging file, I/O operations to disk might
suffer from longer seek times. On balance, this potential performance degradation is
far outweighed by availability considerations. Without a paging file extension occur-
ring automatically, the system is vulnerable to running out of virtual memory and
crashing.

Warning Although you can easily prevent paging files from being extended auto-
matically by setting the Maximum Size of the paging file equal to its Initial Size, doing
this is seldom a good idea. Allowing the paging file to be extended automatically can
save the system from crashing. This benefit far outweighs any performance degrada-
tion that might occur. To maintain highly available systems, ensure that paging files
and their extensions exceed the demand for committed bytes of your workload. See
Chapter 3, “Measuring Server Performance,” for a description of the Performance
Monitor counters you should monitor to ensure you always have enough virtual
memory space defined.

Please note that a fragmented paging file is not always a serious performance liability.
Because your paging files coexist on physical disks with other application data files,
some disk seek activity that moves the disk read/write head back and forth between
the paging file and application data files is unavoidable. Extending the paging file so
that there are noncontiguous segments, some of which might be in areas of the disk
that are surrounded by application data files, might actually reduce overall average
seek distances for paging file operations.

Multiple paging files Windows Server 2003 supports up to 16 paging files. Having
multiple paging files has possible performance advantages. It provides greater band-
width for disk I/O paging operations. In Windows Server 2003, you can define only
one paging file per logical disk.

Chapter 1: Performance Monitoring Overview 73

Caution The contents of physical memory are copied to the paging file located on
the system root volume whenever the system creates a memory crash dump. To gen-
erate a complete diagnostic crash dump, the paging file located on the system root
volume must be at least as large as the size of RAM. Reducing the size of the primary
paging file to below the size of RAM or eliminating it altogether will prevent you from
generating a complete crash dump.

To maximize disk throughput, try to define paging files on separate physical disks, if
possible. The performance benefit of defining more than one paging file depends on
being able to access multiple physical disks in parallel. However, multiple paging files
configured on the same physical disk leads only to increased disk contention. Of
course, what looks like a single physical disk to the operating system might in fact be
an array of disks managed by a hardware disk array controller. Again, the rule of
thumb of allocating no more than one paging file per physical disk usually applies.

Caution Because paging files often sustain a higher percentage of write than read
operations, it is recommended that you avoid using RAID 5 disk arrays for the paging
file, if possible. The RAID 5 write performance penalty makes this type of disk array a
bad choice for a paging disk.

Clustered paging I/O Windows Server 2003 performs clustered paging file I/O. This
feature might encourage you to configure multiple paging files. When a page fault
occurs and the Memory Manager must retrieve it from the paging file, additional
related pages are also copied into memory in the same operation. The rationale for
clustered paging is simple. Individual disk I/O operations to the paging file are time-
consuming. After spending considerable time positioning the disk arm over the cor-
rect disk sector, it makes sense to gather any related nearby pages from the disk in one
continuous operation. This is also known as prefetching or anticipatory paging.

The reasoning behind anticipatory paging is similar to that which leads to your deci-
sion to add a few extra items to your shopping cart when you make an emergency visit
to the supermarket to buy a loaf of bread and a carton of milk. Picking up a dozen
eggs or a pound of butter at the same time might save you from making a second time-
consuming visit to the same store later on. It takes so long (relatively speaking) to get
to the disk in the first place that it makes sense for the Memory Manager to grab a few
extra pages while it is at it. After all, these are pages that are likely to be used in the
near future.

74 Microsoft Windows Server 2003 Performance Guide

Anticipatory paging turns individual on-demand page read requests into bulk paging
operations. It is a throughput-oriented optimization that tends to increase both disk
and memory utilization rather than a response-oriented one. Clustered paging elon-
gates page read operations. Because it is handling bulk paging requests, the paging file
disk is busier for somewhat longer periods than it would be if it were just performing
individual on-demand page read operations.

Having more time-consuming paging file requests normally does not affect the thread
that is currently delayed waiting for a page fault to be resolved. Indeed, this thread
might directly benefit from the Memory Manager correctly anticipating a future page
access. However, other executing threads that encounter page faults that need to be
resolved from the same paging file disk can be impacted. Having multiple paging files
can help with this condition. With only one paging file, other threads are forced to
wait until the previous bulk paging operation completes before the Memory Manager
can resolve their page faults. Having a second (or third or fourth, and so on) paging
file allocated increases the opportunity for paging file I/O parallelism. While one pag-
ing file disk is busy with a bulk paging operation, it might be possible for the Memory
Manager to resolve a page fault quickly for a second thread—if it is lucky enough to
need a page from a different paging file than the one that is currently busy.

Tip The Memory\Page Reads/sec counter reports the number of I/O operations to
disk to resolve page faults. The Memory\Pages Input/sec counter reports the total
number of pages that were read from disk during those operations. The ratio of Pages
Input/sec to Page Reads/sec is the average number of pages fetched from disk per
paging operation.

Process Virtual Address Spaces

The operating system constructs a separate virtual memory address space on behalf of
each running process, potentially addressing up to 4 GB of virtual memory on 32-bit
machines. Each 32-bit process virtual address space is divided into two equal parts, as
depicted in Figure 1-16. The lower 2 GB of each process address space consists of pri-
vate addresses associated with that specific process only. This 2-GB range of addresses
refers to pages that can be accessed only by threads running in that process address
space context. Each per process virtual address space can range from 0x0000 0000 to
address 0x7fff ffff, spanning 2 GB, potentially. Each process gets its own unique set of
user addresses in this range. Furthermore, no thread running in one process can
access virtual memory addresses in the private range that is associated with a different
process.

Chapter 1: Performance Monitoring Overview 75

Figure 1-16 The 4-GB address space used in 32-bit systems

Because the operating system builds a unique address space for every process, Figure
1-17 is perhaps a better picture of what the User virtual address spaces look like.
Notice that the System portion of each process address space is identical. One set of
System PTEs—augmented by per process page tables and session space—maps the Sys-
tem portion of the process virtual address space for every process. Because System
addresses are common to all processes, they facilitate high performance communica-
tion with the operating system functions and device drivers. These common
addresses also offer a convenient way for processes to communicate with each other,
when necessary.

System

User

0

x’8000 0000’16

x’ffff 0000’16

System Code

Device Driver Code

Nonpaged Pool

Paged Pool

PTEs

File Cache

76 Microsoft Windows Server 2003 Performance Guide

Figure 1-17 User processes share the System portion of the 4-GB virtual address space

Shared system addresses The upper half of each per-process address space in the
range of ‘0x8000 0000’ to ‘0xffff ffff’ consists of system addresses common to all vir-
tual address spaces. All running processes have access to the same set of addresses in
the system range. This feat is accomplished by combining the system’s Page Tables
with each unique per process set of Page Tables.

However, User mode threads running inside a process cannot directly address mem-
ory locations in the system range because system virtual addresses are allocated using
Privileged mode. This restricts memory access to addresses in the system range to ker-
nel threads running in Privileged mode. This is a form of protection that restricts
access to kernel memory to authorized kernel threads. When a User mode applica-
tion thread calls a system function, the thread transfers to an associated Kernel mode
address where its calling parameters are then checked. If the call is validated, the
thread safely transitions to Kernel mode, changing its Execution state from User
mode to Privileged. It is in this fashion that an application thread gains access to com-
mon system virtual memory addresses.

System

User
User

User
User

0

x’8000 0000’16

x’ffff 0000’16

System Code

Device Driver Code

Nonpaged Pool

Paged Pool

PTEs

File Cache

Chapter 1: Performance Monitoring Overview 77

Commonly addressable system virtual memory locations play an important role in
interprocess communication, or IPC. Win32 API functions can be used to allocate por-
tions of commonly addressable system areas to share data between two or more dis-
tinct processes. For example, the mechanism that Windows Server 2003 uses to allow
multiple process address spaces to access common modules, known as dynamic-link
libraries (DLLs), utilizes this form of shared memory addressing. (DLLs are library
modules that contain subroutines and functions that can be called dynamically at run
time, instead of being linked statically to the programs that utilize them.)

Extended user virtual addressing Windows Server 2003 permits a different parti-
tioning of user and system addressable storage locations using the /userva boot
switch. This extends the private User address range to as much as 3 GB and shrinks
the system area to as little as 1 GB, as illustrated in Figure 1-18. When to use Extended
User virtual addressing is a topic discussed in Chapter 6, “Advanced Performance
Topics.”

Figure 1-18 The /userva boot switch increases the size of the User virtual address range

/userva

System

User

0

x’c000 0000’16

x’ffff 0000’16

System Code

Device Driver Code

Nonpaged Pool

Paged Pool

PTEs

File Cache

78 Microsoft Windows Server 2003 Performance Guide

Page Table Entries

During instruction execution, virtual addresses are translated into physical (real)
memory addresses. This virtual address translation takes place inside the instruction
execution pipeline internal to each processor. For example, during the Prefetch stage
of a pipelined instruction execution, the pipeline translates the logical address of the
next instruction to be executed, pointed to by the Program Counter (PC) register, into
its corresponding physical address. Similarly, during the instruction Decode phases,
virtual addresses pointing to instruction operands are translated into their corre-
sponding physical addresses.

The precise mapping function that is used to translate a running program’s virtual
addresses into physical memory locations is hardware-specific. Hardware require-
ments specify the following:

■ The mechanism that establishes the virtual address translation context for indi-
vidual address spaces

■ The format of the virtual-to-physical address translation tables used

■ The method for notifying the operating system that page faults have occurred

Intel-compatible 32-bit processors have the specific hardware requirements for build-
ing and maintaining 32-bit page translation tables illustrated in this section. Other
processor architectures that Windows Server 2003 supports are conceptually similar.

The processor architecture specifies the format of the page tables that the Windows
Server 2003 operating system must build and maintain to enable the computer to per-
form virtual-to-physical address translation. The Intel 32-bit architecture (IA-32) spec-
ifies a two-level indexing scheme using a Page Directory, which then points to the Page
Tables themselves. The Page Directory resides in a single 4-KB page and resides in
memory while the process executes. The processor’s internal Control Register 3
points to the origin of the Page Directory. Page Tables, also 4 KB in size, are built on
demand as virtual memory locations are accessed. These consist of 32-bit Page Table
entries that contain the physical memory address where the page of virtual addresses
is currently mapped. Each Page Table can map 1024 4-KB pages (a 4-MB range),
whereas the Page Directory can point to 1024 Page Tables. The combination supports
the full 4-GB addressing scheme.

As required by the hardware, Windows Server 2003 builds and maintains one set of
Page Tables capable of accessing the full 4-GB range of virtual addresses per process.
Because each process is a separate and distinct address space, each execution thread
inherits a specific address space context. A thread can access only virtual addresses

Chapter 1: Performance Monitoring Overview 79

associated with its specific process address space—with the exception of common sys-
tem virtual addresses, which are accessible by any thread running in Privileged mode.
Any code that attempts to access a memory location that is not valid for that process
context encounters an invalid Page Table entry that causes an addressing exception—
a page fault. The addressing exception occurs when the hardware attempts to trans-
late the virtual address reference by an instruction to a physical one.

Page faults are processed by the operating system’s Virtual Memory Manager, which
then has to figure out whether they are the result of a programming bug or of access-
ing a page that is not currently in RAM. If the culprit is a programming bug, you will
receive a familiar Access Violation message allowing you to attempt to debug the pro-
cess before the operating system destroys it.

Being a repetitive task, virtual address translation can be sped up by buffering virtual
address mapping tables in fast cache memory on board the processor chip. Like other
computer architectures that support virtual memory, Intel-compatible processors pro-
vide hardware Translation Lookaside Buffers (TLBs) to speed up virtual address trans-
lation. When Control Register 3 is reloaded to point to a new set of per-process Page
Tables, a context switch occurs, which has performance implications. A context
switch flushes the TLB, slowing down instruction execution for a transitional period
known as a cache cold start.

Memory status bits For a valid page, the high order 20 bits of the PTE reference the
address of the physical memory location where the page resides. During virtual
address translation, the processor replaces the high-order 20 bits of the virtual
address with the 20 bits contained in the PTE to create the physical memory address.
As illustrated in Figure 1-19, the Intel IA-32 hardware PTE also maintains a number of
1-bit flags that reflect the current status of the virtual memory page. Bit 0 of the PTE is
the present bit—the valid bit that indicates whether the virtual address currently
resides in physical memory. If bit 0 is set, the PTE is valid for virtual address transla-
tion, and the interpretation of the other bits is hardware-determined, as shown in Fig-
ure 1-19. If the present bit is not set, an Intel-compatible processor ignores the
remainder of the information stored in the PTE.

The status bits in the PTE perform a variety of functions. Bit 2, for example, is an
authorization bit set to prevent programs executing in User mode from accessing
operating system memory locations allocated by kernel threads running in Privileged
mode. It is called the supervisor bit. The dirty bit, which is bit 6, is set whenever the
contents of a page are changed. The Memory Manager refers to the dirty bit during
page replacement to determine whether the copy of the page on the paging file is cur-
rent. Bit 5 is an access bit that the hardware sets whenever the page is referenced. It is

80 Microsoft Windows Server 2003 Performance Guide

designed to play a role in page replacement, and it is used for that purpose by the Vir-
tual Memory Manager, as will be described shortly. Likewise, the Virtual Memory
Manager turns off the read/write bit to protect code pages from being overwritten
inadvertently by executing programs. The Virtual Memory Manager does not utilize
the Intel hardware status bits 3 and 4, which are “hints” that are designed to influence
the behavior of the processor cache. Windows Server 2003 does use 4-MB large pages
to load sections of the operating system, which cuts down on the number of PTEs that
need to be defined for the system virtual memory areas and saves space in the proces-
sor TLB.

Figure 1-19 The format of an Intel 32-bit Page Table entry (PTE)

Invalid PTEs When the PTE bit 0 (the present bit) is not set, it is an invalid PTE, and
the hardware ignores the remaining contents of the PTE. In the case of an invalid PTE,
the operating system is free to use this space any way it sees fit. The Virtual Memory
Manager uses the empty space in an invalid PTE to store the essential information
about where a paged-out page can be located—in physical memory in the VMM
Standby List, on the paging file, or, in the case of a file cache fault, in the file system.
This information is stored in an invalid PTE, as shown in Figure 1-20.

Figure 1-20 The format of an invalid 32-bit PTE

Invalid PTEs contain a paging file number (PFN) and a 20-bit offset to identify the
exact location on disk where the page is stored. The paging file number is a 4-bit index
that is used to reference up to 16 unique paging files. The PFN references the
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Manage-
ment Registry key, where information about the paging file configuration is stored in
the PagingFiles field. The 20-bit paging file offset then references a page slot some-
where in that paging file. The Memory Manager maintains a transition bit that is used
to identify a trimmed process page that is still resident in physical memory in the
VMM Standby List. Its role in page replacement is discussed later.

Windows Server 2003 also uses invalid PTEs as build Prototype PTEs, identified in
Figure 1-20 with the prototype bit set. The prototype PTE is the mechanism used for
mapping shared memory pages into multiple process address spaces. DLLs exploit
this feature. DLL modules are loaded once by the operating system into an area of
commonly addressable storage backed by a real Page Table entry. When referenced by

G L D A CD WT U/S R/W P

031 1234567891112

Read address (High order 20 bits) Read address (High order 20 bits) ReservedReservedReservedRead address (High order 20 bits)

Transition bit

Prototype bit

1 0

031 1234567891112

Paging file offset (20 bits)Paging file offset (20 bits) PFNPFNPFNPaging file offset (20 bits)

Chapter 1: Performance Monitoring Overview 81

individual processes, the operating system builds a prototype PTE that points to the
real PTE. Using the prototype PTE mechanism, a DLL is loaded into RAM just once,
but that commonly addressable page can be shared and referenced by many different
process virtual address spaces.

Prototype PTEs are also used by the built-in Windows Server 2003 file cache. The file
cache is a reserved area of the system’s virtual address space where application files
are mapped.

Page Replacement

Following a policy of allocating physical memory page slots on demand as they are
referenced inevitably fills up all available physical memory. A common problem vir-
tual memory operating systems face is what to do when a page fault occurs, a valid
page must be retrieved from the paging file, and there is little or no room left in phys-
ical memory for the referenced page. When physical memory is fully allocated and a
new page is referenced, something has to give. The page replacement policy decides
what to do when a new page is referenced and physical memory is full.

Tip You can watch physical memory filling up in Windows Server 2003 by monitor-
ing Memory\Available Bytes. Available Bytes reports the amount of free, unallocated
memory in RAM. It is a buffer of free pages that the Virtual Memory Manager main-
tains so that page faults can be resolved as rapidly as possible. As long as there are free
pages in RAM, the Virtual Memory Manager does not have to remove an old page
from a process working set first when a page fault occurs.

LRU A Least Recently Used (LRU) page replacement policy is triggered whenever the
pool of Available Bytes is running low. LRU is a popular solution to the page replace-
ment problem. The name, Least Recently Used, captures the overall flavor of the strat-
egy. LRU tries to identify “older” pages and replace them with new ones, reflecting the
current virtual memory access patterns of executing programs. Older pages, by infer-
ence, are less likely to be referenced again soon by executing programs, so they are the
best candidates for page replacement.

When Available Bytes is low, the Virtual Memory Manager scans all the currently res-
ident pages of each process’s working set and identifies those that have not been ref-
erenced recently. It then trims the oldest pages from a process’s working set and
places them in the Available Bytes pool to replenish it.

The way the Windows Server 2003 page replacement policy works is illustrated in Fig-
ure 1-21.

82 Microsoft Windows Server 2003 Performance Guide

Figure 1-21 Process working set trimming in Windows Server 2003

The Available Bytes pool consists of three lists of available pages:

■ Zero List Pages that are available immediately to satisfy new virtual memory
allocation requests.

■ Free List Pages previously allocated that were explicitly freed by the applica-
tion. These are available to satisfy new virtual memory allocation requests only
after they have been zeroed out for the sake of integrity.

■ Standby List Contains recently trimmed process working set pages that are
also eligible to satisfy new virtual memory allocation requests. Standby List
pages still contain current data from the process working set that they were
recently removed from. The PTE associated with a page on the Standby List has
its transition bit set. A page fault that references a page on the Standby List can
be resolved immediately without having to access the disk. This is called a tran-

Freed
Pages

Transition
Faults/sec Standby

List

Free
List

Zero
List

Trimmed
Dirty
Pages

Trimmed
Pages

Modified
List

(Dirty Pages)

Modified Page Writer
(Pages Output/sec)

Re-Purposed
Transition Pages

Zero Page
Thread

Demand
Zero Faults/sec

Process Working Sets (Process\Working Set)

Available Bytes

Working Set Page Aging (LRU)

Pages
Input/sec

Chapter 1: Performance Monitoring Overview 83

sition fault, or soft fault. For this reason, the Standby List is also known as the
VMM cache. If both the Zero List and Free List are depleted, a page on the
Standby List can be migrated, or repurposed, to the Zero List.

Note Before dirty pages containing changed data can be removed from
memory, the operating system must first copy their contents to the paging file.

The Virtual Memory Manager maintains information about the age of each page of
each process working set. A page with its access bit in the PTE set is considered
recently referenced. It should remain in the process working set. During its periodic
scans of memory, VMM checks each page PTE in turn, checking whether the access
bit is set, and then clearing the bit. (Processor hardware will turn the access bit on the
next time the page is referenced during virtual address translation.) Pages without
their access bits set are aged into three categories of old, older, and oldest pages. (The
durations represented by these categories vary with memory pressure so that pages
are moved to older categories more quickly when memory is tight.) VMM trims pages
from working sets when there is a shortage of Available Bytes or a sudden drop in
Available Bytes. When trimming, VMM makes multiple scans, taking oldest pages
from each process’s working set first, then taking newer pages, stopping when the
Available Bytes pool is replenished. Trimmed pages are placed on the Standby List if
they are unmodified (the dirty bit in their PTE is clear) and on the Modified List if
they are dirty.

Trimmed process working set pages placed on the Standby List or the Modified List
receive a second chance to be referenced by a process before they are replaced by new
pages. PTEs for pages on the Standby List are marked invalid, but have their transition
bits set, as illustrated in Figure 1-20. If any trimmed pages on the Standby List marked
in transition are referenced again by a process’s threads before they are repurposed
and their contents overwritten, they are allowed to transition fault back into their pro-
cess working set without the need to perform an I/O to the underlying file or to the
paging file. Transition faults are distinguished from hard page faults, which must be
satisfied by reading from the disk. Transition faults are also known as soft faults
because VMM does not need to issue an I/O to recover their contents.

Trimmed pages that have the dirty bit in their PTE set are placed on the Modified
List. Once this list grows to a modest size, the VMM schedules a modified page writer
thread to write the current page contents to the paging file. This I/O can be performed
very efficiently. After the paging file is current for a page, VMM clears the dirty bit and
moves the page to the Standby List. As with other pages on the list, the page maintains
its contents and still has its transition bit switched on, so it can be returned to a work-
ing set using the transition fault mechanism without additional I/O.

84 Microsoft Windows Server 2003 Performance Guide

The size of the Standby List, the Free List, and the Zero List are added together and
reported as Available Bytes. Pages from the Zero List are allocated whenever a process
references a brand new page in its address space. Pages from either the Zero List or
the Free List are used when a page is needed as a destination for I/O. The System Zero
Page Thread zeroes out the contents of pages on the Free List and moves them to the
Zero List, so the Free List tends to be quickly emptied. When there is a shortage of
zeroed or free pages, pages at the front of the Standby List are repurposed. These
pages at the front have been sitting on the list for the longest time, or their contents
were deemed expendable when they were placed on the list (for example, pages used
in a sequential scan of a large file).

Note Memory\Available Bytes counts the number of pages on the Standby List, the
Free List, and the Zero List. There is no easy way to watch the size of these lists individ-
ually using Performance Monitor. The size of the Modified List is unreported, but it is
presumed small because modified pages are written to the paging file (or file system)
as soon as possible after they are trimmed.

The page trimming procedure is entirely threshold-driven. Page trimming is invoked
as necessary whenever the pool of Available Bytes is depleted. Notice that there is no
set amount of time that older pages will remain memory resident. If there is plenty of
available memory, older pages in each process working set will be allowed to age
gracefully. If RAM is scarce, the LRU page replacement policy will claim more recently
referenced pages.

Measurement support Figure 1-21 also indicates the points where this process is
instrumented. The Transition Faults/sec counter in the Memory object reports the
rate at which so-called soft page faults occur. Similarly, Demand Zero Faults/sec
reports the rate new pages are being created. Pages Output/sec shows the rate at
which changed pages have been copied to disk. Pages Input/sec counts the number of
pages from disk that the Memory Manager had to make room for in physical memory
during the last measurement interval. By implication, because physical memory is a
closed system,

Pages trimmed/sec + Pages freed = Transition Faults/sec + Demand Zero Faults/sec + Pages
Input/sec, plus, any change in the size of the Available Bytes buffer from one interval to the
next

Neither the rate of page trimming nor the rate at which applications free virtual mem-
ory pages is instrumented. These and other complications aside, such as the fact that
a shared page that is trimmed could be subject to multiple page faults, those three
Memory performance counters remain the best overall indicators of virtual memory
management overhead.

Chapter 1: Performance Monitoring Overview 85

The Page Faults/sec counter reports all types of page faults:

Memory\Page faults/sec = Memory\Transition Faults/sec + Memory\Demand Zero
Faults/sec + Memory\Page Reads/sec

The Pages Read/sec counter corresponds to a hard page fault rate in this formula.
Hard page faults require the operating system to retrieve a page from disk. Pages
Input/sec counts hard page faults, plus the extra number of pages brought into mem-
ory at the time a page fault is resolved in anticipation of future requests.

Process Working Set Management

Windows Server 2003 provides application programming interfaces to allow individ-
ual processes to specify their physical memory requirements to the operating system
and take the guesswork out of page replacement. Applications like Microsoft SQL
Server, Exchange, and IIS utilize these memory management API calls. SQL Server, for
example, implements the SetProcessWorkingSetSize Win32 API call to inform the oper-
ating system of its physical memory requirements. It also exposes a tuning parameter
that allows the database administrator to plug in appropriate minimum and maxi-
mum working set values for the Sqlserver.exe process address space.

As illustrated in Figure 1-22, you can tell SQL Server to call SetProcessWorkingSetSize to
set the process working set minimum and maximum values. The Windows Server
2003 Virtual Memory Manager will attempt to honor the minimum and maximum
values you set, unless the system determines that there are not enough Available Bytes
to honor that request safely.

Figure 1-22 The SQL Server 2000 process working set management settings

86 Microsoft Windows Server 2003 Performance Guide

The problem with controls like the SetProcessWorkingSetSize Win32 API call is that
they are static. Meanwhile, virtual memory management is very much a dynamic pro-
cess that adjusts to how various running programs are currently exercising memory.
One potentially undesirable side effect of dynamic memory management is that the
amount of memory one process acquires can affect what else is happening on the sys-
tem. Setting fixed lower and upper limits on the number of physical pages an applica-
tion can utilize requires eternal vigilance to ensure that the value you specified is the
correct one.

Caution If you set the wrong value for the process working set in a control like the
one in Figure 1-22, you can make the system run worse than it would have if you had
given Windows Server 2003 the freedom to manage process working sets dynamically.

Because virtual memory usage is dynamic, a control (for example, like the one illus-
trated in Figure 1-22 for SQL Server) to set a suitable minimum and maximum range
for an application is often more helpful. If you click the Dynamically configure SQL
Server memory option, you can set a minimum and maximum working set that is
appropriate for your workload. This setting instructs dynamic memory management
routines of Windows Server 2003 to use a working set range for SQL Server that is
more appropriate than the system defaults.

Being inside a process like Sqlserver.exe is not always the best vantage point to under-
stand what is going on with a global LRU page placement policy. Windows Server
2003 provides a feedback mechanism for those processes that are interested in con-
trolling the size of their working sets. This feedback mechanism is particularly helpful
to processes like SQL Server, IIS, and Exchange, which utilize large portions of the
User virtual address space to store files and database buffers. These applications per-
form their own aging of these internal cache buffer areas.

Processes can receive notifications from the Memory Manager on the state of free
RAM. These processes receive a LowMemoryResourceNotification when Available Bytes
is running low and a HighMemoryResourceNotification when Available Bytes appears
ample. These are global events posted by the Memory Manager to let processes that
register for these notifications know when the supply of free memory is rich and they
can help themselves to more. Processes are also notified when available memory is
depleted and they should return some of their older working set pages to the system.
Processes that register to receive these notifications and react to them can grab as
much RAM as they need and still remain good citizens that will not deliberately
degrade system performance for the rest of the application processes running on the
machine.

Chapter 1: Performance Monitoring Overview 87

Accounting for process memory usage The operating system maintains a Page
Frame Number (PFN) list structure that accounts for every page in physical memory
and how it is currently being used. Physical memory usage statistics are gathered by
traversing the PFN. The number of active pages associated for a given process is
reported as the Process\Working Set bytes. The process working set measurements
are mainly used to determine which processes are responsible for a physical memory
shortage.

On behalf of each process virtual address space, the operating system builds a set of
Virtual Address Descriptors (VADs) that account for all the virtual memory a process
has reserved or committed. Tabulating the virtual memory committed by each process
by reading the VADs leads to the Process\Virtual Bytes measurements. A process’s
current allocations in the common system Paged and Nonpaged pools are also
counted separately. These two pools in the system range are discussed in more detail
later in this chapter. The process virtual memory allocation counters are very useful if
you are tracking down the source of a memory leak, as illustrated in Chapter 5, “Per-
formance Troubleshooting.”

Shared DLLs Modular programming techniques encourage building libraries con-
taining common routines that can be shared easily among running programs. In the
Microsoft Windows programming environment, these shared libraries are known as
dynamic-link libraries (DLLs), and they are used extensively by Microsoft developers
and other developers. The widespread use of shared DLLs complicates the bookkeep-
ing that Windows Server 2003 performs to figure out how many resident pages are
associated with each process working set.

Windows Server 2003 counts all the resident pages associated with shared DLLs as
part of every process working set that has the DLL loaded. All resident pages of the
DLL, whether or not the process has recently accessed them, are counted in the pro-
cess working set. In Windows Server 2003, the Process Working Set Bytes counter
includes all resident pages of all shared DLLs that the process currently has loaded.
This has the effect of charging processes for resident DLL pages they might never have
touched, but at least this double counting is performed consistently across all pro-
cesses that have the DLL loaded.

This working set accounting procedure that also spawns the measurement data is
designed to enable VMM to do a good job when it needs to trim pages. Unfortunately,
it does make it difficult to account precisely for how physical memory is being used. It
leads to a measurement anomaly that is illustrated in Figure 1-23. For example,
because the resident pages associated with shared DLLs are included in the process
working set, it is not unusual for a process to acquire a working set larger than the
number of committed virtual memory bytes it has requested. Notice the number of

88 Microsoft Windows Server 2003 Performance Guide

processes in Figure 1-23 with more working set bytes (the Mem Usage column) than
committed virtual bytes (the VM Size column). Because DLLs are files that are read
into memory directly from the file system, few working set pages associated with
shared DLLs ever need to be committed to virtual memory. They are not included in
the Process Virtual Bytes counter even though all the resident bytes associated with
them are included in the Process Working Set counter.

Figure 1-23 Working set bytes compared to virtual bytes

System working set Windows Server 2003 operating system functions also con-
sume RAM. Consequently, the system has a working set that needs to be controlled
and managed like any other process. In this section, the components of the system
working set are discussed.

Both system code and device driver code occupy memory. In addition, the operating
system allocates data structures in two areas of memory: a pool for nonpageable stor-
age and a pageable pool. Data structures that are accessed by operating system and
driver functions when interrupts are disabled must be resident in RAM at the time
they are referenced. These data structures are usually allocated from the nonpageable
pool so that they reside permanently in RAM. The Pool Nonpaged Bytes counter in
the Memory object shows the amount of RAM currently allocated in this pool that is
permanently resident in RAM.

Generally, though, most system data structures are pageable—they are created in a
pageable pool of storage and are subject to page replacement like the virtual memory
pages of any other process. Windows Server 2003 maintains a working set of active

Chapter 1: Performance Monitoring Overview 89

pages in RAM for the operating system that are subject to the same LRU page replace-
ment policy as ordinary process address spaces. The Pool Paged Bytes counter reports
the amount of paged pool virtual memory that is allocated. The Pool Paged Resident
Bytes counter reports on the number of page pool pages that are currently resident in
RAM.

Tip The Memory\Cache Bytes counter reports the total number of resident pages in
the current system working set. Cache Bytes is the sum of the System Cache Resident
Bytes, System Driver Resident Bytes, System Code Resident Bytes, and Pool Paged Res-
ident Bytes counters. The operating system’s working set became known as the Cache
because it also includes resident pages of the built-in file cache, the operating system
function that historically consumed more RAM than any other.

The system virtual address range is limited to 2 GB, and by using the /3 GB boot
option, it can be limited even further to as little as 1 GB. On a large 32-bit system, it is
not uncommon to run out of virtual memory in the system address range. The culprit
could be a program that is leaking virtual memory from the Paged pool. Alternatively,
it could be caused by active usage of the system address range by a multitude of
important system functions—kernel threads, TCP session data, the file cache, or many
other normal functions. When the number of free System PTEs reaches zero, no func-
tion is able to map additional virtual memory within the system range. When you run
out of system virtual memory addresses, the results are usually catastrophic.

The 2-GB limit on the size of the system virtual address range is a serious constraint
that can sometimes be relieved only by moving to a 64-bit machine. There are exam-
ples of how to determine whether your system is running out of system virtual mem-
ory in Chapter 5, “Performance Troubleshooting.” Chapter 6, “Advanced Performance
Topics,” discusses the virtual memory boot options, the Physical Address Extension,
the Memory Manager Registry settings that influence how the system address space is
allocated, and 64-bit virtual addressing.

Tip Tracking the Memory\Free System Page Table Entries counter can help you tell
when the system virtual address range is going be exhausted. Unfortunately, you can
sometimes run out of virtual addressing space in the Paged or Nonpaged pools before
all the System PTEs are used up.

The I/O Subsystem

One of the key components of the Windows Server 2003 Executive is the I/O Man-
ager. The I/O Manager provides a set of interfaces for applications that need to retrieve
data from or store data to external devices. Because the contents of RAM are volatile,

90 Microsoft Windows Server 2003 Performance Guide

any computing results that need to be stored permanently must be stored on a disk
drive or other external device. These Input/Output interfaces are consistent across all
physical and logical devices. The I/O Manager also provides services that device driv-
ers use to process the I/O requests. Figure 1-24 illustrates the relationship between
User mode applications, the I/O Manager, and the device drivers under it, all the way
down to the physical devices.

Figure 1-24 The I/O Manager

When it is called by a User mode process to perform an I/O operation against a file,
the Win32 Subsystem creates an I/O Request Packet (IRP) that encapsulates the
request. The IRP is then passed down through various layers of the I/O Manager for

I/O Manager

User Mode Process Win32 Subsystem

User mode

Kernel mode

IRP

File System
Drivers

FAT CDFS NTFS UDF

Class
Drivers

CD Tape Disk DVD

SCSI Driver

SCSI Miniport

Hardware

I/O Bus

Disk

HSMQuota Filter Drivers

Compression Encryption Filter Drivers

Host Bus
Adaptor

Chapter 1: Performance Monitoring Overview 91

processing. The IRP proceeds down through the file system layer, where it is mapped
to a physical disk location, to the physical disk device driver that generates the appro-
priate hardware command, and, finally, to the device itself. The I/O Manager handles
all I/O devices, so a complete picture would include the driver components for the
other types of devices such as network drivers, display drivers, and multimedia driv-
ers. For the purpose of this section, it will be sufficient to concentrate on disk I/O pro-
cessing.

More Info More complete documentation about the I/O Manager can be found in
the Windows Device Model reference manual available at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/kmarch/hh/kmarch/wdmintro_d5b4fea2-
e96b-4880-b610-92e6d96f32be.xml.asp.

Filter drivers are modules that are inserted into the I/O Manager stack at various
points to perform optional functions. Some like the disk volume Quota Manager can
process IRPs before they reach the file system driver. Others like the Compression and
Encryption services only process requests that originated specifically for the NTFS
driver.

Eventually, an IRP is passed down to the physical device driver layer, which gener-
ates an appropriate command to the hardware device. Because disk hardware is
usually the most critical element of disk performance, beginning there is appropri-
ate. Disk performance is a complex subject because of the range of hardware solu-
tions with different cost/performance characteristics that you might want to
consider. The discussion here is limited to the performance of simple disk config-
urations. Cached disks and disk array alternatives are discussed in Chapter 5, “Per-
formance Troubleshooting.”

Disk Performance Expectations

The performance of disk drives and related components such as I/O buses is directly
related to their hardware feeds and speeds. Using performance monitoring, you can
determine how the disks attached to your Windows Server 2003 machine are per-
forming. If the disks are performing at or near the performance levels that can be
expected from the type of hardware devices you have installed, there is very little that
can be accomplished by trying to “tune” the environment to run better. If, on the other
hand, actual disk performance is considerably worse than reasonable disk perfor-
mance expectations, mounting a tuning effort could prove very worthwhile. This sec-
tion will provide a basic framework for determining what performance levels you can
reasonably expect from different kinds of disk hardware. This topic is discussed in
greater detail in Chapter 5, “Performance Troubleshooting.”

92 Microsoft Windows Server 2003 Performance Guide

Because so many disk hardware and configuration alternatives are available, this com-
plex subject can only be introduced here. Determining precisely what performance
level your disk configuration is capable of delivering is something you are going to
have to investigate on your own. The suggestions and guidelines introduced here
should help in that quest.

After you determine what performance level your disks are capable of delivering, you
need to understand the actual performance level of your disks. This requires knowing
how to calculate the service time and queue time of your disks. Once you calculate the
actual disk service time, you can compare it to the expected level of performance to
see whether you have a configuration or tuning problem. In Chapter 5, “Performance
Troubleshooting,” the steps for relieving a disk bottleneck are discussed in detail.
Here the scope of the discussion is limited to the essential background you need to
understand and execute those procedures.

Disk Architecture

Figure 1-25 illustrates the architecture of a hard disk. Disks store and retrieve digitally
encoded data on platters. A disk spindle normally consists of several circular platters
that rotate continuously. Data is encoded and stored on both sides of each of the disk
platters. Bits are stored on the platter magnetically on data tracks, arranged in concen-
tric circles on the platter surface. The smallest unit of data transfer to and from the
disk is called a sector. The capacity of a sector is usually 512 bytes. The recording density
refers to the number of bits per square inch that can be stored and retrieved. Because
the recording density is constant, outer tracks can store much more data than inner
tracks. Data on the disk is addressed using a relative sector number. Data is stored and
retrieved from the platters using the recording and playback heads that are attached at
the end of each of the actuator arms.

Figure 1-25 The components of a disk drive

Spindle

Platter 0
Track

Chapter 1: Performance Monitoring Overview 93

An I/O command initiates a request to read or write a designated sector on the disk.
The first step is to position the heads over the specific track location where the sector
is located. This is known as a seek, which can be relatively time-consuming. Seek time
is primarily a function of distance. If the heads are already positioned in the right
place, there is a zero motion seek. Zero seeks occur, for example, when you read consec-
utive sectors off the disk. This is something that happens when a file is accessed
sequentially (unless the file happens to be heavily fragmented). A minimum seek is the
time it takes to reposition the heads from one track to an adjacent track. A maximum
seek traverses the length of the platter from the first track to the last. An average seek is
calculated as the time it takes to move across 1/3 of the available tracks.

Following the seek operation, another mechanical delay occurs to wait for the desig-
nated sector to rotate under the playback and recording head. This is known as rota-
tional delay, or sometimes just latency. Device latency is one of those dumb luck
operations. If your luck is good, the desired sector is very close to the current position
of the recording heads. If your luck is bad, the desired sector is almost a full revolution
of the disk away. On average, device latency is 1/2 of the device’s rotational speed,
usually specified in revolutions per minute (rpm). A disk that is spinning at 7200 rpm
revolves 120 times per second, or once every 8.33 milliseconds. The average rota-
tional delay for this disk is 1/2 a revolution, or approximately 4.2 ms.

The third major component of disk I/O service time is data transfer time. This is a func-
tion of the recording density of the track and the rotational speed of the device. These
mechanical characteristics determine the data rate at which bits pass under the read/
write heads. Outer tracks with roughly double the number of bits as inner tracks
transfer data at twice the data rate. On average, any specific sector could be located
anywhere on the disk, so it is customary to calculate an average data rate halfway
between the highest and lowest speed tracks. The other variable factor in data transfer
is the size of the request, which is normally a function of the block size selected for the
file system. Some applications (like the paging subsystem) make bulk requests where
they attempt to read or write several logical blocks in a single, physical disk operation.

The service time of a disk request can normally be broken into these three individual
components:

disk service time = seek + latency + data transfer

There are device service time components other than these three, including protocol
delay time. But because these other components represent only minor delays, they are
ignored here for the sake of simplicity.

94 Microsoft Windows Server 2003 Performance Guide

The specifications for several current, popular disk models are shown in Table 1-3.
The service time expectation calculated here is based on the assumption that disks
perform zero seeks 50 percent of the time and average seeks the other 50 percent. It
also assumes a block size in the range of 4 KB–16 KB, which is typical for NTFS.

Notice that the worst performing disks in this example are still capable of servicing
requests in roughly 10 milliseconds. At 100 percent utilization, these disks are capable
of about 100 I/O operations per second (IOPS). More expensive performance disks
are capable of performance at about twice that rate.

A simple chart like the one in Table 1-3 should give you some insight into the band-
width (or I/O capacity) of your disk configuration. Optimizations such as cached
disks aside for the moment, the critical factor constraining the performance of your
disk configuration is the number of independent physical disk spindles, each with its
own finite capacity to execute I/O operations. If your server is configured with a single
physical disk, it is probably capable of performing only 100–200 I/Os per second. If
five disks are configured, the same computer can normally perform 5 times the num-
ber of disk I/Os.

This chart does not say anything about disk response time—in other words, service
time plus queue time. Average disk response time is one of the important metrics that
the I/O Manager supplies. The counter is called Avg. Disk sec/Transfer and is pro-
vided for both Logical and Physical Disks. At high utilization levels, queuing delays
waiting for the disk are liable to be substantial. However, the number of concurrent
disk requestors, which serves as an upper limit on the disk queue depth, is often
small. The number of concurrent disk requestors usually establishes an upper bound
on disk queue time that is much lower than a simple queuing model like M/M/1
would predict.

To set reasonable service time expectations for the disks you are using, access the pub-
lic Web site maintained by the manufacturer that supplies your disks. There you can
obtain the specifications for the drives you are running—the average seek time, the
rotational speed, and the minimum and maximum data transfer rates the device sup-

Table 1-3 Disk Service Time Expectations for a Representative Sample of
Current Disks

Model
Average
Seek (ms) Rpm

Latency
(ms)

Transfer Rate
(MB/sec)

Service Time
(ms)

Desktop disk 9 5400 5.5 45 11

Server disk 7.5 7200 4.2 50 9

Performance disk 6 10,000 3.0 60 7

High performance
disk

5 15,000 2.0 75 5

Chapter 1: Performance Monitoring Overview 95

ports. Failing that, you can also determine for yourself how fast your disks are capable
of running by using a stress-testing program.

To utilize the disk service time expectations in Table 1-3 for planning purposes, you
need to be able to compare the expected values to actual disk service times in your
environment. To understand how to calculate disk service time from these measure-
ments, it will help to learn a little more about the way disk performance statistics are
gathered.

Disk Performance Measurements

The Physical Disk and Logical Disk performance statistics in Windows Server 2003
are gathered by the functional layers in the I/O Manager stack. Figure 1-26 shows the
volume manager layer underneath the file system layer that is used to gather Logical
Disk statistics. The physical disk partition manager, Partmgr.sys, gathers Physical Disk
statistics.

Figure 1-26 Disk performance statistics are gathered by the I/O Manager stack

Class
DriversDisk

SCSI Driver

SCSI Miniport

Disk

NTFS.sys

Volume Manager:
Basic/Dynamic

Physical Disk Partition
Manager

Logical Disk
measurements

I/O Manager

Physical Disk
measurements

IRP

Hardware

96 Microsoft Windows Server 2003 Performance Guide

Important Both Logical and Physical Disk statistics are enabled by default in Win-
dows Server 2003. This is a change from Windows 2000 and Windows XP where only
the Physical Disk statistics were installed by default.

Unlike the % Processor Time measurements that Windows Server 2003 derives using
sampling, the disk performance measurements gathered by the I/O Manager reflect
precise timings of individual disk I/O requests using the High Precision clock. As each
IRP passes through the measurement layer, the software gathers information about the
request. The DISK_PERFORMANCE structure definition, documented in the plat-
form SDK, shows the metrics that the I/O Manager stack keeps track of for each indi-
vidual request. They include the metrics shown in Table 1-4.

Table 1-4 is the complete list of metrics that the I/O Manager measurement layer com-
piles for each disk I/O request. These are the metrics that are then summarized and
reported at the Logical or Physical Disk level. All the disk performance statistics that
are available using Performance Monitor are derived from these basic fields. For
instance, the Avg. Disk Queue Length counter that is available in Performance Moni-
tor is derived using Little’s Law as follows:

Average Disk Queue Length = (ReadCount × ReadTime) + (WriteCount × WriteTime)

Caution The Avg. Disk Queue Length counter is derived using Little’s Law and not
measured directly. If the Little’s Law equilibrium assumption is not valid for the mea-
surement interval, the interpretation of this value is subject to question. Any interval
where there is a big difference in the value of the Current Disk Queue Length counter
compared to the previous interval is problematic.

Stick with the metrics that the I/O Manager measurement layer measures directly and
you cannot go wrong!

Table 1-4 Metrics Tracked by the I/O Manager

Metric Description

BytesRead Number of bytes read

BytesWritten Number of bytes written

ReadTime Time it took to complete the read

WriteTime Time it took to complete the write

IdleTime Specifies the idle time

ReadCount Number of read operations

WriteCount Number of write operations

QueueDepth Depth of the queue

SplitCount Number of split I/Os. Usually an indicator of file fragmentation

Chapter 1: Performance Monitoring Overview 97

The I/O Manager measurement layer derives the ReadTime and WriteTime timing values
by saving a clock value when the IRP initially arrives on its way down to the physical
device, and then collecting a second timestamp after the disk I/O completes on its
return trip back up the I/O Manager stack. The first clock value is subtracted from the
second value to calculate ReadTime and WriteTime. These timings are associated with
the Avg. Disk sec/Read and Avg. Disk sec/Write counters that are visible in Performance
Monitor. Avg. Disk sec/Transfer is the weighted average of the Read and Write. They are
measurements of the round trip time (RTT) of the IRP to the disk device and back.

Avg. Disk sec/Transfer includes any queuing delays at lower levels of the I/O Manager
stack and, of course, at the device. To break down disk response time into service time
and queue time, it helps to understand how disk Idle time is measured. The Queue-
Depth is simply an instantaneous count of the number of active IRPs that the filter driver
is keeping track of. These are IRPs that the filter driver has passed down on their way to
the device, but have not returned yet. It includes any I/O requests that are currently exe-
cuting at the device, as well as any requests that are queued waiting for service.

When an IRP is being passed upward following I/O completion, the I/O Manager
measurement layer checks the current QueueDepth. If QueueDepth is zero, the I/O
Manager measurement layer stores a clock value indicating that an Idle period is
beginning. The disk idle period ends when the very next I/O Request Packet arrives at
the I/O Manager measurement layer. When there is work to be done, the device is
busy, not idle. The I/O Manager measurement layer accesses the current time, sub-
tracts the previous timestamp marking the start of the Idle period, and accumulates
the total Idle time measurement over the interval.

Even though Performance Monitor only displays a % Idle Time counter, it is more
intuitive to calculate:

disk utilization = 100 −% Idle Time

Applying the Utilization Law, you can then calculate disk service time:

disk service time = disk utilization ÷ Disk Transfers/sec

With disk service time, you can then calculate average disk queue time:

disk queue time = Avg. Disk sec/Transfer − disk service time

Once you calculate the disk service time in this fashion for the devices attached to
your machine, you can compare those measurements to your expectations regarding
the levels of performance these devices can deliver. If actual disk performance is much
worse than expected, you have a disk performance problem worth doing something
about. Various configuration and tuning options for improving disk response time
and throughput are discussed in Chapter 5, “Performance Troubleshooting.”

98 Microsoft Windows Server 2003 Performance Guide

Network Interfaces

Networking refers to data communication between two or more computers linked by
some transmission medium. Data communication technology is readily broken into
local area network (LAN) technology, which is designed to link computers over limited
distances, and wide area network (WAN) technology for communicating over longer
distances.

LANs utilize inexpensive wire and wireless protocols suitable for peer-to-peer commu-
nication, making it possible to link many computers together cost-effectively. LAN
technologies include the popular Fast Ethernet 100baseT standard and Gigabit Ether-
net, FDDI, and Token Ring. An unavoidable consideration in wiring your computers
together is that LAN technologies have a built-in distance constraint that must be hon-
ored—that is why they are referred to as local area networks. The Fast Ethernet proto-
col, for example, cannot be used to connect computers over distances greater than a
hundred meters. Wireless LANs also have very stringent distance limitations. The set
of localized connections associated with a single Ethernet hub or switch is known as
a network segment. As you add more connections to a LAN or try to interconnect
machines over greater distances, inevitably you will create more network segments
that then must be bridged or routed to form a cohesive network.

WAN connections link networks and network segments over longer distances.
Eventually, WANs connect to the backbone of the World Wide Web, which literally
interconnect millions of individual computers scattered around the globe. Wide
area networking utilizes relatively expensive long distance lines normally provided
by telephone companies and other common carriers to connect distant locations.
Popular WAN technologies include Frame Relay, ISDN, DSL, T1, T3, and SONET,
among others.

The networking services Windows Server 2003 uses are based on prevailing industry
standards. The spread of the Internet has led to universal adoption of the Internet
communication protocols associated with TCP/IP. Windows Server 2003 is designed
to operate with and is fully compliant with the bundle of networking standards asso-
ciated with the Internet. These Internet protocols include UDP, TCP, IP, ICMP, DNS,
DHCP, HTTP, and RPC. Instead of this alphabet soup, the suite of Internet standard
protocols is often simply called TCP/IP, the two components that play a central role.
The full set of TCP/IP protocols is the native networking language of the Windows
Server 2003 operating system.

Packets

Data is transmitted over a communications line in a serial fashion, one bit at a time.
Instead of simply sending individual bits between stations across the network,
however, data communication is performed using groups of bits organized into dis-

Chapter 1: Performance Monitoring Overview 99

tinct datagrams, or packets. It is the function of the data communications hardware
and software that you run to shape bit streams into standard, recognizable packets.
The overall shape of the packets that are being sent and received in Microsoft Win-
dows-based networks is discussed here from a performance and capacity planning
perspective.

More Info For more in-depth information about TCP/IP protocols, refer to
Microsoft Windows Server 2003 TCP/IP Protocols and Services Technical Reference
(Microsoft Press, 2003).

The Network Monitor is the diagnostic tool that allows you to capture packet traces in
Windows Server 2003. A Network Monitor example is shown here to illustrate some
common types of packets that you can expect to find circulating on your network.
Using the Network Monitor to capture and examine network traffic is discussed in
more detail in Chapter 2, “Performance Monitoring Tools.”

At the heart of any packet is the payload, the information that is actually intended to
be transmitted between two computers. Networking hardware and software inserts
packet headers at the front of the data transmission payload to describe the data being
transmitted. For instance, the packet header contains a tag that shows the type and
format of the packet. The header also contains the source address of the station trans-
mitting the data and the destination address of the station intended to receive it. In
addition, the packet header contains a length code that tells you how much data it
contains—remember, coming across the wire, the data appears as a continuous
sequence of bits.

Mining these packet header fields, you can calculate who is sending how much data to
whom, information that can then be compared to the capacity of the links connecting
those stations to determine whether network link capacity is adequate. The informa-
tion contained in the packet headers forms the basis of the networking performance
statistics that you can gather using Performance Monitor.

Understanding the packet-oriented nature of data communication transmissions is
very important. The various network protocols determine the format of data packets—
how many bits in the header, the sequence of header fields, and how error correction
code data is created and stored in the packet. Protocols simply represent standard bit
formats that packets must conform to. Packets also must conform to some maximum
size or maximum transmission unit (MTU). Transmitting blocks of data that are
larger than the MTU is also problematic. Large blocks must be broken into packets
that will fit within the MTU. Consequently, packet disassembly and reassembly are
necessary functions that must be performed by networking hardware and software,
too. Packets representing pieces of larger blocks must contain instructions for their

100 Microsoft Windows Server 2003 Performance Guide

reassembly at the receiver. In routing, two packets from the same logical transmission
might get sent along different routes and even arrive at their destination out of
sequence. Receiving packets out of order naturally complicates the task of reassem-
bling the transmission at the receiver.

Protocol Stack

It is customary to speak of networking hardware and software technology as a series
of distinct, well-defined layers. The notion of building networking technology by
using layers of hardware and software began with a standardization process that orig-
inated in the early 1980s. When the ARPANET, the predecessor of today’s Internet,
was created, it implemented four standard networking layers. These Internet protocol
layers are almost uniformly accepted as standards today, and they form the basis of
the networking support for Microsoft Windows Server 2003. This layered architecture
of the Internet is depicted in Figure 1-27. These are the standard layers of the TCP/IP
protocol stack.

Figure 1-27 Networking protocol stack

The Internet architecture defines the following functional layers:

■ Media Access The lowest level layer is concerned with the physical transmis-
sion media and how the signal it carries is used to represent data bits. The MAC
layer is also sometimes decomposed further into Physical and Data Link layers.
The various forms of Ethernet are the most common implementation of the
MAC layer.

■ Internet Protocol (IP) The IP layer is concerned with packet delivery. IP solves
the problem of delivering packets across autonomous network segments. At
each network hop, the IP decides the next system to forward the packet to. The
packet gets forwarded from neighbor to neighbor in this manner until the pay-
load reaches its intended final destination. The IP layer also includes the
Address Resolution Protocol (ARP), the Internet Control Message Protocol

Application: HTTP, RPC, and so on

Media Access: Ethernet, FDDI

Internet Protocol: IP

Packet Packet Packet Packet Packet

Host-to-Host: TCP, UDP

Chapter 1: Performance Monitoring Overview 101

(ICMP), and the Border Gateway Protocol (BGP), which are involved in discov-
ering and maintaining packet delivery routes. The most common version of the
protocol deployed today is IP version 4; however the next version, IP version 6,
is beginning to be deployed. Most concepts described in this chapter apply to
both versions, although most of the discussion is in the context of IP version 4.

■ Host-to-Host The Host-to-Host layer is concerned with how machines that
want to transmit data back and forth can communicate. The Internet protocols
define two Host-to-Host implementations—the User Datagram Protocol (UDP)
for transmission of simple messages and the Transmission Control Program
(TCP) for handling more complex transactions that require communication ses-
sions. TCP is the layer that is responsible for ensuring reliable in-order delivery
of all packets. It is also responsible for the flow control functions that have major
performance implications in WAN communications.

■ Application The Internet protocols include standard applications for transmit-
ting mail (Simple Mail Transfer Protocol, or SMTP), files (File Transfer Protocol
or FTP), Web browser hypertext files (Hypertext Transfer Protocol or HTTP),
remote login (Telnet), and others. In addition, Windows Server 2003 supports
many additional networking applications that plug into TCP, including Com-
mon Internet File System (CIFS), Remote Procedure Call (RPC), Distributed
COM (DCOM), Lightweight Directory Access Protocol (LDAP), among others.

Processing of packets The layered architecture of the Internet protocols is much
more than a conceptual abstraction. Each layer of networking services operates in suc-
cession on individual packets. Consider a datagram originally created by an applica-
tion layer like the Microsoft Internet Information Services (IIS), which supports HTTP
(the Internet’s Hypertext Transfer Protocol) for communicating with a Web browser
program. As created by IIS, this packet of information contains HTML format text, for
example, in Response to a specific HTTP GET Request.

IIS then passes the HTTP Response Message to the next appropriate lower layer,
which is TCP, in this case, for transmission to the requesting client program, which is
a Web browser program running on a remote computer. The TCP layer of software is
responsible for certain control functions such as establishing and maintaining a data
communications session between the IIS Web server machine and an Internet
Explorer Web browser client. TCP ensures that the data sent is reliably received by the
remote end. TCP is also responsible for network flow control, which ensures that the
sending computer system (IIS Web Server computer) does not flood the Internet rout-
ers or your client-side network with data. In addition, TCP is responsible for breaking
the data to be sent into maximum sized segments that can be sent across the network
to the destination. The TCP layer, in turn, passes the TCP segment to the IP layer,
which decides which router or gateway to forward the packet to, such that the IP

102 Microsoft Windows Server 2003 Performance Guide

packet moves closer to its eventual destination. Finally, IP passes each IP packet to the
MAC layer, which is actually responsible for placing bits on the wire. The layers in the
networking protocol stack each operate in sequence on the packet. As illustrated in
Figure 1-28, each layer also contributes some of the packet header control information
that is ultimately placed on the wire.

Figure 1-28 Network Monitor

The protocol stack functions in reverse order at the receiving station. Each layer pro-
cesses the packet based on the control information encapsulated in the packet header
deposited by the corresponding layer at the sending computer system. If the layer
determines that the received packet contains a valid payload, the packet header data
originally inserted by that corresponding layer at the sender station is stripped off.
The remaining payload data is then passed up to the next higher layer in the stack for
processing. In this fashion, the packet is processed at the receiving station by the MAC
layer, the IP layer, and the TCP layer in sequence, until it is finally passed to the Web
browser application that originally requested the transmission and knows how to for-
mat HTML text so that it looks good on your display monitor.

Example packet trace: processing an HTTP GET request Figure 1-28 is a Net-
work Monitor packet capture that illustrates how these processing layers work. In this
example, a TCP-mandated SYN request (SYN is short for synchronize) in Frame 6 is
transmitted from an Internet Explorer Web browser to establish a session with the
Web server running at http://www.msn.com. The initial session request packet has a
number of performance-oriented parameters including Selective Acknowledgement
(SACK) and the TCP Advertised Window. Notice in the Network Monitor’s middle

Chapter 1: Performance Monitoring Overview 103

frame how the TCP header information is encapsulated inside an IP segment, which is
then enclosed in an Ethernet packet for transmission over the wire.

Frame 8 in Figure 1-28 shows a SYN, ACK response frame from the Web server that
continues the session negotiation process. Notice that it was received about 80 milli-
seconds following the initial transmission. This round trip time is a key performance
metric in TCP because it governs the Retransmission Time Out (RTO) that the proto-
col uses to determine when congested routers have dropped packets and data needs
to be retransmitted. This aspect of TCP congestion control will be discussed in more
detail later in this chapter. In this example, the ACK packet in Frame 9 completes the
sequence of packets that establishes a session between two TCP host machines.

Frame 10 follows immediately, an HTTP protocol GET Request to the MSN Web
site to access the site’s home page. This GET Request also passes a cookie contain-
ing information to the IIS Web server about the initiator of the request. The TCP
running on the Web server acknowledges this packet in Frame 11, some 260 milli-
seconds later.

An IIS Web server then builds the HTTP Response message, which spans Frames 12,
13, 15, 16, 18, and 19. Here the HTTP Response message is larger than an Ethernet
MTU (maximum transmission unit), so it is fragmented into multiple segments. The
TCP layer is responsible for breaking up this Response message into MTU-size pack-
ets on the Sender side and then reassembling the message at the Receiver. After these
frames have been received by the Web browser, Internet Explorer has all the data it
needs to render an attractive-looking Web page.

The Network Monitor captures and displays packet headers in a way that lets you eas-
ily dig down into the protocol layers to see what is going on. To use the Network Mon-
itor effectively to diagnose performance problems, it helps to understand a little more
about these networking protocols and what they do.

Bandwidth

Bandwidth refers to the data rate of the data communications transmission, usually
measured in bits per second. It is the capacity of the link to send and receive data.
Some authorities suggest visualizing bandwidth as the width of the data pipe connect-
ing two stations. A better analogy is to visualize the rate at which bits arrive at the
other end of the pipe. Bandwidth describes the rate at which bits are sent across the
link. It tells you nothing about how long it takes to transmit those bits. Physically, each
bit transmitted across the wire is part of a continuous wave form. The waveform cycles
at 100 MHz for 100baseT and at 1 GHz for Gigabit Ethernet. In the time it takes to
send 1 bit using 100baseT, you can send 10 bits using the Gigabit Ethernet standard.

104 Microsoft Windows Server 2003 Performance Guide

Bandwidth is usually the prime performance concern in LANs, only when the net-
work segment is used to move large blocks of data from point to point, as in disk-to-
tape backup or video streaming applications. For long distance data communications,
especially for organizations attempting to do business on the Web, for example, the
long latency, not bandwidth, is the more pressing (and less tractable) performance
problem.

Table 1-5 shows the bandwidth rating of a variety of popular link technologies. It also
compares the relative bandwidth of the link to a 56 Kbps telephone line. It is more
precise, however, to speak of the effective bandwidth of a data communications link.
Effective bandwidth attempts to factor in the many types of overhead that add bytes to
the data payload you are attempting to move over the network. Consider what hap-
pens when you transfer a 10-MB (megabyte) file using either FTP or Microsoft’s CIFS
network file sharing protocol from one machine to another across a 100-Mbps (Mega-
bits per second) switched Ethernet link.

The first overhead of data communication that should be factored into any calculation
of effective bandwidth is the packet-header overhead. The 10-MB file that the FTP or
SMB protocol transfers must be broken into data packets no larger than Ethernet’s
1500-byte MTU. As illustrated in the HTTP packet trace in Figure 1-28, each Ethernet
packet also contains IP, TCP, and application headers for this application. The space in
the packet that these protocol stack headers occupy reduces effective bandwidth by

Table 1-5 Connection Speed for a Variety of Networking Links

Circuit Connection Speed (bps) Relative Speed

Modem 28,800 0.5

Frame Relay 56,000 1

ISDN 128,000 2

DSL 640,000 12

T1/DS1 1,536,000 28

10 Mb Ethernet 10,000,000 180

11 Mb Wireless 11,000,000 196

T3/DS3 44,736,000 800

OC1 51,844,000 925

100 Mb Fast Ethernet 100,000,000 1800

FDDI 100,000,000 1800

OC3 155,532,000 2800

ATM 155,532,000 2800

OC12 622,128,000 11,120

Gigabit Ethernet 1,000,000,000 18,000

Chapter 1: Performance Monitoring Overview 105

about 2–3 percent. Plus, there are other protocol-related overheads such as the ACK
packets seen in the Figure 1-28 trace that further reduce effective bandwidth. Alto-
gether, the overhead of typical TCP/IP traffic reduces the effective bandwidth of a
switched Ethernet link to approximately 95 percent of its rated capacity. If you exper-
iment with transferring this hypothetical 10-MB file across a typical 100-Mbps Ether-
net link, you will probably be able to measure only about 95 Mbps of throughput,
which for planning purposes, is the effective bandwidth of the link.

The most important measure of bandwidth usage is line utilization. The measurement
technique is straightforward. Using MAC layer length fields, a measurement layer
inserted into the network protocol stack accumulates the total number of bytes
received from packets transferred across the link. Utilization is then calculated as:

network interface utilization = Bytes Total/sec current bandwidth

where both fields are measured in bytes per second. Dividing the Network Inter-
face\Bytes Total/sec counter by the Network Interface\Current Bandwidth counter
yields the utilization of the link.

Latency

Latency refers to the delay in sending bits from one location to another. It is the length
of time it takes to send a message from one station to another across the link. Elec-
tronic signals travel at the speed of light, approximately 300,000 kilometers per sec-
ond. The physical characteristics of transmission media do have a dampening effect
on signal propagation delays, with a corresponding increase in latency. The effective
speed of an electronic data transmission wire is only about 1/2 the speed of light, or
150,000 km/second. Optical fiber connections reach fully 2/3 the speed of light, or a
latency of 200,000 km/second. The delay involved in sending a message from a loca-
tion in the eastern United States to a west coast location across a single, continuous
optical cable would traverse 5,000 km. At a top speed of 200,000 km/second, the
latency for this data transmission is a not insignificant 25 milliseconds. For a rule-of-
thumb calculation, allow for at least 5 milliseconds of delay for every 1000 kilometers
separating two stations.

Of course, most long distance transmissions do not cross simple, continuous point-to-
point links. Over long distances, both electrical and optical signals attenuate and
require amplification using repeaters to reconstitute the signal and send it further
along on its way. These repeaters add latency to the transmission time. Because a long-
distance transmission will traverse multiple network segments, additional processing
is necessary at every hop to route packets to the next hop in the journey between

106 Microsoft Windows Server 2003 Performance Guide

sender and receiver. Processing time at links, including routers and repeaters and
amplifiers of various forms, adds significant delays at every network hop. High perfor-
mance IP packet routers that are designed to move massive amounts of traffic along
the Internet backbone, for example, might add 10 µsecs of delay. Slower routers like
the ones installed on customer premises could add as much as 50 µsecs of additional
latency to the transmission time. This yields a better estimate of long distance data
communication latency:

(distance / signal propagation delay) + (hop count × average router latency)

Because determining network latency across a complex internetworking scheme is so
important, the Internet protocols include facilities to measure network packet routing
response time. The Internet Control Message Protocol (ICMP), a required component
of the TCP/IP standard, supports an Echo Reply command that returns the response
time for the request. A simple command-line utility called ping that is included with
Windows Server 2003 issues several ICMP Echo Reply commands and displays the
response time as reported by the destination node. A slightly more sophisticated util-
ity called tracert decomposes the response time to a remote IP destination by calculat-
ing the time spent traversing every hop in the route. These utilities are discussed in
more detail later in this chapter.

A related measure of latency is the round trip time (RTT). RTT is defined as the time it
takes for a message to get to its destination and back (usually the sum of the latency in
the forward direction and the latency in the backward direction). In typical client/
server transactions, network RTT corresponds closely to the response time that the
user of the application perceives. As discussed earlier, this perceived application
response time is the most important performance metric because of its correlation
with user satisfaction. RTT is also used by TCP to track whether a particular data
packet has been lost; the performance of TCP on lossy links depends on RTT.

Ethernet

In Ethernet, the network connections are peer-to-peer, meaning there is no master con-
troller. Because there is no master controller in Ethernet peer-to-peer connections and
the link is a shared transmission medium, it is possible for collisions to occur when two
stations attempt to use the shared link at the same time. The performance impact of
Ethernet collisions is discussed later.

Fault tolerance, price, and performance are the main considerations that determine
the choice of a local area network configuration. As the price of Ethernet switches has
dropped, switched network segments have become more common. Unfortunately,
many people are then disappointed when a bandwidth-hogging application like tape
backup does not run any faster when a switch is configured instead of a hub. Because

Chapter 1: Performance Monitoring Overview 107

the underlying protocol is unchanged, point-to-point data transmissions that proceed
in a serial fashion cannot run any faster.

Another caution is not to get confused by the terminology that is used to identify hubs
and switches. Physically, hubs are wiring hubs that function logically as rings where
collisions occur whenever two stations attempt to send data concurrently. Switches
create network segments that function logically like spoke and hub configurations
where multiple transmissions can be in progress simultaneously on what are, in effect,
dedicated links operating at the interface’s full rated bandwidth. Collisions occur only
in switched networks when two (or more) stations A and B attempt to send data to the
same station C concurrently.

The Ethernet protocol is peer-to-peer, requiring no master controller of any kind.
Among other things, this makes an Ethernet network very easy to configure—you can
just continue to extend the wire and add links, up to the physical limitations of the
protocol in terms of the number of stations and the length of the wiring loop. Unlike
the SCSI protocol used to talk to a computer’s disk, tape, and other peripherals, for
example, the Ethernet standard has no provision for time-consuming and complex
bus arbitration. An Ethernet station that has data that it wants to send to another ses-
sion does not face any sort of arbitration. A station simply waits until the transmission
medium appears to be free and then starts transmitting data.

This simple approach to peer-to-peer communication works best on relatively lightly
used network segments where stations looking to transmit data seldom encounter a
busy link. The rationale behind keeping the Ethernet protocol simple suggests that it
is not worth bothering about something that rarely happens anyway. The unhappy
result of having no bus arbitration is that in busier network segments, multiple sta-
tions can and do try to access the same communications link at the same time. This
leads to collisions, which are disrupted data transmissions that then must be retried.

A station with data to transmit waits until the wire appears free before attempting to
transmit. Each transmission begins with a characteristic preamble of alternating 0 and
1 bits of proscribed length. (The network interface card discards this preamble so that
it is not visible in a Network Monitor packet trace.) The preamble is followed by a 1-
byte start delimiter that contains the bit sequence 10101011 designed to distinguish
the preamble from the beginning of the real data to be transmitted.

The station then continues with the transmission, always sending an entire packet, or
frame, of information. Each Ethernet frame begins with the 48-bit destination address,
followed by the 48-bit source address. These 48-bit MAC addresses uniquely identify
the Ethernet source and destination addresses—this is accomplished by giving every
hardware manufacturer a distinct range of addresses that only it can use. These

108 Microsoft Windows Server 2003 Performance Guide

unique MAC addresses are also called unicast addresses. Ethernet also supports broad-
cast addresses where the address field is set to binary 1s to indicate that it should be
processed by all LAN cards on the segment. Broadcast messages are used, for exam-
ple, to pass configuration and control information around the network.

Maximum transmission unit The length of the frame, including the header, is
encoded in the frame header immediately following the addressing fields. For histori-
cal reasons, Ethernet frames are limited to no more than 1514 bytes (1518 bytes, if you
include the required postamble bits) to keep any one station from monopolizing a
shared data link for too long. Assuming that successive Ethernet, IP, and TCP headers
occupy a minimum of 54 bytes, the data payload in an Ethernet packet is limited to
about 1460 bytes. As the speed of Ethernet links has increased, the small frame size
that the protocol supports has emerged as a serious performance limitation. For
example, CIFS access to remote files must conform to the Ethernet MTU, causing
blocks from large files to be fragmented into multiple packets. This slows down net-
work throughput considerably because each station must wait a predetermined inter-
val before transmitting its next packet. Consequently, some Gigabit Ethernet
implementations across 1 Gb/sec high-speed fiber optics links optionally create so-
called jumbo frames. Windows Server 2003 support for the Gigabit Ethernet standard
is discussed in Chapter 6, “Advanced Performance Topics.”

Following the actual data payload, each Ethernet frame is delimited at the end by a
Frame Check Sequence, a 32-bit number that is calculated from the entire frame con-
tents (excluding the preamble) as a cyclic redundancy check (CRC). A receiving sta-
tion calculates its own version of the CRC as it takes data off the wire and compares it
to the CRC embedded in the frame. If they do not match, it is an error condition and
the frame is rejected.

Collision detection When two (or more) stations have data to transmit and they
both attempt to put data on the wire at the same time, this creates an error condition
called a collision. What happens is that each station independently senses that the
wire is free and begins transmitting its preamble, destination address, source address,
and other header fields, data payload, and CRC. If more than one station attempts to
transmit data on the wire, the sequence of bits from two different frames becomes
hopelessly intermixed. The sequence of bits received at the destination is disrupted,
and, consequently, the frame is rejected.

A sending station detects that a collision has occurred because it also receives a copy
of the disrupted frame, which no longer matches the original. The frame must be long
enough so that the original station can detect the fact that the collision has occurred
before it attempts to transmit its next packet. This key requirement in the protocol
specification determines a minimum sized packet that must be issued. Transmissions

Chapter 1: Performance Monitoring Overview 109

smaller than the minimum size are automatically padded with zeros to reach the
required length.

The latency (or transmission delay) for a maximum extent Ethernet segment deter-
mines the minimum packet size that can be sent across an Ethernet network. The
propagation delay for a maximum extent network segment in 10BaseT, for example, is
28.8 µsecs, according to the standards specification. The sending station must send
data to the distant node and back to detect that a collision has occurred. The round
trip time for the maximum extent network is 2 × 28.8 µsecs, or 57.6 µsecs. The send-
ing station must get a complete frame header, data payload, and CRC back to detect
the collision. At a data rate of 10 Mb/sec, a station could expect to send 576 bits, or 72
bytes in 57.6 µsecs. Requiring each station to send at least 72 bytes means that colli-
sions can be detected across a maximum extent network. Ethernet pads messages
smaller than 72 bytes with zeros to achieve the minimum length frames required.

With wiring hubs, most Ethernet segments that are in use today do not approach any-
where near the maximum extent limits. With hubs, maximum distances in the range
of 200–500 meters are typical. At the 512 meters limit of a single segment, Ethernet
latency is closer to 5 µsecs, and with shorter segments the latency is proportionally
less. So you can see that with wiring hubs, Ethernet transmission latency is seldom a
grave performance concern.

Switches help to minimize collisions on a busy network because stations receive only
packets encoded with their source or destination address. Collisions can and still do
occur on switched segments, however, and might even be prevalent when network
traffic all tends to be directed at one or more Windows Server 2003 machines config-
ured on the segment. When there are two network clients that both want to send data
to the same server at the same time, a collision on the link to the server can and will
occur on most types of switches.

Back-off and retry Collisions disrupt the flow of traffic across an Ethernet network
segment. The data Sender A intended to transmit is not received properly at the receiv-
ing station C. This causes an error condition that must be corrected. Sender station B
also trying to send data to C also detects that a collision has occurred. Both Senders
must resend the frames that were not transmitted correctly.

The thought might occur to you that if Sender A and Sender B both detect a collision
and both try to resend data again at the same time, it is highly likely that the datagrams
will collide again. In fact this is exactly what happens on an Ethernet segment. Follow-
ing a collision, Ethernet executes its exponential back-off and retry algorithm to try to
avoid potential future collisions. Each station waits a random period of time before
resending data to recover from the collision. If a collision reoccurs the second time

110 Microsoft Windows Server 2003 Performance Guide

(the probability of another collision on the first retry remains high), each station
doubles the potential delay interval and tries again. If a collision happens again,
each station doubles the potential delay interval again, and so on, until the trans-
mission finally succeeds. As the potential interval between retries lengthens, one of
the stations will gain enough of a staggered start that eventually its transmission
will succeed.

In summary, the Ethernet protocol avoids the overhead of a shared bus arbitration
scheme to resolve conflicts when more than one station needs access to the bus. The
rationale is, “Let’s keep things simple.” This approach has much to commend it. As
long as the network is not heavily utilized, there is little reason to worry about bus
contention.

When conflicts do arise, which they inevitably do on busier networks, Ethernet sta-
tions detect that the collisions have occurred and attempt to recover by retrying the
transmissions until they succeed. Notice that each station executes the exponential
back-off algorithm independently until the transmissions finally succeed. No master
controller is ever required to intervene to bring order to the environment. Moreover,
no priority scheme is involved in sharing the common transmission medium.

Performance monitoring So long as network utilization remains relatively low, the
performance characteristics of Ethernet are excellent. For a nonswitched LAN, as net-
work utilization begins to increase above 20–30 percent busy with multiple stations
attempting to transmit data on the segment, collisions begin to occur. Because of
retries, utilization of the segment increases sharply, doubling from 30–35 percent
busy to 60–70 percent, as depicted in Figure 1-29.

Figure 1-29 The characteristic utilization bulge in the utilization of a shared Ethernet trans-
mission medium because of collisions

Figure 1-29 illustrates the bulge in utilization that can be expected on an Ethernet seg-
ment once collisions begin to occur. This characteristic bulge leads many authorities

100

80

60

40

20

0

U
til

iz
at

io
n

Arrival rate

Chapter 1: Performance Monitoring Overview 111

to recommend that you try to keep the utilization of Ethernet segments below 30–40
percent busy for nonswitched segments. Switched segments can typically sustain
much higher throughput levels without collisions, but remember that most switches
do not eliminate all collisions. Because collision detection and retries are a Network
Interface hardware function, performance monitoring from inside a machine running
Windows Server 2003 cannot detect that collisions and retries are occurring. Only
packets sent and delivered successfully are visible to the network interface measure-
ment software.

Lacking direct measurement data, you must resort to assembling a case for collisions
occurring indirectly. From the standpoint of performance monitoring, utilization lev-
els on the link of less than the 100 percent theoretical maximum utilization may rep-
resent the effective saturation point, given the way Ethernet behaves. Remember,
however, that the condition that causes collision is contention for the transmission
link. If the only activity on a segment consists of station A sending data to station B
(and station B acknowledging receipt of that data with transmissions back to A) dur-
ing an application like network backup, there is no contention for the link. Under
those circumstances, you can drive utilization of an Ethernet link to 100 percent with-
out collisions.

Warning Switched networks provide significant relief from performance problems
related to Ethernet collisions, but they do not eliminate them completely. A switch
provides a dedicated virtual circuit to and from every station on the segment. With a
switch, station A can send data to B while station C sends data to D concurrently with-
out a collision. However, collisions can still occur on a switched network if two stations
both try to send data to a third station concurrently, which is frequently what happens
in typical client/server networking configurations.

You might have access to other network performance statistics from your switches
that are available through RMON or SNMP interfaces that report the rate of collisions
directly.

IP Routing

The Internet Protocol layer, also known as layer 3 (with the physical and data link lay-
ers associated with the MAC layer being layers 1 and 2, respectively) is primarily con-
cerned with delivering packets from one location to another. On the sender, the IP
layer decides which gateway or router the outgoing packet must be sent to. On the
receiver, it is IP that makes sure that the incoming packet has been sent by the
expected router or gateway. On intermediate links, IP picks the incoming packet and
then decides which network-segment the packet should go out on, and which router

112 Microsoft Windows Server 2003 Performance Guide

it should be sent to, so that the packet moves closer to its eventual destination. This
technology is called routing. Routing is associated with a bundle of standards that
include IP itself, ICMP, ARP, BGP, and others. This section introduces the key aspects
of IP routing technology that most impact network performance and capacity plan-
ning. Note that this section discusses IP-layer concepts in the context of IP version 4,
the dominant version of IP on the Internet today. However, most of the discussion
applies to IP version 6 also.

The basic technology used in IP routing is deceptively simple. What makes IP rout-
ing such a difficult topic from a performance perspective is the complicated, inter-
connected network infrastructures and superstructures that organizations have
erected to manage masses of unscheduled IP traffic. That the Internet works as well
as it does is phenomenal, given the complexity of the underlying network of net-
works that it supports.

Routing Routing is the process where packets are forwarded from one network seg-
ment to the next until they reach their final destination. These network segments can
span organizations, regions, and countries, with the result that IP is used to intercon-
nect a vast worldwide network of computers. IP is the set of routing standards that ties
computers on both private intranets and the public Internet together so that they can
communicate with each other to send mail, messages, files, and other types of digital
information back and forth.

Devices called routers serve as gateways, interconnecting different network segments.
They implement layer 3 packet forwarding. Routers are connected to one or more local
LAN segments and then connected via WAN links to other routers located on exter-
nal networks. Windows Server 2003 machines can be configured to serve as routers
by enabling the IP Forwarding function. However, the more common practice is to use
dedicated devices that are designed specifically to perform layer 3 switching. Routers
are basically responsible for forwarding packets on to the next hop in their journey
toward their ultimate destination. Routers serve as gateways connecting separate and
distinct network segments. They recognize packets that have arrived at the network
junction that are intended for internal locations. They place these packets on the
LAN, where they circulate until they reach the desired MAC address. Routers also ini-
tiate messages (encapsulated as packets, naturally) intended for other routers that are
used to exchange information about routes.

Although the IP layer is responsible for moving packets toward their eventual destina-
tion, IP does not guarantee delivery of those packets. Moreover, once a packet is
entrusted to IP for delivery, there is no mechanism within IP to confirm the delivery of
that packet as instructed. IP was designed around a “best effort” service model that is
both unreliable and connectionless. It is the Host-to-Host connection layer above IP that
is responsible for maintaining reliable, in-order delivery of packets. That component,
of course, is TCP.

Chapter 1: Performance Monitoring Overview 113

Being a “best effort” service model, IP works hard to deliver the packets entrusted to
it. Using IP, if there is a serviceable route between two addresses on the Internet, no
matter how convoluted, IP will find it and use it to deliver the datagram payload. As
you can probably imagine, route availability across a large system of interconnected
public and private networks is subject to constant change. For example, it is a good
practice for critical locations on your private network to be accessible by two or more
connections or paths. If one of these links goes down, IP will still be able to deliver
packets through an alternate route.

Determining which path among many possible choices that exist is one of the respon-
sibilities of Internet Protocol layer 3 routers. Undoubtedly, some routes are better
than others because they can deliver traffic faster to a destination, more reliably, or
with less cost. Some routers implement the simple Routing Information Protocol
(RIP), which selects routes primarily based on the number of hops involved. More
powerful routers usually implement the more robust Open Shortest Path First (OSPF)
protocol, which attempts to assess both route availability and performance in making
decisions. The popularity of the public access Internet has recently generated interest
in having routers use policy-oriented Quality of Service (QoS) metrics to select among
packets that arrive from different sources and different applications. An in-depth dis-
cussion comparing and contrasting these routing methods is beyond the scope of this
chapter, but it is a good discussion to have with your networking provider.

Routing tables The dynamic aspects of routing create a big problem: specifically,
how to store all that information about route availability and performance and keep it
up-to-date. The Internet consists of thousands and thousands of separate autono-
mous network segments. They are interconnected in myriad ways. The route from
your workstation to some location like http://www.microsoft.com is not predeter-
mined. There is no way to know beforehand that such a route even exists.

IP solves the problem of how to store information about route availability in an inter-
esting way. The IP internetworking environment does not store a complete set of rout-
ing information in any one, centralized location that might be either vulnerable to
failure or be subject to becoming a performance bottleneck.

Instead, information about route availability is distributed across the network, main-
tained in routing tables stored in individual routers. These routing tables list the spe-
cific network addresses to which the individual router can deliver packets. In
addition, there is a default location—usually another router—where the router for-
wards any packets with an indeterminate destination for further address resolution.
The route command-line utility can be used to display the contents of a machine’s
routing table:

114 Microsoft Windows Server 2003 Performance Guide

C:\>route print

===

Interface List

0x1 MS TCP Loopback interface

0x2000002 ...00 00 86 38 39 5a 3Com Megahertz LAN + 56K

===

===

Active Routes:

Network Destination Netmask Gateway Interface Metric

 0.0.0.0 0.0.0.0 24.10.211.1 24.10.211.47 1

 24.10.211.0 255.255.255.0 24.10.211.47 24.10.211.47 1

 24.10.211.47 255.255.255.255 127.0.0.1 127.0.0.1 1

 24.255.255.255 255.255.255.255 24.10.211.47 24.10.211.47 1

 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1

 192.168.247.0 255.255.255.0 192.168.247.1 192.168.247.1 1

 192.168.247.1 255.255.255.255 127.0.0.1 127.0.0.1 1

 200.200.200.0 255.255.255.0 200.200.200.1 200.200.200.1 1

 200.200.200.1 255.255.255.255 127.0.0.1 127.0.0.1 1

 224.0.0.0 224.0.0.0 200.200.200.1 200.200.200.1 1

 224.0.0.0 224.0.0.0 24.10.211.47 24.10.211.47 1

 224.0.0.0 224.0.0.0 192.168.247.1 192.168.247.1 1

 255.255.255.255 255.255.255.255 192.168.247.1 0.0.0.0 1

===

Persistent Routes:

 None

This sample route table is for a Windows Server 2003 machine at address
24.10.211.47 serving as a router. This table marks addresses within the 24.10.211.0
Class C network range (with a subnet mask of 255.255.255.0) for local delivery. It
also shows two external router connections at locations 200.200.200.1 and
192.168.247.1. Packets intended for IP addresses that this machine has no direct
knowledge of are routed to the 24.10.211.1 gateway by default.

The set of all IP addresses that an organization’s routers manage directly defines the
boundaries of what is known in routing as an autonomous system (AS). For the Internet
to work, routers in one autonomous system need to interchange routing information
with the routers they are connected to in other autonomous systems. This is accom-
plished using the Border Gateway Protocol (BGP). Using BGP, routers exchange infor-
mation with other routers about the IP addresses that they are capable of delivering
packets to.

As the status of links within some autonomous network configuration changes, the
routers at the borders of the network communicate these changes to the routers they
are attached to at other external networks. Routers use Border Gateway Protocol
(BGP) messages to exchange information about routes with routers they are con-
nected to across autonomous systems. BGP is mainly something that the Internet Ser-

Chapter 1: Performance Monitoring Overview 115

vice Providers worry about. Naturally, ISP routers maintain extensive routing tables
about the subnetworks the Providers manage.

One of the key ingredients that makes IP routing across a vast network like the Inter-
net work is that each IP packet that routers operate on is self-contained. Each packet
contains all the information that the layer 3 switching devices need to decide where to
deliver the packet and what kind of service it requires. The IP header contains the
addresses of both the sender and the intended receiver. Another feature of IP is that
routers operate on each self-contained IP packet individually. It is quite possible for
one packet intended for B that is sent by A to get delivered to its destination following
one route while the next packet is delivered by an entirely different route.

When a router receives a packet across an external link that is destined for delivery
locally, the router is responsible for delivering that packet to the correct station on the
LAN. That means the router sends this packet to the MAC layer interface, plugging in
the correct destination address. (The router leaves the Source address unchanged so
that you can always tell where the packet originated.) The Address Resolution Proto-
col (ARP) is used to maintain a current list of local IP addresses and their associated
MAC addresses.

Router performance The fact that IP does not guarantee the delivery of packets
does have some interesting performance consequences. When IP networks get con-
gested, routers can either queue packets for later processing or drop the excess load.
By design, most high-performance routers do the latter. They are capable of keeping
only a very small queue of packets. If additional requests to forward packets are
received and the queue is full, most routers simply drop incoming packets. Dropping
packets is acceptable behavior in IP, and even something that is to be expected. After
all, IP never guaranteed that it would deliver those packets in the first place. The pro-
tocol is designed to make only its “best effort” to deliver them.

The justification for this strategy is directly related to performance. The original
designers of the Internet understood that persistent bottlenecks in the Internet infra-
structure would exist whenever some customer’s equipment plugged into the net-
work was hopelessly undersized. In fact, given the range of organizations that could
connect to the Internet, it is inevitable that some routes are not adequately sized.
Therefore, the Internet packet delivery mechanism needs to be resilient in the face of
persistent, mismatched speeds of some of the components of a route.

In the face of inevitable speed mismatches, what degree of queuing should a router
serving as the gateway between two networks attached to the Internet support? Con-
sider that queuing at an undersize component during peak loads could lead to
unbounded queuing delays whenever requests started to arrive faster than the router

116 Microsoft Windows Server 2003 Performance Guide

could service them. It is also inevitable that whatever queue depth a bottlenecked
router was designed to support could readily be exceeded at some point. When a
router finally exhausts the buffer space it has available to queue incoming packets, it
would be necessary to discard packets anyway. With this basic understanding of the
fundamental problem in mind, it makes sense to start to discard packets before the
queue of deferred packets grows large and begins, for example, to require extensive
resources to manage.

Routers have a specific processing capacity, rated in terms of packets/second. When
packets arrive at a router faster than the router can deliver them, excess packets are
dropped. Because most routers are designed to support only minimal levels of queu-
ing, the response times for the packets they deliver is very consistent, never subject to
degradation when the network is busy. The price that is paid for this consistent
response time is that some packets might not be delivered at all.

Obviously, you need to know when the rate of network traffic exceeds capacity
because that is when routers begin dropping packets. You can then upgrade these
routers or replace them with faster units. Alternatively, you might need to add net-
work capacity in the form of both additional routes and routers. Performance statistics
are available from most routers using either SNMP or RMON interfaces. In addition,
some routers return ICMP Source Quench messages when they reach saturation and
need to begin dropping packets.

Tip The IP statistics that are available in System Monitor count packets received and
processed and are mainly useful for network capacity planning. These include IP\Dat-
agrams Received/sec, IP\Datagrams Received/sec, and the total IP\Datagrams/sec.
Counters for both the IP version 4 (IPv4) and IP version 6 (IPv6) versions of the proto-
col are available.

Obviously, dropping packets at a busy router has dire consequences for someone
somewhere, namely the originator of the request that failed. Indeed it does. Although
IP is not concerned about what happens to a few packets here and there that might
have gotten dropped, this is a concern at the next higher level in the protocol stack,
namely in the TCP Host-to-Host connection layer 4. TCP will eventually notice that a
packet is missing and attempt some form of error recovery, which involves resending
the original packet. If TCP cannot recover from the error, it will eventually notify the
application that issued the request. This leads to the familiar “Request Timed Out”
error message in your Web browser that prods you into retrying the entire request.

The structural problem of having an overloaded component on the internetwork
somewhere is something that also must be systematically addressed. In networking

Chapter 1: Performance Monitoring Overview 117

design, this is known as the problem of flow control, for example, what to do about a
sender computing system that is overloading some underpowered router installed on
a customer’s premises. Again, flow control is not a concern at the IP level, but at the
next higher level, TCP does provide a suitable flow control and a congestion control
mechanism, which is discussed later.

Packet headers IP packet headers contain the familiar source and destination IP
addresses, fragmentation instructions, and a hop count called TTL, or Time To Live.
Three IP header fields provide the instructions used in packet fragmentation and reas-
sembly. These are the Identification, Flags, and Offset fields that make up the second
32-bit word in the IP packet header. The IP layer at the packet’s destination is respon-
sible for reassembling the message from a series of fragmented packets and returning
data to the application in its original format.

The Time To Live (TTL) field is used to ensure that packets cannot circulate from
router to router around the network forever. Each router that operates on a packet
decrements the TTL field before sending it on its way. If a router finds a packet with a
TTL value of zero, that packet is discarded on the assumption that it is circulating in
an infinite loop.

Note As originally specified, the 1-byte TTL field in the IP header was supposed to
represent the number of seconds a packet could survive on the Internet before it was
discarded. Each IP router in the destination path was supposed to subtract the number
of seconds that the packet resided at the router. But because packets tended to spend
most of their time in transit between routers connected by long distance WAN links,
this scheme proved unworkable. The TTL field was then reinterpreted to mean the
number of path components that a packet travels on the way to its destination. Today,
when the TTL hop count gets to zero, the packet is discarded.

Subtracting the final TTL value observed at the destination from the initial value
yields the hop count, which is the number of links traversed before the packet reached
its final destination. TTL is a 1-byte field with a maximum possible link count of 255.
Windows Server 2003 sets TTL to 128 by default. Because IP packets typically can
span the globe in less than 20 hops, a default TTL value of 128 is generous.

ICMP The Internet Control Message Protocol (ICMP) is used to generate informa-
tional error messages on behalf of IP. Even though ICMP does not serve to make IP
reliable, it certainly makes IP easier to manage. In addition to its role in generating
error messages, ICMP messages are used as the basis for several interesting utilities,
including ping and tracert.

118 Microsoft Windows Server 2003 Performance Guide

Ping is a standard command-line utility that utilizes ICMP messaging. The most com-
mon use of the ping command is simply to verify that one IP address can be reached
from another. The ping command sends an ICMP type 0 Echo Reply message and
expects a type 8 Echo Request message in reply. The ping utility calculates the round
trip time for the request and the TTL value for a one-way trip. (Note that ping sets TTL
to a value of 255 initially.) By default, ping sends Echo Reply messages four times so
that you can see representative RTT and hop count values. Because different packets
can arrive at the destination IP address through different routes, it is not unusual to
observe variability in the four measurements.

A more elaborate diagnostic tool is the tracert utility that determines the complete
path to the destination, router by router. Typical output from the tracert command fol-
lows:

C:\>tracert 207.46.155.17

Tracing route to 207.46.155.17 over a maximum of 30 hops

 1 1 ms 1 ms 1 ms 192.168.0.101

 2 14 ms 15 ms 13 ms 12-208-96-1.client.attbi.com [12.208.96.1]

 3 13 ms 13 ms 11 ms 12.244.104.97

 4 13 ms 15 ms 16 ms 12.244.72.230

 5 17 ms 15 ms 14 ms gbr6-p90.cgcil.ip.att.net [12.123.6.6]

 6 19 ms 15 ms 13 ms tbr2-p013601.cgcil.ip.att.net [12.122.11.61]

 7 56 ms 53 ms 53 ms gbr4-p20.st6wa.ip.att.net [12.122.10.62]

 8 58 ms 59 ms 56 ms gar1-p370.stwwa.ip.att.net [12.123.203.177]

 9 56 ms 59 ms 58 ms 12.127.70.6

 10 59 ms 57 ms 58 ms 207.46.33.225

 11 59 ms 60 ms 57 ms 207.46.36.66

 12 54 ms 57 ms 56 ms 207.46.155.17

Trace complete.

The way the tracert command works is that it begins by sending ICMP Echo Reply
type 0 messages with a TTL of 1, then increments TTL until the message is success-
fully received at the destination. In this fashion, it traces at least one likely route of a
packet and calculates the cumulative amount of time it took to reach each intermedi-
ate link. (This is why tracert sometimes reports that it takes less time to travel further
along the route—the response times displayed represent different ICMP packets that
were issued.) The tracert command also issues a DNS reverse query to determine the
DNS name of each node in the path.

TCP

The Transmission Control Protocol (TCP) is the Layer 4 protocol that provides a reli-
able, peer-to-peer delivery service. TCP sets up point-to-point, connection-oriented
sessions to guarantee reliable in-order delivery of application transmission requests.

Chapter 1: Performance Monitoring Overview 119

TCP sessions are full duplex, capable of sending and receiving data between two loca-
tions concurrently. This section reviews the way the TCP protocol works. The most
important TCP tuning parameters are discussed in Chapter 5, “Performance Trouble-
shooting.”

TCP sessions, or connections, are application-oriented. TCP port numbers uniquely
identify applications that plug into TCP. Familiar Internet applications like HTTP, FTP,
SMTP, and Telnet all plug into TCP sockets. Microsoft networking applications like
DCOM, RPC, and the SMB server and redirector functions also utilize TCP. They use
the NBT interface that allows NetBEUI services to run over TCP/IP.

TCP connection-oriented behavior plays an important role in network performance
because the TCP layer is responsible for both flow control and congestion control.
The flow control problem was cited earlier: how to keep a powerful sender from
overwhelming an undersized link. Congestion control deals with a performance
problem that arises in IP routing where busy routers drop packets instead of queu-
ing them. The TCP layer that is responsible for in-order, reliable receipt of all data,
detects that packets are being dropped. Because the likely cause of packets being
dropped is router congestion, TCP senders recognize this and back off to lower
transmission rates.

TCP advertises a sliding window that limits the amount of data that one host applica-
tion can send to another without receiving an Acknowledgement. Once the Adver-
tised Window is full, the sender must wait for an ACK before it can send any
additional packets. This is the flow control mechanism that TCP uses to ensure that a
powerful sender does not overwhelm the limited capacity of a receiver.

Being unable to measure network link capacity directly, TCP instead detects that net-
work congestion is occurring and backs off sharply from sending data. TCP recog-
nizes two congestion signals: a window-full condition indicating that the receiver is
backed up; and an unacknowledged packet that is presumed lost because of an over-
loaded router. In both cases, the TCP sender reacts by reducing its network transmis-
sion rates.

These two important TCP performance-oriented functions are tied to the round trip
time (RTT) of connections, which TCP calculates. Together, the RTT and the size of
the TCP sliding data window determine the throughput capability of a TCP connec-
tion. RTT also figures into TCP congestion control. If a sender fails to receive a timely
Acknowledgement message that a packet was delivered successfully, TCP ultimately
retransmits the datagram. The amount of time TCP waits for an Acknowledgement to
be delivered before it retransmits the data is based on the connection RTT. Important
TCP tuning options include setting the size of the Advertised Window and the
method used to calculate RTT.

120 Microsoft Windows Server 2003 Performance Guide

Session connections Before any data can be transferred between two TCP peers,
these peers first must establish a connection. In the setup phase of a connection, two
TCP peers go through a handshaking process where they exchange information about
each other. Because TCP cares about delivering data in the proper sequence, the hosts
initiating a session need to establish common sequence numbers to use when they
want to begin transferring data. The peers also negotiate to set various options associ-
ated with the session, including establishing the size of the data transfer window, the
use of selective acknowledgement (SACK), the maximum segment size the parties can
use to send data, and other high-speed options like timestamps and window scaling.

To initiate a connection, TCP peer 1 sends a Synchronize Sequence Number (SYN)
message that contains a starting sequence number, a designated port number to send
the reply to, and the various proposed option settings. This initial message is posted
to a standard application port destination at the receiver’s IP address—for example,
Port 80 for an HTTP session between a Web browser and a Web server. Then TCP peer
2 acknowledges the original SYN message with a SYN-ACK, which returns the
receiver’s starting sequence number to identify the packets that it will initiate. Peer 2
also replies with its AdvertisedWindow size recommendation. Peer 1 naturally must
acknowledge receipt of Peer 2’s follow-up SYN-ACK. When TCP Peer 2 receives Peer
1’s acknowledgement (ACK) message referencing its SYN-ACK message number and
the agreed-upon AdvertisedWindow size, the session is established. Frames 9–11 in
the packet trace illustrated in Figure 1-28 are a typical sequence of messages
exchanged by two hosts to establish a TCP connection.

Byte sequence numbers The TCP packet header references two 32-bit sequence
numbers, a Sequence Number and the Acknowledgement field. These are the relative
byte number offsets of the current transmission streams that are being sent back and
forth between the two host applications that are in session. At the start of each TCP
session as part of establishing the connection, the peers exchange initial byte
sequence numbers in their respective SYN messages. Because TCP supports full
duplex connections, both host applications send SYN messages initially.

The Sequence Number field in the header is the relative byte offset of the first data
byte in the current transmission. This Sequence Number field allows the receiver to
slot an IP packet received out of order into the correct sequence. Because the
sequence numbers are 32 bits wide, it is safe for TCP to assume any packets received
with identical sequence numbers are duplicates because of retransmission. In case
this assumption is not true for certain high-latency high-speed connections, the end-
points should turn on the timestamp option in TCP. Duplicates can safely be dis-
carded by the receiver.

Chapter 1: Performance Monitoring Overview 121

The Acknowledgment field acknowledges receipt of all bytes up to (but not including)
the current byte offset. It is interpreted as the Next Byte a TCP peer expects to receive
in this session. The receiver matches the Acknowledgement ID against the Sequence-
Number field in the next message received. If the SequenceNumber is higher, the cur-
rent message block is interpreted as being out of sequence, and the Acknowledgement
field of the ACK message returned is unchanged. The Acknowledgement field is
cumulative, specifically acknowledging receipt of all bytes from the Initial Sequence
Number (ISN) +1 to the current Acknowledgement byte number −1. A receiver can
acknowledge an out-of-sequence packet only when the SACK (Selective Acknowledge-
ment) option is enabled.

Sliding window TCP provides a flow control mechanism called the sliding window,
which determines the maximum amount of data a peer can transmit before receiving
a specific acknowledgement from the receiver. This mechanism can be viewed as win-
dow that slides forward across the byte transmission stream. The AdvertisedWindow
is the maximum size of the sliding window. The current Send Window is the Adver-
tisedWindow minus any transmitted bytes that the receiver has not yet Acknowl-
edged. Once the window is filled and no Acknowledgement is forthcoming, the
sender is forced to wait before sending any more data on that connection.

The AdvertisedWindow field in the TCP header is 16 bits wide, making 64 KB the larg-
est possible window size. However, an optional Window Scale factor can also be spec-
ified, which is used to scale up the AdvertisedWindow field to support larger
windows. The combination of the two fields allows TCP to support a sliding data win-
dow up to 1 GB wide.

TCP’s sliding window mechanism has network capacity planning implications.
Together, the Advertised Window size and the RTT establish an upper limit to the
effective throughput of a TCP session. The default Advertised Window Windows
Server 2003 uses for Ethernet connections is about 17,520 bytes. TCP session man-
agement can send only one 17.5 KB window’s worth of data before stopping to wait
for an ACK from the receiver. If the RTT of the session is 100 milliseconds (ms) for a
long distance connection, the TCP session will be able to send a maximum of only
1/RTT windows per second, in this case, just 10 windows per second. The maximum
throughput of that connection is effectively limited to

Max throughput = AdvertisedWindow / RTT

which in this case is 175 KB/sec, independent of the link bandwidth.

Consider a Fast Ethernet link at 100 Mb/sec, where the effective throughput capacity of
the link is roughly 12 MB/sec (12,000,000 bytes/sec). RTT and the default Windows

122 Microsoft Windows Server 2003 Performance Guide

Server 2003 TCP Advertised Window begin to limit the effective capacity of a Fast Ether-
net link once RTT increases above 1 millisecond, as illustrated in Table 1-6.

Because the latency of a LAN connection is normally less than a millisecond (which is
what ping on a LAN will tell you), RTT will not limit the effective capacity of a LAN
session. However, it will have a serious impact on the capacity of a long distance con-
nection to a remote Web server, where you can expect the RTT to be 10–100 millisec-
onds, depending on the distances involved. Note that this is the effective link capacity
of a single TCP connection. On IIS Web servers with many connections active concur-
rently, the communications link can still saturate.

Windows Server 2003 defaults to using a larger window of about 65,535 bytes for a
Gigabit Ethernet link. Assuming a window of exactly 65,000 bytes leads to the behav-
ior illustrated in Table 1-7.

An Advertised Window value larger than 65535 bytes can be set for Gigabit Ethernet
links using the Window scaling option. This is one of the networking performance
options discussed in more detail in Chapter 6, “Advanced Performance Topics.” in
this book.

Table 1-6 How Various RTT Values Reduce the Effective Capacity of a 100BaseT
Link

RTT (ms) Max Windows/sec Max Throughput/sec

0.001 1,000,000 12,000,000

0.010 100,000 12,000,000

0.100 10,000 12,000,000

1 1,000 12,000,000

10 100 1,750,000

100 10 175,000

1000 1 17,500

Table 1-7 How Various Values Reduce the Effective Capacity of a 1000BaseT
Link

RTT (ms) Max Windows/sec Max Throughput/sec

0.001 1,000,000 125,000,000

0.010 100,000 125,000,000

0.100 10,000 125,000,000

1 1,000 65,000,000

10 100 6,500,000

100 10 650,000

1000 1 65,000

Chapter 1: Performance Monitoring Overview 123

Congestion window As part of congestion control, a TCP sender paces its rate of
data transmission, slowly increasing it until a congestion signal is recognized. When a
congestion signal is received, the sender backs off sharply. TCP uses Additive increase/
Multiplicative decrease to open and close the Send Window. It starts a session by send-
ing two packets at a time and waiting for an ACK. TCP slowly increases its connection
Send Window one packet at a time until it receives a congestion signal. When it recog-
nizes a congestion signal, TCP cuts the current Send Window in half and then
resumes additive increase. The operation of these two congestion mechanisms pro-
duces a Send Window that tends to oscillate, as illustrated in Figure 1-30, reducing
the effective capacity of a TCP connection accordingly.

Figure 1-30 The TCP congestion window reducing effective network capacity

The impact of the TCP congestion window on effective network capacity is explored in
more detail in Chapter 5, “Performance Troubleshooting.”

Summary
This chapter introduced the performance monitoring concepts that are used through-
out the remaining chapters of this book to describe the scalability and provisioning of
Windows Server 2003 machines for optimal performance. It provided definitions for
key computer performance concepts, including utilization, response time, service
time, and queue time. It then discussed several mathematical relations from the queu-
ing models that are often applied to problems related to computer capacity planning,
including Utilization Law and Little’s Law. The insights of mathematical Queuing
Theory imply that it is difficult to balance efficient utilization of hardware resources
with optimal response time. This tension between these two goals arises because, as
utilization at a resource increases, so does the potential for services requests to
encounter queue time delays at a busy device.

Multiplicative
Decrease

Effective Capacity

Ad
di

tiv
e

In
cr

ea
se

A
d

ve
rt

is
ed

W
in

d
ow

Slo
w S

ta
rt

Slo
w S

ta
rt

124 Microsoft Windows Server 2003 Performance Guide

This chapter also discussed an approach to computer performance and tuning that is
commonly known as bottleneck analysis. Bottleneck analysis decomposes a response
time–oriented transaction into a series of service requests to computer subcompo-
nents such as processors, disks, and network adaptors, that are interconnected in a
network of servers and their queues. Bottleneck analysis then seeks to determine
which congested resource adds the largest amount of queue time delay to the transac-
tion as it traverses this set of interconnected devices. Once they have been identified,
bottlenecks can be relieved by adding processing capacity, by spreading the load over
multiple servers, or by optimizing the application’s use of the saturated resource in a
variety of straightforward ways.

The bulk of this chapter discussed the key aspects of computer systems architecture
that are most important to performance and scalability. This included a discussion of
the basic performance capabilities of the processor, memory, disk, and networking
hardware that is most widely in use today. The key role that the Windows Server 2003
operating system plays in supporting these devices was also highlighted, including a
discussion of the basic physical and virtual memory management algorithms that the
operating system implements. The techniques used by the operating system to gather
performance data on the utilization of these resources were also discussed to provide
insight into the manner in which the key measurement data that supports perfor-
mance troubleshooting and capacity planning is derived.

125

Chapter 2

Performance Monitoring
Tools

In this chapter:

Summary of Monitoring Tools. 126

Performance Monitoring Statistics . 133

System Monitor . 144

Task Manager . 154

Automated Performance Monitoring. 168

Managing Performance Logs. 191

Windows Performance Monitoring Architecture 207

Event Tracing for Windows . 212

Alerts . 225

Windows System Resource Manager . 233

Network Monitor. 233

Microsoft® Windows Server™ 2003 provides a comprehensive set of tools to help
with the collection of useful performance data. Four general classes of tools are
available: performance statistics gathering and reporting tools, event tracing tools,
load generating tools, and administration tools. The statistical tools that you will
use regularly are the Performance Monitor and Task Manager, but you will have
occasion to use other more specialized statistical tools to investigate specific per-
formance problems.

Event tracing tools gather data about key, predefined system and application events.
The event traces that you can gather document the sequence of events that take place
on your Windows Server 2003 machine in great detail. Event tracing reports can be
extremely useful in diagnosing performance problems, and they can also be used to
augment performance management reporting in some critical areas.

This chapter discusses the use of these tools to gather performance statistics and diag-
nostic performance events. Specific performance statistics that should be gathered are
discussed in detail in Chapter 3, “Measuring Server Performance.” Performance mon-
itoring procedures designed to support both problem diagnosis and longer term
capacity planning are described in Chapter 4, “Performance Monitoroing Procedures.”

126 Microsoft Windows Server 2003 Performance Guide

Chapter 5, “Performance Troubleshooting,” and Chapter 6, “Advanced Performance
Topics,” discuss the role that other key diagnostic tools can play in troubleshooting
some of the difficult performance problems that you can encounter.

In addition to these essential performance monitoring tools, load testing should be
used in conjunction with capacity planning to determine the capacity limits of your
applications and hardware. How to use application load testing tools is beyond the
scope of this chapter.

Summary of Monitoring Tools
There are three primary sources for the monitoring and diagnostic tools that are avail-
able for Windows Server 2003:

■ Windows Server 2003 tools installed as part of the operating system

■ The Windows Server 2003 Support Tools from the operating system installa-
tion CD

■ The Windows Server 2003 Resource Kit tools

This chapter is mainly concerned with the monitoring and diagnostic tools that are
automatically installed alongside the operating system.

Performance Statistics

The first group of tools to be discussed gathers and displays statistical data on an
interval basis. These tools use a variety of sampling techniques to generate interval
performance monitoring data that is extremely useful in diagnosing performance
problems. The statistical tools in Windows Server 2003 are designed to be efficient
enough that you can run them continuously with minimal impact. Using the tools
that are supplied with Windows Server 2003, you should be able to establish auto-
mated data collection procedures. The performance statistics you gather using the
Performance Monitor can also be summarized over longer periods of time to assist
you in capacity planning and forecasting. Specific procedures designed to help you
accomplish this are described in Chapter 5 of this book.

You will find that the same set of performance counters described here are available in
many other tools. Other applications that access the same performance statistics
include the Microsoft Operations Manager (MOM) as well as applications that have
been developed by third parties. All these applications that gather Windows Server
2003 performance measurements share a common measurement interface—a perfor-
mance monitoring application programming interface (API). The performance moni-
toring API is the common source of all the performance statistics these tools gather.

Chapter 2: Performance Monitoring Tools 127

Event Traces

A comprehensive trace facility called Microsoft Event Tracing for Windows (ETW)
gathers detailed event traces from operating system providers. Using ETW, you can
determine precisely when context switches, file operations, network commands, page
faults, or other system events occur. Event trace providers are also available for many
server applications, including File Server, Internet Information Services (IIS), and
Active Directory. ETW traces capture a complete sequence of events that allow you to
reconstruct precisely what is occurring on your Windows Server 2003 machine and
when. Event traces can also illuminate key aspects of application performance for
those server applications like IIS and Active Directory that have also been instru-
mented. Event traces are one of the most important tools available for diagnosing per-
formance problems.

Unlike statistical tools, event tracing is not designed to be executed continuously or to
run unattended for long periods of time. Depending on what events you are tracing,
ETW traces can easily generate significant overhead to the extent that they might
interfere with normal systems operation. Consequently, event traces are a diagnostic
tool normally reserved for gathering data about performance problems that require
more detailed information than statistical tools can provide. Also, there is no easy way
to summarize the contents of an event trace log, although standard reports are pro-
vided. In addition, it is possible to generate very large files in a relatively short time
period. So long as you are careful about the way you use them, event traces are a valu-
able diagnostic tool that you will find invaluable in a variety of circumstances.

Another important trace tool is Network Monitor. With Network Monitor, you can
determine the precise sequence of events that occur when your computer is commu-
nicating with the outside world. Network Monitor traces are often used to diagnose
network connectivity and performance problems. But they are also useful to docu-
ment the current baseline level at which your systems are operating so that you can
recognize how your systems are growing and changing. Using Network Monitor to
diagnose network performance problems is discussed in Chapter 5, “Performance
Troubleshooting” in this book.

Finally, one more event-oriented administrative tool should be mentioned in this con-
text. The event logging facility of the operating system can often play an important
role in diagnosing problems. Using Event Viewer, you can access event logs that
record a variety of events that can be meaningful when you are analyzing a perfor-
mance problem. For example, one of the easiest ways to determine when processes
begin and end in Windows Server 2003 is to enable audit tracking of processes and
then examine process start and end events in the Security log.

128 Microsoft Windows Server 2003 Performance Guide

Load Generating and Testing

Load-generating tools of all kinds are useful for stress testing specific hardware and
software configurations. Windows Server 2003 includes several load- testing tools,
including some for specific applications like Web-based transaction processing and
Microsoft Exchange. Load-testing tools simulate the behavior of representative appli-
cation users. As you increase the number of simulated users, you can also gather per-
formance statistics to determine the impact on system resource utilization. These
tools help you determine the capacity limits of the hardware you have selected
because they allow you to measure application response time as the number of users
increases. As discussed in Chapter 1, “Performance Monitoring Overview,” applica-
tion response time can be expected to increase as a function of load, and these tools
allow you to characterize that nonlinear function very accurately for specific applica-
tion workloads.

Load testing your workload precisely can become very complicated. A key consider-
ation with load-testing tools is developing an artificial workload that parallels the real-
life behavior of the application you are interested in stress testing. The fact that a par-
ticular hardware or software bottleneck arises under load might be interesting, but
unless the simulated workload bears some relationship to the real workload, the test
results might not be very applicable. Further discussion of the use of load-testing tools
is beyond the scope of this chapter.

Administrative Controls

Finally, there are tools that provide system administrators with controls that allow you
to manage complex Windows Server 2003 environments. Administrative tools are
especially useful when you have two or more major applications running on the same
server that are vying for the same, potentially overloaded resources. The Windows
System Resources Manager (WSRM) is the most comprehensive administrative tool
available for the Windows Server 2003 environment, but other administrative tools
can also prove helpful. WSRM is discussed briefly in Chapter 6, “Advanced Perfor-
mance Topics,” in this book.

More Info Complete documentation about the use of WSRM is available at http://
www.microsoft.com/windowsserver2003/technologies/management/wsrm
/default.mspx.

Required Security for Tool Usage

Many monitoring tools will only work provided you have the appropriate security
access. In previous versions of the operating system, access was controlled by setting

Chapter 2: Performance Monitoring Tools 129

security on the appropriate registry keys. Windows Server 2003 comes with two pre-
defined security groups—Performance Monitor Users and Performance Log Users—
that already have the prerequisite security rights for accessing the registry keys
required by Performance Monitor.

You can add a designated support person into an appropriate performance security
group by using the Active Directory Users and Computers tool when working in a
domain. These two security groups are found in the Builtin container for the domain
and are the following:

■ Performance Monitor Users To allow designated support personnel access to
remote viewing of system performance through the System Monitor tool, you
will need to make each person a member of the Performance Monitor Users
group.

■ Performance Log Users To allow designated support personnel access to
remote configuring of and using the Performance Logs and Alerts tool, you will
need to make each person a member of the Performance Log Users group.

More Info For information about how to add or remove users from groups,
see “Changing group memberships” in the Windows Server 2003 Help.

Table 2-1 contains a list of Windows Server 2003 operating system tools for monitor-
ing performance.

More Info For more information about operating system tools, in Help and Sup-
port Center for Microsoft® Windows Server™ 2003, click Tools, and then click Com-
mand-Line Reference A–Z.

Table 2-1 Performance-Related Operating System Tools

Tool Description

Freedisk.exe Checks for a specified amount of free disk space, returning a 0 if there
is enough space for an operation and a 1 if there isn’t. If no values are
specified, the tool tells you how much hard disk space you have left.
Useful when performance monitoring disk usage.

Lodctr.exe Loads performance counters. Especially useful for saving and restoring
a set of registry enabled performance counters.

Logman.exe Powerful command-line tool for collecting event trace and perfor-
mance information in log files. Useful for scripting performance mon-
itoring. Using Logman is discussed later in this chapter.
Comprehensive performance monitoring procedures that incorporate
Logman are described in Chapter 4, “Performance Monitoring Proce-
dures,” later in this book.

130 Microsoft Windows Server 2003 Performance Guide

Table 2-2 contains a list of Windows Server 2003 Support Tools for monitoring per-
formance. For more information about Windows Support Tools, in Help and Support

Msinfo32.exe Provides information about the resources used by your system. Useful
when requiring a snapshot of information about processes and the re-
sources they are consuming.

Network Monitor Comprehensive graphical tool for monitoring network traffic to and
from the local server. Must be installed manually after the base oper-
ating system is loaded. Use of Network Monitor is discussed in Chapter
5, “Performance Troubleshooting,” later in this book.

Performance Logs
and Alerts

Creates a manually defined set of logs that can be used as baselines
for your servers. The Alerts component allows you to take a specified
action when specific conditions are encountered. Using Performance
Logs and Alerts is discussed later in this chapter.

Relog.exe Command-line tool that creates new performance logs from existing
log files by varying the sample rate. Using Relog is discussed later in
this chapter. Comprehensive performance monitoring procedures
that incorporate Relog are described in Chapter 4, “Performance Mon-
itoring Procedures,” later in this book.

Systeminfo.exe Provides detailed support information about computers

System Monitor Main graphical tool used for monitoring system performance. Using
System Monitor is discussed extensively throughout this book.

Taskkill.exe Kills a specified process on the specified computer.

Tasklist.exe Displays the process ID and memory information about all running
processes.

Task Manager Graphical tool that offers an immediate overview of the system and
network performance of the local server only. Using Task Manager is
discussed later in this chapter.

Tracerpt.exe Command-line tool useful for converting binary log event trace files
into a report or comma-separated value (CSV) files for importing into
spreadsheet products such as Microsoft Excel. Using Tracerpt is dis-
cussed later in this chapter. Using Tracerpt in conjunction with trou-
bleshooting performance problems is discussed in Chapter 5,
“Performance Troubleshooting.”

Typeperf.exe Command-line tool that writes performance data to a log file. Useful
for automating the performance monitoring process. Using Typeperf
is discussed later in this chapter. Comprehensive performance moni-
toring procedures that incorporate Typeperf are described in Chapter
4, “Performance Monitoring Procedures.”

Unlodctr.exe Unloads performance counters. Especially useful for restoring a set of
registry-enabled performance counters.

Table 2-1 Performance-Related Operating System Tools

Tool Description

Chapter 2: Performance Monitoring Tools 131

Center for Microsoft® Windows Server™ 2003, click Tools, and then click Windows
Support Tools.

Table 2-3 contains a list of Windows Server 2003 Resource Kit Tools for monitoring
performance.

More Info For more information about Resource Kit tools, in Help and Support
Center for Microsoft Windows Server 2003, click Tools, and then click Windows
Resource Kit Tools. You can also download these tools directly from the Microsoft
Download Center by going to http://www.microsoft.com/downloads and searching
for “Windows Server 2003 Resource Kit Tools”.

Table 2-2 Performance-Related Support Tools

Tool Description

Depends.exe The Depency Walker tool scans any 32-bit or 64-bit Windows module
(including .exe, .dll, .ocx, and .sys, among others) and builds a hierar-
chical tree diagram of all dependent modules. Useful when knowledge
of all files used by a monitored process is required.

Devcon.exe The Device Configuration Utility displays all device configuration in-
formation and their current status. Useful when monitoring hardware
performance.

Diruse.exe Directory Usage will scan a directory tree and report the amount of
space used by each user. Useful when tracking disk space issues.

Exctrlst.exe Extensible Counter List is a graphical tool that displays all counter .dll
files that are running and provides the capability to disable them. Us-
ing Exctrlst is discussed later in this chapter.

Health_chk.cmd This script uses Ntfrsutl.exe to gather data from FRS on the target
computer for later analysis. Useful when scripting remote monitoring.

Memsnap.exe This memory-profiling tool takes a snapshot of the memory resources
being consumed by all running processes and writes this information
to a log file. Useful when performance monitoring a system’s memory.

Netcap.exe Command-line sniffer tool used to capture network packets. Useful
when monitoring network performance.

Poolmon.exe The Memory Pool Monitor tool monitors memory tags, including total
paged and non-paged pool bytes. Poolmon is often used to help de-
tect memory leaks. Using Poolmon is discussed in Chapter 5, “Perfor-
mance Troubleshooting.”

Pviewer.exe Process Viewer is a graphical tool that displays information about a
running process and allows you to stop (kill) processes and change
process priority.

Replmon.exe The Replication Monitor tool enables administrators to monitor Active
Directory replication, synchronization, and topology.

132 Microsoft Windows Server 2003 Performance Guide

Table 2-3 Performance-Related Windows Resource Kit Tools

Tool Description

Adlb.exe Active Directory Load Balancing tool that balances the load imposed
by Active Directory connection objects across multiple servers.

Checkrepl.vbs Script to monitor replication and enumerate the replication topology
for a given domain controller. Useful when monitoring specific net-
work performance.

Clearmem.exe Forces pages out of memory. Useful when testing and tracking mem-
ory performance issues.

Consume.exe Consumes resources for stress testing performance such as low mem-
ory situations. The resources that can be appropriated include physi-
cal memory, page file memory, disk space, CPU time, and kernel pool
memory. Examples of uses of Consume.exe are found in Chapter 5,
“Performance Troubleshooting.”

Custreasonedit.exe Command-line and GUI tool that allows users to add, modify, and de-
lete custom reasons used by the Shutdown Event Tracker on the Win-
dows Server 2003 operating system.

DH.exe Display Heap shows information about usage in a User mode process,
or about pool usage in Kernel mode memory. A heap is a region of
one or more pages that can be subdivided and allocated in smaller
chunks. This is normally done by the heap manager, whose job is to
allocate and deallocate variable amounts of memory.

Empty.exe Frees the working set memory of a specified task or process.

Intfiltr.exe The Interrupt-Affinity Filter (IntFiltr) allows a user to change the CPU
affinity for hardware components that generate interrupts in a com-
puter. See Chapter 6, “Advanced Performance Topics,” for a discus-
sion of the benefits this tool can provide on a large-scale
multiprocessor machine.

Kernrate.exe Kernrate is a sample-profiling tool meant primarily to help identify
where CPU time is being spent. Both Kernel and User mode processes
can be profiled separately or simultaneously. Useful when monitoring
the performance of a process or device driver that is consuming ex-
cessive CPU time. See Chapter 5, “Performance Troubleshooting,” for
an example of how to use it to resolve performance problems involv-
ing excessive CPU usage.

Memtriage.exe Detects a possible resource leak on a running system. Useful for mon-
itoring memory leak, memory fragmentation, heap fragmentation,
pool leaks, and handle leaks.

Pfmon.exe Page Fault Monitor lists the source and number of page faults gener-
ated by an application’s function calls. Useful when monitoring mem-
ory and disk performance. See Chapter 5, “Performance
Troubleshooting,” for an example of how to use it to resolve perfor-
mance problems involving excessive application paging.

Pmon.exe Process Resource Monitor shows each process and its processor and
memory usage.

Chapter 2: Performance Monitoring Tools 133

Performance Monitoring Statistics
The easiest way to get started with performance monitoring in Windows Server 2003
is to click Performance on the Administrative Tools menu and begin a real-time mon-
itoring session using the Performance Monitor console, as illustrated in Figure 2-1.

Figure 2-1 The Performance Monitor console

Showperf.exe Performance Data Block Dump Utility is a graphical tool that creates a
dump of the contents of the Performance Data block so that you can view
and debug the raw data structure of all loaded performance objects.

Splinfo.exe Displays print spooler performance information on the screen. Useful
when taking a snapshot of print spooler performance.

Srvinfo.exe Displays a summary of information about a remote computer and the
current services running on the computer.

TSSCalling.exe Series of applets that can be used to create automated scripts to sim-
ulate interactive remote users for performance stress testing of Ter-
minal Services environments.

Vadump Details the current amount of virtual memory allocated by a process.

Volperf.dll Enables administrators to use Performance Monitor to monitor shad-
ow copies.

Table 2-3 Performance-Related Windows Resource Kit Tools

Tool Description

134 Microsoft Windows Server 2003 Performance Guide

When you first launch Performance Monitor, a System Monitor Chart View is acti-
vated with a default set of counters loaded for monitoring your local computer, as
illustrated in Figure 2-1. The default display shows three of the potentially thousands
of performance counter values that System Monitor can report on.

Performance Objects

Related performance statistics are organized into objects. For example, measurements
related to overall processor usage, like Interrupts/sec and % User Time, are available
in the Processor object.

Multiple Instances of Objects

There may be one or more instances of a performance object, where each instance is
named so that it is uniquely identified. For example, on a machine with more than
one processor, there is more than one instance of each set of processor measurements.
Each processor performance counter is associated with a specific named instance of
the Processor object. A Processor object has instances 0 and 1 for a 2-way multiproces-
sor that uniquely identify the processor instance. The instance name is a unique iden-
tifier for the set of counters related to that instance, as illustrated in Figure 2-2.

Figure 2-2 Objects, counters, and instances

Figure 2-2 gives an example of a computer containing two Processor objects. In the
example, statistics from three counters (Interrupts/sec, %Privileged time, and %User
Time) are being monitored for each instance of the Processor object. Also, the total
number of Interrupts/sec on all processors in the system is being monitored.

Similarly, for each running process, a unique set of related performance counters are
associated with that process instance. The instance name for a process has an addi-
tional index component whenever multiple instances of a process have the same pro-

Processor object
instance 0

Processor object
instance 1

Interrupts/sec

%Privileged
time

%User time

Interrupts/sec

%Privileged
time

%User time

_Total
interrupts/sec

Chapter 2: Performance Monitoring Tools 135

cess name. For example, you will see instances named svchost#1, svchost#2, and
svchost#3 to distinguish separate instances of the svchost process.

The best way to visualize the relationships among object instances is to access the Add
Counters dialog box by clicking the Plus Sign (+) button on the toolbar. Select the
Thread object, and you will see something like the form illustrated in Figure 2-3.
There are many instances of the Thread object, each of which corresponds to a pro-
cess program execution thread that is currently active.

Figure 2-3 Thread object instances

Two objects can also have a parent-child relationship, which is illustrated in Figure 2-3.
For example, all the threads of a single process are related. So thread instances, which
are numbered to identify each uniquely, are all children of some parent process. The
thread parent instance name is the process name that the thread is associated with. In
Figure 2-3, thread 11 of the svchost#3 process identifies a specific thread from a spe-
cific instance of the svchost process.

Many objects that contain multiple instances also provide a _Total instance that con-
veniently summarizes the performance statistics associated with multiple instances.

Types of Performance Objects

Table 2-4 shows a list of the performance objects corresponding to hardware, operat-
ing system services, and other resources that are installed with Windows Server 2003.
These objects and their counters can be viewed using the Add Counters dialog box of
the Performance Monitor console. This is neither a default list nor a definitive guide.
You might not see some of the performance objects mentioned here on your machine

136 Microsoft Windows Server 2003 Performance Guide

because these objects are associated with hardware, applications, or services that are
not installed. You are also likely to see many additional performance objects that are
not mentioned here but that you do have installed, such as those for measuring other
applications such as Microsoft SQL Server.

Tip For a more comprehensive list of Windows Server 2003 performance objects
and counters along with a list of which objects are associated with optional services
and features, see the Windows Server 2003 Performance Counters Reference in the
Windows Server 2003 Deployment Kit. You can view this Reference online at http://
www.microsoft.com/resources/documentation/WindowsServ/2003/all/deployguide
/en-us/counters_overview.asp. And for information about performance objects and
counters for other Windows Server System products like Exchange Server and SQL
Server, see the documentation for these products.

Table 2-4 Windows Server 2003 Performance Objects

Object Name Description

ACS Policy Provides policy-based Quality of Service (QoS) admission
control data.

ACS/RSVP
Interfaces

Reports the Resource Reservation Protocol (RSVP) or Admis-
sion Control Service (ACS) Interfaces performance counters.

ACS/RSVP
Service

Reports the activity of the Quality of Service Admission Control
Service (QoS ACS), which manages the priority use of network
resources (bandwidth) at the subnet level.

Active Server
Pages

Monitors errors, requests, sessions, and other activity data
from Active Server Pages (ASP).

ASP .NET Monitors errors, requests, sessions, and other activity data
from ASP.NET requests.

AppleTalk Monitors traffic on the AppleTalk network.

Browser Reports the activity of the Browser service that lists computers
sharing resources in a domain and other domain and work-
group names across the network. The Browser service provides
backward compatibility with clients that are running Microsoft
Windows 95, Microsoft Windows 98, Microsoft Windows 3.x,
and Microsoft Windows NT.

Cache Reports activity for the file system cache, an area of physical
memory that holds recently used data from open files.

Client Service
for Netware

Reports packet transmission rates, logon attempts, and con-
nections to Netware servers.

Database Reports statistics regarding the Active Directory database
cache, files, and tables.

Chapter 2: Performance Monitoring Tools 137

Database
Instances

Reports statistics regarding access to the Active Directory
database and associated files.

DHCP Server Provides counters for monitoring Dynamic Host Configuration
Protocol (DHCP) service activity.

Distributed
Transaction
Coordinator

Reports statistics about the activity of the Microsoft Distribut-
ed Transaction Coordinator, which is a part of Component Ser-
vices (formerly known as Transaction Server) and which
coordinates two-phase transactions by Message Queuing.

DNS Provides counters for monitoring various areas of the Domain
Name System (DNS) to find and access resources offered by
other computers.

Fax Service Displays fax activity.

FileReplicaConn Monitors performance of replica connections to the Distribut-
ed File System service.

FileReplicaSet Monitors the performance of file replication service.

FTP Service Includes counters specific to the File Transfer Protocol (FTP)
Publishing Service.

HTTP Indexing Service Reports statistics regarding queries that are run by the Index-
ing Service, a service that builds and maintains catalogs of the
contents of local and remote disk drives to support powerful
document searches.

IAS Accounting Clients Reports the activity of Internet Authentication Service (IAS) as
it centrally manages remote client accounting.

IAS Accounting Proxy Reports the activity of the accounting proxy for Remote Au-
thentication Dial-In User Service (RADIUS).

IAS Accounting Server Reports the activity of Internet Authentication Service (IAS) as
it centrally manages remote server accounting.

IAS Authentication Clients Reports the activity of Internet Authentication Service (IAS) as
it centrally manages remote client authentication.

IAS Authentication Proxy Reports the activity of the RADIUS authentication proxy.

IAS Authentication Server Reports the activity of Internet Authentication Service (IAS) as
it centrally manages remote server authentication.

IAS Remote Accounting
Server

Reports the activity of the RADIUS accounting server where
the proxy shares a secret.

IAS Remote
Authentication Server

Reports the activity of the RADIUS authentication server where
the proxy shares a secret.

ICMP and
ICMPv6

Reports the rate at which messages are sent and received by
using Internet Control Message Protocol (ICMP), which pro-
vides error correction and other packet information.

Table 2-4 Windows Server 2003 Performance Objects

Object Name Description

138 Microsoft Windows Server 2003 Performance Guide

Indexing Service Reports statistics pertaining to the creation of indexes and the
merging of indexes by Indexing Service. Indexing Service in-
dexes documents and document properties on your disks and
stores the information in a catalog. You can use Indexing Ser-
vice to search for documents, either by using the Search com-
mand on the Start menu or by using a Web browser.

Indexing Service Filter Reports the filtering activity of Indexing Service. Indexing Ser-
vice indexes documents and document properties on your disks
and stores the information in a catalog. You can use Indexing
Service to search for documents, either by using the Search
command on the Start menu or by using a Web browser.

Internet
Information
Services Global

Includes counters that monitor Internet Information Services
(IIS), which includes the Web service and the FTP service.

IPSec v4 Driver Reports activity about encrypted.IPSec network traffic

IPSec v4 IKE Reports IPSec security association information.

IPv4 and Ipv6 Reports activity at the Internet Protocol (IP) layer of Transmis-
sion Control Protocol/Internet Protocol (TCP/IP).

Job Object Reports the data for accounting and processor use that is col-
lected by each active, named job object.

Job Object Details Reports detailed performance information about the active
processes that make up a job object.

Logical Disk Reports activity rates and allocation statistics associated with a
Logical Disk file system.

Macfile Server Provides information about a system that is running File Server
for Macintosh.

Memory Reports on the overall use of both physical (RAM) and virtual
memory, including paging statistics.

MSMQ Queue Monitors message statistics for selected queues.

MSMQ Service Monitors session and message statistics.

MSMQ Session Monitors statistics about active sessions.

NBT Connection Reports the rate at which bytes are sent and received over con-
nections that use the NetBIOS over TCP/IP (NetBT) protocol,
which provides network basic input/output system (NetBIOS)
support for TCP/IP between the local computer and a remote
computer.

NetBEUI Measures NetBIOS Enhanced User Interface (NetBEUI) data
transmission.

NetBEUI Resource Tracks the use of buffers by the NetBEUI protocol.

Table 2-4 Windows Server 2003 Performance Objects

Object Name Description

Chapter 2: Performance Monitoring Tools 139

Network Interface Reports the rate at which bytes and packets are sent and re-
ceived over a TCP/IP connection by means of network adapters.

NNTP
Commands

Includes counters for all Network News Transfer Protocol
(NNTP) commands processed by the NNTP service.

NNTP Server Monitors posting, authentication, and connection activity on
an NNTP server.

NTDS Handles the Windows NT directory service on your system.

NWLink IPX Measures datagram network traffic between computers that
use the Internetwork Packet Exchange (IPX) protocol.

NWLink NetBIOS Monitors IPX transport rates and connections.

NWLink SPX Measures network traffic between computers that use the Se-
quenced Packet Exchange (SPX) protocol.

Objects Reports data about system software objects such as events.

Paging File Reports the current allocation of each paging file, which is
used to back virtual memory allocations.

Pbserver Monitor Reports activity on a phone book server.

Physical Disk Reports activity on hard or fixed disk drives.

Print Queue Reports statistics for print jobs in the queue of the print server.
This object is new in Windows Server 2003.

Process Reports the activity of the process, which is a software object
that represents a running program.

Process Address Space Monitors memory allocation and use for a selected process.

Processor Reports the activity for each instance of the processor.

ProcessorPerformance Reports on the activity of variable speed processors.

PSched Flow Monitors flow statistics from the packet scheduler.

PSched Pipe Monitors pipe statistics from the packet scheduler.

RAS Port Monitors individual ports of the remote access device on your
system.

RAS Total Monitors all combined ports of the remote access device on
your system.

Redirector Reports activity for the redirector, which diverts file requests to
network servers.

Server Reports activity for the server file system, which responds to
file requests from network clients.

Server Work Queues Reports the length of queues and number of objects in the file
server queues.

Table 2-4 Windows Server 2003 Performance Objects

Object Name Description

140 Microsoft Windows Server 2003 Performance Guide

Performance Counters

The individual performance statistics that are available for each measurement interval
are numeric counters. You can obtain an explanation about the meaning of a counter
by clicking the Explain button shown in Figure 2-3.

Performance Counter Path

Each performance counter you select is uniquely identified by its path.

If you right-click Chart View in the System Monitor control of the Performance Mon-
itor console to access the Properties of your console session, you will see listed on the
Data tab the counters that are selected to be displayed, as shown in Figure 2-4. Each
counter selected is identified by its path.

SMTP NTFS Store Driver Monitors Simple Mail Transport Protocol message activity that
is associated with an MS Exchange client.

SMTP Server Monitors message activity generated by the Simple Mail
Transport Protocol (SMTP) service.

System Reports overall statistics for system counters that track system
up time, file operations, the processor queue length, and so on.

TCPv4 and TCPv6 Reports the rate at which Transmission Control Protocol (TCP)
segments are sent and received.

Telephony Reports the activity for telephony devices and connections.

Terminal Services Provides Terminal Services summary information.

Terminal Services Session Provides resource monitoring for individual Terminal sessions.

Thread Reports the activity for a thread, which is the part of a process
that uses the processor.

UDPv4 and UDPv6 Reports the rate at which datagrams are sent and received by
using the User Datagram Protocol (UDP).

Web Service Includes counters specific to the Web publishing service that is
part of Internet Information Services.

Web Service Cache Provides statistics on the Kernel mode and User mode caches
that are used in IIS 6.0.

Windows Media Station
Service

Provides statistics about the Windows Media Station service,
which provides multicasting, distribution, and storage func-
tions for Windows Media streams.

Windows Media Unicast
Service

Provides statistics about the Windows Media Unicast service
that provides unicasting functions for Advanced Streaming
Format (ASF) streams.

WMI Objects Reports the available classes of WMI objects

Table 2-4 Windows Server 2003 Performance Objects

Object Name Description

Chapter 2: Performance Monitoring Tools 141

Figure 2-4 Data tab for System Monitor Properties

The following syntax is used to describe the path to a specified counter:

\\Computer_name\Object(Parent/Instance#Index)\Counter

The same syntax is also used consistently to identify the counters you want to gather
using the Logman, Relog, and Typeperf command-line tools.

For a simple object like System or Memory that has only a single object instance asso-
ciated with it, the following syntax will suffice:

\Object\Counter

For example, \Memory\Pages/sec identifies the Pages/sec counter in the Memory
object.

The Computer_name portion of the path is optional; by default, the local computer
name is assumed. However, you can specify the computer by name so that you can
access counters from a remote machine.

The parent, instance, index, and counter components of the path can contain either a
valid name or a wildcard character. For example, to specify all the counters associated
with the Winlogon process, you can specify the counters individually or use a wild-
card character (*):

\Process(winlogon)*

142 Microsoft Windows Server 2003 Performance Guide

Only some objects have parent instances, instance names, and index numbers that
need to be used to identify them uniquely. You need to specify these components of
the path only when they are necessary to identify the object instance you are inter-
ested in. Where a parent instance, instance name, or instance index is necessary to
identify the counter, you can specify either each individual path or use a wildcard
character (*) instead. This allows you to identify all the instances with a common path
identification, without having to enumerate each individual counter path.

For example, the LogicalDisk object has an instance name, so you must provide either
the name or a wildcard. Use the following format to identify all instances of the Logi-
cal Disk object:

\LogicalDisk(*)*

To specify Logical Disk instances separately, use the following paths:

\LogicalDisk(C:)*

\LogicalDisk(D:)*

It is easy to think of the instance name, using this notation, as an index into an array
of object instances that uniquely identifies a specific set of counters.

The Process object has an additional path component because the process instance
name is not guaranteed to be unique. You would use the following format to collect
the ID Process counter for each running process:

\Process(*)\ID Process

When there are multiple processes with the same name running that you need to dis-
tinguish, use the #Index identifier. For example, multiple instances of the svchost pro-
cess would be identified as follows:

\Process(svchost)\% Processor Time

\Process(svchost#1)\% Processor Time

\Process(svchost#2)\% Processor Time

\Process(svchost#3)\% Processor Time

Notice that the first unique instance of a process instance name does not require an
#Index identifier. The instance index 0 is hidden so that the numbering of additional
instances starts with 1. You cannot identify multiple instances of the same process for
monitoring unless you display instance indexes.

For the Thread object, which has a parent instance of the process to help identify it, the
parent instance is also part of the path. For example, the following is the path that iden-
tifies counters associated with Thread 11 of the third instance of the svchost process.

\Process(svchost11#2)\Context switches/sec

Chapter 2: Performance Monitoring Tools 143

If a wildcard character is specified in the parent name, all instances of the specified
object that match the specified instance and counter fields will be returned. If a wild-
card character is specified in the instance name, all instances of the specified object
will be returned. If a wildcard character is specified in the counter name, all counters
of the specified object are returned.

Partial counter path string matches (for example, svc*) are not supported.

Types of Counters

Each counter has a counter type. System Monitor (and similar applications) uses the
counter type to calculate and present the counter value correctly. Knowing the
counter type is also useful because it indicates how the performance statistic was
derived. The counter type also defines the summarization rule that will be used to
summarize the performance statistic over longer intervals using the Relog command-
line tool.

The performance monitor API defines more than 20 specific counter types, some of
which are highly specialized. The many different counter types fall into a few general
categories, depending on how they are derived and how they can be summarized. Five
major categories of counters are:

■ Instantaneous counters that display a simple numeric value of the most recent

measurement An instantaneous counter is a single observation or sample of
the value of a performance counter right now. Instantaneous counters are
always reported as an integer value.
Instantaneous counters tell you something about the state of the machine right
now. They do not tell you anything about what happened during the interval
between two measurements. An example of an instantaneous counter is Mem-
ory\Available Bytes, which reports the current number of RAM pages in physi-
cal memory that is available for immediate use. Most queue length
measurements are also instantaneous counters since they represent a single
observation of the current value of the measurement. You can summarize such
counters over longer intervals by calculating average values, minimums, maxi-
mums, and other summary statistics.

■ Interval counters that display an activity rate over time Interval counters are
derived from an underlying measurement mechanism that counts continuously
the number of times some particular event occurs. The System Monitor retrieves
the current value of this counter every measurement interval.
Interval counters can also be thought of as difference counters because the
underlying counter reports the current value of a continuously measured event.
System Monitor retains the previous interval value and calculates the difference

144 Microsoft Windows Server 2003 Performance Guide

between these two values. The difference is then usually expressed as a rate per
second. Examples of this type of counter include Processor\Interrupts/sec and
Logical and Physical Disk\Disk Transfers/sec. Some interval counters count
timer ticks instead of events. These interval counters are transformed into %
busy processor time measurements by dividing the timer tick difference by the
total number of timer ticks in the interval. Interval counters can be summarized
readily, reflecting average rates over longer periods of time.

■ Elapsed time counters There are a few important elapsed time counters that
measure System Up Time and Process\Elapsed time. These counters are gath-
ered on an interval basis and cannot be summarized.

■ Averaging counters that provide average values derived for the interval Exam-
ples of averaging counters include the hit rate % counters in the Cache object
and the average disk I/O response time counters in the Logical and Physical
Disk objects. These counters must be summarized carefully; make sure you
avoid improperly calculating the average of a series of computed average values.
You must calculate a weighted average over the summarization interval instead.

■ Miscellaneous complex counters including specialized counters that do not readily

fall into any of the other categories Similar to instantaneous counters, the com-
plex counters are also single observations. Examples include Logical Disk\%
Free Space, which is calculated by subtracting the number of allocated disk
bytes from the total number of bytes available in the file system and expressing
the result as a percentage of the whole. They also must be summarized carefully.

For more information about the way the Relog tool summarizes counter types, see
“Summarizing Log Files Using Relog.”

Note Instantaneous counters like System\Processor Queue Length are always
reported as integer values. They are properly viewed as single instances of a sample.
You can summarize them by calculating average values and other summary statistics
over longer intervals.

System Monitor
System Monitor is the main graphical tool used for real-time monitoring and analysis
of logged data. The most common method of accessing System Monitor is by loading
the Performance Monitor console.

To see procedures and a brief overview of the Performance Monitor console, click
Help on the Performance Monitor toolbar. For information about remote monitoring,
see Chapter 4, “Performance Monitoring Procedures.”

Chapter 2: Performance Monitoring Tools 145

Warning Monitoring large numbers of counters can generate high overhead,
potentially making the system unresponsive to keyboard or mouse input and impact-
ing the performance of important server application processes. To reduce perfor-
mance monitoring overhead, delete some of the counters you are collecting, reduce
the sampling interval, or switch to a background data logging session using a binary
logging file. For more information about background data logging, see “Performance
Logs and Alerts” in this chapter.

Viewing a Chart in Real Time

To access the Performance Monitor console, select Performance from the Administra-
tive Tools menu; or click Start, Run, and type Perfmon.exe.

When you start the Performance Monitor console, by default a System Monitor graph
displays a default set of basic counters that monitor processor, disk, and virtual mem-
ory activity. These counters give you immediate information about the health of a sys-
tem you are monitoring. The Chart View is displayed by default, but you can also
create bar charts (histograms) and tabular reports of performance counter data using
the Performance Monitor console.

When you run the Performance Monitor console, the Performance Logs and Alerts
snap-in also appears beneath System Monitor in the console tree, as shown in Fig-
ure 2-5.

Figure 2-5 System Monitor in the Performance console

Toolbar

Time Bar

Graphical View

Value Bar

Legend

146 Microsoft Windows Server 2003 Performance Guide

The System Monitor display shown in Figure 2-5 contains the elements listed in Table 2-5.

Changing the Sampling Interval

The default interval for a line graph in Chart View is once per second. You might find
that using a 1-second sampling rate generates measurements too quickly to analyze
many longer-term conditions. Change the sampling interval by accessing the General
tab on the System Monitor Properties.

In a real-time monitoring session, the Chart View displays the last 100 observations
for each counter. If your monitoring session has not yet accumulated 100 samples, the
line charts you see will be truncated.

Caution Regardless of the update interval, a real-time Chart View can display no
more than the last 100 observations for each counter value. When the Time Bar
reaches the right margin of the display, the display wraps around to the beginning and
starts overwriting data. If you change the sampling interval on the General Properties
tab, the Duration field in the Chart View is updated immediately to reflect the change.
However, until the Time Bar makes one complete revolution, the time range of the
current display is a combination of the previous and current interval values.

Table 2-5 System Monitor Elements

Element Description

Optional toolbar This toolbar provides capabilities for adding and deleting counters
from a graph. The toolbar buttons provide a quick way to configure
the monitoring console display. You can also right-click the display to
access a shortcut menu to add counters and configure your monitor-
ing session Properties.

Graphical View This displays the current values for selected counters. You can vary the
line style, width, and color. You can customize the color of the window
and the line chart itself, add a descriptive title, display chart gridlines,
and change the display font, among other graphical options.

Value Bar This displays the Last, Average, Minimum, and Maximum values for
the counter value that is currently selected in the Legend. The value
bar also shows a Duration value that indicates the total elapsed time
displayed in the graph (based on the current update interval).

Legend The Legend displays the counters selected for viewing, identified by
the computer name, object, and parent and instance name. The line
graph color and the scaling factor used to graph the counter value
against the y-axis are also shown.

Time Bar In real-time mode, this Time Bar moves across the graph from right to
left to indicate the passing of each update interval.

Chapter 2: Performance Monitoring Tools 147

A Histogram, or Report View, can display the last (or Current) value of each counter
being monitored, or one of the following statistics: the minimum, maximum, or aver-
age value of the last 100 observations. Use the Legend in the Histogram View to iden-
tify what counter each bar in the graph corresponds to. Figure 2-6 illustrates the
System Monitor Histogram View, which is an effective way to monitor a large number
of counters at any one time.

Figure 2-6 Histogram View helps montior many counters simultaneously

Creating a Custom Monitoring Configuration

After you select the counters you want to view and customize the System Monitor dis-
play the way you like it, you can save the System Monitor configuration for reuse at a
later time.

To create a simple real-time monitoring configuration

1. Click the New button.

2. Click the Plus Sign (+) button.

3. In the Add Counters dialog box, select the performance objects and counters
that you want to monitor.

4. Click Add for each one you want to add to the chart.

5. After selecting your counter set, click Close and watch the graph.

6. Click the File menu and click Save As to save the chart settings in a folder where
you can easily reload your graph without having to reconfigure your counters.

148 Microsoft Windows Server 2003 Performance Guide

You can also use the optional toolbar that appears by default to help you reconfigure
your customized settings. Resting your mouse over any toolbar button will tell you the
operation or action the button performs. Table 2-6 outlines the purpose of the tasks
associated with each button more fully.

Saving Real-Time Data

If something of interest is in your real-time graph that you would like to spend more
time investigating, you can save a copy of the current display by using the following
steps:

Table 2-6 System Monitor Toolbar Buttons

Task Which Buttons To Use

Create a new chart Use the New Counter Set button to create a new chart.

Refresh the data Click Clear Display to clear the displayed data and obtain a fresh data
sample for existing counters.

Conduct manual or
automatic updates

Click Freeze Display to suspend data collection. Click Freeze Display
again to resume data collection. Alternatively use the Update Data
button for manual snapshots of data.

Select display
options

Use the View Graph, View Histogram, or View Report option button.

When you want to review data in a time series, the Chart View line
graphs display a range of measured values continuously. Histograms
and reports are useful for viewing a large number of Counter values.
However, they display only a single value at a time, reflecting either
current activity or a range of statistics.

Select a data
source

Use the View Current Activity button for real-time data, or the View
Log File Data button for data from either a completed or a currently
running log.

Add, delete, reset,
and get more
information about
counters

Use the Add or Delete buttons as needed. You can also use the New
Counter Set button to reset the display and select new counters.
Clicking the Add button displays the Add Counters dialog box, as
shown in Figure 2-3. You can also press the Delete key to delete a
counter that you select in the list box. When you are adding
Counters, click the Explain button to read a more detailed explana-
tion of a counter.

Highlighting To accentuate the chart line or histogram bar for a selected counter
with white (default) or black (for light backgrounds), click Highlight
on the toolbar.

Import or export
counter settings

To save the displayed configuration to the Clipboard for insertion
into a Web page, click Copy Properties. To import counter settings
from the Clipboard to the current System Monitor display, click Paste
Counter List.

Configure other
System Monitor
properties

To access colors, fonts, or other settings that have no corresponding
button on the toolbar, click the Properties button.

Chapter 2: Performance Monitoring Tools 149

1. Right-click your chart and click Save As.

2. Type the name of the file you want to create.

3. Select the format (chose HTML if you would like to view the full-time range of
the counter values that are being displayed).

4. Click Save.

Note Because this is a real-time graph, you must click Save before the data
you are interested in gets overwritten as the Time Bar advances. If you are likely
to need access to performance data from either the recent period or historical
periods, use Performance Logs and Alerts to write counter values to a log file.

The other commands available in the shortcut menu are listed in Table 2-7.

Customizing How Data Is Viewed

By default, real-time data is displayed in Chart View. Chart View is useful for watching
trends. You can configure the elements shown such as the scale used, and the vertical
and horizontal axis; and you can also change how the data is graphed.

The full range of configurable properties can be accessed by using the System Monitor
Properties sheets. To open the System Monitor Properties dialog box, right-click on the
right pane and select Properties, or click the Properties button on the toolbar.

Table 2-8 lists the property tabs in the dialog box, along with the attributes they control.

Table 2-7 System Monitor Shortcut Menu Commands

Command Description

Add Counters Use this command in the same way you use the Add button on the
System Monitor toolbar.

Save As Use this command if you want to save a snapshot of the current per-
formance monitor statistics either in HTML format for viewing using a
browser or as a .tsv file for incorporation into a report using a program
such as Excel.

Save Data As Use this command if you want to save log data in a different format or
reduce the log size by using a greater sampling rate. This shortcut
command is unavailable if you are collecting real-time data.

Properties Click this command to access the property tabs that provide options
for controlling all aspects of System Monitor data collection and
display.

150 Microsoft Windows Server 2003 Performance Guide

Table 2-8 System Monitor Properties

Use This Tab To Add or Change This

General View: Choose between a graph (chart), histogram, or report.

Display Elements: Show/hide the following:
■ Counter legend
■ Value bar: Displays the last, minimum, and maximum values for a

selected counter
■ Toolbar

Report and Histogram Data: Choose between default, minimum, aver-
age, current, and maximum report values.

Appearance and Border: Change the appearance of the view. You can
configure three-dimensional or flat effects, or include or omit a border
for the window.

Sample Automatically Every: Update sample rates. Specify sample rates
in seconds.

Allow Duplicate Counter Instances: Displays instance indexes (for mon-
itoring multiple instances of a counter). The first instance (instance num-
ber 0) displays no index. System Monitor numbers subsequent instances
starting with 1.

Source Data Source: Select the source of data to display.
Current Activity: Display the current data for the graph.
Log Files: Display archived data from one or more log files.
Database: Display current data from a Structured Query Language (SQL)
database.
Time Range Button: Display any subset of the time range for a log or da-
tabase file.

Data Counters: Add or remove objects, counters, and instances.
Color: Change the color assigned to a counter.
Width: Change the thickness of the line representing a counter
Scale: Change the scale of the value represented by a counter.
Style: Change the pattern of the line representing a counter.

Graph Title: Type a title for the graph.

Vertical Axis: Type a label for the vertical axis.

Show: Select any of the following to show:

■ Vertical grid lines
■ Horizontal grid lines
■ Vertical scale numbers

Vertical Scale: Specify a maximum and minimum (upper and lower lim-
its, respectively) for the graph axes.

Appearance Color: Specify color for Graph Background, Control Background, Text,
Grid, and Time Bar when you click Change.
Font: Specify Font, Font Style, and Size when you click Change.

Chapter 2: Performance Monitoring Tools 151

In addition to using the Chart properties to change the view of the data, you can use
the toolbar buttons:

■ View Histogram button Click this button to change from the line graph Chart
View to a bar chart Histogram View. Histogram View is useful at a deeper level
when, for example, you are trying to track the application that is using most of
the CPU time on a system.

Figure 2-7 Histogram View

■ View Report button Click this button when you want to view data values only.

Tips for Working with System Monitor

Windows Server 2003 Help for Performance Monitoring explains how to perform
common tasks, such as how to:

■ Work with Counters

■ Work with Data

■ Work with Settings

Some useful tips for using the System Monitor are provided in this section.

Simplifying Detailed Charts

When working with Chart Views, you will find that simpler charts are usually easier to
understand and interpret. If you have several counters to graph in Chart View, it can
lead to a display that is jumbled and difficult to untangle. Some tips for simplifying
complex charts to make them easier to understand include:

152 Microsoft Windows Server 2003 Performance Guide

■ In Chart View, use the Highlight button while you scroll up and down in the
Legend to locate interesting counter values.

■ Switch to the Report View or Histogram View to analyze data from many
counters. When you switch back to Chart View, delete the counters from the
chart that are cluttering up the display.

■ Double-click an individual line graph in Chart View or a bar in Histogram View
to identify that counter in the Legend.

■ Widen the default width of line graphs that display the “interesting” counters
that remain for better visibility.

■ Run multiple copies of the Performance Monitor console if you need to watch
more counters than are readily displayed on a single chart or to group them into
categories for easier viewing.

Scaling the Y-Axis

All the counter values in a Chart View or Histogram View are graphed against a single
y-axis. The y-axis displays values from 0 through 100 by default. The default y-axis
scale works best for counter values that ordinarily range from 0 through 100. You can
change the default minimum and maximum y-axis values using the Graph tab of the
System Monitor Properties dialog. At the same time, you can also turn on horizontal
and vertical grid lines to make the graph easier to read.

You might also need to adjust the scaling factor for some of the counters so that all
counters you selected are visible in the graph area. For example, select the Avg. Disk
sec/Transfer, as illustrated in Figure 2-8.

Figure 2-8 Scaling counter data to fit on the y-axis

Chapter 2: Performance Monitoring Tools 153

Notice that the Avg. Disk sec/Transfer counter, which measures the average response
time for an I/O to a physical disk, uses a default scaling factor of 1000. System Moni-
tor multiplies the counter values by the scaling factor before it displays them on a line
chart or histogram. Multiplying counter values for Avg. Disk sec/Transfer by 1000 nor-
mally allows disk response time in the range of 0–100 milliseconds to display against
a default y-axis scale of 0–100.

On the Data tab of the System Monitor Properties dialog, you will see the Default scal-
ing factor that was defined for each counter. If you click on this drop-down list, you
will see a list of the available scaling factors. Select a scaling factor that will allow the
counters to be visible within the display. If the counter values are too small to be dis-
played, use a higher number scaling factor. If the counter values are too large to be dis-
played, use a smaller scaling factor.

You might have to experiment using trial and error to arrive at the best scaling factor
to use for each counter selected.

Sorting the Legend

The Counter, Instance, Parent, Object, and Computer columns in the Legend can
be sorted. Click on the column heading in the Legend to sort the legend by the val-
ues in that column. Click on the column header to re-sort the display in the oppo-
site direction.

Printing System Monitor Displays

You cannot print System Monitor charts and tabular reports directly from the Perfor-
mance Monitor console. There are a number of other ways that you can print a System
Monitor report, including:

■ Ensure the System Monitor window is the active window. Copy the active win-
dow to the Clipboard by pressing ALT+PRINT SCREEN. Then you can open a Paint
program, paste the image from the Clipboard, and print it.

■ Add the System Monitor control to a Microsoft Office application, such as
Microsoft Word or Microsoft Excel. Configure it to display data, and then print
from that program.

■ Save the System Monitor control as an HTML file by right-clicking the details
pane of System Monitor, clicking Save As, and typing a file name. You can then
open the HTML file and print it from Microsoft Internet Explorer or another
program.

154 Microsoft Windows Server 2003 Performance Guide

Table 2-9 provides a set of tips that you can use when working with system monitor.

Task Manager
Sometimes a quick look at how the system is performing is more practical than setting
up a complicated monitoring session. Task Manager is ideal for taking a quick look at
how your system is performing. You can use it to verify whether there are any pressing
performance issues and to obtain an overview of how key system components are
functioning. You can also use Task Manager to take action. For example, after you

Table 2-9 Tips for Working with System Monitor

Tip Do This

Learn about
individual
counters

When adding counters, if you click Explain in the Add Counters dialog
box in System Monitor, Counter Logs or Alerts, you can view counter
descriptions.

Vary the data
displayed in a
report

By default, reports display only one value for each counter. This is the
current data if the data source is real-time activity, or averaged data if
the source is a log. However, on the General tab, you can configure the
report display to show different values, such as the maximum, mini-
mum, and average.

Select a group of
counters or
counter instances
to monitor

In the Add Counters dialog box in System Monitor, you can do the
following:

■ To select all counters or instances, click All Counters or All In-
stances.

■ To select specific counters or instances, click Select Counters
from the list or Select Instances from the list.

■ To monitor a group of consecutive counters or instances in a list
box, hold down the Shift key and click the first counter. Scroll
down through the items in the list box and click the last counter
you require.

■ To select multiple, nonconsecutive counters or instances, click
each counter and press CTRL. It is a good idea to keep the Ctrl
key pressed throughout this operation; if you do not, you can
inadvertently lose previously selected counters.

Track totals for all
instances of a
counter

Instead of monitoring individual instances for a selected counter, you
can use the _Total instance, which sums all instance values and reports
them in System Monitor.

Pinpoint a specific
counter from lines
in a graph

To match a line in a graph with the counter for which it is charting val-
ues, double-click a position in the line. If chart lines are close together,
try to find a point in the graph where they diverge.

Highlight the
data for a specific
counter

To highlight the data for a specific counter, use the highlighting fea-
ture. To do so, press CTRL+H or click Highlight on the toolbar. For the
counter selected, a thick line replaces the colored chart line. For white
or light-colored backgrounds (defined by the Graph Background
property), this line is black; for other backgrounds, this line is white.

Chapter 2: Performance Monitoring Tools 155

determine that a runaway process is causing the system to become unresponsive, you
can use Task Manager to end the process that is behaving badly.

Although Task Manager lacks the breadth of information available from the System
Monitor application, it is useful as a quick reference to system operation and perfor-
mance. Task Manager does provide several administrative capabilities not available
with the System Monitor console, including the ability to:

■ Stop running processes

■ Change the base priority of a process

■ Set the processor affinity of a process so that it can be dispatched only on partic-
ular processors in a multiprocessor computer

■ Disconnect or log off a connected user session

Unlike the Performance Monitor application, Task Manager can only run interactively.
Also, you are permitted to run only one instance of Task Manager at a time. You can
use Task Manager only to view current performance statistics.

Most of the performance statistics that Task Manager displays correspond to counters
you can also gather and view using the Performance Monitor, even though Task Man-
ager sometimes calls similar values by slightly different names. Later in this section,
Tables 2-10, 2-11, and 2-12 explain each Task Manager field and which Performance
Monitor counter it corresponds to.

Warning If you are comparing statistics being gathered by both a Performance
Monitor console session and Task Manager, don’t expect these applications to report
exactly the same values. At the very least, they are gathering performance measure-
ment data at slightly different times, which helps explain some of the discrepancy
when you compare two views of the same measurement.

Working with Task Manager

To start Task Manager, press CTRL+SHIFT+ESC or right-click the Taskbar and select
Task Manager.

Task Manager displays different types of system information using various tabs. The
display will open to the tab that was selected when Task Manager was last closed.
Task Manager has five tabs: Applications, Processes, Performance, Networking, and
Users. The status bar, at the bottom of the Task Manager window, shows a record of
the number of Processes open, the CPU Usage, and the amount of virtual memory
committed compared to the current Commit Limit.

156 Microsoft Windows Server 2003 Performance Guide

The Task Manager display allows you to:

■ Select Always On Top from the Options menu to keep the window in view as
you switch between applications. The same menu option is also available by
using the context menu on the CPU usage gauge in the notification area of the
Taskbar.

■ Press CTRL+TAB to toggle between tabs, or click the tab.

■ Resize all Task Manager columns shown in the Networking, Processes, and
Users tabs.

■ Click a column in any view other than the Performance tab to sort its entries in
ascending or descending order.

While Task Manager is running, a miniature CPU Usage gauge appears in the notifica-
tion area of the Taskbar. When you point to this icon, the icon displays the percentage
of processor use in text format. The miniature gauge, illustrated in Figure 2-9, matches
the CPU Usage History chart on the Performance tab.

Figure 2-9 Task Manager CPU gauge shown in the notification area

If you would like to run Task Manager without its application window taking up space
on the Taskbar, click Hide When Minimized on the Options menu. To open an
instance of Task Manager when it is hidden, double-click the Task Manager CPU
gauge in the notification area, press CTRL+SHIFT+ESC, or right-click the Taskbar and
select Task Manager.

You can control the rate at which Task Manager updates its counts by setting the
Update Speed option on the View menu. These are the possible speeds:

■ High Updates every half-second.

■ Normal Updates once per second. This is the default sampling rate.

■ Low Updates every 4 seconds.

■ Paused Does not update automatically. Press F5 to update.

A lower update speed reduces Task Manager overhead and thus lowers the sampling
rate, which might cause some periodic spikes to go unnoticed. You can manually force
an update at any time by clicking Refresh Now on the View menu or by pressing F5.

Monitoring Applications

The Applications tab lists the applications currently running on your desktop. You
can also use this tab to start and end applications. Ending the application is just like
clicking the X in the title bar of an application. The application then has a chance to

Chapter 2: Performance Monitoring Tools 157

prompt you to save information and clean up (flush buffers, close handles, cancel
database transactions, close database connections, and so on). If you don’t respond
immediately to the prompt generated by the application when you try to end it, Task
Manager prompts you to either cancel the operation or terminate the application
immediately with possible loss of data.

Click the Applications tab to view the status of each open desktop application. The
Applications tab includes the following additional features:

■ To end an application, highlight the application and then click End Task.

■ To switch to another application, highlight the application and then click
Switch To.

■ To start a new task, click New Task. In the Open text box that appears, type the
name of the program you want to run.

■ To determine what executable is associated with an application, right-click the
task you want, and then click Go To Process.

Monitoring Processes

The Processes tab provides a tabular presentation of current performance statistics of
all processes currently running on the system. You can select which statistics are dis-
played on this tab by clicking Select Columns on the View menu. You can also termi-
nate processes from this tab. Terminating a process is much different from clicking the
X in the application’s title bar—the application is marked for termination. The applica-
tion will not have a chance to save information or clean up before it is terminated.
When you terminate an application process in this fashion, you can corrupt the files
or other data that the application is currently manipulating and prevent that applica-
tion from being restarted successfully. Verify that the process you are terminating is
causing a serious performance problem by either monopolozing the processor or
leaking virtual memory before you terminate it using this display.

Warning You should use the End Process function in Task Manager only to termi-
nate a runaway process that is threatening the stability of the entire machine.

Note that you can terminate only those processes that you have the appropriate secu-
rity access rights for. The attempt to terminate a service process running under a dif-
ferent security context from your desktop Logon ID will be denied for security
reasons.

In Task Manager, click the Processes tab to see a list of running processes and their
resource usage. Figure 2-10 is an example of how Task Manager displays process infor-
mation. It shows some additional columns that have been turned on.

158 Microsoft Windows Server 2003 Performance Guide

Figure 2-10 Processes tab in Task Manager

Note System Monitor displays memory allocation values in bytes, but Task Man-
ager displays its values in kilobytes, which are units of 1,024 bytes. When you compare
System Monitor and Task Manager values, divide System Monitor values by 1,024.

To include 16-bit applications in the display, on the Options menu, click Show 16-Bit
Tasks.

Table 2-10 shows how the data displayed on the Task Manager Processes tab com-
pares to performance counters displayed in System Monitor in the Performance con-
sole. Not all of these columns are displayed by default; use the Select Columns
command on the View menu to add columns to or remove columns from the Task
Manager display.

Table 2-10 Task Manager Processes Tab Compared to the Performance Console

Task Manager Column
System Monitor
Counter Description

PID (Process Identifier) Process(*)\ID
Process

The numerical identifier assigned to the
process when it is created. This number
is unique to a process at any point in
time. However, after a process has been
terminated, the process ID it was as-
signed might be reused and assigned to
another process.

CPU Usage (CPU) Process(*)\%
Processor Time

The percentage of time the processor or
processors spent executing the threads
in this process.

Chapter 2: Performance Monitoring Tools 159

CPU Time Not available The total time the threads of this process
used the processor since the process was
started.

Memory Usage Process(*)\Working
Set

The amount of physical memory cur-
rently allocated to this process. This
counter includes memory that is allocat-
ed specifically to this process in addition
to memory that is shared with other pro-
cesses.

Memory Usage Delta Not available The change in memory usage since the
last update.

Peak Memory Usage Process(*)\
Working Set Peak

The maximum amount of physical mem-
ory used by this process since it was
started.

Page Faults Not available The number of page faults caused by this
process since it was started.

Page Faults Delta Process(*)\
Page Faults/sec

The change in the value of the Page
Faults counter since the display was last
updated.

USER Objects Not available The number of objects supplied to this
process by the User subsystem. Some ex-
amples of USER objects include win-
dows, menus, cursors, icons, and so on.

I/O Reads Not available The number of read operations per-
formed by this process since it was start-
ed. Similar to the Process(*)\IO Read
Operations/sec counter value, except
Task Manager reports only a cumulative
value.

I/O Read Bytes Not available The number of bytes read by read oper-
ations performed by this process since it
was started. Similar to the Process(*)\IO
Read Bytes/sec counter value, except
Task Manager reports only a cumulative
value.

Session ID Terminal Services
Session instance
name

This counter is meaningful only when
Terminal Services is installed. When in-
stalled, the counter displays the Terminal
Services session ID that is running this
process. This number is unique to the
session at any point in time; however, af-
ter a session has been terminated, the
session ID it was originally assigned
might be reused and assigned to anoth-
er process.

Table 2-10 Task Manager Processes Tab Compared to the Performance Console

Task Manager Column
System Monitor
Counter Description

160 Microsoft Windows Server 2003 Performance Guide

User Name Not available The account the process was started
under.

Virtual Memory Size Process(*)\Virtual
Bytes

The amount of virtual memory allocated
to this program.

Paged Pool Process(*)\
Pool Paged Bytes

The amount of pageable system
memory allocated to this process.

Non-pages Pool Process(*)\
Pool Nonpages
Bytes

The amount of nonpageable system
memory allocated to this process.

Base Priority Process(*)\Priority
Base

The base priority assigned to this pro-
cess. Performance Monitor displays pri-
ority as a number, whereas Task
Manager uses a name. The names used
by Task Manager are Low, Below Nor-
mal, Normal, Above Normal, High, and
Realtime. These correspond to priority
levels 4, 6, 8, 10, 13, and 24, respectively.

Handle Count Process(*)\Handle
Count

The number of open handles in this
process.

Thread Count Process(*)\Thread
Count

The number of threads that make up this
process.

GDI Objects Not available The number of Graphics Device Interface
(GDI) objects in use by this process. A
GDI object is an item provided by the
GDI library for graphics devices.

I/O Writes Not available The number of write operations per-
formed by this process since it was
started.

Similar to the Process(*)\IO Write
Operations/sec counter value, except
Task Manager reports only a cumulative
value.

I/O Write Bytes Not available The number of bytes written by write
operations performed by this process
since it was started.

Similar to the Process(*)\IO Write Bytes/
sec counter value, except Task Manager
reports only a cumulative value.

Table 2-10 Task Manager Processes Tab Compared to the Performance Console

Task Manager Column
System Monitor
Counter Description

Chapter 2: Performance Monitoring Tools 161

Monitoring Performance

The Performance tab displays a real-time view of performance data collected from the
local computer, including a graph and numeric display of processor and memory usage.
Most of the data displayed on this tab can also be displayed using Performance Monitor.

In Task Manager, to see a dynamic overview of system performance, click the Perfor-
mance tab, as shown in Figure 2-11.

Figure 2-11 Performance tab in Task Manager

I/O Other Not available The number of input/output operations
that are neither read nor write. An exam-
ple of this would be a command input to
a part of the running process.

Similar to the Process(*)\IO Other Opera-
tions/sec counter value, except Task Man-
ager reports only a cumulative value.

I/O Other Bytes Not available The number of bytes used in other I/O
operations performed by this process
since it was started.

Similar to the Process(*)\IO Other Bytes/
sec counter value, except Task Manager
reports only a cumulative value.

Table 2-10 Task Manager Processes Tab Compared to the Performance Console

Task Manager Column
System Monitor
Counter Description

162 Microsoft Windows Server 2003 Performance Guide

The following additional display options are available on the Performance tab:

■ Double-clicking Task Manager will display a window dedicated to the CPU
usage gauges. Using this mode on the Performance tab, you can resize and
change the location of the CPU usage gauges. To move and resize the chart, click
the edge of the gauge and adjust the size, and then drag the window to the new
location. To return to Task Manager, double-click anywhere on the gauge.

■ To graph the percentage of processor time in privileged or Kernel mode, click
Show Kernel Times on the View menu. This is a measure of the time that appli-
cations are using operating system services. The difference between the time
spent in Kernel mode and the overall CPU usage represents time spent by
threads executing in User mode.

Table 2-11 shows how the data displayed on the Task Manager Performance tab com-
pares to performance counters displayed in System Monitor.

Table 2-11 Task Manager Performance Tab Compared to the Performance
Console

Task Manager Field
System Monitor
Counter Description

CPU Usage
(bar graph and chart)

Processor(_Total)\
% Processor Time

The percentage of time the processor or pro-
cessors were busy executing application or
operating system instructions.

This counter provides a general indication of
how busy the computer is.

PF Usage (bar graph)
Page File Usage
History

Memory\
Committed Bytes

A graphical representation of the Commit
Charge Total. This is the total amount of vir-
tual memory in use at that instant.

Handles Process(_Total)\
Handle Count

The total number of open handles in all pro-
cesses currently running on the system.

Threads System\Threads The total number of threads currently run-
ning on the system.

Processes System\Processes The number of running processes.

Physical
Memory - Total

Not available The total amount of physical memory in-
stalled and recognized by the operating sys-
tem.

Physical
Memory - Available

Memory\
Available KBytes

The amount of physical memory that can be
allocated to a process immediately.

Chapter 2: Performance Monitoring Tools 163

Monitoring the Network

The Networking tab displays the network traffic to and from the computer by network
adapter. Network usage is displayed as a percentage of theoretical total available net-
work capacity for that network adapter, RAS connection, established VPN, or other
network connection.

Click the Networking tab to see the status of the network. Table 2-12 shows how the
data displayed on the Task Manager Networking tab compares to performance
counters in System Monitor. Not all of these columns are displayed by default; use the
Select Columns command on the View menu to add columns to the Task Manager
display.

Physical Memory -
System Cache

Memory\ Cache
Bytes

The amount of physical memory allocated to
the system working set; includes System
Cache Resident Bytes, Pool Paged Resident
Bytes, System Driver Resident Bytes, and Sys-
tem Code Resident Bytes.

Commit Charge -
Total

Memory\
Committed Bytes

The amount of virtual memory allocated and
in use (that is, committed) by all processes on
the system.

Commit Charge -
Limit

Memory\Commit
Limit

The maximum amount of virtual memory
that can be committed without enlarging the
paging file.

Commit Charge -
Peak

Not available The most virtual memory that has been com-
mitted since system startup.

Kernel Memory -
Total

Not available The sum of nonpaged and paged system
memory from the Nonpaged and paged
memory pools that is currently in use.

Kernel Memory -
Paged

Memory\Pool
Paged Resident
Byes

The amount of system memory from the
paged pool that is currently resident.

Kernel Memory -
Nonpaged

Memory\Pool
Nonpaged Bytes

The amount of system memory from the
Nonpaged pool that is currently in use.

Table 2-11 Task Manager Performance Tab Compared to the Performance
Console

Task Manager Field
System Monitor
Counter Description

164 Microsoft Windows Server 2003 Performance Guide

Table 2-12 Comparing the Task Manager Networking Tab with the Performance
Console

Task Manager
Column

System Monitor
Counter Description

Adapter Description Network
Interface(instance)

The name of the network connection
being monitored. This is used as the in-
stance name of the performance object
for this network adapter.

Network Adapter
Name

Not available The name of the Network Connection.

Network Utilization Not available The Network Interface(*)\Bytes Total/
sec counter divided by the Network In-
terface(*)\Current Bandwidth counter
and displayed as a percentage.

Link Speed Network
Interface(*)\Current
Bandwidth

The theoretical maximum bandwidth of
this network adapter.

State Not available The current operational state of this
network adapter.

Bytes Sent
Throughput

Not available The rate that bytes were sent from this
computer using this network adapter,
divided by the Link Speed and displayed
as a percentage.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Sent/sec performance
counter.

Bytes Received
Throughput

Not available The rate that bytes were received by this
computer using this network adapter,
divided by the Link Speed and displayed
as a percentage.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Received/sec performance
counter.

Bytes Throughput Not available The rate that bytes were sent from or re-
ceived by this computer using this net-
work adapter divided by the Link Speed
and displayed as a percentage.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Total/sec performance
counter.

Chapter 2: Performance Monitoring Tools 165

Bytes Sent Not available The total number of bytes sent from this
computer since the computer was start-
ed.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Sent/sec performance
counter.

Bytes Received Not available The total number of bytes received by
this computer since the computer was
started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Received/sec performance
counter.

Bytes Not available The total number of bytes sent from or
received by this computer since the
computer was started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Bytes Total/sec performance
counter.

Bytes Sent/Interval Network
Interface(*)\Bytes
Sent/sec

The number of bytes sent from this
computer during the sample interval.

Bytes Received/
Interval

Network Inter-
face(*)\Bytes
Received/sec

The number of bytes received by this
computer during the sample interval.

Bytes/Interval Network
Interface(*)\Bytes
Total/sec

The number of bytes sent from or re-
ceived by this computer during the
sample interval.

Unicasts Sent Not available The total number of unicast packets
sent from this computer since the com-
puter was started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Packets Sent Unicast/sec perfor-
mance counter.

Table 2-12 Comparing the Task Manager Networking Tab with the Performance
Console

Task Manager
Column

System Monitor
Counter Description

166 Microsoft Windows Server 2003 Performance Guide

Unicasts Received Not available The total number of unicast packets re-
ceived by this computer since the com-
puter was started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Packets Received Unicast/sec
performance counter.

Unicasts Not available The total number of unicast packets
sent from or received by this computer
since the computer was started.

Unicasts Sent/
Interval

Network
Interface(*)\Packets
Sent Unicast/sec

The number of unicast packets sent
from this computer during the sample
interval.

Unicasts Received/
Interval

Network
Interface(*)\Packets
Received Unicast /sec

The number of unicast packets received
by this computer during the sample in-
terval.

This value is based on the same data
that is used by the performance
counter.

Unicasts/Interval Not available The number of unicast packets sent
from or received by this computer dur-
ing the sample interval.

Nonunicasts Sent Not available The total number of nonunicast packets
sent from this computer since the com-
puter was started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Packets Sent Non-Unicast/sec
performance counter.

Nonunicasts Received Not available The total number of nonunicast packets
received by this computer since the
computer was started.

This value is based on the same data
that is used by the Network Inter-
face(*)\Packets Received Non-Unicast/
sec performance counter.

Nonunicasts Not available The total number of nonunicast packets
sent from or received by this computer
since the computer was started.

Nonunicasts Sent/
Interval

Network
Interface(*)\Packets
Sent Non-Unicast/sec

The number of nonunicast packets sent
from this computer during the sample
interval.

Table 2-12 Comparing the Task Manager Networking Tab with the Performance
Console

Task Manager
Column

System Monitor
Counter Description

Chapter 2: Performance Monitoring Tools 167

Monitoring Users

The Users tab displays those users currently logged on to the computer. You can use
this display to quickly identify the users logged on to that system.

Click the Users tab to see the status of all users currently logged on. To select the col-
umns you want to view, on the View menu, click Select Columns. Table 2-13 gives a
description of each of these columns.

Using Task Manager you can perform a number of user-related tasks. These include
the ability to:

■ End a User session (Console session or Terminal session). Select the session,
and then click the Disconnect button. This allows you to disconnect a user while
the user’s session continues to run the applications.

■ Close a session and all applications that are running on that session. Select the
session and click Log Off.

Warning If the user has any unsaved data, that data might be lost.

Nonunicasts
Received/Interval

Network
Interface(*)\Packets
Received Non-Unicast /
sec

The number of nonunicast packets re-
ceived by this computer during the
sample interval.

Nonunicasts/Interval Not available The number of nonunicast packets sent
from or received by this computer dur-
ing the sample interval.

Table 2-12 Comparing the Task Manager Networking Tab with the Performance
Console

Task Manager
Column

System Monitor
Counter Description

Table 2-13 Task Manager Columns for Users

Task Manager
Column Description

User Name of person logged on.

ID Number that the user session is identified by.

Status Active or Disconnected.

Client Name Name of computer using the session. If it is a local session, this field
will appear blank.

Session Console or Terminal Services.

168 Microsoft Windows Server 2003 Performance Guide

■ Send a message to a specific user. Select the user, and then click Send Message.

■ Take remote control of a Terminal Services session. Right-click a user, and then
select remote control.

Automated Performance Monitoring
Performance problems do not occur only when you have the opportunity to observe
them. Background performance monitoring procedures provide you with a way to
diagnose performance problems that occurred in the recent past while you were not
looking. This section documents the two automated tools in Windows Server 2003
that allow you to establish background performance monitoring procedures.

The first method uses the Counter Logs facility in the Performance Logs and Alerts
section of the Performance Monitor console, which has a graphical user interface. The
second method uses the Logman, Typeperf, and Relog command-line tools. The
Counter Logs facility in the Performance Logs and Alerts section of the Performance
Monitor console are discussed first. Then, performance monitoring command-line
utilities and some of their additional capabilities will be discussed.

These are the keys to establishing effective automated performance monitoring
procedures:

■ Knowing which current performance statistics you want to collect on a regular
basis

■ Knowing in what form and how frequently you want to collect the data

■ Knowing how much historical performance data you need to keep to go back in
time and resolve a problem that occurred in the recent past or to observe histor-
ical trends

This section examines the data logging facilities you will use to gather performance
statistics automatically. Chapter 3, “Measuring Server Performance,” provides advice
about what metrics to gather and how to interpret them. Chapter 4, “Peformance
Monitoring Procedures,” offers recommendations for setting up automated perfor-
mance logging procedures.

Performance Logs and Alerts

When you open the Performance Monitor, you will notice the Performance Logs and
Alerts function in the left tree view. There are three components to Performance Logs
and Alerts: counter logs, trace logs, and alerts. This section discusses only the use of

Chapter 2: Performance Monitoring Tools 169

counter logs. Trace logs and alerts are discussed later in this chapter in sections enti-
tled “Event Tracing for Windows” and “Alerts,” respectively.

You create counter logs using the Performance Logs and Alerts tool whenever you
require detailed analysis of performance statistics for your servers. Retaining, summa-
rizing, and analyzing counter log data collected over a period of several months is ben-
eficial for capacity planning and deployment. Using the Performance Logs and Alerts
tool, designated support personnel can:

■ Manage multiple logging sessions from a single console window.

■ Start and stop logging manually, on demand, or automatically, at scheduled
times for each log.

■ Stop each log based on the elapsed time or the current file size.

■ Specify automatic naming schemes and stipulate that a program be run when a
log is stopped.

The Performance Logs and Alerts service process, Smlogsvc.exe, is responsible for
executing the performance logging functions you have defined. Comparable perfor-
mance data logging capabilities are also available using the command-line tools that
also interface with the Performance Logs and Alerts service process. These command-
line tools are discussed in “Creating Performance Logs Using Logman” in this chapter.

Counter Logs

Counter logs record to a log file the same performance statistics on hardware resource
usage and system services that you can gather and view interactively in the System
Monitor. Both facilities gather performance objects and counters through a common
performance monitoring API. Counter logs are suited for gathering much more infor-
mation than an interactive System Monitor console session. With the performance
statistics stored in a log file, you no longer have to worry about newer counter values
replacing older performance data values in an interactive data gathering session. All
the interval performance data that was gathered for the duration of the counter log-
ging session is available for viewing and reporting.

After you create a counter log file, you can use the System Monitor to view and analyze
the performance data you collected. To access counter data from a log instead of view-
ing counters interactively, use the View Log Data button in System Monitor. You can
use the System Monitor both during and after log file data collection to view the per-
formance data you have collected.

170 Microsoft Windows Server 2003 Performance Guide

Counter Log File Formats

Data in counter logs can be saved in the file formats shown in Table 2-14.

Binary log files are the recommended file format for most counter logging, especially
any logging sessions in which you expect a sizable amount of data. They are the most
efficient way to gather large amounts of performance data, and they store counter data
more concisely than any other format. Because binary log files are readily converted
into the other formats that are available, there is very little reason not to use binary log
files initially. Use the Relog command-line tool to convert binary format log files to
other formats as needed.

Note Binary file format is designed to be used by System Monitor. To interchange
performance data with other applications like Microsoft Excel, use text file format. The
precise format of a binary log file is open and documented. You could write a program
to read a binary log file using the Performance Data Helper interface.

Binary circular files have the same format as binary linear files. They record data until
they reach a user-defined maximum size. Once they reach this size, they will overwrite
existing log data starting from the beginning of the file. Use this format if you want to
ensure that the most current performance data is always accessible and you do not
need to keep older sampled data once the log file maximum is reached.

Table 2-14 Counter Log File Formats

File Format File Type Description

Binary .blg Binary log format. This format is used if another for-
mat is not specified. When a binary log file reaches its
maximum size, data collection stops.

Binary circular .blg Circular binary format. This file format is the same as
binary format. However, when a circular binary log file
reaches its maximum size, data collection continues,
wrapping around to the beginning of the file. Once
the file is filled with data, the oldest data in the file is
overwritten as new data is recorded.

Text
(comma-separated)

.csv Comma-separated values. This format is suitable for
creating performance data in a format compatible
with spreadsheet programs like Excel.

Text
(tab-separated)

.tsv Tab-separated values. This format is also suitable for
creating performance data in a format compatible
with spreadsheet programs like Excel.

SQL database System DSN SQL database format. This is valid only if data is being
logged to a SQL database.

Chapter 2: Performance Monitoring Tools 171

Structured Query Language (SQL) database format allows all data to be quickly and
easily imported into a SQL database. This format is ideal for archiving summarized
data, especially if you are responsible for tracking performance on multiple comput-
ers. Chapter 4, “Performance Monitoring Procedures,” illustrates the use of a SQL
database for longer term archival and retrieval of counter log data to support capacity
planning.

Scheduling Collection Periods
You can start and stop counter logs manually or schedule them to run automat-
ically. You can define an automatic start and end time for a counter logging ses-
sion, or specify that the logging session gather performance data continuously.
At the end of a designated logging period, you can start a new logging session
and run a command to process the counter log file that has just been completed.

File Management

You can generate unique names for counter log files that you create. You can choose to
number log files sequentially or append a time or date stamp that identifies when the
counter log file was created. You can also set a limit on the size that any log file can
grow to. Using the circular binary file format, you can ensure that your counter log file
will never consume more than the designated amount of disk space.

Working with Counter Logs

You can find Performance Logs and Alerts in the Performance Monitor console and
the Computer Management console. The following procedure describes how to start
them.

To start Performance Logs and Alerts from the Performance console

1. Click Start, point to Run, and then type Perfmon.

2. Press the ENTER key.

3. Double-click Performance Logs and Alerts to display the available tools.

Figure 2-12 shows the Performance console tree.

172 Microsoft Windows Server 2003 Performance Guide

Figure 2-12 Performance Logs and Alerts console tree

After you load the Performance Logs and Alerts console, you will need to configure
the Counter logs.

To configure counter logs

1. Click the Counter Logs entry to select it.

Previously defined logs and alerts appear in the appropriate node of the details
pane. A sample settings file for a counter log named System Overview in <sys-
tem drive>:\perflogs\system_overview.blg is included with Windows
Server 2003. These counter log settings allow you to monitor basic counters
from the memory, disk, and processor objects.

2. Right-click the details pane to create a new log. You can also use settings from an
existing HTML file as a template.

Note To run the Performance Logs and Alerts service, you must be a member
of the Performance Log Users or Administrators security groups. These groups
have special security access to a subkey in the registry to create or modify a log
configuration.

3. In the New Log Settings box, type the name of your counter log session and
click OK.

Figure 2-13 shows the General tab for the Properties of a new counter log after
you have entered the counter log name.

Chapter 2: Performance Monitoring Tools 173

Figure 2-13 General tab for a counter log

4. To configure a counter log, click Add Objects or Add Counters to specify objects,
counters, and instances. You also set the data collection interval on the General
tab. Use the Add Objects button to log all counters from all instances of a per-
formance object that you have selected. Use the Add Counters button to see the
same familiar dialog box that is used to add counters to an interactive System
Monitor data collection session.

5. Click the Log Files tab, shown in Figure 2-14, to set the file type, the file naming
convention, and other file management options.

174 Microsoft Windows Server 2003 Performance Guide

Figure 2-14 Configuring counter log file properties

The Log Files tab is used to select the file type and automatic file naming
options. You can generate unique log file names that are numbered consecu-
tively as an option, or you can add a date and timestamp to the file name auto-
matically. Or you can choose to write all performance data to same log file where
you specify that current performance data is used to overwrite any older data in
the file. After you set the appropriate option, the Log Files tab displays an exam-
ple of the automatic file names that will be generated for you.

6. Click the Configure button to set the file name, location, and a file size limit in
the Configure Log Files dialog box, as shown in Figure 2-15. Click OK to close
the dialog box.

Figure 2-15 Dialog box for configuring log file size limits

Chapter 2: Performance Monitoring Tools 175

7. Click the Schedule tab (Figure 2-16) to choose manual or automatic startup
options. You can then set the time you want the logging session to end using an
explicit end time; a duration value in seconds, minutes, hours, or days; or when
the log file reaches its designated size limit.

Figure 2-16 Setting startup options on the Schedule tab

The Counter log properties that allow you to establish automated performance moni-
toring procedures are summarized in the Table 2-15.

Table 2-15 Summary of Counter Log Properties

Tab Settings to Configure Notes

General Add objects, or add
counters

You can collect performance data from the local
computer and from remote computers.

Sample interval Defaults to once every 15 seconds.

Account and password You can use Run As to provide the logon account
and password for data collection on remote
computers.

Log Files File type Counter logs can be defined as comma-delimited
or tab-delimited text files, as binary or binary cir-
cular files, or as SQL database files. For database
files, use Configure to enter a repository name
and data set size. For all other files, use Configure
to enter location, file name, and log file size.

Automatic file naming You can choose to add unique file sequence
numbers to the file name or append a time and
date stamp to identify it.

176 Microsoft Windows Server 2003 Performance Guide

Note Sequential counter log files can grow larger than the maximum file size spec-
ified. This occurs for counter logs because the log service waits until after the last data
sample was gathered and written to the file before checking the size of the log file. At
this point, the file size might already exceed the defined limit.

Analyzing Counter Logs

Once you have created a counter log, you can use the System Monitor to analyze the
performance data it contains. If you need to manipulate the measurement data fur-
ther, run the Relog tool to create a text format file that you can read using a spread-
sheet application like Excel, as discussed further in the section entitled “Managing
Performance Logs.”

To analyze counter logs using the System Monitor

1. Open System Monitor and click the View Log Data button.

2. On the Source tab (shown in Figure 2-17), click Log Files as the data source and
use the Add button to open the log file you want to analyze. You can specify one
or more log files or a SQL database.

3. Click the Time Range button to set the start and end time of the interval you
want to analyze using the slider control.

Remember that a System Monitor Chart View can display only 100 data points at
a time. When you are reporting on data from a log file, the Chart View automati-
cally summarizes sequences longer than 100 measurement intervals to fit the dis-
play. If the counter contains 600 measurement samples, for example, the Chart
View line graphs will show the average of every six data points. The Duration

Schedule Manual or automated start
and stop methods and
schedule

You can specify that the log stop collecting data
when the log file is full.

Automated start and stop
times

Start and stop by time of day or specify the log
start time and duration.

Stop when the file is full Automatically stop data collection when the file
reaches its maximum size.

Processing when the log
file closes

For continuous data collection, start a new log file
when the log file closes. You can also initiate au-
tomatic log file processing by running a designat-
ed command when the log file closes.

Table 2-15 Summary of Counter Log Properties

Tab Settings to Configure Notes

Chapter 2: Performance Monitoring Tools 177

field in the Value bar will display the duration of the time interval you have
selected to view. You can also use Report View and Histogram View to display
numeric averages, minimum values, and maximum values for all the counter
values stored in the log file.

Note When you are working with a log file, you can only add counters that
are available in the counter file to a chart or report.

4. Right-click the display to relog a binary data file to a text file format using the
Save Data As function. Relogging binary data to text format allows you to ana-
lyze the counter log data using a spreadsheet application like Excel. To convert
a binary data file into a SQL database format, you must run the Relog command-
line tool instead.

Tip You also summarize a counter log when you relog it by setting the sum-
marization interval. For example, if the original counter log contains measure-
ment data gathered every 5 minutes, if you reduce the log file size by writing
data only once every 12 intervals, you will create a counter log that contains
hourly data.

Figure 2-17 Changing the time range to view a subset of the counter log data

178 Microsoft Windows Server 2003 Performance Guide

Tips for Working with Performance Logs and Alerts

Windows Server 2003 Help for Performance Logs and Alerts describes performing
the most common tasks with logs and alerts, including how to create and configure a
counter log.

Table 2-16 gives tips that you can use when working with the Performance Logs and
Alerts snap-in.

Creating Performance Logs Using Logman

Suppose you want to monitor the amount of network traffic generated by your backup
program, an application that runs at 3:00 each morning? The Counter Log facility in
Performance Logs and Alerts allows you to record performance data to a log file, thus
providing for automated and unattended performance monitoring. But even though
the Performance Logs and Alerts snap-in is an excellent tool for carrying out these
tasks, it does have some limitations:

Table 2-16 Tips for Working with Performance Logs and Alerts

Task Do This

Export log data
to a spreadsheet
for reporting
purposes

Exporting log data to a spreadsheet program such as Excel offers easy
sorting and filtering of data. For best results, Relog binary counter log
files to text file format, either CSV or TSV.

Record
intermittent
data to a log

Not all counter log file formats can accommodate data that is not
present at the start of a logging session. For example, if you want to
record data for a process that begins after you start the log, select one
of the binary (.blg) formats on the Log Files tab.

Limit log file size
to avoid disk-
space problems

If you choose automated counter logging with no scheduled stop
time, the file can grow to the maximum size allowed based on avail-
able space. When you set this option, consider your available disk
space and any disk quotas that are in place. Change the file path from
the default (the Perflogs folder on the local computer) to a location
with adequate space if appropriate. During a logging session, if the
Counter Logs service cannot update the file because of lack of disk
space, an event is written to the Application Event Log showing an er-
ror status of “Error disk full.”

Name files
for easy
identification

Use File Name (in the Configure Log Files box) and End File Names
With (on the Log Files tab) to make it easy to find specific log files. For
example, you can set up periodic logging, such as a log for every day
of the week. Then you can develop different naming schemes with the
base name being the computer where the log was run, or the type of
data being logged, followed by the date as the suffix. For example, a
naming scheme that generates a file named ServerRed1_050212.blg
was created on a computer named ServerRed1 on May 2nd at noon,
assuming the End File Name With entry was set at mmddhh.

Chapter 2: Performance Monitoring Tools 179

■ Each counter log setting must be created using the graphical user interface.
Although this makes it possible for novice users to create performance moni-
tors, experienced users might find the process slower and less efficient than cre-
ating performance monitors from the command line.

■ Performance log settings created with the snap-in cannot be accessed from
batch files or scripts.

The Logman command-line tool helps overcome these limitations. In addition, Log-
man is designed to work with other command-line tools like Relog and Typeperf to
allow you to build reliable automated performance monitoring procedures. This sec-
tion documents the use of Logman to create and manage counter log files. For more
information about Logman, in Help and Support Center for Microsoft Windows
Server 2003, click Tools, and then click Command-Line Reference A–Z. The Logman
facilities related to creating trace logs are discussed in “Event Tracing for Windows”
later in this chapter.

Log Manager Overview

Log Manager (Logman.exe) is a command-line tool that complements the Perfor-
mance Logs and Alerts snap-in. Log Manager replicates the functionality of Perfor-
mance Logs and Alerts in a simple-to-use command-line tool. Among other things,
Log Manager enables you to:

■ Quickly create performance log settings from the command line.

■ Create and use customized settings files that allow you to copy the monitoring
configuration and reuse it on other computers.

■ Call performance logging within batch files or scripts. These batch files or
scripts can then be copied and used on other computers in your organization.

■ Simultaneously collect data from multiple computers.

The data that Log Manager collects is recorded in a performance counter log file using
the format you specify. You can use the System Monitor to view and analyze any
counter log file that Log Manager creates.

Command Syntax

Logman operates in one of two modes. In Interactive mode, you can run Logman from
a command-line prompt and interact with the logging session. For example, you can
control the start and stop of a logging session interactively. In Background mode, Log-
man creates Counter log configurations that are scheduled and processed by the same
Performance Logs and Alerts service that is used with the Performance Monitor con-
sole. For more information about Performance Logs and Alerts, see “Performance
Logs and Alerts” in this chapter.

180 Microsoft Windows Server 2003 Performance Guide

Table 2-17 summarizes the six basic Logman subcommands.

Collection queries created using Log Manager contain properties settings identical to
the Counter Logs created using the Performance Logs and Alerts snap-in. If you open
the Performance Logs and Alerts snap-in, you will see any collection queries you cre-
ated previously using Log Manager. Likewise, if you use the -query command-line
parameter in Log Manager to view a list of collection queries on a computer, you will
also see any counter logs created using the Performance Logs and Alerts snap-in.

Table 2-18 summarizes the Logman command-line parameters that are used to set the
properties of a logging session.

Table 2-17 Logman Subcommands

Subcommand Function

Create counter
CollectionName

Creates collection queries for counter data collection sessions.

Update
CollectionName

Updates an existing collection query to modify the collection
parameters.

Delete
CollectionName

Deletes an existing collection query.

Query
CollectionName

Lists the collection queries that are defined and their status. Use
query CollectionName to display the properties of a specific col-
lection. To display the properties on remote computers, use the
-s RemoteComputer option on the command line.

Start CollectionName Starts a logging session manually.

Stop CollectionName Stops a logging session manually.

Table 2-18 Logman Counter Logging Session Parameters

Parameter Syntax Function Notes

Settings file -config FileName Use the logging parameters
defined in this setting file.

Computer -s ComputerName Specify the computer you
want to gather the perfor-
mance counters from.

If no computer name
is provided, the local
computer is as-
sumed.

Counters -c {Path [Path ...] Specify the counters that you
want to gather.

Required. Use -cf
FileName to use
counter settings from
an existing log file.

Sample
interval

-si [[HH:]MM:]SS Specify the interval between
data collection samples.

Defaults to 15
seconds.

Output file
name

-o {Path |
DSN!CounterLog}

Specify the output file name. If
the file does not exist, Logman
will create it.

Required. Use -v
option to generate
unique file names.

Chapter 2: Performance Monitoring Tools 181

File
versioning

-v {NNNNNN |
MMDDHHMM}

Generate unique file names,
either by numbering them
consecutively or by adding a
time and date stamp to the
file name.

Log file
format

-f bin | bincirc | csv |
tsv | SQL}

Choose the format of the
output counter log file.

Defaults to binary
format.

File size limit -max Value Specify the maximum log file
or database size in MB.

Logging ends when
the file size limit is
reached.

Create New
log file at
session end

-cnf [[HH:]MM:]SS Create a new log file when
the file size limit or logging
duration is exceeded.

Requires that -v ver-
sioning be specified
to generate unique
file names.

Run com-
mand at
session end

-rc FileName Run this command at session
end.

Use in conjunction
with -cnf and -v op-
tions.

Append -a Append the output from this
logging session to an existing
file.

Begin
logging

-b M/D/YYYY
H:MM:SS
[{AM | PM}]

Begin a logging session auto-
matically at the designated
date and time.

End
logging

-e M/D/YYYY
H:MM:SS
[{AM | PM}]

End a logging session auto-
matically at the designated
date and time.

Or use -rf to specify
the duration of a log-
ging session.

Log duration -rf [[HH:]MM:]SS End a logging session after
this amount of elapsed time.

Or use -e to specify a
log end date and
time.

Repeat -r Repeats the collection every
day at the same time. The
time period is based on
either the -b and -rf options,
or the -b and -e options.

Use in conjunction
with -cnf, -v, and -rc
options.

Start and
stop data
collection.

-m [start] [stop] Start and stop an interactive
logging session manually.

User name
and
password.

-u UserName
Password

Specify user name and
password for remote
computer access.

The User account
must be a member of
the Performance Log
Users Group. Specify
* to be prompted for
the password at the
command line.

Table 2-18 Logman Counter Logging Session Parameters

Parameter Syntax Function Notes

182 Microsoft Windows Server 2003 Performance Guide

Creating Log Manager Collection Queries

Before you can use Log Manager to start logging performance data, you must create a
collection query, which is a set of instructions that specifies which computer to mon-
itor, which performance counters to gather, how often to gather those counters, and
other performance data collection parameters.

Collection queries are created using the create counter parameter, followed by the
name to give to the collection query, and then a list of performance counters to be
monitored. For example, the following command creates a collection query called
web_server_log:

logman create counter web_server_log

Although the preceding command creates web_server_log, it does not specify any per-
formance counters. To create a collection query that actually collects data, you need to
use the -c parameter to indicate the performance counters to be sampled. For exam-
ple, the following command creates a collection query called web_server_log that can
be used to monitor and log available bytes of memory:

logman create counter web_server_log –c "\Memory\Available Bytes"

If you want to monitor multiple performance counters with a single collection query,
list each of these counters after the -c parameter. The following example creates a col-
lection query that measures three performance counters:

logman create counter web_server_log –c "\Memory\Available Bytes" "\Memory\Pages/sec"

"\Memory\Cache Bytes"

Using a Settings File with Log Manager

When creating a collection query that monitors a large number of performance
counters, placing those counters in a counter settings file is easier than typing them as
part of the command-line string. For example, to monitor disk drive performance, you
could use a command string similar to this:

logman –create counter web_server_log –c "\PhysicalDisk\Avg. Disk Bytes/Read"

"\PhysicalDisk\Avg. % Disk Read Time" "\PhysicalDisk\Avg. Split IOs/sec"

"\PhysicalDisk\Avg. Current Disk Queue Length" "\Avg. PhysicalDisk\Avg. Disk Bytes/

Read"

Alternatively, you could list the performance counters in a text file (one counter per
line) and then reference this file when creating the collection query. A sample settings
file is shown in Listing 2-1.

Listing 2-1 Log Manager Settings File
"\PhysicalDisk\Avg. Disk Bytes/Read"

"\PhysicalDisk\Avg. % Disk Read Time"

"\PhysicalDisk\Avg. Split IOs/sec"

"\PhysicalDisk\Avg. Current Disk Queue Length"

"\Avg. PhysicalDisk\Avg. Disk Bytes/Read"

Chapter 2: Performance Monitoring Tools 183

To create a collection query that reads a settings file, use the -cf parameter followed by
the path to the file. For example, if your settings file is stored in
C:\Scripts\Counters.txt, use the following command string:

logman create counter web_server_log –cf c:\scripts\counters.txt

Settings files enable you to create query collections that can be used consistently on
many computers. For example, if you plan to monitor disk drive performance on 20
different computers, you can use a common settings file to create and distribute con-
sistent collection queries

Tip Use the query (-q) option of the Typeperf tool to list counter paths and save
them in a text file, which you can then edit and use as a Logman settings file to mini-
mize typing errors.

For more information about how to specify the counter path correctly, see “Perfor-
mance Counter Path” earlier in this chapter.

Keep in mind that the Logman tool was designed for scripting. One way to create the
same query collections on multiple computers is to create a batch file with the com-
mand string. That batch file can then be copied and run on multiple computers,
resulting in the exact same query collection being created on each computer.

Monitoring Remote Computers Using Log Manager

Log Manager can be used to monitor remote computers, and, if you choose, to consol-
idate the performance statistics from each of these computers into the same log file.
To monitor a remote computer, add the -s parameter followed by the computer name.

For example, the following collection query monitors available bytes of memory on
the remote computer DatabaseServer:

logman create counter web_server_log –c "Memory\Available bytes" –s DatabaseServer

To carry out performance monitoring on remote computers, you must have the neces-
sary permissions. If the account from which you are working does not have the
required permissions, you can specify a user name and password for an account that
does by using the -u (user name and password) parameters. For example, this com-
mand creates a collection query that runs under the user name jones, with the pass-
word mypassword:

logman create counter file_server_log –cf c:\Windows\logs\counters.txt –s FileServer

–u jones mypassword

184 Microsoft Windows Server 2003 Performance Guide

To add monitoring for another remote computer to the same logging session, use the
update parameter:

logman update counter file_server_log –cf c:\Windows\logs\counters.txt –s WebServer

–u jones mypassword

Note If you specify an asterisk as the password (-u jones *), you are prompted for
the password when you start the collection query. This way, the password is not saved
in the collection query, nor is it echoed to the screen.

Configuring the Log Manager Output File

Log Manager does not display performance data on-screen. Instead, all performance
measurements are recorded in an output log file. Whenever you create a collection
query, you must include the -o parameter followed by the path for the log file. You do
not need to include a file name extension; Log Manager will append the appropriate
file name extension based on the format of the output file.

By default, Log Manager will save output files to the directory where you issued the
command. For example, this command saves the output file in C:\My Docu-
ments\Web_server_log.blg, assuming you issued the command from the folder
C:\My Documents:

logman –create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

To save your files somewhere other than in the default folder, include the full path.
For example, to have performance data logged to the file
C:\Scripts\Web_server_log.blg, use this command:

logman create counter web_server_log –c "\Memory\Available Bytes" –o

c:\scripts\web_server_log

Or, use a UNC path to save the file to a remote computer:

logman create counter web_server_log –c "\Memory\Available Bytes" –o

\\RemoteComputer\scripts\web_server_log

If the file Web_server_log does not exist, Log Manager creates it. If the file does exist,
Log Manager returns an error saying that the file already exists. To overwrite the file,
use the -y option. If you want Log Manager to append information to an existing log file
(that is, to add new data without erasing existing data), you must use the -a parameter:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log –a

Chapter 2: Performance Monitoring Tools 185

As an alternative to logging data to a text file, you can record data in a SQL database,
provided you have used the ODBC Data Source Administrator to create a system Data
Source Name (DSN) for that database. If a DSN exists, you can log performance data
to a SQL database using the format DSN!Table_name, where DSN represents the Data
Source Name, and Table_name represents the name of a table within that database. (If
the table does not exist, Log Manager will create it.) For example, the following com-
mand logs performance data into a table named DailyLog in the PerformanceMonitor-
ing database:

logman create counter web_server_log –c "\Memory\Available Bytes" –o

PerformanceMonitoring!DailyLog –f SQL

Note The -f (format) parameter is required when saving data to a SQL database.
The DSN created must be a system DSN and not a user DSN. Logman will fail if a user
DSN is used. Additionally, the DSN must point to a database that already exists. Your
SQL database administrator can create a SQL database for you to use.

Adding Versioning Information to Log File Names with Log
Manager

Versioning allows you to automatically generate unique counter log file names. Log
Manager supports two different versioning methods:

■ Numeric With numeric versioning, file names are appended with an incremen-
tal 6-digit numeric suffix. For example, the first log file created by a collection
query might be called Web_server_log_000001.blg. The second file would then
be called Web_server._log_000002.blg.

■ Date/Time With date/time versioning, file names are appended with the cur-
rent month, day, and time (based on a 24-hour clock), using the mmddhhmm
format (month, date, hour, minute). For example, a file saved at 8:30 A.M. on
January 23 might be named Web_server.log_01230830.

To add versioning information to your file names, use the -v parameter, followed by
the appropriate argument. Logman uses nnnnnn as the argument for adding numeric
versioning, and mmddhhmm as the argument for date/time versioning. These are the
only two valid arguments.

Note Performance Logs and Alerts supports some additional date formats, includ-
ing yyyymmdd, which appends the year, month, and day to the end of the file name.
These additional formats cannot be set using Log Manager; however, you can create a
collection query using Log Manager, and then use the Performance Logs and Alerts
snap-in to modify the versioning format.

186 Microsoft Windows Server 2003 Performance Guide

For example, this command configures versioning using the numeric format:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –v nnnnnn

This command configures versioning using the date/time format:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –v mmddhhmm

Formatting the Log Manager Output File

Log Manager allows you to specify the data format for your output file. To designate
the file format for a Log Manager output file, use the -f parameter followed by the for-
mat type. For example, this command sets the file format to circular binary:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–f BINCIRC

Valid file formats are described in Table 2-19. Logman uses the same file formats as
the Counter log facility in Performance Logs and Alerts. (See Table 2-14 for more
details.) Binary file format is the most efficient and concise way to store counter log
data. Because the Relog tool can be used to convert binary files into any other format,
there should be little reason to utilize anything but binary format files.

Specifying a Maximum Size for the Log Manager Output File

Although Log Manager output files are relatively compact, they can still potentially
grow quite large. For example, a collection query that monitors two performance
counters every 15 seconds creates, after 24 hours, a file that is about one megabyte in
size. This might be a reasonable size for a single computer. However, if you have mul-
tiple computers logging performance data to the same file, that file might grow so
large that it would become very difficult to analyze the data.

To keep log files to a manageable number of bytes, you can set a maximum file size. To
do this, add the -max parameter followed by the maximum file size in megabytes. (If
you are logging data to a SQL database, the number following the -max parameter rep-

Table 2-19 Log Manager File Formats

File Format Description

BIN Binary format.

BINCIRC Circular binary format.

CSV Comma-separated values.

TSV Tab-separated values.

SQL SQL database format.

Chapter 2: Performance Monitoring Tools 187

resents the maximum number of records that can be added to the table.) For example,
to limit the file Web_server_log.blg to 5 megabytes, use this command:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –max 5

File size limit checking If you specify a file size limit using the -max value, the file
system where you plan to create the file is evaluated before the counter log session
starts to see whether there is an adequate amount of space to run to completion. This
file size limit is performed only once when the log file you are creating is first stored
on the system drive. If the system drive has insufficient space, the logging session will
fail, with a smlogsvc error message reported in the event log similar to the following:

An error occurred while trying to update the log file with the current data

for the <session name> log session. This log session will be stopped.

The Pdh error returned is: Log file space is insufficient to support this operation.

An error return code of 0xC0000188 in this error message indicates an out-of-space
condition that prevented the logging session from being started.

Note that additional configuration information is written to the front of every counter
log file so that slightly more disk space than you have specified in the -max parameter
is actually required to start a trace session.

Creating new log files automatically When a log file reaches its maximum size,
the default behavior for Log Manager is to stop collecting data for that collection
query. Alternatively, you can have Log Manager automatically start recording data to a
new output file should a log file reach its maximum size. You do this with the -cnf (cre-
ate new file) parameter. When you specify the create new file parameter, you must use
the -v versioning option to generate unique file names. For example, the following
command instructs Log Manager to create a new log file each time the maximum size
is reached, and to use the numeric versioning method for naming files:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –v nnnnnn -cnf

You can also force Log Manager to start a new log file after a specified amount of time
with -cnf hh:mm:ss, where hh is hours, mm is minutes, and ss is seconds. For example,
the following command causes Log Manager to start a new log file every 4 hours:

logman create web_server_log –c "\Memory\Available Bytes" –o web_server_log –a –f

BINCIRC –v nnnnnn –cnf 04:00:00

188 Microsoft Windows Server 2003 Performance Guide

Configuring the Log Manager Sampling Interval

The default Log Manager sampling interval is 15 seconds, similar to the Performance
Logs and Alerts facility. The Log Manager sampling interval can be changed using the
-si parameter followed by the interval duration. To configure the sampling interval, use
-si hh:mm:ss, where hh is hours, mm is minutes, and ss is seconds. Partial parameters
for the sample duration interval can be specified. For example, this command sets the
sampling interval to 45 seconds:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –si 45

To sample every 1 minute 45 seconds, the following command can be used:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –si 1:45

To sample every 1 hour 30 minutes 45 seconds, the following command can be used:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –si 1:30:45

Scheduling Log Manager Data Collection

By default, Log Manager begins collecting performance data as soon as you start a col-
lection query, and it continues to collect that performance data until you stop it. There
might be times, however, when you want to schedule data collection for a specific
period of time. For example, suppose you have a new backup program that automati-
cally runs from 3:00 A.M. to 4:00 A.M. each morning. To know what sort of stress this
backup program is placing on the system, you could come in at 3:00 A.M., start Log
Manager, and then, an hour later, stop Log Manager. Alternatively, you can schedule
Log Manager to automatically begin data collection at 3:00 A.M. and automatically to
stop monitoring an hour later.

To schedule data collection with Log Manager, you must specify both a beginning
date and time by using the -b parameter, and an ending time by using the -e parameter.
Both of these parameters require time data to be formatted as hh:mm:ssAMPM, where
hh is hours, mm is minutes, ss is seconds, and AMPM designates either morning or
afternoon/evening. For example, this command monitors available bytes of memory
between 3:00 A.M. and 4:00 A.M. on August 1, 2003:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –b 08/01/2003 03:00:00AM –e 08/01/2003 04:00:00AM

The preceding command causes data collection to begin at 3:00 A.M. and to end—per-
manently—at 4:00 A.M. If you want data collection to take place every day between
3:00 A.M. and 4:00 A.M., add the repeat (-r) parameter:

Chapter 2: Performance Monitoring Tools 189

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –b 08/01/2001 03:00:00AM –e 08/01/2001 04:00:00AM -r

You can also schedule data collection to take place during only a specified set of
dates. For example, to collect data only for September 1, 2003 through September
5, 2003, add the dates to the -b and -e parameters using the mm-dd-yyyy (month-
day-year) format:

logman create counter web_server_log –c "\Memory\Available Bytes" –o web_server_log

–a –f CSV –b 09-01-2003 03:00:00AM –e 09-05-2003 04:00:00AM

Starting, Stopping, Updating, and Deleting Data Collections Using
Log Manager

Simply creating a collection query without specifying a scheduled begin time or end
time does not cause Log Manager to start monitoring performance data. Instead, you
must explicitly start data collection by using the start parameter. For example, to
begin collecting data using the web_server_log collection query, type this command:

logman start web_server_log

Once data collection has begun, the collection query will run either until it reaches
the end time (if you have included the -e parameter) or until you stop it by using the
stop parameter. For example, this command stops the collection query web_server_log:

logman stop web_server_log

To help you keep track of all your collections, the query parameter shows you a list of
all the collection queries stored on a computer, as well as their current status (running
or stopped). To view the list of collection queries on the local computer, use this:

logman query

To view the list of collection queries on a remote computer, add the -s parameter and
the name of the computer (in this case, DatabaseServer):

logman query –s DatabaseServer

Note The -query parameter will tell you what collection queries are running on a
computer; however, it will not tell you what collection queries are being run against a
computer. For example, you might have 10 collection queries running on your com-
puter, but each could be monitoring performance on a different remote computer. You
will not know this, however, unless you know the specifics of each collection query.

To delete a collection query, use the delete parameter followed by the query name:

logman delete web_server_log

190 Microsoft Windows Server 2003 Performance Guide

An existing collection query can be updated with new information using the update
parameter followed by the collection name and the parameters you want to update.
For example to update a collection called web_server_log with a new sample interval of
60 seconds, the following command can be used:

Logman update web_server_log –si 60

Any parameter can be updated using update. Note that for an update to take effect, the
collection must be stopped and restarted.

Using Windows Script Host to Manage Log Manager Data
Collection

Log Manager’s built-in scheduling options allow you to schedule data collection at
specific times during the day (for example, between 3:00 A.M. and 4:00 A.M.). By
specifying a different sampling interval, you can also have Log Manager collect data at
regular intervals. (For example, setting the sampling interval to 1:00:00 will cause Log
Manager to take a single sample every hour.)

What you cannot do with Log Manager is schedule data collection for more irregular
time periods. For example, suppose you want to collect performance data for 5 min-
utes at the beginning of every hour. There is no way to do this using Log Manager
alone.

Note You could, however, do this using Typeperf. To do this, create a batch file that
configures Typeperf to take only 5 minutes’ worth of samples. Then schedule the
batch file to run once every hour using the Task Scheduler.

However, because Logman is scriptable, you can combine Windows Script Host
(WSH) and Log Manager to schedule data collection using more irregular intervals.
The script shown in Listing 2-2 starts Log Manager (using the -start parameter) and
then pauses for 5 minutes, using the WSH Sleep method. While the WSH script is
paused, Log Manager collects data. After 5 minutes, the script resumes and issues the
stop command to stop data collection. The script then pauses for 55 minutes
(3300000 milliseconds) before looping around and starting again.

Listing 2-2 Running Log Manager Within a WSH Script
set WshShell = WScript.CreateObject(“WScript.Shell”)

Do

 WshShell.Run "%COMPSEC% /c logman –start web_server_log"

 WScript.Sleep 300000

 WshShell.Run "%COMPSEC% /c logman –stop web_server_log"

 WScript.Sleep 3300000

Loop

Chapter 2: Performance Monitoring Tools 191

Listing 2-2 is designed to run indefinitely. To run it a finite number of times, use a for-
next loop. For example, the script shown in Listing 2-3 causes the script to run 24
times (once an hour for an entire day) and stop.

Listing 2-3 Using a WSH Script to Run Log Manager Once an Hour for 24 Hours
Set WshShell = WScript.CreateObject("WScript.Shell")

For i = 1 to 24

 WshShell.Run "%COMPSEC% /c logman –start web_server_log"

 WScript.Sleep 300000

 WshShell.Run "%COMPSEC% /c logman –stop web_server_log"

 WScript.Sleep 3300000

Next i

Wscript.Quit

Managing Performance Logs
Both the Performance Logs and Alerts facility in the Performance Monitor console
and the Log Manager command-line interface allow you considerable flexibility in
gathering performance statistics. The Relog tool (Relog.exe) is a command-line tool
that allows you manage the counter logs that you create on a regular basis. Using
Relog, you can perform the following tasks:

■ Combine multiple counter logs into a single log file. You can list the file names
of all the counter logs that you want Relog to process separately, or you can use
wildcards (for example, *.blg) to identify them. The logs you combine can con-
tain counters from a single computer or from multiple computers.

■ Create summarized output files from an input file or files.

■ Edit the contents of a counter log by allowing you to drop counters by name or
drop all counters not collected during a designated time interval.

■ Convert counter data from one file format to another.

Note Log Manager can record performance data on multiple computers and
save that data to the same log file. However, this can result in a considerable
amount of unwanted network traffic. Relog allows you to monitor performance
locally, and then retrieve the data as needed. By putting the Relog commands in
a batch file, data retrieval can be scheduled to take place at times when network
traffic is relatively low.

More Info For more information about Relog, in Help and Support Center
for Microsoft Windows Server 2003, click Tools, and then click Command-Line
Reference A–Z.

192 Microsoft Windows Server 2003 Performance Guide

Using the Relog Tool

Relog requires two parameters: the path for the existing (input) log file, and the path
for the new (output) log file (indicated by the -o parameter). For example, this com-
mand will extract the performance records from the file C:\Perflogs\Oldlog.blg and
copy them into the file C:\Perflogs\Newlog.blg:

relog c:\Perflogs\oldlog.blg –o c:\Perflogs\newlog.blg

Relog gathers data from one or more performance logs and combines that data into a
single output file. You can specify a single input file or a string of input files, as in the
following example:

relog c:\Perflogs\oldlog1.blg c:\Perflogs\oldlog2.blg

c:\Perflogs\oldlog3.blg

–o c:\Perflogs\newlog.blg

If the file Newlog.blg does not exist, Relog will create it. If the file Newlog.blg does
exist, Relog will ask you if you want to overwrite it with the new set of records, and any
previously saved data is lost.

Command Syntax

The Relog tool supports a set of run-time parameters to define editing, summariza-
tion, and conversion options, with syntax and function that is similar to Logman.
These parameters are summarized in Table 2-20.

Table 2-20 Relog Tool Parameters for Editing, Summarizing, and Converting
Counter Log Files

Parameter Syntax Function Notes

Settings file -config FileName Use the logging parameters
defined in this setting file.

Use -i in the config-
uration file as a
placeholder for a list
of input files that
can be placed on
the command line.

Counters -c {Path [Path ...] Specify the counters from the
input file that you want to
write to the output file. If no
counters are specified, all
counters from the input files
are written.

Use -cf FileName to
use counter settings
from an existing log
file.

Summarization
interval

-t n Write output every n
intervals of the input
counter logs.

Defaults to creating
output every input
interval.

Chapter 2: Performance Monitoring Tools 193

To append data to an existing file, add the -a parameter.

relog c:\scripts\oldlog.blg –o c:\scripts\newlog.blg -a

Adding -a to the preceding example causes Relog to add the records extracted from
Oldlog.blg to any existing records in Newlog.blg. Note that only binary files can be
appended.

Note To append to an existing text file, use Relog to convert the text file to binary,
use Relog again to append data from another file, and, finally, use Relog one more
time to create the resulting text file.

Merging Counter Logs Using Relog

Use the Relog tool to merge data from multiple performance logs into a single file. You
do this by specifying the path and file names for multiple performance logs as part of
the initial parameter. For example, this command gathers records from three separate
log files, and appends all the data to the file Newlog.blg:

relog c:\scripts\log1.blg c:\scripts\log2.blg c:\scripts\log3.blg –o

c:\Windows\logs\newlog.blg -a

Note Use the -a parameter to specify that Relog appended output to any existing
data in the output file when you merge data from multiple logs.

Output file
name

-o {Path |
DSN!CounterLog}

Specify the output file name.
If the file does not exist,
Relog will create it.

Required.

Log file
format

-f bin | bincirc | csv |
tsv | SQL}

Choose the format of the
output counter log file.

Defaults to binary
format.

Append -a Append the output from this
logging session to an existing
file.

For binary input and
output files only.

Begin
relogging

-b M/D/YYYY
H:MM:SS

[{AM | PM}]

Specify the start date and
time of the output file.

Defaults to the earli-
est start time of the
input files.

End relogging -e M/D/YYYY
H:MM:SS

[{AM | PM}]

Specify the end date and
time of the output file.

Defaults to the latest
end time of the
input files.

Table 2-20 Relog Tool Parameters for Editing, Summarizing, and Converting
Counter Log Files

Parameter Syntax Function Notes

194 Microsoft Windows Server 2003 Performance Guide

Counter logs stored on remote computers can also be merged; use the UNC path
instead of the local path. For example, this command gathers records from three dif-
ferent computers (DatabaseServer, PrintServer, and FileServer), and appends that data
to the file Historyfile.blg:

relog \\DatabaseServer\logs\log1.blg \\PrintServer\logs\log2.blg

\\FileServer\logs\log3.blg –o c:\Windows\logs\Historyfile.blg –a –f blg

The individual paths cannot exceed a total of 1,024 characters. If you are retrieving
performance data from a large number of computers, it is conceivable that you could
exceed the 1,024-character limitation. In that case, you will need to break a single
Relog command into multiple instances of Relog.

Formatting the Relog Output File

Relog supports the same input and output file formats as Logman except that you
cannot use the binary circular file format or create output files with size limits. If a
new output file is being created, the new file will be created in binary format by
default. Relog can append data only to binary format files. Relog can append data
only to existing files when both the input and output files use binary format.

When creating a new output file, you can use the -f parameter to specify one of the
data formats shown in Table 2-21.

Filtering Log Files Using Relog

Relog has a filtering capability that can be used to extract performance data from the
input counter logs based on the following criteria:

■ A list of counters, as specified by their paths

■ A specified date and time range

Only the counters that meet the filtering criteria you specified are written to the out-
put file that Relog creates.

Filtering by counter Filtering by counter is based on a counter list, specified either
on the command line or in a Settings file. Relog writes to the designated output file

Table 2-21 Relog.exe File Formats

File Format Description

bin Binary format. This is the default file format.

csv Comma-separated values.

tsv Tab-separated values.

SQL SQL database format.

Chapter 2: Performance Monitoring Tools 195

only those values for the counters specified on the Relog command line or in the set-
tings file. For more information about how to specify the counter path correctly, see
“Performance Counter Path” earlier in this chapter.

In the following example, Relog writes values for only the \Memory\Available Bytes
counter to the output file:

relog c:\scripts\oldlog.txt –o c:\scripts\newlog.txt –f csv –c "\Memory\Available

Bytes"

To extract the data for more than one counter, include each counter path as part of the
-c parameter:

relog c:\scripts\oldlog.txt –f csv –o c:\scripts\newlog.txt –c "\Memory\Available

Bytes" "\Memory\Pages/sec" "\Memory\Cache Bytes"

Note Relog does not do any performance monitoring itself; all it does is collect
data from existing performance logs. If you specify a performance counter that does
not appear in any of your input files, the counter will not appear in your output file
either.

If your input log contains data from multiple computers, include the computer name
as part of the counter path. For example, to extract available memory data for the
computer DatabaseServer, use this command:

relog c:\scripts\oldlog.txt –o –f csv c:\scripts\newlog.txt –c

"\\DatabaseServer\Memory\Available Bytes"

Instead of typing a large number of performance counters as part of your command
string, you can use a settings file to extract data from a log file. A settings file is a text
file containing the counter paths of interest. For instance, the settings file shown in
Listing 2-4 includes 10 different counter paths:

Listing 2-4 Relog.exe Settings File
"\Memory\Pages/sec"

"\Memory\Page Faults/sec"

"\Memory\Pages Input/sec"

"\Memory\Page Reads/sec"

"\Memory\Transition Faults/sec"

"\Memory\Pool Paged Bytes"

"\Memory\Pool Nonpaged Bytes"

"\Cache\Data Map Hits %"

"\Server\Pool Paged Bytes"

"\Server\Pool Nonpaged Bytes"

196 Microsoft Windows Server 2003 Performance Guide

To filter the input files so that only these counter values are output, use the -cf param-
eter, followed by the path of the settings file:

relog c:\scripts\oldlog.txt –o c:\scripts\newlog.txt –a –cf

c:\Windows\logs\memory.txt

Filtering by date Relog provides the ability to extract a subset of performance
records based on date and time. To do this, specify the beginning time (-b parameter)
and ending time (-e parameter) as part of your command string. Both of these param-
eters express dates and times using the mm-dd-yyyy hh:mm:ss format, where mm-dd-
yyyy represents month-day-year; hh:mm:ss represents hours:minutes:seconds; and
time is expressed in 24-hour format.

For example, to extract performance records from 9:00 P.M. on September 1, 2003
through 3:00 A.M. on September 2, 2003, use this command:

relog c:\scripts\oldlog.txt" –f csv –o c:\scripts\newlog.txt" –b 09-01-2003 21:00:00

–e 09-02-2003 03:00:00

If you code the time only on the -b and -e parameters, the current date is assumed. For
example, this command extracts performance records logged between 9:00 A.M. and
5:00 P.M. on the current date:

relog c:\scripts\oldlog.txt –o c:\scripts\newlog.txt –b 09:00:00 –e 17:00:00

If you choose, you can filter the input files by both counter value and date and time in
a single Relog execution.

Summarizing Log Files Using Relog

Relog allows you to reduce the size of the output files you create by writing only one
out of every n records, where n is a parameter you can specify using the -t option. This
has the effect of summarizing interval and averaging counters. Interval counters are
ones like \Processor\Interrupts/sec and \Process\% Processor Time that report an
activity rate over the measurement interval. Average counters like \Physical Disk\Avg.
Disk sec/transfer are ones that report an average value over the measurement.

The -t parameter allows you to extract every nth record from the input counter logs
and write them only to the output log file. For instance, -t 40 selects every fortieth
record; -t 4 selects every fourth record. If the original input counter log was recorded
with a sampling interval of once every 15 seconds, using Relog with the -t 4 parameter
results in an output file with data recorded at minute intervals. Interval counters like
\Processor\Interrupts/sec and \Process\% Processor Time in the output file repre-
sent activity rates over 1-minute intervals. The same input file relogged using -t 240
results in an output file with data recorded at 1-hour intervals. Interval counters like
\Processor\Interrupts/sec and \Process\% Processor Time in the output file repre-
sent activity rates over 1-hour intervals.

Chapter 2: Performance Monitoring Tools 197

Summarizing using Relog works by resampling the input counter log. The output file
that results is not only more concise, it contains counter values that are summarized
over longer intervals. You can expect some data smoothing to result from this sort of
summarization, but nothing that would normally distort the underlying distribution
and be difficult to interpret.

Not all the counters that you can collect can be summarized in this fashion, however.
For an instantaneous counter like \Memory\Available Bytes or \System\Processor
Queue Length, relogging the counter log merely drops sample observations. If you
relog instantaneous counters to a large enough extent, you could wind up with an out-
put file with so few observations that you do not have a large enough sample to inter-
pret the measurements meaningfully. At that point, it is probably better to use a
counter list with Relog to drop instantaneous counters from the output file entirely.
Chapter 4, “Performance Monitoring Procedures,” offers sample summarization
scripts that illustrate this recommendation.

An example that uses Relog to summarize an input counter log from 1 minute to 4
minute intervals illustrates these key points.

Figure 2-18 shows a System Monitor Chart View that graphs three counters. The high-
lighted counter, the \System\Processor Queue Length, is an instantaneous counter,
which Relog cannot summarize. The remaining counters shown on the chart are inter-
val counters, which Relog can summarize. This counter log was created using a sam-
ple interval of 1 minute.

Figure 2-18 Original counter log data before Relog summarization

198 Microsoft Windows Server 2003 Performance Guide

System Monitor reports that the counter log being charted covers a period with a
duration of roughly 2 hours. Using the Log File Time Span feature, the Chart is
zoomed into this period of unusual activity. Because the Chart View can display only
100 points, the line graphs are drawn based on skipping over a few of the data values
that will not fit on the graph. (It is as if the Chart View has a built-in Relog function for
drawing line graphs.) The statistics shown in the Value bar are based on all the obser-
vations in the period of interest. For the measurement period, the Processor Queue
Length, sampled once every minute, shows an average value of 4, a minimum value of
1, and a maximum value of 81.

The Relog command to summarize this file to 4-minute intervals is shown in Listing 2-5,
along with the output the tool produces.

Listing 2-5 Relogging Using the -t Parameter to Create Summarized Counter Logs
C:\PerfLogs>relog BasicDailyLog_12161833_001.blg -o

relogged_BasicDailyLog_12161833_001.blg -t 4

Input

File(s):

 BasicDailyLog_12161833_001.blg (Binary)

Begin: 12/16/2004 18:33:52

End: 12/17/2004 17:15:26

Samples: 1363

Output

File: relogged_BasicDailyLog_12161833_001.blg

Begin: 12/16/2004 18:33:52

End: 12/17/2004 17:15:26

Samples: 341

The command completed successfully.

Relog reports that it found 1363 total sample collection intervals in the original input
file, somewhat less than an entire day’s worth of data. Relogging using the -t 4 param-
eter creates an output file with 341 intervals over the same duration. Figure 2-19 is an
identical System Monitor Chart View using the relogged file instead of the original
data zoomed into the same 2-hour time span of interest.

Chapter 2: Performance Monitoring Tools 199

Figure 2-19 Relogged data showing summarized data

The \System\Processor Queue Length counter is again highlighted. With only about
30 data points to report, the line graphs fall short of spanning the entire x-axis. The
Chart View shows every observed data point, which was not the case in the original
view. The graphs of the interval counters reveal some smoothing, but not much com-
pared to the original. The average value of the Processor Queue Length counter is 5 in
the relogged data, with a maximum value of 72 being reported.

The average values reported in the Report View (not illustrated) for four interval
counters are compared in Table 2-22.

As expected, the average values for the interval counters in the relogged file are con-
sistent with the original sample.

Table 2-22 Average Values in Report View

Interval Counter Original (125 Points) Relogged (30 Data Points)

Pages/sec 86.194 88.886

% Processor Time 16.820 17.516

% Privileged Time 9.270 9.863

Avg. Disk secs/transfer 0.008 0.009

200 Microsoft Windows Server 2003 Performance Guide

The Processor Queue Length statistics that System Monitor calculated for this instan-
taneous value reflect the observations that were dropped from the output file. The
maximum observed value for the Processor Queue Length in the relogged counter log
file is 72, instead of 81 in the original. Due to chance, the observed maximum value in
the original set of observations was lost. The average value, reflecting the underlying
uniformity of the distribution of Processor Queue Length values that were observed,
remains roughly the same across both views. When the underlying distribution is
more erratic, you can expect to see much larger differences in the summary statistics
that can be calculated for any instantaneous counters.

Using Typeperf Queries

The Typeperf tool provides a command-line alternative to the Windows System Mon-
itor. Typeperf can provide a running list of performance counter values, giving you
detailed performance monitoring in real-time. Typeperf also imposes less overhead
than System Monitor. This can be important if the computer you are monitoring is
already sluggish or performing poorly.

More Info For more information about Typeperf, in Help and Support Center for
Microsoft® Windows Server™ 2003, click Tools, and then click Command-Line Refer-
ence A–Z.

To assist in building automated performance monitoring procedures, Typeperf pro-
vides an easy way to retrieve a list of all the performance counters installed on a given
computer. (Although it is possible to view the set of installed performance counters
using System Monitor, there is no way to review and save the entire list.) With Type-
perf, you can list the installed performance counters, and save that list to a text file
that can be edited later to create a Logman or Relog tool settings file. This capability of
Typeperf queries is designed to complement the Log Manager (Logman.exe) and
Relog (Relog.exe) command-line tools that have been discussed here.

Command Syntax

Typeperf supports a set of runtime parameters to define counter log queries, along
with options to gather counters in real time. Typeperf parameters use syntax and per-
form functions that are very similar to Logman and Relog. These parameters are sum-
marized in Table 2-23.

Chapter 2: Performance Monitoring Tools 201

Obtaining a List of Performance Counters Using Typeperf Queries

Before you can monitor performance on a computer, you need to know which perfor-
mance counters are available on that computer. Although a default set of performance
counters is installed along with the operating system, the actual counters present on
a given computer will vary depending on such things as:

Table 2-23 Typeperf Tool Parameters for Gathering Performance Data and
Listing Available Queries

Parameter Syntax Function Notes

Query -q {Path [Path ...] Returns a list of counters,
one path per line.

Use -o to direct
output to a text file.

Extended query -qx{Path [Path ...] Returns a list of counters
with instances.

Extended query
output is verbose.

Settings file -config FileName Use the logging
parameters defined
in this settings file.

Code counter Path
statements one per
line.

Counters -c {Path [Path ...] Specify the counters
that you want to
gather.

Use -cf FileName to
use counter settings
from an existing log
file.

Sample interval -si [[HH:]MM:]SS Specify the interval
between data collection
samples.

Defaults to 1 second.

of samples -sc Samples Specify the number of
data samples to collect.

Output file name -o {FileName} Specify the output file
name. If the file does
not exist, Typeperf will
create it.

Redirects output to
a file. Defaults to
stdout.

Log file format -f {bin | csv | tsv | SQL} Choose the format of the
output counter log file.

Defaults to .csv
format.

Computer -s ComputerName Specify the computer
you want to gather the
performance counters
from.

If no computer
name is provided,
the local computer
is assumed.

202 Microsoft Windows Server 2003 Performance Guide

■ The operating system installed. Windows 2000, Windows XP, and Windows
Server 2003, for example, all have different sets of default performance counters.

■ Additional services or applications installed. Many applications—including
Microsoft Exchange and Microsoft SQL Server—provide their own set of perfor-
mance counters as part of the installation process.

■ Whether performance counters have been disabled or become corrupted.

To retrieve a list of all the performance counters (without instances) available on a
computer, start Typeperf using the -q parameter:

Typeperf –q

In turn, Typeperf displays the paths of the performance counters installed on the
computer. The display looks something like the excerpted set of performance
counters shown in Listing 2-6.

Listing 2-6 Abbreviated Typeperf Performance Counter Listing
\Processor(*)\% Processor Time

\Processor(*)\% User Time

\Processor(*)\% Privileged Time

\Processor(*)\Interrupts/sec

\Processor(*)\% DPC Time

\Processor(*)\% Interrupt Time

\Processor(*)\DPCs Queued/sec

\Processor(*)\DPC Rate

\Processor(*)\% Idle Time

\Processor(*)\% C1 Time

\Processor(*)\% C2 Time

\Processor(*)\% C3 Time

\Processor(*)\C1 Transitions/sec

\Processor(*)\C2 Transitions/sec

\Processor(*)\C3 Transitions/sec

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

To return a list of all the performance counters available, including instances, use the
-qx option. Be aware that the -qx parameter will return a far greater number of perfor-
mance counters than the -q parameter.

The output from a counter query can be directed to a text file using the -o parameter.
You can then edit this text file to create a settings file that can be referenced in subse-
quent Logman and Relog queries.

Chapter 2: Performance Monitoring Tools 203

Retrieving Performance Counters from Remote Computers

You can append a UNC computer name to the command string to obtain a list of per-
formance counters from a remote computer. For example, to list the performance
counters on the remote computer DatabaseServer, type the following:

Typeperf –q \\DatabaseServer

To retrieve only the counters for the Memory object, type this:

Typeperf –q \\DatabaseServer\Memory

Tip Although Typeperf does not provide a way to specify an alternate user name
and password directly, try connecting to the remote system first using a net use
\\remotesystems\ipc$ /user:<name> Password command to make the connection
first. Then issue the Typeperf command on the remote machine.

Monitoring Performance from the Command Line Using Typeperf

After you know which performance counters are installed on a computer, you can
begin monitoring performance. To do this, start Typeperf followed by a list of the
counters you want to monitor. For example, to monitor the available bytes of memory,
type the following, enclosing the counter name in quotation marks:

Typeperf “\Memory\Available Bytes"

Typeperf will begin monitoring the available bytes of memory, and will display the
performance data in real time in the command window. An example of this output is
shown in Listing 2-7.

Listing 2-7 Sample Typeperf Output
C:\ Typeperf "\Memory\Available bytes"

"(PDH-CSV 4.0)","\\COMPUTER1\Memory\Available bytes"

"10/24/2001 13:41:31.193","35700736.000000"

"10/24/2001 13:41:32.195","35717120.000000"

"10/24/2001 13:41:33.196","35700736.000000"

"10/24/2001 13:41:34.197","35680256.000000"

The Typeperf output consists of the date and time the sample was taken, along with
the value measured. A new sample is taken (and the command window updated)
once every second. This will continue until you press CTRL+C and end the Typeperf
session.

204 Microsoft Windows Server 2003 Performance Guide

Monitoring Multiple Performance Counters Using Typeperf

To monitor two or more performance counters at the same time, include each counter
name as part of the -c parameter. For example, to simultaneously monitor three sepa-
rate memory counters, type the following, enclosing each counter name in quotation
marks, and separating the individual counters by using commas:

Typeperf "\Memory\Available Bytes" "\Memory\Pages/sec" "\Memory\Cache Bytes"

Typeperf will display output similar to that shown in Listing 2-8, using commas to
separate the fields.

Listing 2-8 Displaying Multiple Counters with Typeperf
"(PDH-CSV 4.0)","\\DCPRNTEST\Memory\Available Bytes","\\DCPRNTEST\Memory\Pages/

sec","\\DCPRNTEST\Memory\Cache bytes"

"02/06/2001 09:05:57.464","24489984.000000","0.000000","47214592.000000"

"02/06/2001 09:05:58.516","24489984.000000","0.000000","47214592.000000"

"02/06/2001 09:05:59.567","24530944.000000","0.000000","47214592.000000"

"02/06/2001 09:06:00.619","24514560.000000","0.000000","47214592.000000"

As an alternative, you can store counter paths in a settings file, and then reference that
file as part of the command string the next time you start Typeperf by using the -cf
parameter, similar to the way you would with both Logman and Relog.

Monitoring the Performance of Remote Computers Using
Typeperf

Typeperf can also monitor performance on remote computers; one way to do this is to
include the UNC computer name as part of the counter path. For example, to monitor
memory use on the remote computer WebServer, type the following:

Typeperf "\\Webserver\Memory\Available Bytes"

Alternately, use the local counter name and specify the name of the remote computer
by using the -s option:

Typeperf "\Memory\Available Bytes" -s Webserver

To monitor counters from multiple remote computers, use the settings file and specify
the computer name UNC as part of the counter path.

Automating Typeperf Usage

By default, Typeperf measures (samples) performance data once a second until you
press CTRL+C to manually end the session. This can be a problem if you are recording
Typeperf output to a performance log, and no one is available to end the Typeperf ses-
sion: at one sample per second, it does not take long for a log to grow to an enormous
size. For example, if you use the default settings to monitor a single counter every sec-
ond, after one day, the size of your log file will be more than 4 megabytes.

Chapter 2: Performance Monitoring Tools 205

Note Windows Server 2003 has no limitation on the size of the log file created.
However, even though log files of this size are supported, they can be difficult to ana-
lyze because of the huge amount of information contained within them.

Modifying the sampling interval Although you cannot place a specific time limit
on a Typeperf session—for example, you cannot specify that Typeperf run for two
hours and then stop—you can specify the number of samples that Typeperf collects
during a given session. Once that number is reached, the session will automatically
end.

To limit the number of samples collected in a Typeperf session, use the -sc parameter
followed by the number of samples to collect. For example, the following command
measures memory use 60 times and then stops:

Typeperf "\Memory\Available Bytes" –sc 60

Because a new sample is taken every second, 60 samples will take approximately one
minute. Thus, this session of Typeperf will run for 1 minute, and then shut down.

Modifying the Typeperf sampling rate In addition to specifying the number of
samples Typeperf will collect, you can specify how often Typeperf will collect these
samples. By default, Typeperf collects a new sample once every second (3,600 times
per hour, or 86,400 times in a 24-hour period). For routine monitoring activities, this
might be too much information to analyze and use effectively.

To change the sampling rate, use the -si parameter, followed by the new sampling time
in seconds. For example, this command measures memory use every 60 seconds:

Typeperf "\Memory\Available Bytes" –si 60

This command measures memory use every 10 minutes (60 seconds × 10):

Typeperf "\Memory\Available Bytes" –si 600

You must use the same sampling rate for all the performance counters being moni-
tored in any one Typeperf instance. For example, suppose you use the -si parameter to
change the sampling rate for a set of memory counters:

Typeperf "\Memory\Available Bytes" "\Memory\Pages/sec" "\Memory\Cache Bytes" –si 60

All three counters must use the sampling rate of 60 seconds. (You cannot assign dif-
ferent sampling rates to individual counters.) If you need to measure performance at
different rates, you must run separate instances of Typeperf.

Writing Typeperf output to a counter log Typeperf was initially designed prima-
rily for displaying real-time performance data on the screen. However, the application

206 Microsoft Windows Server 2003 Performance Guide

can also be used to record data in a log file. This allows you to keep a record of your
Typeperf sessions, as well as carry out unattended performance monitoring from a
script or batch file. For example, you could create a script that starts Typeperf, collects
and records performance data for a specified amount of time, and then terminates the
Typeperf session.

Note If you plan on collecting performance data on a regular basis (for example,
every morning at 4:00 A.M.), you should consider using the Log Manager tool (Log-
man.exe), which has a built-in scheduling component.

To create a performance log using Typeperf, use the -o parameter followed by the path
for the log. For example, to save performance data to the file C:\Windows\Logs
\Memory.blg, type this command:

Typeperf "\Memory\Available Bytes" –o c:\Windows\logs\memory.blg –f bin

Note that the default log file type that Typeperf produces is in .csv format. You must
specify -f bin if you want to create a binary format log file. If the file Memory.blg does
not exist, Typeperf will create it. If the file Memory.blg does exist, Typeperf will ask if
you want to overwrite the file. You cannot run Typeperf on multiple occasions and
have all the information saved to the same log file. Instead, you must create separate
log files for each Typeperf session, then use the Relog tool to merge those separate
logs into a single file.

When Typeperf output is redirected to a performance log, the output does not appear
onscreen. You can view performance data onscreen or you can redirect performance
data to a log, but you cannot do both at the same time.

Changing the data format of a Typeperf performance log Unless otherwise
specified, Typeperf saves its output in comma-separated values format (CSV). In addi-
tion to the CSV format, you can use the -f parameter and save the log file in either the
TSV (tab-separated values) or BLG (binary log) formats; or to a SQL database.

To change the format of a Typeperf performance log, use the -o parameter to specify
the file name, and the -f parameter to specify the data format. For example, this com-
mand creates an output file C:\Windows\Logs\Memory.tsv, saving the data in tab-
separated-values format:

Typeperf "\Memory\Available Bytes" –o c:\Windows\logs\memory.tab –f TSV

Note The -f parameter is valid only when output is being directed to a file; it has no
effect on output being displayed onscreen. Output is always displayed onscreen as
comma-separated values.

Chapter 2: Performance Monitoring Tools 207

Windows Performance Monitoring Architecture
A common set of architectural features of the Windows Server 2003 operating system
support the operation of System Monitor; Performance Logs and Alerts; and the Log-
man, Relog, and Typeperf command-line tools. These performance tools all obtain
data by means of using the Performance Data Helper (PDH) dynamic-link library
(DLL) as an intermediary.

More Info For more information about PDH, see the Windows Server 2003 Soft-
ware Development Kit (SDK) documentation.

Each of these performance tools gathers counters using the PDH interface. Each tool
is then responsible for making the calculations to convert raw data into interval
counters and for formatting the data for generating output and reporting.

Performance Library DLLs

Performance Library (Perflib) DLLs provide the raw data for all the measurements
you see in System Monitor counters. The operating system supplies a base set of per-
formance library DLLs for monitoring the behavior of resources such as memory, pro-
cessors, disks, and network adapters and protocols. In addition, many other
applications and services in the Windows Server 2003 family provide their own DLLs
that install counters that you can use to monitor their operations. All the Performance
Library DLLs that are installed on the machine are registered in \Performance sub-
keys under the HKLM\SYSTEM\CurrentControlSet\Services\<service-name>\ key.

Figure 2-20 shows the four Performance Library DLLs that are supplied with the oper-
ating system. They are responsible for gathering disk, network, system-level, and pro-
cess-level performance counters.

Figure 2-20 Performance Library DLLs

208 Microsoft Windows Server 2003 Performance Guide

The entry for the Perfos.dll illustrates the registry fields that are associated with a
Perflib. Some of these are documented in Table 2-24.

These registry fields are used by the PDH routines to load Perflib DLLs, initialize them
for use in performance data collection, call them to gather the performance data, and
close them when the performance monitoring session is over.

Performance Counter Text String Files

To save space in the registry, the large REG_MULTI_SZ string variables that make up
the names and explanatory text of the performance counters are saved in perfor-
mance counter text string files outside the registry. These files are mapped into the
registry so that they appear as normal registry keys to users and applications. The per-
formance counter text string file names are:

■ %windir%\system32\perfc009.dat

■ %windir%\system32\perfh009.dat

Storing this text data in a separate file also assists in internationalization. Perfc009.dat
is the English version of this text data; the 009 represents the language ID of the coun-
try, in this case English.

Performance Data Helper Processing

When called by a performance monitoring application, PDH initialization processing
involves the following steps:

Table 2-24 Registry Fields

Registry Field Description

Library Identifies the file name (and path) of the Perflib DLL module. If it is
an unqualified file name, %systemroot%\system32 is the assumed
location.

Open The entry point for the Perflib’s Open routine to be called when ini-
tializing a performance counter collection session.

Open Timeout How long to wait in milliseconds before timing out the call to the
Open routine. If the Open routine fails to return in the specified
amount of time, the Disable Performance Counters flag is set.

Collect The entry point to call every sample interval to retrieve counter data.

Collect Timeout How long to wait in milliseconds before timing out the call to the
Collect routine. If the Collect routine fails to return in this amount of
time, the Disable Performance Counters flag is set.

Close The entry point for the Perflib’s Close routine to be called to clean up
prior to termination.

Chapter 2: Performance Monitoring Tools 209

PDH processing steps

1. PDH accesses the perfc009.dat and perfh009.dat files that contain text that
defines the performance objects and counter names that are installed on the
machine, along with their associated Explain text.

2. PDH inventories the HKLM\SYSTEM\CurrentControlSet\Services\<service-
name>\ key to determine which Perflib DLLs are available on this machine.

3. For each Performance key found, PDH loads the Perflib DLL.

4. After the Perflib DLL is loaded, PDH calls its Open routine. The Open routine
returns information that describes the objects and counters that the Perflib DLL
supports. The performance monitoring application can use this information to
build an object and counter selection menu like the Add Counters form in Sys-
tem Monitor.

5. At the first sample interval, PDH calls the Perflib Collect routine to gather raw
performance counters. The performance monitoring application can then make
additional PDH calls to format these raw counters for display.

6. At termination, PDH calls the Close routine of all active Perflibs so that they end
processing gracefully.

PDH processing hides most of the details of these processing steps from performance
monitoring applications like the System Monitor and Log Manager. The Extensible
Counter List (exctrlst.exe) tool (included as part of the Windows Support Tools for
Windows Server 2003) illustrates step 2 of this processing. If you type exctrlst on a
command line, you will see a display like the one in Figure 2-21.

Figure 2-21 Extensible Counter List dialog

210 Microsoft Windows Server 2003 Performance Guide

The Extensible Counter List tool displays a complete inventory of the Performance
Library DLLs that are registered on your machine.

Disable Performance Counters

If a call to a Perflib function fails or returns error status, PDH routines add an optional
field to the Performance subkey called Disable Performance Counters. An Application
Event log message is also generated when PDH encounters a Perflib error. (More infor-
mation documenting the Perflib error messages is available in Chapter 6, “Advanced
Performance Topics,” in this book.) If a Perflib’s Disable Performance Counters flag is
set, PDH routines will not attempt to load and collect counter data from the library
until the problem is resolved and you clear the Disable Performance Counters flag by
using Exctrlst.exe.

Tip If you are expecting to collect a performance counter but cannot, use exctrlst to
check whether the Disable Performance Counters flag has been set for the Perflib
responsible for that counter. Once you have resolved the problem that caused the Dis-
able Performance Counters flag to be set, use exctrlst to clear the flag and permit PDH
to call the Perflib once again.

Always use the Extensible Counter List tool to reset the Disable Performance
Counters flag rather than editing the Registry key directly.

Additional Perflib registry entries are at HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Perflib and are designed to help you when you are encountering
data collection problems or other failures inside Performance Library DLLs.

Remote Monitoring

Monitoring performance counters remotely requires that you have network access to
the remote computer and an agent on the remote computer that collects performance
data and returns it to the local computer that requested the data. The remote collec-
tion agent supplied with the Windows Server 2003 family is the Remote Registry ser-
vice (Regsvc.dll). Regsvc.dll collects performance data about the computer it is
running on and provides the remote procedure call (RPC) interface that allows other
computers to connect to the remote computer and collect that data. This service must
be started and running on the remote computer before other computers can connect
to it and collect performance data. Figure 2-22 illustrates the different interefaces and
functional elements used when monitoring performance data remotely.

Chapter 2: Performance Monitoring Tools 211

Figure 2-22 Remote Performance Monitoring Architecture

Note The Messenger service in the Windows Server 2003 family sends users alert
notifications. This service must be running for alert notifications to be received.

Performance
application based

on the performance
registry (for example

Perfmon.exe)

User-defined
HTML page

or script

System Monitor

Performance Data Helper (PDH) library
pdh.dll

Performance registry

System
performance

DLL

System Calls

Performance
counter text
string files

Performance
extension

DLL

Remote Registry service
Regsvc.dll

Monitoring Computer

Remote Computer Being Monitored

Performance Logs
and Alerts snap-in

Performance Logs
and Alerts service

Performance registry Performance
data log file

2 2

3

1

4

4

5

66

7

8 9

Legend:

Windows system call
API: each API is specific to
information requested

Standard performance
library interface

Registry internal
interface

RefQueryValueEx API to
performance registry key

PDH internal log
file interface

Published PDH API

Registry internal
RPC interface

System Monitor ActiveX
control interface

Log service internal
configuration interface

2

3

1

4

5

6

7

8

9

212 Microsoft Windows Server 2003 Performance Guide

Event Tracing for Windows
Event Tracing for Windows (ETW) is an event-oriented instrumentation available
from operating system and application providers. These events report precisely when
certain performance-oriented events occur, including:

■ Context switches

■ Page faults

■ File I/O requests

■ Process creation and termination

■ Thread creation and termination

■ TCP Send, Receive, and connection requests

In addition, server applications like IIS 6.0 and Active Directory are extensively instru-
mented to provide diagnostic event traces. In IIS 6.0, for example, the HTTP driver,
the Inetinfo process address space, ISAPI filtering, CGI Requests, and even ASP
Requests provide specific request start and end events that allow you to trace the
progress of an individual HTTP Get Request through various stages of its processing
by these components.

Event traces not only record when these events occur, they also capture specific infor-
mation that can be used to identify the event and the application that caused it. These
events can be logged to a file where you can view them or report on them. Event trac-
ing is a technique that you can rely on to diagnose performance problems that are not
easy to solve using statistical tools like System Monitor.

The great benefit of event traces is that they are extremely precise. You know exactly
what happened and when. But there are potential pitfalls to using event tracing that
you also need to be aware of. A drawback of event tracing is the potential to generate
large quantities of data that can complicate the analysis of the gathered data. In addi-
tion, manual analysis of raw event traces is complex, although Windows Server 2003
includes a built-in trace data-reporting tool called Tracerpt.exe that simplifies matters.
If you just wanted to know a simple count of how many events occurred, you could
ordinarily gather that information using statistical tools like System Monitor. If you
need to understand in detail the sequence of events associated with a specific perfor-
mance problem, Event Tracing for Windows can provide that information. It can tell
you about a wide variety of system and application-oriented events.

Event Tracing Overview

Trace data in Windows Server 2003 is gathered in logging sessions which record data
to a trace log file. You can create and manage event tracing sessions using the Log

Chapter 2: Performance Monitoring Tools 213

Manager command-line interface. In addition, the Trace Logs facility in Performance
Logs and Alerts in the Performance Monitor console provides an interactive facility for
defining event tracing sessions, starting them, and stopping them. However, the inter-
active Trace Logs facility provides access to only a subset of the Trace definition
options that are available using Logman. The Logman interface also has the advantage
that it can be used in conjunction with scripts to automate all aspects of event trace
logging. The Trace Reporting program, Tracerpt.exe, formats trace data and provides
a number of built-in reports.

In a tracing session, you communicate with selected trace data providers that are
responsible for reporting whenever designated events occur. When an instrumented
event occurs, such as an application sending or receiving a TCP/IP segment or a
thread context switch, the provider returns information about the event to the trace
session manager, ordinarily the Performance Logs and Alerts service. The Perfor-
mance Logs and Alerts service then writes a trace event entry in the log file.

Trace logs are saved only in binary format. Trace log files are automatically saved with
an .etl extension. You can use either a circular trace file or a sequentially organized
trace file. Like counter logs, you can set trace log file-size limits. When a circular trace
file reaches its designated size limit, event logging continues by wrapping around to
the beginning of the log file and overwriting the oldest trace events with current
events. When a sequential trace file reaches its designated size limit, the logging ses-
sion terminates. Use a circular log file when you want to run an event log tracing ses-
sion long enough to capture information about some event that occurs unpredictably.

Viewing trace logs requires a parsing tool, such as Tracerpt.exe, to process the trace
log output file and convert from binary format to CSV format so that you can read it.
Event tracing reports are also available using the -report option of tracerpt. Typically,
you will be interested in the Trace reports that are available using the -report option,
rather than in viewing raw CSV files containing the event trace records.

Performance Logs and Alerts

When you open the Performance Monitor, you will notice the Performance Logs
and Alerts function in the left tree view. There are three components to Perfor-
mance Logs and Alerts: counter logs, trace logs, and alerts. This section documents
the use of trace logs.

You can create trace logs using the Performance Logs and Alerts tool whenever you
require detailed trace data to resolve a performance problem. Reports created from
trace logs using the tracerpt tool can provide detailed insight into many problems that
are difficult to unravel using performance statistics alone. Performance Logs and
Alerts provides trace log capabilities that are similar to those available for counter logs.
For example, you can:

214 Microsoft Windows Server 2003 Performance Guide

■ Manage multiple trace logging sessions from a single console window.

■ Start and stop trace logging sessions manually, on demand, or automatically, at
scheduled times for each log.

■ Stop each log based on the elapsed time or the current file size.

■ Specify automatic naming schemes and stipulate that a program be run when a
trace log is stopped.

There is an upper limit on the number of trace sessions that can run concurrently.
This limit is 32. You can define many more trace logs settings than that, but you can
activate only 32 trace sessions at a time.

The Performance Logs and Alerts service process, Smlogsvc.exe, is responsible for
executing the trace log functions you have defined. Comparable trace performance
data logging capabilities are also available using the Logman command-line tool,
which also interfaces with the Performance Logs and Alerts service process. This com-
mand-line interface to gather event traces is discussed in “Using Log Manager to Cre-
ate Trace Logs.”

After you load the Performance Logs and Alerts console, you will need to configure
the trace logs.

To configure trace logs

1. Click the Trace Logs entry to select it.

Previously defined trace log sessions appear in the appropriate node of the
details pane.

2. Right-click the details pane to create a new log. You can also use settings from an
existing HTML file as a template.

Note To run the Performance Logs and Alerts service, you must be a member
of the Performance Log Users or Administrators security groups. These groups
have special security access to a subkey in the registry to create or modify a log
configuration. (The subkey is HKEY_CURRENT_MACHINE\SYSTEM\CurrentCon-
trolSet\Services\ SysmonLog\Log_Queries.)

3. In the New Log Settings box, type the name of your trace log session and click
OK.

Figure 2-23 shows the General tab for the Properties of a new counter log after
you enter the counter log name.

Chapter 2: Performance Monitoring Tools 215

Figure 2-23 General tab for a trace log

4. To configure a trace log, chose either events from the system Provider or one of
the available application Providers. Click the Provider Status button to see what
specific trace Providers are installed on your machine.

5. Click the Log Files, Schedule, and Advanced options tabs to set the file type, the
file naming convention, and other file management options, and to configure
the collection period. These options are discussed later.

Trace event providers Providers are responsible for sending information about an
event to the Performance Logs and Alerts service when it occurs. By default, on the
General tab, the Nonsystem Providers option is selected to keep trace logging over-
head to a minimum. Click the Add button to include data from that Provider in the
trace log. Application Providers include Active Directory, Microsoft Message Queue,
IIS 6.0, and the print spooler. The Processor Trace Information Provider traces Dis-
patcher events, including thread context switches.

If you click Events Logged By System Provider, a built-in provider for Windows kernel
events is used to monitor processes, threads, and other activity. To define kernel
events for logging, select the check boxes as appropriate.

The built-in system Provider can trace the following kernel events:

■ Process creation and deletion

■ Thread creation and deletion by process

216 Microsoft Windows Server 2003 Performance Guide

■ Disk input/output operations specifying logical, physical, and network disk
operations by process

■ Network TCP/IP Send and Receive commands by process

■ Page faults, both hard and soft, by process

■ File details for disk input/output operations

Note that the ability to use the system provider to trace registry and image events is
restricted to the Log Manager program (Logman.exe).

Before you turn on tracing for a class of event, it helps to understand what the perfor-
mance impact of tracing might be. To understand the volume of event trace records
that can be produced, use System Monitor to track the following counters over several
minutes:

■ \System\File Data Operations/sec

■ \System\File Control Operations/sec

■ \Memory\Page Faults/sec

■ \TCPv4\Segments/sec

These counters count the events that the kernel trace Provider can trace, assuming
you choose to select them. The size of the trace files that are produced and the over-
head consumed by a trace is proportional to the number of these events that occur.

Configuring Trace Log Properties The Trace Log Properties sheets that allow you
to set up automated event trace procedures. The file and scheduling options for trace
logs are very similar to those that are available for counter logs. The log files tab is
used to select the file type and automatic file naming options. For example, you can
generate unique log file names that are numbered consecutively, or you can add a date
and timestamp to the file name automatically. Or you can choose to write all perfor-
mance data to the same log file; in this case, you specify that current performance data
is used to overwrite any older data in the file. Once you set the appropriate option, the
Log Files tab displays an example of the automatic file names that will be generated
for you.

On the Schedule tab, you can choose manual or automatic startup options. You can
then set the time you want the logging session to end using an explicit end time or a
duration value in seconds, minutes, hours, or days; or by specifying that it end when
the log file reaches its designated size limit.

Trace logging options are summarized in Table 2-25.

Chapter 2: Performance Monitoring Tools 217

Using Log Manager to Create Trace Logs

Log Manager (Logman.exe) can also be used from the command line to generate
event trace logs. This section documents the use of Logman to create and manage
trace log files.

More Info For more information about Logman, in Help and Support Center for
Microsoft® Windows Server™ 2003, click Tools, and then click Command-Line Refer-
ence A–Z.

Table 2-25 Summary of Trace Log Properties

Tab Settings to Configure Notes

General Select Providers You can collect trace data from the local comput-
er only. Configure system Provider events.

Account and Password You can use Run As to provide the logon account
and password for data collection on remote
computers.

Log Files File Type Trace logs are binary files stored with an .etl ex-
tension. You can select either circular trace files
that wrap around to the beginning when they fill
up, or sequential trace files. Use Configure to en-
ter location, file name, and log file size.

Automatic File Naming You can choose to add unique file sequence
numbers to the file name or append a time and
date stamp to identify the file.

Schedule Manual or Automated
Start and Stop Methods
and Schedule

You can specify that the log stop collecting data
when the log file is full.

Automated Start and Stop
Times

Start and stop by time of day, or specify the log
start time and duration.

Automated Stop When the
File Reaches its Maximum
Size

Processing When the Log
File Closes

For continuous data collection, start a new log file
when the log file closes. You can also initiate au-
tomatic log file processing by running a designat-
ed command when the log file closes.

Advanced Buffer Size

Minimum and Maximum
buffers

Increase the number of buffers if too many trace
events are being skipped.

Buffer Flush timer The longest amount of time, in seconds, that a
trace entry can remain in memory without being
flushed to the disk logging file.

218 Microsoft Windows Server 2003 Performance Guide

Command Syntax

Logman operates in one of two modes. In Interactive mode, you can run Logman from
a command-line prompt and interact with the logging session. In Interactive mode, for
example, you can control the start and stop of a logging session. In Background mode,
Logman creates trace log configurations that are scheduled and processed by the
same Performance Logs and Alerts service that is used with the Performance Monitor
console. For more information about Performance Logs and Alerts, see “Performance
Logs and Alerts” in this book.

Table 2-26 summarizes the seven basic Logman subcommands.

Collection queries created using Log Manager contain properties settings identical to
the trace logs created using the Performance Logs and Alerts snap-in. If you open the
Performance Logs and Alerts snap-in, you will see any collection queries you created
using Log Manager. Likewise, if you use the -query command-line parameter in Log
Manager to view a list of collection queries on a computer, you will also see any trace
logs created using the Performance Logs and Alerts snap-in.

Interactive Sessions

The -ets command-line switch is used to establish an interactive event trace session.
Without it, Logman assumes a scheduled trace collection. When -ets is used, Logman
will not look at previously saved session configurations. The parameters will be
passed to the event trace session directly without being saved or scheduled. Using the
-ets switch, you can create multiple event trace sessions per console window.

Table 2-26 Logman Subcommands

Subcommand Function

create trace
CollectionName

Creates collection queries for either counter data or trace col-
lection sessions.

update
CollectionName

Updates an existing collection query to modify the collection
parameters.

delete CollectionName Deletes an existing collection query.

query
{ CollectionName }

Lists the collection queries that are defined and their status.
Use query CollectionName to display the properties of a spe-
cific collection. To display the properties on remote computers,
use the -s RemoteComputer option in the command line.

query providers
[ProviderName …]

Use query providers ProviderName to display a list of parame-
ters that can be set for the specified provider, including their
values and descriptions of what they enable. Note that this in-
formation is provider-dependant.

start CollectionName Start a logging session manually.

stop CollectionName Stop a logging session manually.

Chapter 2: Performance Monitoring Tools 219

In the following command sequence,

logman create trace "mytrace" -pf iistrace.txt –bs 64 -o mytrace.etl

logman start "mytrace" -ets

logman stop "mytrace" -ets

The session started by the second command is not the one created by the first com-
mand. The second Logman command will start a session mytrace with default settings
because the user specified -ets without any other arguments. However, the second
command does not erase the saved settings from the first command.

In contrast, without the -ets switch,

logman create trace "mytrace" -pf iistrace.txt –bs 64 -o mytrace.etl

logman start "mytrace"

logman stop "mytrace"

The second and third command will retrieve the settings from the saved session, start
and stop the session. Please note that this command sequence looks like an interac-
tive session, but without -ets, the commands will still go through the scheduling ser-
vice, even for immediate start/stop.

Trace Providers

The Logman -query providers subcommand allows you to determine which trace pro-
viders you can gather trace data from. For example,

C:\>logman query providers

Provider GUID

ACPI Driver Trace Provider {dab01d4d-2d48-477d-b1c3-daad0ce6f06b}

Active Directory: Kerberos {bba3add2-c229-4cdb-ae2b-57eb6966b0c4}

IIS: SSL Filter {1fbecc45-c060-4e7c-8a0e-0dbd6116181b}

IIS: WWW Server {3a2a4e84-4c21-4981-ae10-3fda0d9b0f83}

IIS: Active Server Pages (ASP) {06b94d9a-b15e-456e-a4ef-37c984a2cb4b}

Local Security Authority (LSA) {cc85922f-db41-11d2-9244-006008269001}

Processor Trace Information {08213901-B301-4a4c-B1DD-177238110F9F}

Windows Kernel Trace {9e814aad-3204-11d2-9a82-006008a86939}

ASP.NET Events {AFF081FE-0247-4275-9C4E-021F3DC1DA35}

NTLM Security Protocol {C92CF544-91B3-4dc0-8E11-C580339A0BF8}

IIS: WWW Isapi Extension {a1c2040e-8840-4c31-ba11-9871031a19ea}

HTTP Service Trace {dd5ef90a-6398-47a4-ad34-4dcecdef795f}

Active Directory: NetLogon {f33959b4-dbec-11d2-895b-00c04f79ab69}

Spooler Trace Control {94a984ef-f525-4bf1-be3c-ef374056a592}

The command completed successfully.

220 Microsoft Windows Server 2003 Performance Guide

Warning If the application or service associated with the provider is not active on
the machine, the provider it is not enabled to gather the corresponding trace events.

Some providers support additional options that allow you to select among the events
that they can trace. For example, by default, by using the Windows Kernel Trace Pro-
vider, only Process, Thread, and Disk trace events are gathered. You must specifically
set the provider flags that correspond to the other events the provider can trace to col-
lect the other kernel trace events.

You can query to see what flags can be set using the query providers ProviderName com-
mand. You can use either the flag name returned from the Query Providers command
or set the flag value. A flag value of 0xFFFFFFFF sets all the flags, allowing you to
gather all the trace events the provider can supply.

C:\>logman query providers "Windows Kernel Trace"

Provider GUID

Windows Kernel Trace {9e814aad-3204-11d2-9a82-006008a86939}

Flags Value Description

process 0x00000001 Process creations/deletions

thread 0x00000002 Thread creations/deletions

img 0x00000004 image description

disk 0x00000100 Disk input/output

file 0x00000200 File details

pf 0x00001000 Page faults

hf 0x00002000 Hard page faults

net 0x00010000 Network TCP/IP

registry 0x00020000 Registry details

dbgprint 0x00040000 Debug print

The command completed successfully.

The output of this query lists the flags that the Windows Kernel Trace Provider sup-
ports. To trace process creations/deletions, thread creations/deletions, and hard page
faults, issue the following Logman command:

logman create trace "NT Kernel Logger" -P "Windows kernel trace" (process, thread,hf)

/u mydomain\username *

To trace all kernel events, set all the available flags, as follows:

logman create trace "NT Kernel Logger" -P "Windows kernel trace" 0xFFFFFFFF /u

mydomain\username *

Chapter 2: Performance Monitoring Tools 221

Note The Windows trace Provider can write only to a special trace session called
the NT Kernel Logger. It cannot write events to any other trace session. Plus, there can
be only one NT Kernel Logger session running at any one time. To gather a Kernel
Logger trace, the Performance Logs and Alerts service must run under an account
with Administrator credentials.

IIS 6.0 trace providers Comprehensive IIS 6.0 event tracing usues several provid-
ers, namely HTTP.SYS, WWW server, WWW Isapi Extension, ASP, ASP.NET, and
StreamFilter.

Create a config file (say, named Iisprovs.txt) by using the following lines:

"HTTP Service Trace" 0 5

"IIS: WWW Server" 0 5

"IIS: Active Server Pages (ASP)" 0 5

"IIS: WWW Isapi Extension" 0 5

"ASP.NET Events" 0 5

Once you create this file, you can issue the following command to start the IIS 6.0
event trace.

logman start "IIS Trace" -pf iisprovs.txt -ct perf -o iistrace.etl -bs 64 –nb 200 400

–ets

On high volume Web sites, using more trace buffers and larger buffer sizes might be
appropriate, as illustrated. Gathering a kernel trace at the same time is highly recom-
mended.

More Info For more information about and documented procedures for using
Logman to gather IIS trace data, see the “Capacity Planning Tracing” topic in the IIS 6.0
Help documentation, which is available with the IIS Administration Microsoft Manage-
ment Console snap-in.

Active Directory 6.0 trace providers Comprehensive Active Directory trace also
uses several providers. Create a config file Adprov.txt that contains the following
Active Directory provider names:

"Active Directory: Core"

"Active Directory: SAM"

"Active Directory: NetLogon"

"Active Directory: Kerberos"

"Local Security Authority (LSA)"

"NTLM Security Protocol"

222 Microsoft Windows Server 2003 Performance Guide

Then, issue the following command to start an Active Directory trace:

logman start ADTrace –pf adprov.txt –o adtrace.etl –ets

Gathering a kernel trace at the same time is strongly recommended.

Additional Logman parameters for event tracing include those listed in Table 2-27.

Table 2-27 Logman Parameters for Event Tracing

Parameter Syntax Function Notes

Enable Trace
Provider(s)

-p {GUID | Provider
[(Flags[,Flags ...])]
Level |

Specifies the trace data pro-
viders use for this session.

Use -pf [FileName]}
to use provider
names and flags
from a settings file.

Buffer size -bf Value Specifies the buffer size in
KB used for this trace data
collection session.

If trace events occur
faster than they can
be logged to disk,
some trace data can
be lost. A larger
buffer might be
necessary.

Number of
buffers

nb Min Max Specifies the minimum and
maximum number of buffers
for trace data collection.

Minimum default is
the number of pro-
cessors on the sys-
tem plus two. Default
maximum is 25.

Set trace
mode op-
tions

-mode [TraceMode
[TraceMode ...]]

TraceMode can be globalse-
quence, localsequence, or
pagedmemory.

The pagedmemory
option uses pageable
memory buffers.

Clock resolu-
tion

-ct {system | perf |
cycle}

perf and cycle use a 100 ns
timer vs. a 1 ms system clock.

-cycle uses the least
overhead.

-perf provides the
most accurate timer
resolution

Create and
start the
trace session

-ets Starts a trace session by using
the logging parameters de-
fined on the command line for
this session.

Computer -s ComputerName Specifies the computer you
want to gather the perfor-
mance counters from.

If no computer name
is provided, the local
computer is assumed.

Realtime
session

-rt Displays trace data in real
time. Do not log trace data to
a file.

User mode
tracing

-ul Specifies that the event trace
session is run in User mode.

In User mode, one
provider can be en-
abled for the event
trace session.

Chapter 2: Performance Monitoring Tools 223

Output file
name

-o {Path | Specifies the output file name.
If the file does not exist, Log-
man will create it.

Required. Event trace
log files are in binary
format, identified by
an .etl extension.

File version-
ing

-v {NNNNNN |
MMDDHHMM}

Generates unique file names,
either by numbering them
consecutively or adding a
time and date stamp to the
file name.

Flush timer -ft [[HH:]MM:]SS Flushes events from buffers
after the specified time.

File size limit -max Value Specifies the maximum log file
or database size in MB.

Logging ends when
the file size limit is
reached

Logger
Name

ln LoggerName Specifies a user-defined name
for the event trace logging
session.

By default, the log-
ger name is the col-
lection name.

Append -a Appends the output from this
logging session to an existing
file.

Begin log-
ging

-b M/D/YYYY
H:MM:SS

[{AM | PM}]

Begins a logging session auto-
matically at the designated
date and time.

End logging -e M/D/YYYY
H:MM:SS

[{AM | PM}]

Ends a logging session auto-
matically at the designated
date and time.

Or use -r to specify
the duration of a log-
ging session.

Log duration -rf [[HH:]MM:]SS Ends a logging session after
this amount of elapsed time.

Or use -e to specify a
log end date/time.

Repeat -r Repeats the collection every
day at the same time. The
time period is based on either
the -b and -rf options, or the
-b and -e options.

Use in conjunction
with -cnf, -v, and -rc
options.

Start and
stop data
collection

-m [start] [stop] Starts and stops an interactive
logging session manually.

User name
and
password

-u UserName
Password

Specifies user name and
password for remote
computer access.

The User account
must be a member of
the Performance Log
Users Group. Specify
*to be prompted for
the password at the
command line.

Table 2-27 Logman Parameters for Event Tracing

Parameter Syntax Function Notes

224 Microsoft Windows Server 2003 Performance Guide

Event Timestamps

If event trace entries appear to be out of order, you might need to use a higher resolu-
tion clock. Sometimes, if you use system time as the clock, the resolution (10 ms)
might not be fine enough for a certain sequence of events. When a set of events all
show the same timestamp value, the order that the events appear in the log is not
guaranteed to be the same order in which the events actually occurred. If you see this
occurring, use the perf clock, which has a finer resolution (100ns). When using Log-
man, -ct perf will force the usage of the perf clock.

File Size Limit Checking

If you specify a file size limit using the -max value, the file system in which you plan to
create the trace log file is evaluated before the trace session starts to see whether an
adequate amount of space exists to run the entire trace to completion. This file size
limit is performed only when the log file being stored is on the system drive. If the sys-
tem drive has insufficient space, the logging session will fail, with a generic smlogsvc
error message reported in the event log that is similar to the following:

Unable to start the trace session for the <session name> trace log configuration. The

Kernel trace provider and some application trace providers require Administrator

privileges in order to collect data. Use the Run As option in the configuration

application to log under an Administrator account for these providers. System error

code returned is in the data.

The data field is "0000: 70 00 00 00 p... "

The error return code of 70 00 00 00 in this error message indicates an out-of-space
condition that prevented the logging session from being started.

Note that additional configuration information is written to the front of every trace log
file so that slightly more disk space than you specified in the -max parameter is actu-
ally required to start a trace session.

Event Trace Reports

You can use the Trace Report (Tracerpt.exe) tool to convert one or more .etl files to
.csv format so that you can view the contents of a trace log. To do this, issue the fol-
lowing command:

tracerpt iistrace.etl -o iistrace.csv

Opening the output csv file in, for example, Microsoft Excel, allows you to view, in
sequence, the trace events recorded. The fields in Table 2-28 accompany every trace
event.

Chapter 2: Performance Monitoring Tools 225

More Info For more information about tracerpt, in Help and Support Center for
Microsoft Windows Server 2003, click Tools, and then click Command-Line Refer-
ence A–Z.

When the -report option is used with a log file that contains trace data from the Win-
dows Kernel Trace, IIS, Spooler, or Active Directory providers, tracerpt generates addi-
tional tables in the report that contain preformatted data related to each. For example,
the following command generates a report showing tables that incorporate informa-
tion from the Windows Kernel Trace and IIS providers.

tracerpt iistrace.etl kerneltrace.etl –report iis.html –f html

Alerts
The capability to generate real-time alerts automatically based on measurements that
exceed designated thresholds is an important aspect of any program of proactive per-
formance monitoring. Performance Logs and Alerts provides an alerting service that
can be set to take action when one or more specific counter values have tripped a pre-
determined limit. In this way, you can be notified of potential performance problems
without having to constantly monitor your systems.

This section documents how to set up alerting using the Performance Logs and Alerts
facility of the Performance Monitor console. Recommendations for Alert thresholds
are provided in Chapter 3, “Measuring Server Performance.” Several practical exam-
ples of proactive performance monitoring procedures that utilize alerts are described
in Chapter 4, “Performance Monitoring Procedures.”

Table 2-28 Fields Accompanying Trace Events

Field Description

TID Thread identifies

Clock time The time the event occurred, using the clock timer resolution in effect
for the logging session

Kernel (ms) Processor time in Kernel mode

User (ms) Processor time in User mode

User data Variable, depending on the event type

IID Instance ID

PID Parent instance ID

226 Microsoft Windows Server 2003 Performance Guide

Configuring Alerts

An alert is one or more threshold tests, defined for values of specific performance
counters, that trigger an action when those defined measurements exceed their desig-
nated threshold values. You can configure numerous actions to occur automatically
when the alert occurs, including sending a message, running a designated program to
take further action, or starting a counter or event trace logging session. You can also
configure multiple alerts to perform different actions.

For example, suppose you have a file server, and you want to log a serious event in the
Event log when the free disk space on the primary drive drops below 20 percent. In
addition, you might want to be notified via a network message when disk free space
drops below a critical 10 percent level, because in that case you might need to take
immediate action. To accomplish this, you would configure two different alerts. In
both cases, the alert definition will check the same performance counter (\Logical-
Disk(D:)\% Free Space). Each separate alert definition will have a different threshold
test and perform different actions when the threshold is exceeded. Note that in this
example, when the monitored disk space goes below 10 percent, both alerts are trig-
gered and will perform their designated action. Therefore, it would be redundant to
configure the 10 percent alert to log an event to the Event log, because the 20 percent
alert will already do that. When you use different alerts to monitor the same counter,
keep the logical relationship of their limits in mind so that unnecessary actions do not
occur as a result of overlapping conditions.

Alerts are identified by a name as well as a more descriptive comment. Each alert def-
inition must have a unique name, and you can define as many alerts as you think
appropriate.

Scheduling Alerts

You must consider two aspects of alert scheduling, remembering that each alert you
define is scheduled to run independently of every other defined alert. The first sched-
uling aspect is the frequency with which you want to evaluate the counters that are
involved in the threshold test or tests. This is equivalent to a sampling interval. The
sampling interval you set determines the maximum number of alert messages or
event log entries that can be created per alert test. The sampling interval is set on the
General tab of the alert definition Properties pages, as illustrated in Figure 2-24. For
example, if you want to test a counter value every 5 seconds and generate an alert mes-
sage if the designated threshold is exceeded, you would set a sample interval of 5 sec-
onds on the General tab.

Chapter 2: Performance Monitoring Tools 227

Figure 2-24 The General tab for a Severe Disk Free Space Shortage alert

The other alert actions that can occur, which are running a program automatically or
starting an event tracing or counter log session automatically, are governed by a sepa-
rate scheduling parameter. These actions are performed no more than once per alert
session, no matter how many times the alert threshold is exceeded over the course of
any single session. Note that these actions, when defined, are performed at the first
sampling interval that the alert threshold is exceeded during the session. The dura-
tion of the Alert session is set on the Scheduling tab of the alert definition Properties
pages, as illustrated in Figure 2-25. For example, if you wanted to gather an IIS 6.0
event trace no more than once per hour if ASP Request execution time exceeds some
threshold service level, you would schedule the Alert scan to run for one hour and to
start a new scan when the current Alert scan finishes.

228 Microsoft Windows Server 2003 Performance Guide

Figure 2-25 Scheduling properties for an alert

Configuring Alert Thresholds

Adding performance counters to an alert definition is similar to adding performance
counters to a performance log query; however, adding them to an alert is a two-step
process. The first step is to select the performance counters you want to monitor, and
specify the interval between the data samples. The next step, unique to an alert con-
figuration, is to set the limit threshold for each counter. You define the counter values
that you want to test and their threshold values on the General property page of the
alert definition, as illustrated in Figure 2-24.

When planning your alerting strategy, keep the logical relationship of all related
counter threshold values in mind. For example, two entries in the same alert in which
the same performance counter is listed twice but has different and overlapping thresh-
olds might be redundant. In the following example, the second condition is unneces-
sary, because the first one will always be exceeded before the second one is exceeded.

\Processor(_Total)\% Processor Time > 80%

\Processor(_Total)\% Processor Time > 90%

It can also be worthwhile to have the same counter listed twice in an alert, but without
overlapping values. For example, you might want to know when the server is not busy
so that you can perform routine maintenance; you might also want to be alerted when

Chapter 2: Performance Monitoring Tools 229

the server reaches a threshold of excessive activity. You can configure one alert scan to
track server usage, as in the following example:

\Server\Files Open < 20

\Server\Files Open > 1000

In this example, the same counter is monitored; however, the conditions do not over-
lap.

If you need to monitor the same counter and be alerted to two different but overlap-
ping thresholds, you might want to consider using separate alerts. For example, you
can configure a “warning” alert scan that tracks one or more values by using the first—
or warning—threshold values and that initiates a warning action (such as logging an
event to the event log). You might also want to configure a second alert scan that
tracks the “danger” thresholds that require immediate attention. This makes it possi-
ble for different actions to be taken at the different thresholds and prevents overlap-
ping thresholds from being masked.

Configuring Alert Notification

Alerts can be configured to perform several different actions when one of the condi-
tions is met. The action to be taken is configured on the Action tab in the alert prop-
erty sheet.

Log an Event to an Application Log

This is the default action taken. It can be useful in several ways:

■ The event that was generated by an alert condition can be compared to other
events in the event log to determine whether there is some correlation between
the alert and other system or application events.

■ The events in the event log can be used as a record to track issues and alert con-
ditions that occur over time. Event-log analysis tools can be used to further
refine this information.

A sample event log entry that the Alert facility creates is illustrated in Figure 2-26.
These log entries are found in the Application Event log. The source of these event log
messages is identified as SysmonLog with an Event ID of 2031. The body of the event
log message identifies the counter threshold that was tripped and the current mea-
sured value of the counter that triggered the Alert message.

230 Microsoft Windows Server 2003 Performance Guide

Figure 2-26 Event log entry

Send a Network Message

For alert conditions that require immediate attention, a network message can be sent
to a specific computer. You can specify either a computer name to send the message to
or an IP address.

Start a Performance Data Log

An alert can also be configured to start a performance data log in which additional per-
formance data will be collected. For example, you can configure an alert that monitors
processor usage; when that counter exceeds a certain level, Performance Logs and
Alerts can start a performance data log that collects data on which processes were run-
ning at the time and how much processor time each was using. You can use this fea-
ture to collect performance data at critical times without having to collect data when
there is nothing noteworthy to observe, thus saving disk space and analysis time.

To log data in response to an alert threshold being reached, you need to create the log
query first. Define the log query by using Counter Logs in Performance Logs and Alerts.
When configuring the log file that will run in response to an alert trigger, be sure to
define a long enough logging session so that you will get enough data to analyze.

After the log query is defined, you can configure the alert by using Alerts in Perfor-
mance Logs and Alerts to define the alert conditions. On the Action tab in the alert
property sheet, select the log query from the list under the Start Performance Data
Log check box, as illustrated in Figure 2-27.

Chapter 2: Performance Monitoring Tools 231

Figure 2-27 Action tab for an alert

In this example, when the alert fires, the alert initiates an event trace logging ses-
sion. This session gathers both IIS and kernel trace information that will allow you
to report on Web site activity. Note that the performance data log session is initiated
only once per alert session, corresponding to the first time in the alert session that
the alert fires.

Run a Program

The most powerful action an alert can take is to run a command when the alert
threshold condition is met. The specified command is passed a command line detail-
ing the alert condition and time. The format of this command line is configured by
using the Command Line Arguments dialog box; a sample of the command line is
displayed on the Action tab. It is important to make sure the command line sent to
the command to be run is formatted correctly for that command. In some cases, it
might be necessary to create a command file that reformats the command line so that
the command runs properly.

Command-line argument format The information passed to the program can be
formatted in several different ways. The information can be passed as a single argu-
ment by using the individual information fields delimited by commas, or as separate
arguments, each enclosed within double quotation marks and separated by spaces.
Choose the format that is most suitable to the program they are being passed to. Note
that the program you schedule to run is run only once per alert session, correspond-
ing to the first time in the alert session that the alert fires.

232 Microsoft Windows Server 2003 Performance Guide

Command-line arguments passed by the alert service might not conform to the argu-
ments expected by another program unless the program was specifically written to be
used with the alert service. In most cases, you will need to write a command file that
formats the arguments for use by your program, or develop a specific program to
accept the arguments passed by the alert service. Here are some examples:

Example 1
REM Command file to log alert messages to a text file

REM This file expects the alert commands to be passed

REM as a separate strings and for the user text to be

REM the destination file name.

REM All alert info should be sent to the command file

REM %1 = the alert name

REM %2 = the date/time of the alert

REM %3 = the counter path

REM %4 = the measured value

REM %5 = the alert condition

REM %6 = the user text (the file name to log this info to)

REM

Echo %1 %2 %3 %4 %5 >>%6

End

Example 2
REM Command file to send alert data to (an imaginary) program

REM This file expects the alert string to be passed

REM as a single string. This file adds the command

REM line switches necessary for this program

REM %1 = the command string formatted by the alert service

REM

MyLogApp /data=%1 /logtype=alert

End

Command-line argument fields The argument passed to the program can contain
information fields that describe the alert and the condition that was met. The fields
that are passed can be individually enabled or disabled when the alert is configured;
however, the order in which they appear cannot. These fields in the following list are
described in the order in which they appear in the command-line argument from left
to right, or from first argument to last argument, as they are processed by the com-
mand-line processor:

■ Alert Name Name of the alert as it appears in Performance Logs and Alerts in
the Performance Console. It is the unique name of this alert scan.

■ Date/Time Date and time the alert condition occurred. The format is:

YYYY/MM/DD-HH-MM-SS-mmm

Where:

❑ YYYY is the four-digit year.

❑ MM is the two-digit month.

Chapter 2: Performance Monitoring Tools 233

❑ DD is the two-digit day.

❑ HH is the two-digit hour from the 24-hour clock (00=midnight).

❑ MM is the two-digit minutes past the hour.

❑ SS is the two-digit seconds past the minute.

❑ mmm is the number of milliseconds past the second.

■ Counter Name This is the name of the performance object, the instance (if
required), and the counter of the performance counter value that was sampled
and tested to meet the specified alert condition.

■ Measured Value This is the decimal value of the performance counter that met
the alert condition.

■ Limit Value This is the limit condition that was met.

■ Text Message This is a user-specified text field.

Windows System Resource Manager
Windows System Resource Manager (WSRM) is a new MMC snap-in that comes on a
separate CD. It is shipped only with Microsoft Windows Server 2003, Enterprise Edi-
tion and Microsoft Windows Server 2003, Datacenter Edition. The benefit of using
WSRM is that you can manipulate individual processes or groups of processes to
enhance system performance. Processes that are aggregated together into manageable
groups are called process matching criteria. WSRM allows you to set limits on CPU
usage and memory allocation per process based on process matching criteria. For
more information about WSRM, see Chapter 6, “Advanced Performance Topics.”

Network Monitor
A poorly performing system is sometimes the result of a bottleneck in your network.
Network Monitor is a tool that allows you to monitor your network and detect traffic
problems. It also allows you to isolate different types of network traffic, such as all traf-
fic created by accessing the DNS database or all network traffic caused by domain con-
troller replication. By using Network Monitor you can quickly tell what percentage of
your network is being utilized and which applications are using too much bandwidth.

A version of Network Monitor with reduced functionality is included with Microsoft
Windows Server 2003, Standard Edition; Microsoft Windows Server 2003, Enterprise
Edition; and Microsoft Windows Server 2003, Datacenter Edition. It is limited to mon-
itoring local network traffic only. If you want to monitor network traffic on other com-
puters, you must install the version of Network Monitor that comes with Microsoft
Systems Management Server.

235

Chapter 3

Measuring Server
Performance

In this chapter:

Using Performance Measurements Effectively . 237

Key Performance Indicators . 241

Microsoft® Windows Server™ 2003 provides extensive statistics on its operation and
performance. You can gather statistics on processor scheduling, virtual memory man-
agement, disk operation, and network communications. In addition, server applica-
tions such as Active Directory, Internet Information Services (IIS), network file and
print sharing services, and Terminal Services provide measurements that enable you
to understand what is going on inside these applications.

This chapter identifies the most important performance counters that are used to
diagnose and solve performance problems, support capacity planning, and improve
operational efficiency. It identifies those counters that are primary indicators of specific
performance problems related to critical resource shortages. These primary indicators
provide direct evidence that specific capacity constraints are potentially limiting cur-
rent performance levels. This chapter also identifies important secondary indicators of
performance and capacity problems. Secondary indicators provide more indirect evi-
dence of capacity constraints that are impacting performance levels. Alone, a single
secondary indicator is often inconclusive, but a combination of secondary indicators
can reliably build a case for specific capacity constraints that are causing problems. In
conjunction with primary indicators, these secondary indicators are useful for con-
firming and supporting your diagnosis and conclusions.

Gathering these performance statistics is useful when you can use the information to
diagnose and resolve performance problems. Performance problems arise whenever
there is an overloaded resource for which requests waiting to be processed are
delayed. Overloaded resources become bottlenecks that slow down the processing of
requests that your Windows Server 2003 machines must service. For bottleneck
detection, it is important to capture measurements showing how busy various com-
puter resources are and the status of the queues where requests are delayed. Fortu-
nately, many Windows Server 2003 performance statistics can help you pinpoint
saturated computer resources and identify queues with backed-up requests.

236 Microsoft Windows Server 2003 Performance Guide

You can also use the performance statistics you gather daily proactively to anticipate
performance problems that are brewing and to forecast workload growth. You can
then act to relieve a potential bottleneck before it begins to hamper application perfor-
mance. For forecasting purposes, it is important to capture measures of load, such as
requests per second or the number of connected users. Fortunately, there are many
metrics available that are good indicators of load and workload growth.

Finally, many performance measurements are important for reasons other than per-
formance tracking, such as for reporting operational problems. Measurements that
show system and application availability help pinpoint where operational problems
exist. Gathering and reporting performance statistics that show application up time
help to measure the stability of your information technology (IT) infrastructure.
Tracking and reporting error conditions involving connections lost or error messages
sent also focuses attention on these operational issues. This chapter identifies the per-
formance statistics that you should collect regularly to:

■ Resolve the performance problems you encounter

■ Support the capacity planning process so that you can intervene in a timely fash-
ion to avoid future performance problems

■ Provide feedback to IT support staff and customers on operational trends

This chapter also provides tips that will help you set up informative alerts based on
performance counter measurements that exceed threshold values. In addition, you’ll
find measurement notes for many important performance counters that should
answer many of your questions about how to interpret the values you observe. Finally,
extensive usage notes are provided that describe how to get the most value from the
performance monitoring statistics you gather.

Note You will find that the same set of performance counters described in this
chapter is available in many other tools. Other applications that access the same per-
formance statistics include Microsoft Operations Manager (MOM) and those devel-
oped by third parties. All applications that gather Windows Server 2003 performance
measurements share a common measurement interface—a performance monitoring
application programming interface (API) discussed in this book in Chapter 2, “Perfor-
mance Monitoring Tools.” The performance monitoring API is the common source of
all the performance statistics these tools gather.

Chapter 3: Measuring Server Performance 237

Using Performance Measurements Effectively
This chapter focuses on the key performance counters that you should become famil-
iar with to better understand the performance of your machines running Windows
Server 2003. Guidance is provided here to explain how these key measurements are
derived and how they should be interpreted. It is assumed that you are familiar with
the performance monitoring concepts discussed in this book in Chapter 1, “Perfor-
mance Monitoring Overview.” That chapter discusses the relationship between these
counters and the hardware and software systems they measure, and understanding
these relationships is a prerequisite for performing effective analysis of common com-
puter performance problems. Chapter 4, “Performance Monitoring Procedures,” pro-
vides a set of recommended performance monitoring procedures that you can use to
gather these and related performance counters on a regular basis, which will support
problem diagnosis, management reporting, and capacity planning.

Interpreting the performance data you gather can be challenging. It requires consid-
erable expertise in understanding the way computer hardware and operating soft-
ware work. Interpreting the performance data you gather correctly also requires
good analytical and problem-solving skills. The analysis of many computer perfor-
mance and capacity problems involves identification of resource bottlenecks and
the systematic elimination of them. In large-scale environments in which you are
responsible for the performance and capacity of many machines, it is also important
to take steps to deal with the large amount of performance data that you must
potentially gather. This critical topic is discussed thoroughly in Chapter 4, “Perfor-
mance Monitoring Procedures.”

Identifying Bottlenecks

As discussed in Chapter 1, “Performance Monitoring Overview,” the recommended
way to locate a bottlenecked resource that is the major contributor to a computer per-
formance problem requires the following actions:

■ Gathering measurement data on resource utilization at the component level

■ Gathering measurement data on queuing delays that are occurring at resources
that might be overloaded

■ Determining the relationship between resource utilization and queuing

Theoretically, a nonlinear relationship exists between utilization and queuing, which
becomes evident when a resource approaches saturation. When you detect a nonlin-

238 Microsoft Windows Server 2003 Performance Guide

ear relationship between utilization and queuing at a resource, there is a good chance
that this overloaded resource is causing a performance constraint. You might be able
to add additional capacity at this point, or you might be able to tune the system so that
demands for the resource are reduced. Performance tuning is the process of systemati-
cally finding and eliminating resource constraints that constrain performance levels.

For a variety of reasons—some of which were discussed in Chapter 1, “Performance
Monitoring Overview”—this nonlinear relationship might not be readily apparent,
making bottleneck detection complicated to perform in practice. For example, con-
sider disks and disk arrays that use some form of cache memory. Using small com-
puter system interface (SCSI) command-tag queuing algorithms that sort a queue of
requests to favor the requests that can be serviced the fastest improves the efficiency
of disk I/O request processing as the disks get busier and busier. This is known as a
load-dependent server. Another common example is network adaptors that support the
Ethernet protocol. The Ethernet collision detection and avoidance algorithm can lead
to saturation of the link long before the effective utilization of the interface reaches
100 percent busy.

Specific measurement statistics that you gather should never be analyzed in a vac-
uum. You will frequently need to augment the general approach to bottleneck detec-
tion discussed here with information about how specific hardware and software
components are engineered to work. In this chapter, the “Usage Notes” section for
each key counter identified discusses how this specific counter is related to other
similar counters. In addition, several case studies that show how to identify these
and other specific resource bottlenecks are provided in Chapter 5, “Performance
Troubleshooting.”

Management by Exception

System administrators who are responsible for many Windows Server 2003 machines
have an additional challenge: namely, how to keep track of so much measurement
data across so many machines. Often this is best accomplished by paying close atten-
tion to only that subset of your machines that is currently experiencing critical
resource shortages. This approach to dealing with a large volume of information is
sometimes known as management by exception. Using a management by exception
approach, you carefully identify those machines that are experiencing the most severe
performance problems and subject them to further scrutiny. Management by excep-
tion is fundamentally reactive, so it also needs to be augmented by a proactive
approach that attempts to anticipate and avoid future problems.

Several kinds of performance level exceptions need to be considered. Absolute excep-
tions are easy to translate into threshold-based rules. For example, a Web server
machine that is part of a load-balanced cluster and is currently not processing any cli-

Chapter 3: Measuring Server Performance 239

ent requests is likely to be experiencing an availability problem that needs further
investigation. Unfortunately, in practice, absolute exceptions that can be easily turned
into alerting thresholds are rare in computer systems. As a result, this chapter makes
very few specific recommendations for setting absolute alerting thresholds for key
performance counters.

Exception-reporting thresholds that are related to configuration-specific capacity con-
straints are much more common. Most of the alerting thresholds that are discussed
in this chapter are relative exceptions. A threshold rule to define a relative exception
requires that you know some additional information about the specific counter,
such as:

■ Whether there is excessive utilization of a resource relative to the effective capac-
ity of the resource, which might be configuration-dependent

■ Whether there is a backlog of requests being delayed by excessive utilization of
a resource

■ Which application is consuming the resource bandwidth and when this is
occurring

■ Whether the current measurement observation deviates sharply from historical
norms

A good example of an exception that is relative to specific capacity constraints is an
alert on the Memory\Pages/sec counter, which can indicate excessive paging to disk.
What is considered excessive paging to disk depends to a large degree on the capacity
of the disk or disks used to perform I/Os, and how much of that capacity can be
devoted to paging operations without negatively impacting the I/O performance of
other applications that rely on the same disk or disks. This is a function of both the
configuration and of the specific workloads involved. Consequently, it is impossible
to recommend a single threshold value for Memory\Pages/sec that should be used to
generate a performance alert that you can apply across all your machines running
Windows Server 2003.

Although there is no simple rule that you can use to establish unacceptable and
acceptable values of many measurements, those measurements can still be effective in
helping you identify many common performance problems. The Memory\Pages/sec
counter is a key performance indicator. When it reports high rates of paging to disk
relative to the capacity of the physical disk configuration, you have a telltale sign that
the system is being operated with a physical memory constraint.

Another example of an exception that is relative to specific capacity constraints is an
alert on the Processor(_Total)\% Processor Time counter, indicating excessive proces-
sor utilization. The specific alerting threshold you choose for a machine to let you

240 Microsoft Windows Server 2003 Performance Guide

know that excessive processor resources are being consumed should depend on the
number of processors in the machine, and also on whether those processors are con-
figured symmetrically so that any thread can be serviced on any processor. (Configur-
ing asymmetric processors to boost the performance of large- scale multiprocessors is
discussed in Chapter 6, “Advanced Performance Topics.”) You might also like to know
which processes are associated with the excessive processor utilization that was mea-
sured. During disk-to-tape backup, running one or more processors at nearly 100 per-
cent utilization might be expected and even desirable. On the other hand, an
application component called from a .NET application that utilizes excessive proces-
sor resources over an extended period of time is often a symptom associated with a
programming bug that can be very disruptive of the performance of other applica-
tions running on the same machine.

Tip To establish meaningful alert thresholds for many relative exceptions, it is
important to be able to view specific counter measurements in a broader, environ-
ment-specific context.

In many cases, your understanding of what constitutes an exception should be based
on deviation from historical norms. Many performance counter measurements, such
as System\Context Switches/sec or Processor(_Total)\% Interrupt Time, are mean-
ingful error indicators when they deviate sharply from the measurements you have
gathered in the past. A sharp change in the number of the context switches that are
occurring, relative to the amount of processor time consumed by a workload, might
reflect a programming bug that is degrading performance. Similarly, a sharp increase
in % Interrupt Time or % DPC Time might be indirect evidence of hardware errors.
This is the whole foundation of statistical quality control methods, for example, which
have proved very effective in detecting defects in manufacturing and other mass pro-
duction processes. Applying statistical quality control methods, for example, you might
classify a measurement that is two, three, or four standard deviations from an histori-
cal baseline as an exception requiring more scrutiny.

Finally, the technique of management by exception can be used to help you focus on
machines needing the most attention in large-scale environments in which you must
monitor many machines. The management by exception approach to crisis interven-
tion is termed triage—that is, classifying problems according to their severity so that
the limited time and attention available for devising solutions can be allocated appro-
priately. This approach suggests, for example, creating Top Ten lists that show the
servers that are overloaded the most in their use of critical resources, and, in general,
devoting your attention to dealing with the most severe problems first.

Chapter 3: Measuring Server Performance 241

Key Performance Indicators
This section reviews the most important performance counters available on machines
running Windows Server 2003. These counters are used to report on system and
application availability and performance. Key performance indicators are discussed.
Measurement notes describe how these indicators are derived, and usage notes pro-
vide additional advice on how to interpret these measurements in the context of prob-
lem solving and capacity planning. Some basic measures of system and application
availability are discussed first, followed by the key counters that report on the utiliza-
tion of the processor, memory, disk, and network resources. The last section of this
chapter discusses some important server applications that are integrated with the
base operating system. These include discussions of the performance counters that
are available to monitor file and print servers, Web servers, and thin-client Terminal
servers.

System and Application Availability

Before you can worry about performance issues, servers and server applications have
to be up and running and available for use. This section describes the performance
counters that are available to monitor system and application up time and availability.
Table 3-1 describes the System\System Up Time counter.

Availability can also be tracked at the application level by looking at the Process
object. Any measurement interval in which a Process object instance is not available
means that the process was not running at the end of the data collection interval.

Table 3-1 System\System Up Time Counter

Counter Type Elapsed time.

Description Shows the time, in seconds, that the computer has been opera-
tional since it was last rebooted.

Measurement Notes The values of this counter are cumulative until the counter is re-
set the next time the system is rebooted.

Usage Notes The primary indicator of system availability.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Reporting on system availability.

Alert Threshold Not applicable.

Related Measures Process(n)\Elapsed Time.

242 Microsoft Windows Server 2003 Performance Guide

When the process is active, the Process(n)\Elapsed Time counter contains a running
total that shows how long the process has been active. Note that some processes are
short-lived by design. The Process(n)\Elapsed Time counter can be used effectively
only for long-lived processes. Table 3-2 describes the Process(n)\Elapsed Time
counter.

Other potential measures of system availability are the TCP\Connections Active
counter and the Server\Server Sessions counter, which indicate the status of network
connectivity. A system that is up and running but cannot communicate with other
machines is probably not available for use. For Web application hosting, separate FTP
Service\FTP Service Uptime and Web Service\Service Uptime counters are available
for those Web server applications.

Processor Utilization

Program execution threads consume processor (CPU) resources. These threads can
be part of User-mode processes or the operating system kernel. High-priority device
interrupt processing functions are performed by Interrupt Service Routines (ISRs)
and deferred procedure calls (DPCs). Performance counters are available that mea-
sure how much CPU processing time threads and other executable units of work con-
sume. These processor utilization measurements allow you to determine which
applications are responsible for CPU consumption. The performance counters avail-

Table 3-2 Process(n)\Elapsed Time Counter

Counter Type Elapsed time.

Description Shows the time, in seconds, that the process has been active
since it was last restarted.

Measurement Notes The process instance exists only during an interval in which the
process was found running at the end of the interval. The values
of this counter are cumulative across measurement intervals
while the process is running.

Usage Notes The primary indicator of application availability. For system ser-
vices, compare the value of Process(n)\Elapsed Time with the
System\System Up Time counter to determine whether the ap-
plication has been available continuously since the machine was
rebooted.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Reporting on application availability.

Alert Threshold Not applicable.

Related Measures System\System Up Time.

Chapter 3: Measuring Server Performance 243

able for monitoring processor usage include the Processor object, which contains an
instance for each hardware engine and a _Total instance that summarizes usage levels
over all available processors. In addition, processor usage is tracked at the process and
thread level.

Process-level processor utilization measures are sometimes available for specific
server applications like Microsoft SQL Server, too. These applications are not able to
report any more detailed information than the process and thread instances provide,
but you might find it more convenient to gather them at the application level, along
with other related application-specific counters.

Measuring Processor Utilization

Processor utilization statistics are gathered by a Windows Server 2003 operating sys-
tem measurement function that gains control during each periodic clock interval. This
measurement function runs inside the Interrupt Service Routine (ISR) that gains con-
trol during clock interrupt processing. The ISR code determines what work, if any,
was being performed at the time the interrupt occurred. Each periodic clock interval
is viewed as a random sample of the processor execution state. The ISR processor
measurement routine determines which process thread was executing, and whether
the processor was running in Interrupt mode, Kernel mode, or User mode. It also
records the number of threads in the processor Ready Queue.

The ISR processor measurement routine develops an accurate picture of how the pro-
cessor is being utilized by determining what thread (and what kind of thread) was
running just before the interrupt occurred. If the routine that was interrupted when
the ISR processor measurement routine gained control is the Idle Thread, the proces-
sor is assumed to be Idle.

The operating system accumulates measurement samples 50–200 times per second,
depending on the speed and architecture of the machine. This sampling of processor
state will be quite accurate for any measurement interval for which at least several
thousand samples can be accumulated. At the process level, measurement intervals of
30–60 seconds should provide enough samples to identify accurately even those pro-
cesses that consume trace amounts of CPU time. For very small measurement inter-
vals in the range of 1–5 seconds, the number of samples that are gathered is too small
to avoid sampling errors that might cast doubt on the accuracy of the measurements.

244 Microsoft Windows Server 2003 Performance Guide

Overall Processor Utilization

The primary indicator of processor utilization is contained in counters from the _Total
instance of the Processor object. The Processor(_Total)\% Processor Time counter
actually reports the average processor utilization over all available processors during
the measurement interval. Table 3-3 describes the Processor(_Total)\% Processor
Time counter.

Table 3-3 Processor(_Total)\% Processor Time Counter

Counter Type Interval (% Busy).

Description Overall average processor utilization over the interval. Every interval in
which the processor is not running the Idle Thread, the processor is
presumed to be busy on behalf of some real workload.

Measurement
Notes

The processor state is sampled once every periodic interval by a system
measurement function. The % Processor Time counter is computed
from the ratio of samples in which the processor is detected running
the Idle thread compared to the total number of samples, as follows:

100% − ((TotalSamples − IdleThreadSamples) ÷ TotalSamples × 100)

Usage Notes The primary indicator of overall processor usage.

■ Values fall within the range of 0–100 percent busy. The _Total in-
stance of the processor object calculates average values of the
processor utilization instances, not the total.

■ Normalize based on clock speed for comparison across ma-
chines. Clock speed is available in the ~MHz field at
HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\n.

■ Drill down to process level statistics.

Performance Primary indicator to determine whether the processor is a potential
bottleneck.

Capacity Planning Trending and forecasting processor usage by workload over time.

Operations Sustained periods of 100 percent utilization might mean a runaway
process. Investigate further by looking at the Process(n)\% Processor
Time counter to see whether a runaway process thread is in an infinite
loop.

Alert Threshold For response-oriented workloads, beware of sustained periods of utili-
zation above 80–90 percent. For throughput-oriented workloads, ex-
tended periods of high utilization are seldom a concern, except as a
capacity constraint.

Related Measures Processor(_Total)\% Privileged Time
Processor(_Total)\% User Time
Processor(n)\% Processor Time
Process(n)\% Processor Time
Thread(n/Index#)\% Processor Time

Chapter 3: Measuring Server Performance 245

Processors that are observed running for sustained periods at greater than 90 percent
busy are running at their CPU capacity limits. Processors observed running regularly
in the 75–90 percent range are near their capacity constraints and should be moni-
tored more closely. Processors reported regularly only 10–20 percent busy might be
good candidates for consolidation.

Unique hardware factors in multiprocessor configurations and the use of Hyper-
threaded logical processors raise difficult interpretation issues. These are discussed in
Chapter 6, “Advanced Performance Topics.”

Normalizing processor utilization measures The % Processor Time counters are
reported as percentage busy values over the measurement interval. For comparison
across machines of different speeds, you can use the value of the ~MHz field at
HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\n to normalize
these measurements to values that are independent of the speed of the specific hard-
ware. Processor clock speed is a good indicator of processor capacity, but a less than
perfect one in many cases. Comparisons across machines of the same processor fam-
ily or architecture are considerably more reliable than comparisons across machines
with quite different architectures. For example, it is difficult to compare hyper-
threaded multiprocessors with conventional multiprocessors based on clock speed
alone, or 32-bit processor families with 64-bit versions. For more discussion about
processor architectures and their impact on processor performance, see Chapter 6,
“Advanced Performance Topics.”

Some processor hardware, especially processor hardware designed for use in battery-
powered portable machines, can run at multiple clock speeds. These processors drop
to a lower clock speed to save power when they are running on batteries. As a result,
the value of the ~MHz field at HKLM\HARDWARE\DESCRIPTION\System\Central-
Processor\n might not reflect the current clock speed. The ProcessPerformance\Pro-
cessor Frequency and ProcessPerformance\% of Maximum Frequency counters
enable you to weight processor utilization by the clock speed over a measurement
interval for a processor that supports multiple clock speeds.

In the case of hyperthreaded processors, it might make sense to normalize processor
utilization of the logical processors associated with a common physical processor core
to report the utilization of the physical processor unit. The operating system measures
and reports on the utilization of each logical processor. The weighted average of the
utilization of the logical processors is a good estimate of the average utilization of the
physical processor core over the same interval. Normalizing the measures of proces-
sor utilization in this fashion avoids the logical error of reporting greater than 100 per-

246 Microsoft Windows Server 2003 Performance Guide

cent utilization for a physical processor core. To determine whether the machine is a
hyperthreaded multiprocessor or a conventional multiprocessor, User mode applica-
tions can make a GetLogicalProcessorInformation API call. This API call returns an array
of SYSTEM_LOGICAL_PROCESSOR_INFORMATION structures that show the rela-
tionship of logical processors to physical processor cores. On a hyperthreaded
machine with two physical processors, processor instances 0 and 2 are associated
with the first physical processor, and processor instances 1 and 3 are associated with
the second physical processor. For more discussion about hyperthreaded processor
architectures, see Chapter 6, “Advanced Performance Topics.”

Diagnosing processor bottlenecks Observing that the processors on a machine
are heavily utilized does not always indicate a problem that you need to address. Dur-
ing disk-to-tape backup operations, for example, it is not unusual for the backup agent
to drive processor utilization to near capacity. Your server might be performing many
other CPU-intensive tasks including data compression and encryption, which you can
expect will be CPU-intensive. Try to drill down to the process level and identify the
processes that are the heaviest consumers of % Processor Time. You might also find
that breaking down overall processor utilization by processor execution state is useful
for determining whether User mode or Kernel mode functions are responsible for
driving processor utilization up.

A heavily utilized processor is a concern when there is contention for this shared
resource. You need to determine whether a processor capacity constraint is causing
contention that would slow application response time, or a single application process
is responsible for most of the processor workload. The important indicator of proces-
sor contention is the System\Processor Queue Length counter, described in Table
3-4, which measures the number of threads delayed in the processor Ready Queue.

Table 3-4 System\Processor Queue Length Counter

Counter Type Instantaneous (sampled once during each measurement period).

Description The number of threads that are observed as delayed in the pro-
cessor Ready Queue and waiting to be scheduled for execution.
Threads waiting in the processor Ready Queue are ordered by
priority, with the highest priority thread scheduled to run next
when the processor is idle.

Measurement Notes The processor queue length is sampled once every periodic in-
terval. The sample value reported as the Processor Queue
Length is the last observed value of this measurement that was
obtained from the processor measurement function that runs
every periodic interval.

Usage Notes Many program threads are asleep in voluntary wait states. The
subset of active threads sets a practical upper limit on the length
of the processor queue that can be observed.

Chapter 3: Measuring Server Performance 247

It is a good practice to observe the Processor(_Total)\% Processor Time in tandem
with the System\Processor Queue Length. Queuing Theory predicts that the queue
length should rise exponentially as processor utilization increases. Keep in mind that
Processor(_Total)\% Processor Time is based on a continuous sampling technique,
whereas the System\Processor Queue Length is an instantaneous value. It is not a
simple matter to compare a continuously measured value with an instantaneous one.

Queuing Theory also predicts that the queue length approaches infinity as the proces-
sor utilization approaches 100 percent. However, many program threads, especially
those inside background service processes, spend most of their time asleep in a volun-
tary wait state. These threads are normally not vying for the processor. Only active
threads do that. Consequently, the number of active threads sets a practical limit on
the size of the processor queue length that you are likely to observe.

Another factor limiting the size of the processor Ready Queue is server applications
that utilize thread pooling techniques and regulate their thread scheduling internally.
Be sure you check whether requests are queued internally inside these applications by
checking, for example, counters like ASP\Requests Queued, ASP.NET\Requests
Queued, and Server Work Queues(n)\Queue length. For more information about
thread pooling applications, see Chapter 6, “Advanced Performance Topics.”

The Thread(*)\Thread State counter is closely related to the System\Processor Queue
Length. Active threads showing a Thread State of 1 are Ready to run. The Thread State

Performance Important secondary indicator to determine whether the pro-
cessor is a potential bottleneck.

Capacity Planning Normally, not a useful indicator for capacity planning.

Operations An indication that a capacity constraint might be causing exces-
sive application delays.

Alert Threshold On a machine with a single very busy processor, repeated ob-
servations where Processor Queue Length > 5 is a warning sign
indicating that there is frequently more work available than the
processor can handle readily. Ready Queue lengths > 10 are a
strong indicator of a processor constraint, again when processor
utilization also approaches saturation. On multiprocessors, di-
vide the Processor Queue Length by the number of physical
processors. On a multiprocessor configured using hard proces-
sor affinity to run asymmetrically, large values for Processor
Queue Length can be a sign of an unbalanced configuration.

Related Measures Thread(parent-process\Index#)\Thread State.

Table 3-4 System\Processor Queue Length Counter

248 Microsoft Windows Server 2003 Performance Guide

of a running thread is 2. When processor contention is evident, being able to deter-
mine which process threads are being delayed can be quite helpful. Unfortunately, the
volume of thread instances that you need to sift through is normally too large to
attempt to correlate Thread(*)\Thread State with the Processor Queue Length over
any reasonable period of time.

The size of the processor Ready Queue sometimes can appear disproportionately
large, compared to overall processor utilization. This is a by-product of the clock inter-
rupt mechanism that is used to gather the processor Ready Queue length statistics.
Because there is only one hardware clock per machine, it is not unusual for threads
waiting on a timer interval to get bunched together. If this “bunching” occurs shortly
before the last periodic clock interval when the processor Ready Queue Length is
measured, the Processor Queue Length can artificially appear quite large. This can
sometimes be observed in machines supporting a large number of Terminal Services
sessions. Keyboard and mouse movements at Terminal Services client machines are
sampled by the server on a periodic basis. The Processor Queue Length value mea-
sured might show a large number of Ready threads for the period immediately follow-
ing session sampling.

Process-Level CPU Consumption

If a Windows Server 2003 machine is dedicated to performing a single role, knowing
that machine’s overall processor utilization is probably enough information to figure
out what to do. However, if the server is performing multiple roles, it is important to
drill down and determine which processes are primarily responsible for the CPU
usage profile that you are measuring. Statistics on processor utilization that are com-
piled at the process level allow you to determine which workloads are consuming pro-
cessor resources. Table 3-5 describes the Process(instancename)\% Processor Time
counter.

Table 3-5 Process(instancename)\% Processor Time Counter

Counter Type Interval (% Busy).

Description Total processor utilization by threads belonging to the process
over the measurement interval.

Measurement Notes The processor state is sampled once every periodic interval. %
Processor Time is computed as

(Process Busy Samples ÷ Total Samples) × 100.

Chapter 3: Measuring Server Performance 249

Usage Notes The primary indicator of processor usage at the process level.

■ Values fall within the range of 0–100 percent busy by de-
fault. A multithreaded process can be measured consum-
ing more than 100 percent processor busy on a
multiprocessor. On multiprocessors, the default range can
be overridden by disabling the CapPercents at100 setting
in the HKLM\SOFTWARE\Microsoft\Perfmon key.

■ The Process object includes an Idle process instance. Un-
less capped at 100 percent busy on a multiprocessor, Pro-
cess(_Total)% Processor Time will report 100 percent busy
× the number of processor instances.

■ Volume considerations may force you to gather process
level statistics only for specific processes. For example,
collect Process(inetinfo)\% Processor Time for Web serv-
ers, Process(store)\% Processor Time for Exchange Serv-
ers, etc.

■ Process name is not unique. Operating system services are
distributed across multiple svchost processes, for exam-
ple. COM+ server applications run inside instances of Dll-
host.exe. IIS 6.0 application pools run in separate
instances of the W3wp.exe process. Within a set of pro-
cesses with the same name, the ID Process counter is
unique.

■ Be cautious about interpreting this counter for measure-
ment intervals that are 5 seconds or less. They might be
subject to sampling error.

Performance Primary indicator to determine whether process performance is
constrained by a CPU bottleneck.

Capacity Planning Trending and forecasting processor usage by application over
time.

Operations Sustained periods of 100 percent utilization might mean a run-
away process in an infinite loop. Adjust the base priority of the
process downward or terminate it.

Alert Threshold Sustained periods at or near 100 percent busy might mean a
runaway process. You should also build alerts for important
server application processes based on deviation from historical
norms.

Related Measures Process(n)\% Privileged Time
Process(n)\% User Time
Process(n)\Priority Base
Thread(n/Index#)\% Processor Time
Thread(n/Index#)\Thread State

Table 3-5 Process(instancename)\% Processor Time Counter

250 Microsoft Windows Server 2003 Performance Guide

In rare cases, you might find it useful to drill further down into a process by looking at
its thread data. % Processor Time can also be measured at the thread level. Even more
interesting are the Thread(n/Index#)\Thread State and Thread(n/Index#)\Wait State
Reason counters. These are instantaneous counters containing coded values that indi-
cate the execution state of each thread and the reason threads in the Wait state are
waiting. Detailed event tracing of the operating system thread Scheduler can also be
performed using Event Tracing for Windows.

Processor Utilization by Processor

On a multiprocessor are multiple instances of the Processor object, one for each
installed processor, as well as the _Total instance that reports processor utilization val-
ues that are averaged across available processors.

Note On a multiprocessor, counters in the _Total instance of the Processor object
that are event counters, such as Interrupts/sec, do report totals over all processor
instances. Only the % Processor Time measurements are averaged.

By default, multiprocessors are configured for symmetric multiprocessing. Symmetric
multiprocessing means that any thread is eligible to run on any available processor.
This includes Interrupt Service Routines (ISRs) and deferred procedure calls (DPCs),
which can also be dispatched on any physical processor. When machines are config-
ured for symmetric multiprocessing, individual processors tend to be loaded evenly.
Over any measurement interval, differences in % Processor Time or Interrupts/sec at
individual processor level instances should be uniform, subject to some variability
because of Scheduler decisions based on soft processor affinity. Otherwise, differ-
ences in the performance of an individual processor within a multiprocessor configu-
ration are mainly the result of chance. As a consequence, on symmetric
multiprocessing machines, individual processor level statistics are seldom interesting.

However, if the machine is configured for asymmetric processing using the Interrupt
Affinity tool in the Windows Server 2003 Resource Kit, WSRM, or application-level
processor affinity settings that are available in IIS 6.0 and SQL Server, monitoring
individual instances of the processor object can be very important. See Chapter 6,
“Advanced Performance Topics,” for more information about using the Interrupt
Affinity tool.

Context Switches/Sec

A context switch occurs whenever the operating system stops one thread from running
and starts executing another thread. This can happen because the thread that was
originally running voluntarily relinquishes the processor, often because it needs to

Chapter 3: Measuring Server Performance 251

wait until an I/O finishes before it can resume processing. A running thread can also
be preempted by a higher priority thread that is ready to run, again, often because an
I/O interrupt has just occurred. User-mode threads also switch to a corresponding
Kernel mode thread whenever the User-mode application needs to perform a Privi-
leged mode operating system or subsystem service. All of these events are counted as
context switches in Windows.

The rate of thread context switches that occur is tallied at the thread level and at the
overall system level. This is an intrinsically interesting statistic, but a system adminis-
trator usually can do very little about the rate that context switches occur. Table 3-6
describes the System\Context Switches/sec counter.

Table 3-6 System\Context Switches/sec Counter

Counter Type Interval difference counter (rate/second).

Description A context switch occurs when one running thread is replaced by
another. Because Windows Server 2003 supports multithreaded
operations, context switches are normal behavior for the sys-
tem. When a User-mode thread calls any privileged operating
system function, a context switch occurs between the User-
mode thread and a corresponding Kernel-mode thread that
performs the called function in Privileged mode.

Measurement Notes The operating system counts the number of context switches as
they occur. The measurement reported is the difference be-
tween the current number of context switches and the number
from the previous measurement interval:

(ContextSwitches+1 – ContextSwitches+0) ÷ Duration

Usage Notes Context switching is a normal system function, and the rate of
context switches that occur is a by-product of the workload. A
high rate of context switches is not normally a problem indica-
tor. Nor does it mean the machine is out of CPU capacity. More-
over, a system administrator usually can do very little about the
rate that context switches occur.

A large increase in the rate of context switches/sec relative to
historical norms might reflect a problem, such as a malfunction-
ing device. Compare Context Switches/sec to the Proces-
sor(_Total)\Interrupts/sec counter with which it is normally
correlated.

Performance High rates of context switches often indicate application design
problems and might also foreshadow scalability difficulties.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Build alerts for important server machines based on extreme de-
viation from historical norms.

Related Measures Thread\Context Switches/sec.

252 Microsoft Windows Server 2003 Performance Guide

The number of context switches that occur is sometimes related to the number of sys-
tem calls, which is tracked by the System\System Calls/sec counter. However, no hard
and fast rule governs this relationship because some system calls make additional sys-
tem calls.

Processor Utilization by Processor Execution State

The Windows Server 2003 operating system measurement function that gathers pro-
cessor utilization statistics also determines whether the processor was running in Ker-
nel (or Privileged) mode, or User mode.

Figure 3-1 illustrates that Processor(n)\% Processor Time = Processor(n)\
% Privileged Time + Processor(n)\% User Time.

Figure 3-1 Processor utilization by processor execution state

Privileged mode includes both the time the processor is serving interrupts inside
Interrupt Service Routines (% Interrupt Time) and executing Deferred Procedure
Calls (% DPC Time) on behalf of ISRs, as well as all other Kernel-mode functions of
the operating system and device drivers.

There is no set rule to tell you what percent of User Time or Privilege Time to expect.
It is a workload-dependent variable. System administrators should mainly take note of
measurements that vary significantly from historical norms. In addition, the proces-
sor state utilization measurements can provide insight into the type of running thread
causing a CPU usage spike. This is another piece of information that can help you nar-
row down the source of a problem. The Kernrate processor sampling tool can then be
used to identify a specific User-mode application or kernel module that is behaving
badly. Using Kernrate is discussed in Chapter 5, “Performance Troubleshooting.”

Chapter 3: Measuring Server Performance 253

Only Interrupt Service Routines (ISRs) run in Interrupt state, a subset of the amount
of time spent in Privileged mode. An excessive amount of % Interrupt Time might
indicate a hardware problem such as a malfunctioning device. Excluding ISRs, all
operating system and subsystem functions run in Privileged state. This includes initi-
ating I/O operations to devices, managing TCP/IP connections, and generating print
or graphic display output. A good portion of device interrupt processing is also han-
dled in Privileged mode by deferred procedure calls (DPCs) running with interrupts
enabled. User-mode application program threads run in the User state. Many User
applications make frequent calls to operating system services and wind up spending a
high percentage of time running in Privileged mode.

% Interrupt Time The % Interrupt Time counter measures the amount of proces-
sor time devoted to interrupt processing by ISR functions running with interrupts dis-
abled. % Interrupt Time is included in overall % Privileged Time.

Table 3-7 describes the Processor(_Total)\% Interrupt Time counter.

Table 3-7 Processor(_Total)\% Interrupt Time Counter

Counter Type Interval (% Busy).

Description Overall average processor utilization that occurred in Interrupt
mode over the interval. Only Interrupt Service Routines (ISRs),
which are device driver functions, run in Interrupt mode.

Measurement Notes The processor state is sampled once every periodic interval:

InterruptModeSamples ÷ Total Samples × 100

Usage Notes ■ The _Total instance of the Processor objects calculates av-
erage values of the processor utilization instances, not the
total.

■ Interrupt processing by ISRs is the highest priority pro-
cessing that takes place. Interrupts also have priority, rel-
ative to the IRQ. When an ISR is dispatched, interrupts at
an equal or lower priority level are disabled.

■ An ISR might hand off the bulk of its device interrupt pro-
cessing functions to a DPC that runs with interrupts en-
abled in Privileged mode.

■ Interrupt processing is a system function with no associ-
ated process. The ISR and its associated DPC service the
device that is interrupting. Not until later, in Privileged
mode, does the I/O Manager determine which thread
from which process was waiting for the I/O operation to
complete.

■ Excessive amounts of % Interrupt Time can identify that a
device is malfunctioning but cannot pinpoint which de-
vice. Use Kernrate, the kernel debugger, to determine
which ISRs are being dispatched most frequently.

254 Microsoft Windows Server 2003 Performance Guide

Processor(_Total)\Interrupts/sec records the number of device interrupts that were
serviced per second. If you are using the Windows Server 2003 Resource Kit’s Inter-
rupt Filter tool to restrict interrupt processing for certain devices to specific proces-
sors using hard processor affinity, drill down to the individual processor level to
evaluate how this partitioning scheme is working. Monitor both Processor(n)\Inter-
rupts/sec and Processor(n)\% Interrupt Time to see how your interrupt partitioning
scheme is working. See Chapter 6, “Advanced Performance Topics” for more informa-
tion about using the Windows Server 2003 Resource Kit’s Interrupt Filter tool.

% Privileged mode Operating system functions, including ISRs and DPCs, run in
Privileged or Kernel mode. Virtual memory that is allocated by Kernel mode threads
can be accessed only by threads running in Kernel mode. When a User-mode thread
needs to perform an operating system function of any kind, a context switch takes
place between the User-mode thread and a corresponding Kernel-mode thread, which
changes the state of the machine. Table 3-8 describes the Processor(_Total)\% Privi-
leged Time counter.

Performance Used to track the impact of using the Interrupt Filter tool to re-
strict Interrupt processing for specific devices to specific proces-
sors using hard processor affinity. See Chapter 6, “Advanced
Performance Topics,” for more information.

Capacity Planning Not applicable.

Operations Secondary indicator to determine whether a malfunctioning de-
vice is contributing to a potential processor bottleneck.

Alert Threshold Build alerts for important server machines based on extreme de-
viation from historical norms.

Related Measures Processor(_Total)\Interrupts/sec
Processor(_Total)\% DPC Time
Processor(_Total)\% Privileged Time

Table 3-8 Processor(_Total)\% Privileged Time Counter

Counter Type Interval (% Busy).

Description Overall average processor utilization that occurred in Privileged
or Kernel mode over the interval. All operating system functions,
including Interrupt Service Routines (ISRs) and deferred proce-
dure calls (DPCs), run in Privileged mode. Privileged mode in-
cludes device driver code involved in initiating device Input/
Output operations and deferred procedure calls that are used to
complete interrupt processing.

Table 3-7 Processor(_Total)\% Interrupt Time Counter

Chapter 3: Measuring Server Performance 255

Calculate the ratio of % Privileged Time to overall % Processor Time usage:

Privileged mode ratio =

Processor(_Total)\% Privileged Time ÷ Processor(_Total)\% Processor Time

No fixed ratio value is good or bad. The relative percentage of Privileged mode CPU
usage is workload-dependent. However, a sudden change in this ratio for the same
workload should arouse your curiosity and trigger your interest in finding out what
caused the change.

% Privileged Time is measured at the overall system level, by processor, and by pro-
cess. If % Privileged Time at the system level appears excessive, you should be able to
drill down the process level and determine which process is responsible for the sys-
tem calls. You might also need to use Kernrate or the kernel debugger to track down
the source of excessive % Privileged Time in an Interrupt Service Routine (ISR) or
deferred procedure call (DPC) associated with a device driver.

Measurement Notes The processor state is sampled once every periodic interval:

PrivilegedModeSamples ÷ Samples × 100

Usage Notes ■ The _Total instance of the Processor objects calculates av-
erage values of the processor utilization instances, not the
total.

■ The ratio of % Privileged Time to overall % Processor Time
is workload-dependent.

■ Drill down to the Process(n)\% Privileged Time to deter-
mine what application is issuing the system calls.

Performance Secondary indicator to determine whether operating system
functions, including device driver functions, are responsible for
a potential processor bottleneck.

Capacity Planning Not applicable.

Operations The state of the processor, when a runaway process thread is in
an infinite loop, can pinpoint whether a system module is impli-
cated in the problem.

Alert Threshold Build alerts for important server machines based on extreme de-
viation from historical norms.

Related Measures Processor(_Total)\% Interrupt Time
Processor(_Total)\% DPC Time
Process(n)\% Privileged Time

Table 3-8 Processor(_Total)\% Privileged Time Counter

256 Microsoft Windows Server 2003 Performance Guide

When multiprocessors are configured to run symmetrically, drilling down to the
machine state on individual processors is seldom interesting or useful. However, if
you are making extensive use of hard processor affinity, processor-level measurements
can reveal how well your partitioning scheme is working.

Monitoring Memory and Paging Rates

Counters in the Memory object report on both physical and virtual memory usage.
They also report paging rates associated with virtual memory management. Because
of virtual memory management, a shortage of RAM is often evident indirectly as a disk
performance problem, when excessive paging to disk consumes too much of the avail-
able disk bandwidth. Consequently, paging rates to disk are an important memory
performance indicator.

On 32-bit systems, virtual memory is limited to 4 GB, normally partitioned into a 2-
GB private area that is unique per process, and a common 2-GB shared range of mem-
ory addresses that is common to all processes. On machines configured with large
amounts of RAM (for example, 1–2 GB of RAM or more), virtual memory might
become exhausted before a shortage of physical memory occurs. When virtual mem-
ory becomes exhausted because of a bug in which a program allocates virtual memory
but never releases it, the situation is known as a memory leak. If virtual memory is
exhausted because of the orderly expansion of either a process address space or the
system range, the problem is an architectural constraint. In either instance, the result
can be catastrophic, leading to widespread application failure and/or a system crash.
On 32-bit systems, it is important to monitor virtual memory usage within the system
memory pools and at the process address space level.

Virtual Memory and Paging

Physical memory in Windows Server 2003 is allocated to processes on demand. On
32-bit systems, each process address space is able to allocate up to 4 billion bytes of
virtual memory. The operating system builds and maintains a set of per-process page
tables that are used to map process address space virtual memory locations into phys-
ical memory (RAM) pages. At the process level, allocated memory is either reserved or
committed. When virtual memory is committed, the operating system reserves room
for the page, either in RAM or on a paging file on disk, to allow the process to refer-
ence that range of virtual addresses.

Chapter 3: Measuring Server Performance 257

The current resident set of a process’s virtual memory pages is called its working set. So
long as process working sets can fit readily into RAM, virtual memory addressing has
little performance impact. However, when process working sets require more RAM
than is available, performance problems can arise. When processes acquire new
ranges of virtual memory addresses, the operating system fulfills these requests by
allocating pages from a pool of available pages. (Because the page size is hardware-
dependent, Available Bytes is reported in bytes, kilobytes, and megabytes.) The Mem-
ory Manager attempts to maintain a minimum-sized pool of available pages so that it
is capable of granting new pages to processes promptly. The target minimum size of
the Available Pages pool is about 8 MB for every 1 GB of RAM. When the pool of avail-
able pages becomes depleted, something has to give.

When RAM is full, the operating system is forced to trim older pages from process
working sets and add them to the pool of Available pages. Trimmed working set pages
that are “dirty”—that contain changed data—must be written to the paging file before
they can be granted to another process and used. A page writer thread schedules page
writes as soon as possible so that these older pages can be made available for new allo-
cations. When the virtual memory manager (VMM) trims older working set pages,
these pages are initially added to the pool of available pages provisionally and stored
in the Standby list. Pages on the Standby list are flagged “in transition,” and in that
state they can be restored to the process working set where they originated with very
little performance impact.

Over time, unreferenced pages on the Standby list age and are eventually moved to the
Zero list, where they are no longer eligible to transition fault back into their original
process working set. A low-priority system thread zeros out the contents of older
pages, at which point these pages are moved to the Zero list. The operating system
assigns new process working set pages to available pages from either the Zero list or
the Free list. The Free list contains pages that have been explicitly freed by the pro-
cesses that originally allocated them.

The dynamics of virtual memory management are extensively instrumented. Available
Bytes represents the total number of pages currently on the Standby list, the Free list,
and the Zero list. There are also counters for three different types of page faults: so-
called hard page faults (Page Reads/sec), transition faults, and demand zero faults.
Pages Output/sec counts the number of trimmed pages that are written to disk. The
number of resident system pages and process working set pages is also counted.

258 Microsoft Windows Server 2003 Performance Guide

A few performance aspects of memory management are not directly visible, but these
can usually be inferred from the statistics that are provided. There is, for example, no
direct measure of the rate at which page trimming occurs. However, page trimming is
normally accompanied by an increase in the rate of transition faults. In addition, the
number of trimmed, dirty pages waiting in memory to be written to the paging file is
not reported. During sustained periods in which the number of Page Writes/sec
reaches 80 percent of total disk transfers to the paging file disk, you might assume
that a backlog of trimmed dirty pages is building up.

In a system in which physical memory is undersized, the virtual-memory manager is
hard pressed to keep up with the demand for new working set pages. This memory
management activity will be reflected in both the high rates of paging to disk (Mem-
ory\Pages/sec) and the soft faults (Memory\Transition Faults/sec).

Available Bytes is also an extremely important indicator of physical memory usage; it
is a reliable indicator that shows there is an ample supply of RAM. It can also help you
identify configurations in which you do not have enough physical memory. Once
Available Bytes falls to its minimum size, the effect of page trimming will tend to keep
Available Bytes at or near that value until the demand for RAM slackens. Several server
applications—notably IIS, SQL Server, and Microsoft Exchange—interact with the
Memory Manager to grow their working sets when free RAM is abundant. These
server applications will also jettison older pages from their process working sets when
the pool of available pages is depleted. This interaction also tends to keep Available
Bytes at a relatively constant level at or near its minimum values.

Over longer-term periods, virtual memory Committed Bytes can serve as an indicator
of physical memory demand. As the number of Committed Bytes grows larger than
the size of RAM, older pages are trimmed from process working sets and relegated to
the paging file on disk. The potential for paging operations to disk increases as the
number of Committed Bytes grows. This dynamic aspect of virtual memory manage-
ment must be understood when you are planning for RAM capacity on new machines,
and when you are forecasting the point at which paging problems are apt to emerge on
existing machines with growing workloads.

Pages/sec Because of virtual memory, a shortage of RAM is transformed into a disk
I/O bottleneck. Not having enough RAM for your workload is often evident indirectly
as a disk performance problem. Excessive paging rates to disk might consume too
much of the available disk bandwidth and slow down applications attempting to
access their files on the same disk or disks. The Memory\Pages/sec counter, which
tracks total paging rates to disk and is described in Table 3-9, is the single most impor-
tant physical memory performance indicator.

Chapter 3: Measuring Server Performance 259

Table 3-9 Memory\Pages/sec Counter

Counter Type Interval difference counter (rate/second).

Description The number of paging operations to disk during the interval.
Pages/sec is the sum of Page Reads/sec and Page Writes/sec.

Measurement Notes Each paging operation is counted.

Usage Notes ■ Page Reads/sec counters are hard page faults. A running
thread has referenced a page in virtual memory that is not
in the process working set. Nor is it a trimmed page
marked in transition, but rather is still resident in memory.
The thread is delayed for the duration of the I/O opera-
tion to fetch the page from disk. The operating system
copies the page from disk to an available page in RAM
and then redispatches the thread.

■ Page writes (the Page Writes/sec counter) occur when
dirty pages are trimmed from process working sets. Page
trimming is triggered when the pool of available pages
drops below its minimum allotment.

■ Excessive paging can usually be reduced by adding RAM.

■ When paging files coexist with application data on the
same disk or disks, calculate the percentage of disk pag-
ing operations to total disk I/O operations:
Memory\Pages/sec ÷ Physical Disk(_Total)\
Disk Transfers/sec

■ Disk bandwidth is finite. Capacity used for paging opera-
tions is unavailable for other application-oriented file op-
erations.

■ Be aware that the operation of the system file cache redi-
rects normal application I/O through the paging sub-
system. Note that the Memory\Cache Faults/sec counter
reflects both hard and soft page faults as a result of read
requests for files that are cached.

Performance Primary indicator to determine whether real memory is a poten-
tial bottleneck.

Capacity Planning Watch for upward trends. Add memory when paging operations
absorb more than 20–50 percent of your total disk I/O band-
width.

Operations Excessive paging can lead to slow and erratic response times.

Alert Threshold Alert when Pages/sec exceeds 50 per paging disk.

Related Measures Memory\Available Bytes
Memory\Committed Bytes
Process(n)\Working Set

260 Microsoft Windows Server 2003 Performance Guide

Disk throughput capacity creates an upper bound on Pages/sec. That is the basis for
the configuration rule discussed earlier. If paging rates to disk are high, they will delay
application-oriented file I/Os to the disks where the paging files are located.

Physical memory usage When physical memory is a scarce resource, you will
observe high Pages/sec rates. The Available Bytes counter is a reliable indicator of
when RAM is plentiful. But if RAM is scarce, it is important to understand which pro-
cesses are using it. There are also system functions that consume RAM. These physical
memory usage measurements are discussed in this section.

Available bytes The Memory Manager maintains a pool of available pages in RAM
that it uses to satisfy requests for new pages. The current size of this pool is reported in
the Memory\Available Bytes counters, described in Table 3-10. This value, like all other
memory allocation counters, is reported in bytes, not pages. (The page size is hardware-
dependent. On 32-bit Intel-compatible machines, the standard page size is 4096 bytes.)
You can calculate the size of the pool in pages by dividing Memory\Available Bytes by
the page size. For convenience, there are Available Kbytes and Available Mbytes
counters. These report available bytes divided by 1024 and 1,048,576, respectively.

Whenever Available Bytes drops below its minimum threshold, a round of working-
set page trimming is initiated to replenish the system’s supply of available pages. The
minimum threshold that triggers page trimming is approximately 8 MB per 1 GB of
RAM, or when RAM is 99 percent allocated. Once RAM is allocated to that extent,
working set page trimming tends to keep the size of the Available Page pool at or near
this minimum value. This means that Available Bytes can reliably indicate that the
memory supply is ample—it is safe to regard any machine with more than 10 percent
of RAM available as having an adequate supply of memory for the workload. Once
RAM fills up, however, the Available Bytes counter alone cannot distinguish between
machines that have an adequate supply of RAM and those that that have an extreme
shortage. Direct measures of paging activity, like Pages/sec and Transition Faults/sec,
will help you distinguish between these situations.

The Memory Manager organizes Available pages into three list structures. These are
the Standby list, the Free list, and the Zero list. The sizes of these lists are not mea-
sured separately. Trimmed working-set pages are deposited in the Standby list first.
(Trimmed pages that are dirty—that contain modified or changed data—must be writ-
ten to disk before they can be regarded as immediately available.) Pages on the
Standby list are marked “in transition.” If a process references a page on the Standby
list, it transition faults back into the process working set with very little performance
impact. Transition faults are also known as “soft faults,” as opposed to hard page faults
that require I/O to the paging disk to resolve.

Eventually, unreferenced pages on the Standby list migrate to the Zero list, where they
are no longer marked as being in transition. References to new pages can also be sat-
isfied with pages from the Free list. The Free list contains pages that have been explic-
itly freed by the processes that originally allocated them.

Chapter 3: Measuring Server Performance 261

Table 3-10 Memory\Available Bytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The number of free pages in RAM available for immediate allo-
cation. Available Bytes counts available pages on the Standby,
Free, and Zero lists.

Measurement Notes Can also be obtained by calling the GlobalMemoryStatusEx Mi-
crosoft Win32 API function.

Usage Notes Available Bytes is the best single indicator that physical memory is
plentiful. When memory is scarce, Pages/sec is a better indicator.

■ Divide by the size of page to calculate the number of free
pages. Available KBytes is the same value divided by 1024.
Available MBytes is the same value divided by 1,048,576.

■ Calculate % Available Bytes as a percentage of total RAM
(available in Task Manager on the Performance tab):
% Available Bytes = Memory\Available Bytes ÷ sizeof(RAM)

■ A machine with Available Bytes > 10 percent of RAM has
ample memory.

■ The Memory Manager’s page replacement policy attempts
to maintain a minimum number of free pages. When avail-
able memory falls below this threshold, it triggers a round
of page trimming, which replenishes the pool of Available
pages with older working set pages. So when memory is
scarce, Available Bytes will consistently be measured at or
near the Memory Manager minimum threshold.

■ The Available Bytes threshold that triggers working-set
page trimming is approximately 8 MB per 1 GB of RAM, or
less than 1 percent Available Bytes. When Available Bytes
falls to this level, monitor Pages/sec and Transition Faults/
sec to see how hard the Memory Manager has to work to
maintain a minimum-sized pool of Available pages.

■ Some server applications, such as IIS, Exchange, and SQL
Server, manage their own working sets. They interact with
the Memory Manager to allocate more memory when
there is an ample supply and jettison older pages when
RAM grows scarce. When these servers’ applications are
running, Available Bytes measurements tend to stabilize
at or near the minimum threshold.

Performance Primary indicator to determine whether the supply of real mem-
ory is ample.

Capacity Planning Watch for downward trends. Add memory when % Available
Bytes consistently drops below 10 percent.

Operations Excessive paging can lead to slow and erratic response times.

Alert Threshold Alert when Available Bytes < 2 percent of the size of RAM.

262 Microsoft Windows Server 2003 Performance Guide

Process working set bytes When there is a shortage of available RAM, it is often
important to determine how the allocated physical memory is being used. Resident
pages of a process are known as its working set. The Process(*)\Working Set counter,
described in Table 3-11, is an instantaneous counter that reports the number of resi-
dent pages of each process.

Related Measures Memory\Pages/sec
Memory\Transition Faults/sec
Memory\Available KBytes
Memory\Available MBytes
Memory\Committed Bytes
Process(n)\Working Set

Table 3-11 Process(*)\Working Set Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The set of resident pages for a process. The number of allocated
pages in RAM that this process can address without causing a
page fault to occur.

Measurement Notes Includes both resident private pages and resident pages
mapped to an Image file, which are often shared among
multiple processes.

Usage Notes Process(n)\Working Set tracks current RAM usage by active
processes.

■ Resident pages from a mapped Image file are counted in
the working set of every process that has loaded that
Image file. Because of the generous use of shared DLLs,
resident pages of active DLLs are counted many times in
different process working sets. This is the reason Pro-
cess(n)\Working Set is often greater than Process(n)\Pri-
vate Bytes and Process(n)\Virtual Bytes.

■ Divide by the size of a page to calculate the number of al-
located pages.

■ Calculate % RAM Used as a percentage of total RAM
(available in Task Manager on the Performance tab): %
RAM Used = Process(n)\Working Set ÷ sizeof(RAM)

■ Some server applications, such as IIS, Exchange, and SQL
Server, manage their own process working sets. These
server applications build and maintain memory-resident
caches in their private process address spaces. You need
to monitor the effectiveness of these internal caches to
determine whether these server processes have access to
an adequate supply of RAM.

■ Monitor Process(_Total)\Working Set in the Process ob-
ject to see how RAM is allocated overall across all process
address spaces.

Table 3-10 Memory\Available Bytes Counter

Chapter 3: Measuring Server Performance 263

The Windows Server 2003 Memory Manager uses a global last-recently used (LRU)
policy. This ensures that the active pages of any process remain resident in RAM. If the
memory access pattern of one process leads to a shortage of RAM, all active processes
can be affected. At the process level, there is a Page Faults/sec interval counter that can
be helpful in determining what processes are being impacted by a real memory short-
age. However, the Process(n)\Page Faults/sec counter includes all three type of page
faults that occur, so it can be difficult to interpret.

Resident pages in the system range Memory resident pages in the system range
are counted by two counters in the Memory object: Cache Bytes and Pool Nonpaged
Bytes. Cache Bytes is the pageable system working set and is managed like any other
process working set. Cache Bytes can be further broken down into Pool Paged Resi-
dent Bytes, System Cache Resident Bytes, System Code Resident Bytes, and System
Driver Resident Bytes. Both System Code Resident Bytes and System Driver Resident
Bytes are usually quite small relative to the other categories of resident system pages.
On the other hand, both Pool Paged Resident Bytes and System Cache Resident Bytes
can be quite large and might also vary greatly from period to period, depending on
memory access patterns. Memory\Cache Bytes is described in Table 3-12.

Performance If memory is scarce, Process(n)\Working Set tells you how much
RAM each process is using.

Capacity Planning Watch for upward trends for important applications.

Operations Not applicable.

Alert Threshold Build alerts for important processes based on extreme deviation
from historical norms.

Related Measures Memory\Available Bytes
Memory\Committed Bytes
Process(n)\Private Bytes
Process(n)\Virtual Bytes
Process(n)\Pool Paged Bytes

Table 3-12 Memory\Cache Bytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The set of resident pages in the system working set. The number
of allocated pages in RAM that kernel threads can address with-
out causing a page fault to occur.

Measurement Notes Includes Pool Paged Resident Bytes, System Cache Resident
Bytes, System Code Resident Bytes, and System Driver Resident
Bytes.

Table 3-11 Process(*)\Working Set Counter

264 Microsoft Windows Server 2003 Performance Guide

There are also system functions that allocate memory from the Nonpaged pool. Pages
in the Nonpaged pool are always resident in RAM. They cannot be paged out. An
example of a system function that will allocate memory in the Nonpaged pool is work-
ing storage that might be accessed inside an Interrupt Service Routine (ISR). An ISR

Usage Notes The system working set is subject to page replacement like any
other working set.

■ The Pageable pool is an area of virtual memory in the sys-
tem range from which system functions allocate pageable
memory. Pool Paged Resident Bytes is the number of Pool
Paged Bytes that are currently resident in memory.

■ Calculate the ratio:
Pool Paged Bytes ÷ Pool Paged Resident Bytes
This ratio can serve as a memory contention index that
might be useful in capacity planning.

■ The System Cache is an area of virtual memory in the sys-
tem range in which application files are mapped. System
Cache Resident Bytes is the number of pages from the
System Cache currently resident in RAM.

■ The kernel debugger !vm command can be used to deter-
mine the maximum size of the Paged pool.

■ Add Process(_Total)\Working Set, Memory\Cache Bytes,
and Memory\Pool Nonpaged Bytes to see how RAM
overall is allocated.

■ Divide by the size of a page to calculate the number of al-
located pages.

Performance If memory is scarce, Cache Bytes tells you how much pageable
RAM system functions are using.

Capacity Planning The ratio of Pool Paged Bytes to Pool Paged Resident Bytes is
a memory contention index that might be useful in capacity
planning.

Operations Not applicable.

Alert Threshold Build alerts for important machines based on extreme deviation
from historical norms.

Related Measures Pool Nonpaged Bytes
Pool Paged Resident Bytes
System Cache Resident Bytes
System Code Resident Bytes
System Driver Resident Bytes
Process(_Total)\Working Set

Table 3-12 Memory\Cache Bytes Counter

Chapter 3: Measuring Server Performance 265

runs in Interrupt mode with interrupts disabled. An ISR that encounters a page fault
will crash the system, because a page fault generates an interrupt that cannot be ser-
viced when the processor is already disabled for interrupt processing. The Mem-
ory\Pool Nonpaged Bytes counter is described in Table 3-13.

Process(_Total)\Working Set, Memory\Cache Bytes and Memory\Pool Nonpaged
Bytes account for how RAM is allocated. If you also add Memory\Available Bytes, you
should be able to account for all RAM. Usually, however, this occurs:

sizeof(RAM) ≠ Process(_Total)\Working Set +

Memory\Cache Bytes + Memory\Pool Nonpaged Bytes

+ Memory\Available Bytes

This situation arises because the Process(_Total)\Working Set counter contains resi-
dent pages from shared DLLs that are counted against the working set of every pro-
cess that has the DLL loaded. When you are trying to account for how all RAM is
being used, you can expect to see something like Figure 3-2. (The example is from a
server with 1 GB of RAM installed.)

Table 3-13 Memory\Pool Nonpaged Bytes Counter

Counter Type Instantaneous (sampled once during each measurement
period).

Description Pages allocated from the Nonpaged pool are always resident in
RAM.

Usage Notes ■ Status information about every TCP connection is stored
in the Nonpaged pool.

■ The kernel debugger !vm command can be used to deter-
mine the maximum size of the Nonpaged pool.

■ Divide by the size of a page to calculate the number of al-
located pages.

Performance If memory is scarce, Pool Nonpaged Bytes tells you how much
nonpageable RAM system functions are using.

Capacity Planning Can be helpful when you need to plan for additional TCP
connections.

Operations Not applicable.

Alert Threshold Build alerts for important machines based on extreme deviation
from historical norms.

Related Measures Pool Paged Bytes
Pool Paged Resident Bytes
System Cache Resident Bytes
System Code Resident Bytes
System Driver Resident Bytes
Process(_Total)\Working Set

266 Microsoft Windows Server 2003 Performance Guide

Figure 3-2 Accounting for RAM usage

Figure 3-2 shows what happens when you add Process(_Total)\Working Set to Cache
Bytes, Pool Nonpaged Bytes, and Available Bytes. Although the sum of these four
counters accounts for overall RAM usage in the system pools and in process working
sets, they clearly do not add up to the size of physical RAM.

In addition to this anomaly, some RAM allocations are not counted anywhere. Trimmed
working set pages that are dirty are stored in RAM prior to being copied to disk. There
is no Memory counter that tells you how much RAM these pages are currently occupy-
ing, although it is presumed to be a small quantity because page writes to disk are sched-
uled as soon as possible. There is also no direct accounting of RAM usage by the IIS
Kernel-mode cache that stores recently requested HTTP Response messages.

Transition faults An increase in the rate of transition faults that are occurring is a
clear indicator that the Memory Manager is working harder to maintain an adequate
pool of available pages. When the rate of Transition Faults appears excessive, adding
RAM should reduce the number of transition faults that occur. Table 3-14 describes
the Memory\Transition Faults/sec counter.

Table 3-14 Memory\Transition Faults/sec Counter

Counter Type Interval difference counter (rate/second).

Description The total number of soft or transition faults during the interval.
Transition faults occur when a recently trimmed page on the
Standby list is re-referenced. The page is removed from the
Standby list in memory and returned to the process working set.
No page-in operation from disk is required to resolve a transi-
tion fault.

Chapter 3: Measuring Server Performance 267

Demand Zero Faults/sec reflects processes that are acquiring new pages, the contents
of which are always zeroed by the operating system before being reassigned to a new
process. This is normal behavior for modularly constructed applications that acquire
a new heap in each nested function call. As long as processes are releasing older mem-
ory pages at approximately the same rate as they acquire new pages on demand—in
other words, they are not leaking memory—the Memory Manager should have no
trouble keeping up with the demand for new pages.

Page Faults/sec The Memory\Page Faults/sec counter, described in Table 3-15, is
the sum of the three types of page faults that can occur: hard faults, which require an
I/O to disk; and transition faults and demand zero faults, which do not. The Page
Faults/sec counter is the sum of these three measurements: Page Reads/sec, Transi-
tion Faults/sec, and Demand Zero Faults/sec. It is recommended that you do not use
this field to generate Performance Alerts or alarms of any kind.

Measurement Notes Each type of page fault is counted.

Usage Notes High values for this counter can easily be misinterpreted. Some
transition faults are unavoidable—they are a natural by-product
of the LRU-based page-trimming algorithm the Windows oper-
ating system uses. High rates of transition faults should not be
treated as performance concerns, if other indicators of paging
performance problems are not present.

■ When Available Bytes is at or near its minimum threshold
value, the rate of transition faults is an indicator of how
hard the operating system has to work to maintain a pool
of available pages.

Performance Use Pages/sec and Page Reads/sec instead to detect excessive
paging.

Capacity Planning An upward trend is a leading indicator of a developing memory
shortage.

Operations Not applicable.

Alert Threshold Do not Alert on this counter.

Related Measures Memory\Pages/sec
Memory\Demand Zero Faults/sec
Memory\Page Reads/sec

Table 3-15 Memory\Page Faults/sec Counter

Counter Type Interval difference counter (rate/second).

Description The total number of paging faults during the interval, including
both hard and soft faults. Only hard faults—Page Reads/sec—
have a significant performance impact. Page faults/sec is the
sum of Page Reads/sec, Transition Faults/sec, and Demand Zero
Faults/sec.

Table 3-14 Memory\Transition Faults/sec Counter

268 Microsoft Windows Server 2003 Performance Guide

Measurement Notes Each type of page fault is counted.

Usage Notes High values for this counter can easily be misinterpreted. It is
safer to report the following counters separately, rather than
this composite number.

■ Page Reads/sec are hard page faults. A running thread has
referenced a page in virtual memory that is not in the pro-
cess working set. It is also not a trimmed page marked in
transition, but rather is still resident in memory. The
thread is delayed for the duration of the I/O operation to
fetch the page from disk. The operating system copies the
page from disk to an available page in RAM and then re-
dispatches the waiting thread.

■ Transition Faults/sec occur when pages trimmed from
process working sets are referenced before they are
flushed from memory. Page trimming is triggered when
the pool of available pages drops below its minimum al-
lotment. The oldest pages in a process working set are
trimmed first. Transition faults are also known as “soft”
faults because they do not require a paging operation to
disk. Because the page referenced is still resident in mem-
ory, that page can be restored to the process working set
with minimal delay.

Many transition faults are unavoidable—they are a natu-
ral by-product of the LRU-based page-trimming algo-
rithm that the Windows operating system uses. High rates
of transition faults should not be treated as performance
concerns. However, a constant upward trend might be a
leading indicator of a developing memory shortage.

■ Demand Zero Faults/sec measures requests for new virtu-
al memory pages. Older trimmed pages eventually are ze-
roed by the operating system in anticipation of Demand
Zero requests. Windows zeros out the contents of new
pages as a security feature. Processes can acquire new
pages at very highs rates with little performance impact,
unless they never free the memory after it is allocated.

■ Older trimmed pages from the Standby list are repur-
posed when they are moved to the Zero list.

Performance Use Pages/sec and Page Reads/sec instead to detect excessive
paging.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Do not Alert on this counter.

Related Measures Memory\Transition Faults/sec
Memory\Demand Zero Faults/sec
Memory\Page Reads/sec

Table 3-15 Memory\Page Faults/sec Counter

Chapter 3: Measuring Server Performance 269

Virtual Memory Usage

When the active working sets of running processes fit comfortably into RAM, there is
little virtual memory management overhead. When the working sets of running pro-
cesses overflow the size of RAM, the Memory Manager trims older pages from process
working sets to try to make room for newer virtual pages. Because of the operating sys-
tem’s use of a global LRU page replacement policy, the memory access pattern of one
process can impact other running processes, which could see their working sets
trimmed as a result. If excessive paging then leads to a performance bottleneck, it is
because the demand for virtual memory pages exceeds the amount of physical mem-
ory installed.

Measurements of virtual memory allocations allow you to observe the demand side of
a dynamic page replacement policy. Each process address space allocates committed
memory that has to be backed by physical pages in RAM or slots on the paging file.
Monitoring the demand for virtual memory also allows you detect memory leaks—pro-
gram bugs that cause a process to commit increasing amounts of virtual memory that
it never frees up.

Committed Bytes represents the overall demand for virtual memory by running
processes. Committed Bytes should be compared to the system’s Commit Limit, an
upper limit on the amount of virtual pages the system will allocate. The system’s
Commit Limit is the size of RAM, plus the sizing of the paging file, minus a small
amount of overhead. At or near the Commit Limit, memory allocation requests will
fail, which is usually catastrophic. Not many applications, system services, or sys-
tem functions can recover when a request to allocate virtual memory fails. Prior to
reaching the Commit Limit, the operating system will automatically attempt to
grow the size of the paging file to try to forestall running out of virtual memory.
You should add memory or increase the size of your paging file or files to avoid
running up against the Commit Limit.

Virtual memory allocations can also be tracked at the process level. In addition, sys-
tem functions allocate pageable virtual memory from the Paged pool, which is some-
thing that should also be monitored.

Committed bytes Virtual memory in a process address space is free (unallocated),
reserved, or committed. Committed memory is allocated memory that the system
must reserve space for either in physical RAM or out on the paging file so that this
memory can be addressed properly by threads running in the process context. Table
3-16 describes the Memory\Committed Bytes counter.

270 Microsoft Windows Server 2003 Performance Guide

Table 3-16 Memory\Committed Bytes Counter

Counter Type Instantaneous (sampled once during each measurement period).

Description The number of committed virtual memory pages. A committed
page must be backed by a physical page in RAM or by a slot on
the paging file.

Measurement Notes Can also be obtained by calling the GlobalMemoryStatusEx
Win32 API function.

Usage Notes Committed Bytes reports how much total virtual memory pro-
cess address spaces have allocated. Each committed page will
have a Page Table entry built for it when an instruction first ref-
erences a virtual memory address that it contains.

■ Divide by the size of a page to calculate the number of
committed pages.

■ A related measure, % Committed Bytes in Use, is calculat-
ed by dividing Committed Bytes by the Commit Limit:
Memory\% Committed Bytes in Use =
Memory\Committed Bytes ÷ Memory\Commit Limit
A machine with % Committed Bytes in Use > 90 percent
is running short of virtual memory.

■ The Commit Limit is the amount of virtual memory that can
be committed without having to extend the paging file or
files. The system’s Commit Limit is the size of RAM, plus the
sizing of the paging file, minus a small amount of overhead.
The paging file can be extended dynamically when it is full
(if it is not already at its maximum size and there is sufficient
space in the file system where it is located.)

When the Commit Limit is reached, the system is out of virtual
memory. No more than the Commit Limit number of virtual
pages can be allocated.

■ Program calls to allocate virtual memory will fail at or near
the Commit Limit. The results are usually catastrophic.

■ When a Paging File(n)\% Usage approaches 100 percent,
the Memory Manager will extend the paging file—if the
configuration permits—which will result in an increase to
the Commit Limit.

■ Calculate a memory contention index:

Committed Bytes ÷ sizeof(RAM)

If the Committed Bytes:RAM ratio is > 1, virtual memory ex-
ceeds the size of RAM, and some memory management will be
necessary.

As the Committed Bytes:RAM ratio grows above 1.5, paging to
disk will usually increase up to a limit imposed by the bandwidth
of the paging disks.

Chapter 3: Measuring Server Performance 271

When a memory leak occurs, or the system is otherwise running out of virtual mem-
ory, drilling down to the individual process is often useful. Three counters at the pro-
cess level describe how each process is allocating virtual memory: Process(n)\Virtual
Bytes, Process(n)\Private Bytes, and Process(n)\Pool Paged Bytes.

Process(n)\Virtual Bytes shows the full extent of each process’s virtual address space,
including shared memory segments that are used to map files and shareable image file
DLLs. If you need more information about how the virtual memory is allocated inside
a process virtual address space, run the Virtual Address Dump (vadump.exe) com-
mand-line tool. The use of the vadump command-line tool is illustrated in Chapter 5,
“Performance Troubleshooting.”

If a process is leaking memory, you should be able to tell by monitoring Pro-
cess(n)\Private Bytes or Process(n)\Pool Paged Bytes, depending on the type of mem-
ory leak. A memory leak that is allocating but not freeing virtual memory in the
process’s private range will be reflected in monotonically increasing values of the
Process(n)\Private Bytes counter, described in Table 3-17. A memory leak that is
allocating but not freeing virtual memory in the system range will be reflected in
monotonically increasing values of the Process(n)\Pool Paged Bytes counter.

Performance The Committed Bytes:RAM ratio is a secondary indicator of a
real memory shortage.

Capacity Planning Watch for upward trends in the Committed Bytes:RAM ratio.
Add memory when the Committed Bytes:RAM ratio exceeds 1.5.

Operations Excessive paging can lead to slow and erratic response times.

Alert Threshold Alert when the Committed Bytes:RAM ratio exceeds 1.5.

Related Measures Memory\Pages/sec
Memory\Commit Limit
Memory\% Committed Bytes in Use
Memory\Pool Paged Bytes
Process(n)\Private Bytes
Process(n)\Virtual Bytes

Table 3-17 Process(n)\Private Bytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The number of a process’s committed virtual memory pages
that are private. Private page addresses can be addressed only
by a thread running in this process context.

Table 3-16 Memory\Committed Bytes Counter

272 Microsoft Windows Server 2003 Performance Guide

Virtual memory in the system range The upper half of the 32-bit 4-GB virtual
address range is earmarked for system virtual memory. The system virtual memory
range, 2-GB wide, is divided into three major pools: the Nonpaged pool, the Paged
pool, and the system file cache. When the Paged pool or the Nonpaged pool is
exhausted, system functions that need to allocate virtual memory will fail. These
pools can be exhausted before the system Commit Limit is reached. If the system runs
out of virtual memory for the file cache, file cache performance could suffer, but the
situation is not as dire.

The size of the three main system area virtual memory pools is determined initially
based on the amount of RAM. These initial allocation decisions can also be influenced
by a series of settings in the HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management key. These settings are discussed in more detail in
Chapter 6, “Advanced Performance Topics.” The size of these pools is also adjusted
dynamically, based on virtual memory allocation patterns, to try and avoid shortages
in one area or another. Still, sometimes shortages can still occur, with machines con-
figured with large amounts of RAM being the most vulnerable. Using the boot options
that shrink the system virtual address range in favor of a larger process private address
range sharply increases the risk of running out of system PTEs. These boot options
are discussed in Chapter 6, “Advanced Performance Topics.”

Usage Notes Process(n)\Private Bytes reports how much private virtual mem-
ory the process address space has allocated. Process(n)\Virtual
Bytes includes shared segments associated with mapped files
and shareable Image files.

■ Divide by the size of the page to calculate the number of
free pages.

■ Identify the cause of a memory leak by finding a process
with an increasing number of Process(n)\Private Bytes. A
process leaking memory may also see growth in its Work-
ing Set bytes, but Private Bytes is the more direct symptom.

■ Some outlaw processes may leak memory in the system’s
Paged Pool. The Process(n)\Paged Pool Bytes counter
helps you to identify those leaky applications.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Primarily used to identify processes that are leaking memory.

Alert Threshold In general, do not Alert on this counter value. However, it is of-
ten useful to Alert on Process(n)\Private Bytes as soon as a pro-
cess suspected of leaking memory exceeds a critical allocation
threshold.

Related Measures Memory\Commit Limit
Memory\% Committed Bytes in Use
Process(n)\Pool Paged Bytes
Process(n)\Virtual Bytes

Table 3-17 Process(n)\Private Bytes Counter

Chapter 3: Measuring Server Performance 273

System services and other functions allocate pageable virtual memory from the Page-
able pool. A system function called by a process could also allocate pageable virtual
memory from the Pageable pool. If the Pageable pool runs out of space, system func-
tions that attempt to allocate virtual memory from the Pageable pool will fail. It is pos-
sible for the Pageable pool to be exhausted long before the Commit Limit is reached.
Registry configuration and tuning parameters that can affect the size of the Pageable
pool are discussed in Chapter 6, “Advanced Performance Topics.” The Memory\Paged
Pool Bytes Counter is described in Table 3-18.

Depending on what it is doing, a process could also leak memory in the system’s
Paged pool. The Process(n)\Pool Paged Bytes counter allows you to identify processes

Table 3-18 Memory\Paged Pool Bytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description: The number of committed virtual memory pages in the system’s
Paged pool. System functions allocate virtual memory pages
that are eligible to be paged out from the Paged pool. System
functions that are called by processes also allocate virtual mem-
ory pages from the Paged pool.

Usage Notes Memory\Paged Pool Bytes reports how much virtual memory is
allocated in the system Paged pool. Memory\Paged Pool Resi-
dent Bytes is the current number of Paged pool pages that are
resident in RAM. The remainder is paged out.

■ Divide by the size of a page to calculate the number of al-
located virtual pages.

■ A memory leak can deplete the Paged pool, causing sys-
tem functions that allocate virtual memory from the
Paged pool to fail. You can identify the culprit causing a
memory leak by finding a process with an increasing
number of Process(n)\Paged Pool Bytes. A process that is
leaking memory might also see growth in its Working Set
bytes, but Paged Pool Bytes is the more direct symptom.

■ Some outlaw processes might leak memory in the sys-
tem’s Paged pool. The Process(n)\Paged Pool Bytes
counter helps you to identify those leaky applications.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Primarily used to identify processes that are leaking memory.

Alert Threshold In general, do not Alert on this counter value. However, it is of-
ten useful to Alert on Process(n)\Paged Pool Bytes as soon as a
process suspected of leaking memory exceeds a critical alloca-
tion threshold.

Related Measures Memory\Commit Limit
Memory\% Committed Bytes in Use
Process(n)\Pool Paged Bytes
Process(n)\Virtual Bytes

274 Microsoft Windows Server 2003 Performance Guide

that are leaking memory in the system Paged pool. The Memory\Nonpaged Pool
Bytes counter is described in Table 3-19.

System PTEs are built and used by system functions to address system virtual mem-
ory areas. When the system virtual memory range is exhausted, the number of Free
System PTEs drops to zero, and no more system virtual memory of any type can be
allocated. On 32-bit systems with large amounts of RAM (1–2 GB or more), tracking
the number of Free System PTEs is important. Table 3-20 describes the Memory\Free
System Page Table Entries counter.

Table 3-19 Memory\Nonpaged Pool Bytes

Counter Type Instantaneous
(sampled once during each measurement period).

Description The number of allocated pages in the system’s Nonpaged pool.
System functions allocate pages from the Nonpaged pool when
they require memory that cannot be paged out. For example,
device driver functions that execute during interrupt processing
must allocate memory from the Nonpaged pool.

Usage Notes Memory\Nonpaged Pool Bytes reports how much memory is al-
located in the system Nonpaged pool. Because pages in the
Nonpaged pool cannot be paged out, this counter measures
both virtual and real memory usage.

■ Divide by the size of the page to calculate the number of
allocated virtual pages.

■ If the Nonpaged pool fills up, key system functions might
fail.

■ Important functions that allocate memory from the Non-
paged pool include TCP/IP session connection data that
is accessed during Network Interface interrupt process-
ing.

Performance Not applicable.

Capacity Planning Sizing and planning for network connections.

Operations Used to identify device drivers that are leaking memory.

Alert Threshold In general, do not Alert on this counter value. However, it is of-
ten useful to Alert on Process(n)\Nonpaged Pool Bytes as soon
as a process suspected of leaking memory exceeds a critical al-
location threshold.

Related Measures Memory\Pool Paged Bytes.

Chapter 3: Measuring Server Performance 275

System functions allocate pageable virtual memory from a single, shared Paged pool.
A process or device driver function that leaks memory from the Paged pool will
deplete and eventually exhaust the pool. When the pool is depleted, subsequent
requests to allocate memory from the Paged pool will fail. Any operating system func-
tion, device driver, or application process that requests virtual memory is subject to
these memory allocation failures. It is not always easy to pinpoint exactly which appli-
cation is responsible for this pool becoming exhausted. Fortunately, at least one
server application—the file Server service—reports on Paged pool memory allocation
failures when they occur. This counter can prove helpful even when a server is not pri-
marily intended to serve as a network file server. Table 3-21 describes the
Server\Paged Pool Failures counter.

Table 3-20 Memory\Free System Page Table Entries Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The number of free System PTEs. A free System PTE is used to
address virtual memory in the system range. This includes both
the Paged pool and the Nonpaged pool. When no free System
PTEs are available, calls to allocate new virtual memory areas in
the system range will fail.

Usage Notes Memory\Paged Pool Bytes reports how much virtual memory is
allocated in the system Paged pool. Memory\Paged Pool Resi-
dent Bytes is the current number of Paged pool pages that are
resident in RAM. The remainder is paged out.

■ The system virtual memory range is exhausted when the
number of free System PTEs drops to zero. At that point,
no more system virtual memory of any type can be allo-
cated.

■ On 32-bit systems with 2 GB or more of RAM, tracking the
number of free System PTEs is important. Those systems
are vulnerable to running out of free System PTEs.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Primarily used to identify processes that are leaking memory.

Alert Threshold Alert when the number of free System PTEs < 100.

Related Measures Memory\Commit Limit
Memory\% Committed Bytes in Use
Process(n)\Pool Paged Bytes
Process(n)\Virtual Bytes

276 Microsoft Windows Server 2003 Performance Guide

Memory-Resident Disk Caches

Memory-resident disk caches are one of the major consumers of RAM on many Win-
dows Server 2003 machines. Many applications can run faster if they cache frequently
accessed data in memory rather than access it from disk repeatedly. The system file
cache is an area of system virtual memory that is reserved for the purpose of storing
frequently accessed file segments in memory for quicker access. The system file cache
has three interfaces: the Copy interface, which is used by default; the Mapping inter-
face, which is used by system applications that need to control when cached writes are
written to the disk; and the MDL interface, which is designed for applications that
need access to physical memory buffers. Each of these interfaces is associated with a
separate set of the counters in the Cache object.

Table 3-21 Server\Paged Pool Failures Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The cumulative number of Paged pool allocation failures that
the Server service experienced since being initialized.

Usage Notes The file Server service has a number of functions that allocate
virtual memory pages from the Paged pool.

■ If a memory leak exhausts the Paged pool, the file Server
service might encounter difficulty in allocating virtual
memory from the Paged pool.

■ If a call to allocate virtual memory fails, the file Server ser-
vice recovers gracefully from these failures and reports on
them.

■ Because many other applications and system functions do
not recover gracefully from virtual memory allocation
failures, this counter can be the only reliable indicator that
a memory leak caused these allocation failures.

Performance Not applicable.

Capacity Planning Not applicable.

Operations Primarily used to identify a virtual memory shortage in the
Paged pool.

Alert Threshold Alert on any nonzero value of this counter.

Related Measures Memory\Pool Paged Bytes
Memory\Commit Limit
Memory\% Committed Bytes in Use
Server\Pool Paged Bytes
Process(n)\Pool Paged Bytes

Chapter 3: Measuring Server Performance 277

Besides the built-in system file cache, some applications build and maintain their own
memory-resident caches specifically designed to cache objects other than files. IIS 6.0
operates a Kernel-mode cache that caches frequently requested HTTP Response mes-
sages. Because the IIS Kernel-mode driver operates this cache, the HTTP Response
cache is built using physical memory.

SQL Server and Exchange both build caches to store frequently accessed information
from disk databases. The SQL Server and Exchange caches are carved from the pro-
cess private address space. On 32-bit machines, they both can benefit from an
extended private area address space. SQL Server might also benefit from being able to
access more than 4 GB of RAM using the Physical Address Extension (PAE) and the
Address Windowing Extensions (AWE). PAE and AWE are discussed in Chapter 6,
“Advanced Performance Topics”

Each of the application-oriented caches is instrumented and provides performance
counters. These application cache counters are mentioned briefly here. When they are
active, these caches tend to be larger consumers of RAM. The most important perfor-
mance measurements associated with caches are the amount of memory they use, the
rate of read and write activity to the cache, and the percentage of cache hits. A cache hit
is an access request that is satisfied from current data that is stored in the cache, not
on disk. Usually, the more memory devoted to the cache, the higher the rate of cache
hits. However, even small amounts of cache memory are likely to be very effective,
while allocating too much physical memory to the cache is likely to be a waste of
resources.

A cache miss is a request that misses the cache and requires a disk access to satisfy.
Most applications read through the cache, which means that following a cache miss,
the data requested is available in the cache for subsequent requests. When writes
occur, the disk copy of the data is no longer current and must be updated. Most
caches defer writes to disk as long as possible. This is also known as lazy write. Then,
after enough dirty blocks in cache have accumulated, writes are flushed to the disk in
efficient, bulk operations. For data integrity and recoverability reasons, applications
sometimes need to control when data on disk is updated. The System File Cache’s
Mapping Interface provides that capability, for example. Table 3-22 describes the
Memory\System Cache Resident Bytes counter.

278 Microsoft Windows Server 2003 Performance Guide

Table 3-22 Memory\System Cache Resident Bytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The number of resident pages allocated to the System File
Cache. The System File Cache occupies a reserved area of the
system virtual address range. This counter tracks the number of
virtual memory pages from the File Cache that are currently res-
ident in RAM.

Usage Notes On file print and servers, System Cache Resident Bytes is often
the largest consumer of RAM.

Compare memory usage to each of the following file cache hit
ratios:

■ Copy Read Hits %: The Copy interface to the cache is in-
voked by default when a file is opened. The System Cache
maps the file into the system virtual memory range and
copies file data from the system range to the process pri-
vate address space, where it can be addressed by the ap-
plication.

■ Data Map Hits %: Returns virtual addresses that point to
the file data in the system virtual memory range. Requires
that application threads run in Privileged mode. The
Mapping interface supports calls to Pin and Unpin file
buffers to control the timing of physical disk writes. Used
by the Redirector service for the client-side file cache and
Ntfs.sys for caching file system metadata.

■ MDL Read Hits %: MDL stands for Memory Descriptor List,
which consists of physical address parameters passed to
DMA controllers. Requires that application threads run in
Privileged mode and support physical addresses. Used by
the Server service for the server-side file cache, and IIS for
caching htm, .gif, .jpg, .wav, and other static files.

■ On a System File Cache miss, a physical disk I/O to an ap-
plication file is performed. The paging file is unaffected.
PTEs backing the File Cache do not point directly to RAM,
but instead to Virtual Address Descriptors (VADs).

■ Divide by the size of a page to calculate the number of al-
located virtual pages.

■ The System File Cache reserves approximately 1 GB of vir-
tual memory in the system range by default.

■ System Cache Resident Bytes is part of the system’s work-
ing set (Cache Bytes) and is subject to page trimming
when Available Bytes becomes low.

Chapter 3: Measuring Server Performance 279

IIS version 6.0 relies on a Kernel-mode cache for HTTP Response messages in addi-
tion to the User-mode cache, in which recently accessed static objects are cached. The
kernel cache is used to store complete HTTP Response messages that can be returned
to satisfy HTTP GET Requests without leaving Kernel mode. Web service cache per-
formance statistics for both the Kernel mode and User mode caches are available in
the Web Service Cache object. SQL Server 2000 cache statistics per database are avail-
able in the SQL Server:Cache Manager object.

Monitoring Disk Operations

Performance statistics on both logical and physical disks are provided by measure-
ment layers in the I/O Manager stack, as described in Chapter 1, “Performance Moni-
toring Overview.” These measurement functions track and compute performance
information about disk I/O requests at both the Logical and Physical Disk level. Log-
ical Disk performance measurements are provided by the Logical Disk I/O driver:
either the Ftdisk.sys driver for basic volumes or Dmio.sys for dynamic volumes. Phys-
ical disk measurements are maintained by the Partmgr.sys driver layer. Interval perfor-
mance statistics include the activity rate to disk, the disk % Idle Time, the average
response time (including queue time) of disk requests, the bytes transferred, and
whether the operations were Reads or Writes. Additional disk performance statistics
are then calculated by the PerfDisk.dll Performance Library based on these measure-
ments, including the Avg. Disk Queue Length.

To diagnose and resolve disk I/O performance problems, calculating some additional
disk statistics beyond those that are provided automatically is extremely useful. A few
simple calculations allow you to generate some important additional disk perfor-

Performance When the System File Cache is not effective, performance of
server applications that rely on the cache are impacted. These
include Server, Redirector, NTFSs, and IIS.

Capacity Planning Not applicable.

Operations Primarily used to identify processes that are leaking memory.

Alert Threshold Do not Alert on this counter value.

Related Measures Memory\Cache Bytes
Memory\Transition Pages rePurposed/sec
Cache\MDL Read Hits %
Cache\Data Map Hits %
Cache\Copy Read Hits %

Table 3-22 Memory\System Cache Resident Bytes Counter

280 Microsoft Windows Server 2003 Performance Guide

mance metrics, namely, disk utilization, average disk service time, and average disk
queue time. Being able to decompose disk response time, as reported by the Avg. Disk
secs/Transfer counters, into device service time and queue time allows you to distin-
guish between a device that is running poorly and a device that is overloaded.

A logical disk represents a single file system with a unique drive letter, for example. A
physical disk is the internal representation of a SCSI Logical Unit Number (LUN).
When you are using array controllers and RAID disks, the underlying physical disk
hardware characteristics are not directly visible to the operating system. These physi-
cal characteristics—the number of disks, the speed of the disks, the RAID-level organi-
zation of the disks—can have a major impact on performance. Among simple disk
configurations, device performance characteristics vary based on seek time, rotational
speed, and bit density. More expensive, performance-oriented disks also incorporate
on-board memory buffers that boost performance substantially during sequential
operations. In addition, disk support for SCSI tagged command queuing opens the
way for managing a device’s queued requests so that ones with the shortest expected
service time are scheduled first. This optimization can boost the performance of a disk
servicing random requests by 25–50 percent in the face of queued requests.

What appears to the operating system as a simple disk drive might in fact be an array
of disks behind a caching controller. Disk arrays spread the I/O load evenly across
multiple devices. Redundant array of independent disks (RAID) provides storage for
duplicate data, in the case of disk mirroring schemes; or parity data, in the case of
RAID 5, that can be used to reconstitute the contents of a failed device. Maintaining
redundant data normally requires additional effort, leading to I/O activity within the
disk array that was not directly initiated by the operating system. Any I/Os within the
array not directly initiated by the operating system are not counted by the I/O Man-
ager instrumentation.

Similarly, I/Os that are resolved by controller caches are counted as physical I/O oper-
ations whether or not there is physical I/O to the disk or disks configured behind the
cache that occurs. For battery-backed, nonvolatile caches, write operations to disk are
frequently deferred and occur only later asynchronously. When cached writes to disk
are deferred, device response time measurements obtained by the I/O Manager instru-
mentation layers are often much lower than expected. This is because the cache
returns a successful I/O completion status to the operating system almost immedi-
ately as soon as the data transfer from host memory to the controller cache memory
completes.

Chapter 3: Measuring Server Performance 281

When you run any of these types of devices, the performance data available from Sys-
tem Monitor needs to be augmented by configuration and performance information
available from the array itself. See Chapter 5, “Performance Troubleshooting,” for an
in-depth discussion of disk performance measurements issues when disk array con-
trollers and disk controller caches are present.

It is important to be proactive about disk performance because it is prone to degrade
rapidly, particularly when memory-resident caches start to lose their effectiveness or
disk-paging activity erupts. The interaction between disk I/O rates and memory cache
effectiveness serves to complicate disk capacity planning. (In this context, paging to
disk can be viewed as a special case of memory-resident disk caching where the most
active virtual memory pages are cached in physical RAM.)

Cache effectiveness tends to degrade rapidly, leading to sharp, nonlinear spikes in
disk activity beginning at the point where the cache starts to lose its effectiveness.
Consequently, linear trending based on historical patterns of activity is often not a reli-
able way to predict future activity levels. Disk capacity planning usually focuses,
instead, on provisioning to support growing disk space requirements, not poor per-
formance. However, planning for adequate disk performance remains an essential ele-
ment of capacity planning. Because each physical disk has a finite capacity to service
disk requests, the number of physical disks installed usually establishes an upper
bound on disk I/O bandwidth. The Physical Disk(n)\Avg. Disk secs/transfer counter
is described in Table 3-23.

Note Logical disk and physical disk statistics are defined and derived identically by
I/O Manager instrumentation layers, except for the addition of two file system disk
space usage measurements in the Logical Disk object.

Table 3-23 Physical Disk(n)\Avg. Disk secs/transfer Counter

Counter Type Average.

Description Overall average response time of physical disk requests over the
interval. Avg. Disk secs/transfer includes both device service
time and queue time.

Measurement Notes The start and end time of each I/O Request Packet (IRP) is re-
corded by the I/O Manager instrumentation layer. The result,
averaged over the interval, is the round trip time (RTT) of a disk
request.

282 Microsoft Windows Server 2003 Performance Guide

If disks are infrequently accessed, even very poor disk response time is not a major
problem. However, when Physical Disk\Disk Transfers/sec exceeds 15–25 disk I/Os
per second per disk, the reason for the poor disk response time should be investi-
gated. When Avg. Disk secs/transfer indicates slow disk response time, you need to
determine the underlying cause. As a first step, separate the disk response time value
recorded in the Avg. Disk secs/transfer counter into average service time and average
queue time. Table 3-24 describes the Physical Disk(n)\% Idle Time counter.

Usage Notes The primary indicator of physical disk I/O performance.

Physical disks are the equivalent of SCSI LUNs. Performance is
dependent on the underlying disk configuration, which is trans-
parent to the operating system.

■ Individual disks range in performance characteristics
based on seek time, rotational speed, recording density,
and interface speed. More expensive, performance-ori-
ented disks can provide 50 percent better performance.

■ Disk arrays range in performance based on the number of
disks in the array and how redundant data is organized
and stored. RAID 5 disk arrays, for example, suffer a sig-
nificant performance penalty when writes occur.

■ Disk cache improves performance on read hits up to the
interface speed. Deferred writes to cache require reliable,
on-board battery backup of cache memory.

Performance Primary indicator to determine whether the disk is a potential
bottleneck.

Capacity Planning Not applicable.

Operations Poor disk response time slows application response time.

Alert Threshold Depends on the underlying disk hardware.

Related Measures Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\% Idle Time
Physical Disk(n)\Current Disk Queue Length

Table 3-24 Physical Disk(n)\% Idle Time Counter

Counter Type Interval (% Busy).

Description % of time that the disk was idle during the interval. Subtract %
Idle Time from 100 percent to calculate disk utilization.

Measurement Notes Idle Time accumulates whenever there are no requests outstand-
ing for the device.

Table 3-23 Physical Disk(n)\Avg. Disk secs/transfer Counter

Chapter 3: Measuring Server Performance 283

Calculate disk utilization, disk service time, and disk queue time to determine
whether you have a poor performing disk subsystem, an overloaded disk, or both. If
disk I/O rates are high, you should also reconsider how effectively your workload is
utilizing memory-resident cache to reduce the number of disk I/Os that reach the
physical disk. These and other disk optimization strategies are discussed in more
depth in Chapter 5, “Performance Troubleshooting.” Table 3-25 describes the Physical
Disk(n)\Disk Transfers/sec counter.

Usage Notes % Idle Time is the additive reciprocal (1−x) of disk utilization.

■ Derive disk utilization as follows: Physical Disk(n)\Disk uti-
lization = 100% − Physical Disk(n)\% Idle Time

■ For disk arrays, divide disk utilization by the number disks
in the array to estimate individual disk busy. Note, howev-
er, that additional I/Os might be occurring on the disks that
are invisible to the operating system and that cause disks
in redundant arrays to be busier than this estimated value.
RAID subsystems require additional I/Os to maintain re-
dundant data. If cached disks use Lazy Write to defer writes
to disk, these writes to disk still take place, but only at some
later time.

■ Queue time can be expected to increase exponentially as
disk utilization approaches 100 percent, assuming inde-
pendent arrivals to the disk. Derive disk queue time as fol-
lows:
Physical Disk(n)\Disk service time =
Physical Disk(n)\Disk utilization ÷ Physical Disk(n)\Disk
Transfers/sec
Physical Disk(n)\Disk queue time = Physical Disk(n)\Avg.
Disk sec/Transfer − Physical Disk(n)\Disk service time

■ Apply an appropriate optimization strategy to improve
disk performance, depending on whether the problem is
excessive service time or queue time delays. See Chapter 5,
“Performance Troubleshooting,” for more details.

Performance Primary indicator to determine whether a physical disk is over-
loaded and serving as a potential bottleneck.

Capacity Planning Not applicable.

Operations Increased queue time contributes to poor disk response time,
which slows application response time.

Alert Threshold Alert when % Idle Time is < 20 percent.

Related Measures Physical Disk(n)\Avg. Disk secs/Transfer
Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\Current Disk Queue Length

Table 3-24 Physical Disk(n)\% Idle Time Counter

284 Microsoft Windows Server 2003 Performance Guide

Physical disk hardware can perform only one I/O operation at a time, so the number
of physical disks attached to your computer serves as an upper bound on the sustain-
able disk I/O rate. Table 3-26 describes the Physical Disk(n)\Current Disk Queue
Length counter.

Table 3-25 Physical Disk(n)\Disk Transfers/sec Counter

Counter Type Interval difference counter (rate/second).

Description The rate physical disk requests were completed over the interval.

Measurement Notes The start and end time of each I/O Request Packet (IRP) is record-
ed by the I/O Manager instrumentation layer. This counter reflects
the number of requests that completed during the interval.

Usage Notes The primary indicator of physical disk I/O activity. Also known as
the disk arrival rate.

■ Also broken down by Reads and Writes: Physical
Disk(n)\Disk Transfers/sec = Physical Disk(n)\Disk Reads/sec
+ Physical Disk(n)\Disk Writes/sec

■ For Disk arrays, divide Disk Transfers/sec by the number of
disks in the array to estimate individual disk I/O rates. Note,
however, that additional I/Os might be occurring on the
disks that are invisible to the operating system that cause
disks in redundant arrays to be busier than this estimated
value. In a RAID 1 or RAID 5 organization, additional I/Os
are required to maintain redundant data segments.

■ Used to calculate disk service time from % Idle Time by ap-
plying the Utilization Law.

Performance Primary indicator to determine whether the disk is a potential
bottleneck.

Capacity Planning Not applicable.

Operations Poor disk response time slows application response time.

Alert Threshold Depends on the underlying disk hardware.

Related Measures Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\% Idle Time
Physical Disk(n)\Current Disk Queue Length

Table 3-26 Physical Disk(n)\Current Disk Queue Length Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The current number of physical disk requests that are either in
service or are waiting for service at the disk.

Measurement Notes The start and end time of each I/O Request Packet (IRP) is re-
corded by the I/O Manager instrumentation layer. This counter
reflects the number of requests that are outstanding at the end
of the measurement interval.

Chapter 3: Measuring Server Performance 285

Because disk I/O interrupt processing has priority over System Monitor measurement
threads, the Current Disk Queue Length counter probably underestimates the extent
that disk queuing is occurring. It is useful, nevertheless, to confirm the extent that
disk queuing is occurring. Many I/O workloads are bursty, so you should not become
alarmed when you see nonzero values of the Current Disk Queue Length from time to
time. However, when the Current Disk Queue Length is greater than zero for sus-
tained intervals, the disk is overloaded.

Usage Notes A secondary indicator of physical disk I/O queuing.

■ Current Disk Queue Length is systematically under-sam-
pled because Interrupt processing, which reduces the
length of the disk request queue, runs at a higher dis-
patching priority than the software that gathers the disk
performance measurements from the PerfDisk.dll Perfor-
mance Library.

■ Useful to correlate this measured value with derived val-
ues like the Avg. Disk Queue Time, which you can calcu-
late, and the Avg. Disk Queue Length counter to verify
that disk queuing is a significant problem.

■ Values of the Current Disk Queue Length counter should
be interpreted based on an understanding of the nature
of the underlying physical disk entity. What appears to
the host operating system as a single physical disk might,
in fact, be a collection of physical disks that appear as a
single LUN. Array controllers are often used to create Vir-
tual LUNs that are backed by multiple physical disks. With
array controllers, multiple disks in the array can be per-
forming concurrent operations. Under these circumstanc-
es, the Physical Disk entity should then no longer be
viewed as a single server.

■ If multiple disks are in the underlying physical disk entity,
calculate the Current Disk Queue Length per physical
disk.

Performance Secondary indicator to determine whether the disk is a potential
bottleneck.

Capacity Planning Not applicable.

Operations Poor disk response time slows application response time.

Alert Threshold Alert when Current Disk Queue Length exceeds 5 requests per
disk.

Related Measures Physical Disk(n)\% Idle Time
Physical Disk(n)\Avg. Disk secs/Transfer
Physical Disk(n)\Avg. Disk Queue Length

Table 3-26 Physical Disk(n)\Current Disk Queue Length Counter

286 Microsoft Windows Server 2003 Performance Guide

Derived Disk Measurements

The Logical and Physical Disk counters include several counters derived from the
direct disk performance measurements that are prone to misinterpretation. These
counters include % Disk Read Time, % Disk Write Time, % Disk Time, Avg. Disk
Read Queue Length, Avg. Disk Write Queue Length, and Avg. Disk Queue Length. All
of these derived counters need to be interpreted very carefully to avoid confusion.

Caution Unlike the Physical Disk\% Idle Time counter, the % Disk Read Time, %
Disk Write Time, or % Disk Time counters do not attempt to report disk utilization.
Whereas % Idle Time is measured directly by the I/O Manager instrumentation layer,
% Disk Read Time, % Disk Write Time, and % Disk Time are derived from basic mea-
surements using a formula based on Little’s Law. The application of Little’s Law might
not be valid at that moment for your disk configuration.

The Avg. Disk Read Queue Length, Avg. Disk Write Queue Length, and Avg. Disk
Queue Length measurements are based on a similar formula. These derived counters
attempt to calculate the average number of outstanding requests to the Physical (or
Logical) Disk over the measurement interval using Little’s Law. However, Little’s Law
might not be valid over very small measurement intervals or intervals in which the disk
I/O is quite bursty.

These derived disk performance counters should be relied on only if you have a good
understanding of the underlying problems of interpretations.

As an alternative, you can always rely on the disk counters that are based on direct
measurements. These include the % Idle Time, Disk Transfers/sec, Avg. Disk secs/Trans-
fer, and Current Disk Queue Length counters.

Interpretation of the % Disk Time and Avg. Disk Queue Length counters is also diffi-
cult when the underlying physical disk entity contains multiple disks. What the host
operating system regards as a physical disk entity might, in fact, be a collection of
physical disks—or portions of physical disks—that are configured using an array con-
troller to appear as a single LUN. If the underlying physical disk entity contains mul-
tiple disks capable of performing disk operations in parallel—a function common to
most array controllers—the physical disk entity should not be viewed as a single
server. Under these circumstances, the measured values for the Current Disk Queue
Length and derived values of the Avg. Disk Queue Length reflect a single queue ser-
viced by multiple disks. If multiple disks are in the physical disk entity, you should
calculate the average queue length per disk. Table 3-27 describes the Physical
Disk(n)\Avg. Disk Queue Length counter.

Table 3-27 Physical Disk(n)\Avg. Disk Queue Length Counter

Counter Type Compound counter.

Description The estimated average number of physical disk requests that are
either in service or are waiting for service at the disk.

Chapter 3: Measuring Server Performance 287

Measurement Notes Avg. Disk Queue Length is derived using Little’s Law by multi-
plying Physical Disk(n)\Avg. Disk secs/Transfer by Physical
Disk(n)\Disk Transfers/sec. This counter estimates the average
number of requests that are in service or queued during the
measurement interval.

Usage Notes A secondary indicator of physical disk I/O queuing that requires
careful interpretation.

■ For very short measurement intervals or for intervals in
which the I/O activity is quite bursty, very high values of the
Avg. Disk Queue Length should be interpreted cautiously.
The use of Little’s Law to derive the average disk queue
length might not be valid for those measurement intervals.

■ Little’s Law requires the equilibrium assumption that the
number of I/O arrivals equals completion during the in-
terval. For short measurement intervals, compare the Cur-
rent Disk Queue Length to the value observed at the end
of the previous measurement interval. If the values are
significantly different, the use of Little’s Law to estimate
the queue length during the interval is suspect.

■ Correlate this derived value with measured values of the
Current Disk Queue Length for the same measurement
intervals.

■ Avg. Disk Read Queue Length and Avg. Disk Write Queue
Length are derived similarly:
Physical Disk(n)\Avg. Disk Read Queue Length = Physical
Disk(n)\Avg. Disk secs/Read × Physical Disk(n)\Disk
Reads/sec
Physical Disk(n)\Avg. Disk Write Queue Length = Physical
Disk(n)\Avg. Disk secs/Write × Physical Disk(n)\Disk Write
/sec
Interpretation of these values is subject to the same warn-
ings listed in the Caution earlier in this section.

■ Values of the Avg. Disk Queue Length counter should be
interpreted based on an understanding of the nature of the
underlying physical disk entity. What appears to the host
operating system as a single physical disk might, in fact, be
a collection of physical disks that appear as a single LUN.
Array controllers are often used to create Virtual LUNs that
are backed by multiple physical disks. With array control-
lers, multiple disks in the array can be performing concur-
rent operations. Under these circumstances, the physical
disk entity should no longer be viewed as a single server.

■ If multiple disks are in the underlying physical disk entity,
calculate the Avg. Disk Queue Length per physical disk.

■ % Disk Read Time, % Disk Time, and % Disk Write Time
are derived using the same formulas, except that the val-
ues they report are capped at 100 percent.

Table 3-27 Physical Disk(n)\Avg. Disk Queue Length Counter

288 Microsoft Windows Server 2003 Performance Guide

The Explain text for the % Disk Time counters is misleading. These counters do not
measure disk utilization or how busy the disk is, as the Explain text seems to imply.
Use the % Idle Time measurement instead to derive a valid measure of disk utiliza-
tion, as described earlier.

The % Disk Read Time, % Disk Time, and % Disk Write Time counters are derived
using the same application of Little’s Law formula, except that the values are reported
as percentages and the percentage value is capped at 100 percent. For example, if the
Avg. Disk Queue Length value is 0.8, the % Disk Time Counter reports 80 percent. If
the Avg. Disk Queue Length value is greater than 1, % Disk Time remains at 100 per-
cent.

Because the % Disk Time counters are derived using Little’s Law, similar to the way
the Avg. Disk Queue Length counters are derived, they are subject to the same inter-
pretation issues. Table 3-28 describes the Physical Disk(n)\% Disk Time counter.

Performance Secondary indicator to determine whether the disk is a potential
bottleneck.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Do not Alert on this counter value.

Related Measures Physical Disk(n)\% Idle Time
Physical Disk(n)\Avg. Disk secs/Transfer
Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\Current Disk Queue Length
Physical Disk(n)\% Disk Time

Table 3-28 Physical Disk(n)\% Disk Time Counter

Counter Type Compound counter.

Description The average number of physical disk requests that are either in
service or are waiting for service at the disk, expressed as a per-
centage.

Measurement Notes % Disk Time is derived using Little’s Law by multiplying Physical
Disk(n)\Avg. Disk secs/Transfer by Physical Disk(n)\Disk Trans-
fers/sec. The calculation is then reported as a percentage and
capped at 100 percent.

Table 3-27 Physical Disk(n)\Avg. Disk Queue Length Counter

Chapter 3: Measuring Server Performance 289

Usage Notes This derived value should be used cautiously, if at all.

■ This counter duplicates the Avg. Disk Queue Length cal-
culation, which estimates the average number of requests
that are in service or queued during the measurement in-
terval. % Disk Time reports the same value, as a percent-
age, as the Avg. Disk Queue Length for disks with an
average queue length <= 1. For disks with a calculated
average queue length > 1, % Disk Time always reports
100 percent.

■ % Disk Read Time, % Disk Time, and % Disk Write Time
are derived using the same formulas as the Avg. Disk
Queue Length counters, except they report values as per-
centages and the values are capped at 100 percent.

■ % Disk Read Time and % Disk Write Time are derived us-
ing similar formulas:
Physical Disk(n)\% Disk Read Time = 100 × min(1,(Physi-
cal Disk(n)\Avg. Disk secs/Read × Physical Disk(n)\Disk
Reads/sec))
Physical Disk(n)\% Disk Write Time = 100 × min(1,(Physi-
cal Disk(n)\Avg. Disk secs/Write × Physical Disk(n)\Disk
Write/sec)).
Interpretation of these values is subject to the same
Warning.

■ Values of the % Disk Time counters should also be inter-
preted based on an understanding of the nature of the un-
derlying physical disk entity. What appears to the host
operating system as a single physical disk might, in fact, be
a collection of physical disks that appear as a single LUN.
Array controllers are often used to create virtual LUNs that
are backed by multiple physical disks. With array control-
lers, multiple disks in the array can be performing concur-
rent operations. Under these circumstances, the physical
disk entity should no longer be viewed as a single server.

■ If multiple disks are in the underlying physical disk entity,
calculate the % Disk Time per physical disk.

Performance Not applicable. Use the % Idle Time and Avg. Disk Queue
Length counters instead.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Do not Alert on this counter value. Use the % Idle Time and Avg.
Disk Queue Length counters instead.

Related Measures Physical Disk(n)\% Idle Time
Physical Disk(n)\Avg. Disk secs/Transfer
Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\Current Disk Queue Length
Physical Disk(n)\Avg. Disk Queue Length

Table 3-28 Physical Disk(n)\% Disk Time Counter

290 Microsoft Windows Server 2003 Performance Guide

Split I/Os

Split I/Os are physical disk requests that are split into multiple requests, usually due
to disk fragmentation. The Physical Disk object reports the rate that physical disk I/
Os are split into multiple physical disk requests so that you can easily determine when
disk performance is suffering because of excessive file system fragmentation. Table 3-
29 describes the Physical Disk(n)\Split IO/sec counter.

Defragmenting disks on a regular basis or when the number of split I/Os is excessive
will normally improve disk performance, because disks are capable of processing

Table 3-29 Physical Disk(n)\Split IO/sec Counter

Counter Type Interval difference counter (rate/second).

Description The rate physical disk requests were split into multiple disk re-
quests during the interval. Note that when a split I/O occurs, the
I/O Manager measurement layers count both the original I/O
request and the split I/O request as split I/Os, so the split I/O
count accurately reflects the number of I/O operations initiated
by the I/O Manager.

Usage Notes A primary indicator of physical disk fragmentation.

■ Defragmenting disks on a regular basis helps improve
disk performance because sequential operations run sev-
eral times faster than random disk requests on most disks.
On disks with built-in actuator-level buffers, sequential
operations can run 10 times faster than random disk re-
quests.

■ A split I/O might also result when data is requested in a
size that is too large to fit into a single I/O.

■ Calculate split I/Os as a percentage of Disk Transfers/sec:
Physical Disk(n)\% Split IOs = Physical Disk(n)\Split IO/sec
÷ Physical Disk(n)\Disk Transfers/sec
When the number of split I/Os is 10–20 percent or more
of the total Disk Transfers, check to see whether the disk
is very fragmented.

■ Split I/Os usually take longer for the disk to service, so also
watch for a correlation with Physical Disk(n)\Avg. Disk
secs/Transfer. Higher values of Avg. Disk secs/Transfer
also contribute to greater disk utilization (1−% Idle Time).

Performance Secondary indicator that helps you determine how often you
need to run disk defragmentation software.

Capacity Planning Not applicable.

Operations Poor disk response time slows application response time.

Alert Threshold Alert when split I/Os > 20 percent of Disk Transfers/sec.

Related Measures Physical Disk(n)\Disk Transfers/sec
Physical Disk(n)\Avg. Disk secs/Transfer
Physical Disk(n)\% Idle Time

Chapter 3: Measuring Server Performance 291

sequential operations much faster than they process random requests. Be sure to
check the Analysis Report produced by the Defragmentation utility. If the report indi-
cates that the files showing the most fragmentation are the ones in constant use or the
ones being modified regularly, the performance boost gained from defragmenting the
disk might be short-lived. For more advice about using disk defragmentation utilities
effectively, see Chapter 5, “Performance Troubleshooting.”

Disk Space Usage Measurements

Two important disk space usage measurements are available in the Logical Disk
object: % Free Space and Free Megabytes. Because running out of disk space is almost
always catastrophic, monitoring the Free Space available on your logical disks is criti-
cal. Because disk space tends to be consumed gradually, you usually don’t have to
monitor disk free space as frequently as you do for many of the other performance
indicators you will gather. Monitoring disk free space hourly or even daily is usually
sufficient. Note that the Performance Library responsible for computing the Free
Megabytes and % Free Space counters, Perfdisk.dll, refreshes these measurements at a
slower pace because the counter values themselves tend to change slowly. By default,
these disk space measurements are refreshed once every 5 minutes, independent of
the Performance Monitor data collection interval. Using Performance Monitor to
gather these counters at a rate faster than approximately 5 minutes per sample, you
will retrieve counter values that are duplicates, reflecting the slow rate of data gather-
ing by the Perfdisk.dll Performance Library. Both the high overhead associated with
calculating Free Megabytes on very large file systems and the normally slow rate at
which these counter values change are the important factors that this slower rate of
data gathering reflects. Table 3-30 describes the Logical Disk(n)\Free Megabytes
counter.

Note Because of the high overhead associated with calculating % Free Space and
Free Megabytes on very large file systems, and the normally slow rate at which these
counter values change, these counters are normally measured only once every 5 min-
utes. If you need more frequent measurements to track file system growth, you can
add a binary Registry field at HKLM\System\CurrentControlSet\Services\Perfdisk\Per-
formance\VolumeRefreshInterval and change the VolumeRefreshInterval to a more
suitable value. Code the number of seconds you would like to wait between recalcu-
lations of the Logical Disk % Free Space and Free Megabytes metrics. The default Vol-
umeRefreshInterval is 300 seconds.

292 Microsoft Windows Server 2003 Performance Guide

You can use statistical forecasting techniques to extrapolate from the historical trend
of disk space usage to anticipate when you are likely to run out of disk space. See
Chapter 4, “Performance Monitoring Procedures,” for an example that uses linear
regression to forecast workload growth—a simple statistical technique that can readily
be adapted for long-term disk capacity planning.

Managing Network Traffic

Network traffic is instrumented at the lowest level hardware interface and at each
higher level in the TCP/IP stack. At the lowest level, both packets and byte counts are
accumulated. At the IP level, datagrams sent and received are counted. Statistics for
both IP version 4 and IP version 6 are provided. At the TCP level, counters exist for
segments sent and received, and for the number of initiated and closed connections.
At the network application level, similar measures of load and traffic are in, for exam-
ple, HTTP requests, FTP requests, file Server requests, network client Redirector
requests, as well other application-level statistics. In some cases, application response
time measures might also be available in some form.

Table 3-30 Logical Disk(n)\Free Megabytes Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The amount of unallocated space on the logical disk, reported
in megabytes.

Measurement Notes This is the same value reported by Windows Explorer on the
Logical Disk Property sheets.

■ This counter value tends to change slowly.

■ Because calculating free megabytes for very large file sys-
tems is time-consuming, the I/O Manager measurement
layers recalculate the value of the counter approximately
once every 5 minutes. When you gather this measure-
ment data more frequently than the rate at which it is re-
calculated, you will obtain static values of the counter that
reflect this slow rate of updating.

Usage Notes A primary indicator of logical disk space capacity used.

■ Divide by % Free Space or multiply by the reciprocal of
free space (1/% Free Space).

Performance Not applicable.

Capacity Planning Trending and forecasting disk space usage over time.

Operations Running out of space on the file system is usually catastrophic.

Alert Threshold Alert on this counter value or when Logical Disk(n)\% Free Space
< 10 percent.

Related Measures Logical Disk(n)\% Free Space.

Chapter 3: Measuring Server Performance 293

Network Interface Measurements

At the lowest level of the TCP/IP stack, the network interface driver software layer pro-
vides instrumentation on networking hardware performance. Network interface sta-
tistics are gathered by software embedded in the network interface driver layer. This
software counts the number of packets that are sent and received, and also tracks the
size of their data payloads. Multiple instances of the Network Interface object are gen-
erated, one for every network interface chip or card that is installed, plus the Loop-
back interface, if that is defined. Note that network packets that were retransmitted as
a result of collisions on an Ethernet segment are not directly visible to the host soft-
ware measurement layer. Ethernet packet collision detection and recovery is per-
formed on board the network adapter card, transparently to all host networking
software. Table 3-31 describes the Network Interface(n)\Bytes Total/sec counter.

Table 3-31 Network Interface(n)\Bytes Total/sec Counter

Counter Type Interval difference counter (rate/second).

Description Total bytes per second transmitted and received over this in-
terface during the interval. This is the throughput (in bytes)
across this interface.

Measurement Notes This counter tracks packets sent and received and accumulates
byte counts from packet headers as they are transmitted or re-
ceived. Packets are retransmitted on an Ethernet segment be-
cause collisions are not included in this count.

Usage Notes The primary indicator of network interface traffic.

■ Calculate network interface utilization: Network Inter-
face(n)\% Busy = Network Interface(n)\Bytes Total/sec ÷
Network Interface(n)\Current Bandwidth

■ Network packets that were retransmitted as a result of
collisions on an Ethernet segment are not counted. Col-
lision detection and recovery is entirely performed on
board the NIC, transparently to the host networking
software.

■ The Current Bandwidth counter reflects the actual per-
formance level of the network adaptor, not its rated ca-
pacity. If a gigabit network adapter card on a segment is
forced to revert to a lower speed, the Current Bandwidth
counter will reflect the shift from 1 Gbps to 100 Mbps,
for example.

■ The maximum achievable bandwidth on a switched link
should be close to 90–95 percent of the Current Band-
width counter.

294 Microsoft Windows Server 2003 Performance Guide

TCP/IP Measurements

Both the IP and TCP layers of the TCP/IP stack are instrumented. Windows Server
2003 supports both TCP/IP version 4 and version 6, and there are separate perfor-
mance objects for each, depending on which versions of the software are active. At the
IP level, Datagrams/sec is the most important indicator of network activity, which can
also be broken out into Datagrams Received/sec and Datagrams Sent/sec. Additional
IP statistics are available on packet fragmentation and reassembly. Table 3-32
describes the IPvn\Datagrams/sec counter.

Performance Primary indicator to determine whether the network is a po-
tential bottleneck.

Capacity Planning Trending and forecasting network usage over time.

Alert Threshold Alert when Total Bytes/sec exceeds 90 percent of line capacity.

Related Measures Network Interface(n)\Bytes Received/sec
Network Interface(n)\Bytes Sent/sec
Network Interface(n)\Packets Received/sec
Network Interface(n)\Packets Sent/sec
Network Interface(n)\Current Bandwidth

Table 3-32 IPvn\Datagrams/sec Counter

Counter Type Interval difference counter (rate/second).

Description Total IP datagrams per second transmitted and received during
the interval.

Measurement Notes The IP layer of the TCP/IP stack counts datagrams sent and re-
ceived.

Usage Notes The primary indicator of IP traffic.

Identical sets of counters are available for IPv4 and IPv6.

Performance Secondary indicator to determine whether the network is a po-
tential bottleneck.

Capacity Planning Trending and forecasting network usage over time.

Operations Sudden spikes in the amount of IP traffic might indicate the
presence of an intruder.

Alert Threshold Build alerts for important machines linked to the network back-
bone based on extreme deviation from historical norms.

Related Measures IPvn\Datagrams Received/sec
IPvn\Datagrams Sent/sec
Network Interface(n)\Packets/sec

Table 3-31 Network Interface(n)\Bytes Total/sec Counter

Chapter 3: Measuring Server Performance 295

For the TCP protocol, which is session- and connection-oriented, connection statis-
tics are also available. It is useful to monitor and track TCP connections both for secu-
rity reasons to detect Denial of Service attacks, and for capacity planning. Table 3-33
describes the TCPvn\Connections Established counter.

From a capacity planning perspective, TCP Connections Established measures the
number of network clients connected to the server. Additionally, characterizing each
session by its workload demand is useful. TCP activity is recorded by segments, which
then get broken into packets by the IP layer that are compatible with the underlying
hardware. Segments Received/sec corresponds to the overall request rate from net-
working clients to your server. Table 3-34 describes the counter.

Table 3-33 TCPvn\Connections Established Counter

Counter Type Instantaneous (sampled once during each measurement peri-
od).

Description The total number of TCP connections in the ESTABLISHED state
at the end of the measurement interval.

Measurement Notes The TCP layer counts the number of times a new TCP connec-
tion is established.

Usage Notes The primary indicator of TCP session connection behavior.

Identical counters are maintained for TCPv4 and TCPv6.

The number of TCP connections that can be established is con-
strained by the size of the Nonpaged pool. When the Nonpaged
pool is depleted, no new connections can be established.

Performance Secondary indicator to determine whether the network is a po-
tential bottleneck.

Capacity Planning Trending and forecasting growth in the number of network us-
ers over time. The administrator should tune TCP registry entries
like MaxHashTableSize and NumTcTablePartitions based on the
number of network users seen on average.

Operations Sudden spikes in the number of TCP connections might indicate
a Denial of Service attack.

Alert Threshold Build alerts for important machines linked to the network back-
bone based on extreme deviation from historical norms.

Related Measures TCPPvn\Segments Received/sec
TCPPvn\Segments Sent/sec
Network Interface(n)\Packets/sec
Memory\Nonpaged Pool Bytes

296 Microsoft Windows Server 2003 Performance Guide

If Windows Server 2003 machines are serving as networking hubs or gateways,
IPvn\Datagrams Received/sec and TCPvn\Segments Received track the number of
requests received from networking clients. For capacity planning, either of these indi-
cators of load can be used to characterize your machine’s workload in terms of net-
work traffic per user. When you are running machines dedicated to a single server
application—a dedicated IIS Web server, for example—you can also characterize pro-

Table 3-34 TCPvn\Segments Received/sec Counter

Counter Type Interval difference counter (rate/second).

Description The number of TCP segments received across established con-
nections, averaged over the measurement interval.

Measurement Notes The TCP layer counts the number of times TCP segments are re-
ceived.

Usage Notes The primary indicator of TCP network load.

■ Identical counters are maintained for TCPv4 and TCPv6.

■ Calculate the average number of segments received per
connection:
 TCPvn\Segments Received/sec ÷ TCPPvn\Connections
Established/sec
This can be used to forecast future load as the number of
users grows.

■ When server request packets are received from network
clients, depending on the networking application, the re-
quest is usually small enough to fit into a single Ethernet
message and IP Datagram. For HTTP and server message
block (SMB) requests, for example, TCPvn\Segments
Received/sec≅ IPvn\Datagrams Received/sec because
HTTP and SMB requests are usually small enough to fit
into a single packet.

Performance Secondary indicator to determine whether the network is a po-
tential bottleneck.

Capacity Planning Trending and forecasting network usage over time.

Operations Sudden spikes in the amount of TCP requests received might
indicate the presence of an intruder.

Alert Threshold Build alerts for important machines linked to the network back-
bone based on extreme deviation from historical norms.

Related Measures TCPPvn\Connections Established/sec
TCPPvn\Segments Sent/sec
IPvn\Datagrams Received/sec
Network Interface(n)\Packets/sec

Chapter 3: Measuring Server Performance 297

cessor usage per user connection, along with processor usage per request. Then as the
number of users increases in your forecast, you can also project the network and pro-
cessor resources that are required to service that projected load. Because of the exten-
sive use of memory-resident caching in most server applications, characterizing the
disk I/O rate per user or request isn’t easy, because the disk I/O rate could remain rel-
atively flat as the request load increases because of effective caching.

Networking Error Conditions

In all areas of network monitoring, pay close attention to any reported error incidents.
These include Network Interface(n)\Packets Received Errors, Network Inter-
face(n)\Packets Outbound Errors, IP\Datagrams Outbound No Route, IP\Datagrams
Received Address Errors, IP\Datagrams Received Discarded, TCP\Segments Retrans-
mitted/sec and TCP\Connection Failures. Configure alerts to fire when any of these
networking error conditions are observed.

Maintaining Server Applications

When the TCP layer is finished processing a segment received from a networking cli-
ent, the request is passed upwards to the networking application that is plugged into
the associated TCP port. Some of the networking applications you will be managing
might include:

■ File Server

■ Print server

■ Web server

■ SQL Server

■ Terminal Server

■ Exchange Mail and Messaging server

■ COM+ Server applications

These and other networking applications provide additional performance measure-
ments that can be used to characterize their behavior. This section highlights some of
the most important performance counters available from these networking applica-
tions that aid in their configuration and tuning.

298 Microsoft Windows Server 2003 Performance Guide

Thread Pooling

To aid in scalability, most server applications use some form of thread pooling. In gen-
eral, thread pooling means these server applications perform the following actions:

■ Define a pool that contains Worker threads that can handle incoming requests
for service.

■ Queue work requests as they arrive, and then release and dispatch Worker
threads to take a work request off the queue and complete it.

The maximum size of the thread pool defined by the server application is usually a
function of the size of RAM and the number of processors. There will be many
instances when the heuristic used to set the maximum size of thread pool is inade-
quate for your specific workload. When that happens, these server applications fre-
quently also have configuration and tuning options that allow you to do either of the
following actions, or both:

■ Increase the number of worker threads in the thread pool

■ Boost the dispatching priority of worker threads in the thread pool

Looking at these thread pooling server applications externally, from the point of view
of their process address space, Process(n)\Thread Count identifies the total number
of threads that are created, including the worker threads created in the thread pool.
You will frequently find that the Process(n)\Thread Count is a large, relatively static
number. However, inside the application, the situation is much more dynamic.
Worker threads are activated as work requests are received, up to the maximum size
of the thread pool, and they might be decommissioned later after they are idle.

Performance counters that are internal to the server application let you know how
many of the worker threads that are defined are in use. If you find that the following
two conditions are true for these thread pooling applications, you might find that
increasing the maximum size of the thread pool will boost throughput and improve
the responsiveness of the server application:

■ Running worker threads for sustained periods of time at or near the limit of the
maximum size of the pool

■ Neither the processor (or processors) or memory appears to be saturated

Chapter 3: Measuring Server Performance 299

In addition to monitoring the number of active worker threads, you might also find it
useful to track the client request rate and any counters that indicate when internal
requests are delayed in the request queue. For more information about thread pooling
in server applications, see Chapter 6, “Advanced Performance Topics.”

You might also find that increasing the maximum size of the thread pool makes no
improvement, merely resulting in higher context switch rates and increased CPU uti-
lization (with no increase in throughput). In this case, you should reduce the maxi-
mum size of the thread pool to its original size (or to an even lower value).

File Server

The file Server service that is available on all Windows Server 2003 machines is a good
example of a thread pooling application. It defines separate thread pools for each pro-
cessor, and then uses processor affinity to limit the amount of interprocessor commu-
nication that occurs. The file Server also provides extensive instrumentation that is
available in two performance objects: Server and Server Work Queues. You can moni-
tor the number of active worker threads in each Server Work Queue, the rate of
requests that are processed, the request queue length, and a number of error indica-
tors, along with other measurements.

The Server object contains overall file server statistics, including the number of file
server sessions, the rate of requests, and several error indicators. The most important
error indicator is the Server\Work Item Shortages counter, which tracks the number
of times a client request was rejected because of a resource shortage.

Table 3-35 Server\Work Item Shortages Counter

Counter Type Interval difference counter (rate/second).

Description The number of times a shortage of work items caused the file Serv-
er to reject a client request. This error usually results in session ter-
mination.

Measurement Notes The file Server counts the number of times a work item shortage
occurs.

300 Microsoft Windows Server 2003 Performance Guide

At the Server Work Queue level, you can drill down into more detail. One Server Work
Queue is defined for blocking requests, which are operations that require an I/O to
disk. Server implements an I/O completion port for worker threads that handle these
operations. Besides the Blocking Queue is one Server Work Queue defined per pro-
cessor, each with dedicated thread pool. The per processor Server Work Queues are
identified using the processor instance name. SMBs received from network clients are
assigned to the Server Work Queue associated with the processor where the network
interface interrupt was serviced. Threads from the thread pool are activated as neces-
sary to process incoming requests for service.

The file Server is well-instrumented. There are counters at the Server Work Queue
level for the number of Active Threads currently engaged in processing SMB requests
and Available Threads that could be scheduled if new work requests arrive. You
should verify that Available Threads is not equal to zero for any sustained period that

Usage Notes A primary indicator that the File Server service is short of resources.

■ As server message blocks (SMBs) are received from clients by
the Server service, the request is stored in a work item and
assigned to an available worker thread from the thread pool
to process. If worker threads are not available or cannot pro-
cess requests fast enough, the queue of Available Work
Items can become depleted. When no more work items are
available, the Server service cannot process the SMB request
and terminates the session with an error response.

■ If memory is available, add the values for the InitWorkItems
or MaxWorkItems parameters to the Registry key at
HKLM\SYSTEM\CurrentControlSet\Services\lanmanserv-
er\parameters to increase the number of work items that are
allocated.

Performance Primary indicator to determine whether the number of Server
Work items defined is a potential bottleneck.

Capacity Planning Not applicable.

Operations File Server clients whose sessions are terminated because of a work
item shortage must restore their session manually.

Alert Threshold Alert on any nonzero value of this counter.

Related Measures Server Work Queues(n)\Active Threads
Server Work Queues(n)\Available Threads
Server Work Queues(n)\Available Work Items
Server Work Queues(n)\Borrowed Work Items
Server Work Queues(n)\Queue Length
Server Work Queues(n)\Work Item Shortages.

Table 3-35 Server\Work Item Shortages Counter

Chapter 3: Measuring Server Performance 301

might cause the Work Item queue to back up. Table 3-36 describes the Server Work
Queues(n)\Available Threads counter.

Table 3-36 Server Work Queues(n)\Available Threads Counter

Counter Type Instantaneous (sampled once during each measurement period).

Description A sampled value that reports the number of available threads
from the per-processor Server Work Queue that are available to
process incoming SMB requests.

Measurement Notes The file Server counts the number of free worker threads.

Usage Notes A primary indicator that the file Server service is short of worker
threads.

■ When Available Threads is zero, incoming SMB requests
must be queued. If requests arrive faster than they can be
processed because there are no Available Threads, the
queue where pending work items are stored might back up.

■ If there are no Available Work Items, the server attempts to
borrow them from another processor Work Item queue.
Borrowing work items forces the Server to lock the per-pro-
cessor Work Item queue to facilitate interprocessor com-
munication, which tends to slow down work item
processing.

■ If Available Threads is at or near zero for any sustained pe-
riod, the Queue Length of waiting requests is > 5, and pro-
cessor resources are available—% Processor Time for the
associated processor instance < 80 percent—you should
add the value for MaxThreadsPerQueue to the Registry key
at HKLM\SYSTEM\CurrentControlSet\Services\lanmanserv-
er\parameters to increase the number of threads that are
created in the per-processor thread pools.

■ Per processor thread pools are defined so that there are
multiple instances of the Server Work queues performance
object on a multiprocessor.

■ The values of the Active Threads and Available Threads
counters for the Blocking queue can be safely ignored be-
cause the Blocking queue is managed differently from the
per-processor thread pools. Resources to process Blocking
queue requests are allocated on demand. The Server service
also utilizes the I/O completion port facility to process I/O
requests more efficiently.

Performance Primary indicator to determine whether the number of worker
threads defined for the per-processor Server Work queues is a po-
tential bottleneck.

Capacity Planning Not applicable.

302 Microsoft Windows Server 2003 Performance Guide

Each per-processor Server Work queue also reports on the number of queued
requests that are waiting for a worker thread to become available. Table 3-37 describes
the Server Work Queues(n)\Queue Length counter.

Operations File Server clients whose sessions are terminated because of a
work item shortage must restore their session manually.

Alert Threshold Alert on any zero value of this counter.

Related Measures Server\Work Item Shortages
Server Work Queues(n)\Active Threads
Server Work Queues(n)\Available Work Items
Server Work Queues(n)\Borrowed Work Items
Server Work Queues(n)\Queue Length
Server Work Queues(n)\Work Item Shortages

Table 3-37 Server Work Queues(n)\Queue Length Counter

Counter Type Instantaneous (sampled once during each measurement period).

Description A sampled value that reports the number of incoming SMB re-
quests that are queued for processing, waiting for a worker thread
to become available. There are separate per-processor Server
Work queues to minimize interprocessor communication delays.

Measurement Notes The file Server reports the number of SMB requests stored in work
items that are waiting to be assigned to an available worker
thread for servicing.

Usage Notes A secondary indicator that the file Server service is short of worker
threads.

■ Pay close attention to the per-processor work item queues,
and watch for indications that the queues are backing up.

■ Work items for the Blocking Queue are created on demand,
so the Blocking queue is managed differently from the per-
processor work queues. The Blocking queue is seldom a
bottleneck.

Performance Primary indicator to determine whether client SMB requests are
delayed for processing at the file Server. A secondary indicator
that the per-processor Work Item queue is backed up because of
a shortage of threads or processing resources.

Capacity Planning Not applicable.

Operations File Server clients whose sessions are terminated because of a
work item shortage must restore their session manually.

Alert Threshold Alert when the Queue Length > 5 for any processor Work Item
queue.

Related Measures Server\Work Item Shortages
Server Work Queues(n)\Active Threads
Server Work Queues(n)\Available Threads
Server Work Queues(n)\Available Work Items
Server Work Queues(n)\Borrowed Work Items
Server Work Queues(n)\Work Item Shortages

Table 3-36 Server Work Queues(n)\Available Threads Counter

Chapter 3: Measuring Server Performance 303

Print Servers

Printing is performed by worker threads associated with the Print Spooler service,
which executes as the Spoolsv.exe process. A tuning parameter allows you to boost
the priority of print spooler threads if you need to boost the performance of back-
ground printing services. The print spooler also supplies performance statistics in the
Print Queue object. Key performance counters include both print jobs and printed
pages. As you would for other server applications, set up alerts for error conditions.
Any nonzero occurrences of the Print Queue\Not Ready Errors, Out of Paper Errors,
and Job Errors that occur should generate alerts so that operations staff can intervene
promptly to resolve the error conditions.

Web-Based Applications

The Web server and FTP server functions in IIS are also structured as thread pooling
applications to assist in scalability. The IIS Web server contains many performance-
oriented parameters and settings, a complete discussion of which is beyond the scope
of this book.

More Info For more information about performance-oriented parameters and
settings for IIS Web server, see the “Internet Information Services (IIS) 6.0” topic under
“Internet and E-mail services” in the “Help and Support” documentation, and the
“Internet Information Services (IIS) 6.0 Help” in the Internet Information Services Man-
ager. Also see Chapter 13, “Optimizing IIS 6.0 Performance,” in the Microsoft Internet
Information Services (IIS) 6.0 Resource Kit from Microsoft Press.

IIS provides a number of performance objects, depending on which specific services
are defined, each with corresponding measures that report on the transaction load.
These objects and some of their most important measures of transaction load are
identified in the Table 3-38.

Table 3-38 IIS Critical Measurements

Object Counter Notes

SMTP Server Bytes Received/sec The Exchange Server Internet Mail Connector
(IMC) uses the IIS SMTP Server facility to com-
municate with other e-mail servers using the
SMTP protocol.

Bytes Sent/sec

Messages Received/sec

Messages Sent/sec

304 Microsoft Windows Server 2003 Performance Guide

IIS defines a pool of worker threads, which are then assigned dynamically to perform
the various tasks requested from the different installed Web applications. ASP and
ASP.NET applications also rely on additional thread pools. For example, ASP applica-
tion thread pools are governed by the AspProcessorThreadMax property, which is
stored in the metabase. In the case of ASP.NET applications, the maxWorkerThreads
and maxIOThreads properties from the processModel section of the Machine.config file
determine the size of the thread pool. Thread pool configuration and tuning for Web
server and other server applications is discussed in Chapter 6, “Advanced Perfor-
mance Topics.”

FTP Service Bytes Received/sec There is one instance of the FTP Service object
per FTP site, plus an _Total instance.

Bytes Sent/sec

Total Files Received

Total Files Sent

Web Service Bytes Received/sec There is one instance of the Web Service object
per Web site, plus an _Total instance.

Bytes Sent/sec

Get Requests/sec

Post Requests/sec

ISAPI Extension Re-
quests/sec

NNTP Service Articles Received/sec

Articles Sent/sec

Bytes Received/sec

Bytes Sent/sec

Active Server
Pages

Requests/sec

ASP.NET Requests/sec

ASP.NET
Applications

Requests/sec There is one instance of the ASP.NET Applica-
tions object per ASP.NET application, plus an
_Total instance.

Table 3-38 IIS Critical Measurements

Object Counter Notes

Chapter 3: Measuring Server Performance 305

Both Active Server Pages and ASP.NET provide many additional metrics, including
some important response time indicators. Table 3-39 describes the Active Server
Pages\Request Execution Time and ASP.NET\Request Execution Time counters.

Active Server Pages\Request Execution Time and ASP.NET\Request Execution Time
are indicators of ASP and ASP.NET application service time, respectively. But both

Table 3-39 Active Server Pages\Request Execution Time and ASP.NET\Request
Execution Time Counters

Counter Type Instantaneous (sampled once during each measurement period).

Description The execution time in milliseconds of the ASP or ASP.NET transac-
tion that completed last.

Measurement Notes This is the same value that is available in the IIS log as the Time
Taken field. It is the Time Taken for the last ASP Request that com-
pleted execution. If you gather this counter at a rate faster than
the ASP Requests/sec transaction arrival rate, you will gather du-
plicate counter values.

Usage Notes A primary indicator of ASP and ASP.NET application service time.

Properly viewed as a sample measurement of ASP or ASP.NET
transaction service time. Because it is a sampled value and it is im-
possible to tell what specific transaction was completed last, you
should not use this counter for operational alerts.

Calculate ASP application response time by adding Active Server
Pages\Request Queue Time:

Active Server Pages\Request Response Time = Active Server
Pages\Request Execution Time + Active Server Pages\
Request Queue Time

Calculate ASP.NET application response time by adding
ASP.NET\Request Queue Time:

ASP.NET \Request Response Time = ASP.NET \Request Execution
Time + ASP.NET \Request Queue Time

Performance A primary indicator of ASP or ASP.NET application service time.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Do not alert on this counter.

Related Measures Active Server Pages\Requests/sec
Active Server Pages\Request Queue Time
Active Server Pages\Requests Executing
Active Server Pages\Requests Queued
ASP.NET\Requests/sec
ASP.NET\Request Queue Time
ASP.NET\Requests Executing
ASP.NET\Requests Queued

306 Microsoft Windows Server 2003 Performance Guide

counters need to be treated as sampled measurements, or a single observation. You
need, for example, to accumulate several hundred sample measurements during peri-
ods of peak load to be able to estimate the average Request Execution Time accurately
over that interval. Table 3-40 describes the Active Server Pages\Request Queue Time
and ASP.NET\Request Queue Time counters.

Adding ASP.NET Request Execution Time and Request Queue Time yields the
response time of the last ASP.NET transaction. This derived value also needs to be
treated as a sample measurement, or a single observation. In a spreadsheet, for exam-
ple, accumulate several hundred sample measurements of Request Execution Time
and Request Queue Time during periods of peak load, and then summarize them to

Table 3-40 Active Server Pages\Request Queue Time and ASP.NET\Request
Queue Time Counters

Counter Type Instantaneous (sampled once during each measurement peri-
od).

Description The queue time in milliseconds of the ASP or ASP.NET transac-
tion that completed last.

Measurement Notes This is the Queue Time delay value for the last ASP or ASP.NET
request that completed execution. If you gather this counter at
a rate faster than the ASP Requests/sec transaction arrival rate,
you will gather duplicate counter values.

Usage Notes A primary indicator of ASP or ASP.NET application queue time.

Properly viewed as a sample measurement of ASP or ASP.NET
transaction queue time. Because it is a sampled value and it is
impossible to tell what specific transaction completed last, you
should not use this counter for operational alerts.

Calculate ASP.NET application response time by adding
ASP.NET \Request Execution Time:

ASP.NET \Request Response Time = ASP.NET \Request Execution
Time + ASP.NET \Request Queue Time

Performance A primary indicator of ASP or ASP.NET application queue time.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Do not alert on this counter.

Related Measures Active Server Pages\Requests/sec
Active Server Pages\Request Execution Time
Active Server Pages\Requests Executing
Active Server Pages\Requests Queued
ASP.NET\Requests/sec
ASP.NET \Request Execution Time
ASP.NET\Requests Executing
ASP.NET\Requests Queued

Chapter 3: Measuring Server Performance 307

estimate the average Request Response Time during the period. Table 3-41 describes
the Active Server Pages\Requests Executing and ASP.NET\Requests Executing
counters.

The ProcessorThreadMax property is an upper limit on the number of ASP.NET Requests
that can be in service at one time. If all available ASP.NET threads are currently busy
when a new ASP.NET request arrives, the request is queued and must wait until one of
the requests in service completes and an ASP.NET worker thread becomes available.

Tip The ProcessorThreadMax parameter can have a significant affect on the scalability
of your ASP applications. When ASP.NET\Requests Executing is observed at or near Pro-
cessorThreadMax multiplied by the number of processors, consider increasing the value
of ProcessorThreadMax. For more details, see Chapter 6, “Advanced Performance Topics.”

Table 3-41 Active Server Pages\Requests Executing and ASP.NET\Requests
Executing Counters

Counter Type Instantaneous (sampled once during each measurement period).

Description The number of ASP or ASP.NET requests that are currently being
executed.

Usage Notes A primary indicator of ASP application concurrency. Each active
ASP or ASP.NET request is serviced by a worker thread.

If all ASP or ASP.NET threads are currently busy when a new re-
quest arrives, the request is queued.

This is an instantaneous counter that reports the number of ASP
or ASP.NET threads currently occupied with active requests.

Performance A primary indicator of ASP or ASP.NET application concurrency.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Alert when this ASP\Requests Executing ≥ (AspProcessorThread-
Max − 2) × #_of _processors.

Alert when this ASP.NET\Requests Executing ≥ (ProcessorThread-
Max − 2) × #_of _processors.

Related Measures Active Server Pages\Requests/sec
Active Server Pages\Request Queue Time
Active Server Pages\Requests Execution Time
Active Server Pages\Requests Queued
ASP.NET\Requests/sec
ASP.NET\Request Queue Time
ASP.NET \Requests Execution Time
ASP.NET Requests Queued

308 Microsoft Windows Server 2003 Performance Guide

Consider, for example, an ASP.NET application that services 10 requests per second. If
the average response of ASP.NET applications is 4 seconds, Little’s Law predicts that
the number of ASP.NET requests in the system equals the arrival rate multiplied by
the response time, or 10 × 4, or 40, which is how many ASP.NET\Requests Executing
you would expect to see. If ProcessorThreadMax is set to its default value, which is 20,
and IIS is running on a 2-way multiprocessor, the maximum value you could expect to
see for ASP.NET\Requests Executing is 40. Absent other obvious processor, memory,
or disk resource constraints on ASP.NET application throughput, observing no more
than 40 Requests Executing during periods of peak load might mean that the Proces-
sorThreadMax is an artificial constraint on ASP.NET throughput. For a more detailed
discussion of server thread pooling applications and their scalability, see Chapter 6,
“Advanced Performance Topics.” Table 3-42 describes the Active Server
Pages\Requests Queued and ASP.NET\Requests Queued counters.

Table 3-42 Active Server Pages\Requests Queued and ASP.NET\Requests
Queued Counters

Counter Type Instantaneous (sampled once during each measurement peri-
od).

Description The number of ASP or ASP.NET requests that are currently
queued for execution, pending the availability of an ASP or
ASP.NET worker thread.

Usage Notes A primary indicator of ASP or ASP.NET concurrency constraint.
Each active request is serviced by a worker thread. The number
of worker threads available to process ASP requests is governed
by the AspProcessorThreadMax property in the IIS metabase.
AspProcessorThreadMax defaults to 25 threads per processor in
IIS 6.0. The number of worker threads available to process
ASP.NET requests is governed by the ProcessorThreadMax
property in the Machine.config settings file. ProcessorThread-
Max defaults to 20 threads per processor in .NET version 1.

If all worker threads are currently busy when a new request ar-
rives, the request is queued.

This is an instantaneous counter that reports the number of ASP
or ASP.NET threads currently occupied with active requests.

Estimate average ASP Request response time using Little’s Law:

Active Server Pages\Request response time = (Active Server Pag-
es\Requests Executing + Active Server Pages\Requests Queued)
÷ Active Server Pages\Requests/sec

Estimate average ASP.NET request response time using Little’s
Law:

ASP.NET\Request response time = (ASP.NET\Requests Executing
+ ASP.NET\Requests Queued) ÷ ASP.NET\Requests/sec

Chapter 3: Measuring Server Performance 309

The ASP.NET counters (and their Active Server Pages corresponding counters) can
also be used to estimate response time on an interval basis using Little’s Law.
Together, ASP.NET\Requests Executing and ASP.NET\Requests Queued measure the
number of ASP.NET requests currently in the system at the end of the interval. Assum-
ing the equilibrium assumption is not violated—that ASP.NET transaction arrivals
roughly equal completions over the interval—then divide the number of requests in
the system by the arrival rate, ASP.NET\Requests/sec, to calculate average ASP.NET
application response time. This value should correlate reasonably well with the sam-
pled ASP.NET response time that you can calculate by adding ASP.NET\Requests Exe-
cution Time and ASP.NET\Requests Queue Time over an interval in which you have
accumulated sufficient samples.

Similar ASP.NET measurements are available at the .NET application level.

Tip Any time your Web site reports ASP.NET\Requests Executing at or near the Pro-
cessorThreadMax × the number of processors maximum, consider boosting the num-
ber of ASP.NET threads.

You might find that increasing ProcessorThreadMax makes no improvement, merely
resulting in higher context switch rates and increased CPU utilization (with no increase
in throughput). In this case, reduce the number to its original size (or to an even lower
value).

This is a simplified view of Web application thread pooling. With Web application gar-
dens and ASP and ASP.NET applications running in isolated processes, the configura-
tion and tuning of the Web server application thread pool grows more complicated.
See Chapter 6, “Advanced Performance Topics,” for more details.

Performance A primary indicator of ASP and ASP.NET application
concurrency.

Capacity Planning Not applicable.

Operations Not applicable.

Alert Threshold Alert when this counter ≥ 5 × #_of _processors.

Related Measures Active Server Pages\Requests/sec,
Active Server Pages\Request Queue Time
Active Server Pages\Requests Execution Time
Active Server Pages\Requests Queued
ASP.NET\Requests/sec
ASP.NET\Request Queue Time
ASP.NET\Requests Execution Time
ASP.NET\Requests Queued

Table 3-42 Active Server Pages\Requests Queued and ASP.NET\Requests
Queued Counters

310 Microsoft Windows Server 2003 Performance Guide

Terminal Services

Terminal Services provides many unique capabilities. With Terminal Services, for
example, a single point of installation of a desktop application can be made available
centrally to multiple users. Users sitting at Terminal Server client machines can run
programs remotely, save files, and use network resources just as though the applica-
tions were installed locally. Terminal Server can also deliver Windows desktop appli-
cations to computers that might not otherwise be able to run the Windows operating
system.

Similar to other server applications, there might be many Terminal Server clients that
depend on good performance from your Terminal Server machine or machines. Effec-
tive performance monitoring procedures are absolutely necessary to ensure good ser-
vice is provided to Terminal Server clients.

When a Terminal Server client logs on to Windows Server 2003 configured to run Ter-
minal services, it creates a Terminal Server session. Table 3-43 describes the Terminal
Services\Total Sessions counter.

Table 3-43 Terminal Services\Total Sessions Counter

Counter Type Instantaneous
(sampled once during each measurement period).

Description The total number of Terminal Server sessions, including both ac-
tive and inactive sessions.

Usage Notes The primary indicator of total Terminal Server clients. It includes
both inactive and active sessions.

Terminal Server creates and maintains a desktop environment
for each active session. This requires private copies of the fol-
lowing processes: Explorer, Winlogon, Smss.exe, Lsass.exe, and
Csrss.exe. Additional private copies of any processes that the
Terminal Server launches from the desktop are also created.

Private copies of the desktop processes are retained for dura-
tion of the session, regardless of whether the session is inactive
or active.

Performance Not applicable.

Capacity Planning Trending and forecasting Terminal Server usage over time.

Operations Terminal Server capacity constraints can affect multiple Termi-
nal Server clients.

Alert Threshold Do not alert on this counter.

Related Measures Terminal Services\Active Sessions
Terminal Services\Inactive Sessions

Chapter 3: Measuring Server Performance 311

Every Terminal Server session is provided with a Windows desktop environment,
which is supported by private instances of several critical processes: the Explorer
desktop shell, a Winlogon process for authentication, a private copy of the Windows
Client/Server Subsystem, Csrss.exe, the Lsass.exe, and Smss.exe security subsystem
processes. In addition, Terminal Server creates process address spaces associated with
the desktop application that the Terminal Server client is running remotely. A Termi-
nal Server supporting a large number of Terminal Server clients must be able to sus-
tain a large number of process address space and execution threads.

In practice, this means that large Terminal Server deployments on 32-bit machines
can encounter severe 32-bit virtual memory addressing constraints. With enough Ter-
minal Server clients on a 32-bit server machine, virtual memory shortages in the sys-
tem area can occur, specifically in the system Paged pool or the pool of available
system PTEs.

More Info For more information about virtual memory shortages, see the “Win-
dows Server 2003 Terminal Server Capacity and Scaling” white paper at http://
www.microsoft.com/windowsserver2003/techinfo/overview/tsscaling.mspx, and the
discussion in Chapter 5, “Performance Troubleshooting,” which addresses 32-bit vir-
tual memory constraints.

The Memory\Pool Paged Bytes and Memory\Free System Page Table Entries counters
should be tracked on Terminal Server machines to determine whether 32-bit virtual
memory shortages are a concern. Note that systems with 64-bit virtual addressing, such
as x64 and IA64 systems, provide more Terminal Server capacity than 32-bit systems.

A related concern, discussed at length in the “Windows Server 2003 Terminal Server
Capacity and Scaling” white paper, is a potential shortage of physical memory for the
system file cache because of contention for RAM with the system’s Paged pool and
pool of System PTEs. The file cache shares the range of system virtual memory avail-
able to the operating system with the Paged pool and the System PTE pool. Direct evi-
dence that the size of the system file cache might be constrained is obtained by
monitoring the Cache\Copy Read Hits % counter. For the sake of delivering good per-
formance to Terminal Server clients, the Cache\Copy Read Hits % counter should be
consistently above 95 percent. In fact, the authors of the “Windows Server 2003 Ter-
minal Server Capacity and Scaling” white paper recommend that Cache\Copy Read
Hits % counter remain at a 99 percent level for optimal performance.

313

Chapter 4

Performance Monitoring
Procedures

In this chapter:

Understanding Which Counters to Log . 314

Daily Server Monitoring Procedures. 316

Using a SQL Server Repository. 365

Capacity Planning and Trending . 379

Counter Log Scenarios . 388

Troubleshooting Counter Collection Problems . 395

The regular performance monitoring procedures you implement need to be able to
serve multiple purposes, including the following:

■ Detecting and diagnosing performance problems

■ Verifying that agreed-upon service levels are being met

■ Supporting proactive capacity planning initiatives to anticipate and relieve
impending resource shortages before they impact service levels

In this chapter, sample performance-monitoring procedures are described that will
help you meet these important goals. These sample procedures, which center on a
daily performance data-gathering process that you can easily implement, are general-
ized and thus are appropriate for both small- and large-scale enterprises. However, you
will likely need to customize them to some degree to suit your specific environment.

These sample procedures will also help you start diagnosing common server perfor-
mance problems. Additional recommendations will address performance alerts, man-
agement reporting, and capacity planning.

The final section of this chapter documents procedures that you should follow when
you experience a problem using the Performance Monitor to gather specific perfor-
mance statistics. For example, applications that install or uninstall performance
counters can sometimes do so incorrectly, in which case you can use the procedures
described here to restore the performance counter infrastructure integrity. Doing so
will ensure that Performance Monitor correctly reports performance statistics.

314 Microsoft Windows Server 2003 Performance Guide

The sample procedures in this chapter are designed to help you anticipate a wide vari-
ety of common performance problems. They rely on the Log Manager and Relog auto-
mated command-line tools that were discussed in Chapter 2, “Performance
Monitoring Tools.” Log Manager and Relog will help you log counters from the local
machine to a local disk and gather the most important performance counters, which
were highlighted in Chapter 3, “Measuring Server Performance.”

These sample automated procedures allow you to detect and diagnose many perfor-
mance problems. They rely on background data-gathering sessions that you may ana-
lyze at length later after a problem is reported. Still, the amount of data it is suggested
you collect continuously for daily performance monitoring will not always be ade-
quate to solve every performance-related problem. Sometimes you will need to aug-
ment these background data collection procedures with focused real-time
monitoring. Use real-time monitoring when you need to gather more detailed infor-
mation about specific situations.

More Info Trying to diagnose any complex performance problem is often chal-
lenging. Trying to diagnose a complex performance problem in real time using the
System Monitor is even more difficult. Unless you know precisely what you are looking
for and the problem itself is persistent, it can be difficult to use the System Monitor in
real time to identify the cause of a performance problem. In a real-time monitoring
session, you have so many counters and instances of counters to look at and analyze
that the problem might disappear before you are able to identify it. Problem diagnosis
is the focus of Chapter 5, “Performance Troubleshooting.”

Understanding Which Counters to Log
A daily performance monitoring procedure that is effective in helping you detect, diag-
nose, and resolve common performance problems must gather large quantities of use-
ful performance data, which you can then edit, summarize, and use in management
reporting and capacity planning. The first decision you will have to make is about
which performance counters, among all those that are available, you should gather on
a regular basis.

Background Performance Monitoring

A daily performance monitoring regimen that sets up background counter log ses-
sions to gather performance data on a continuous basis allows you to detect and

Chapter 4: Performance Monitoring Procedures 315

resolve common performance problems when they arise. Because it is impossible to
know in advance which key resources are saturated on a machine experiencing perfor-
mance problems, in an ideal world you would collect performance data on all the key
resources, such as the processor, memory, disk, and network. However, overhead con-
siderations dictate that you can never collect all the available performance informa-
tion about all resources and all workloads all the time on any sizable machine running
Microsoft Windows Server 2003. Thus, you must be selective about which data you
are going to gather and how often you will collect it. Striking a balance between the
amount of data you will gather and analyze and the costs associated with that process
is important.

To detect and diagnose common performance problems involving overloaded
resources, you need to gather a wide range of detailed performance data on processor,
memory, disk, and network utilization and the workloads that are consuming those
resources. This data should include any performance counters that indicate error con-
ditions, especially errors resulting from a shortage of internal resources. This chapter
discusses some of the key error indicators you should monitor.

Management Reporting

Normally, much less detailed information is required for service-level and other forms
of management reporting. Thus, the level of detail provided by daily performance
monitor procedures appropriate for detecting and resolving common performance
problems is more than adequate for management reporting. In fact, to build manage-
ment reporting procedures that scale efficiently across a large organization, you typi-
cally would find it helpful to summarize your daily performance counter logs first,
prior to reporting. Summarizing the daily counter logs will reduce the size of the files
that need to be transferred around the network and improve the efficiency of the
reporting procedures.

Service-level reporting focuses on resource consumption and measures of load such
as logons, sessions, transaction rates, and messages received. Service-level reporting is
often of interest to a wider audience of system management professionals, many of
whom might not be intimately familiar with the way Windows Server 2003 and its
major server applications function. Consequently, it is important to avoid reporting
too much technical detail in management reports aimed at this wider audience.
Rather, focus service-level reporting on reporting a few key measures of resource utili-
zation and load that are widely understood.

316 Microsoft Windows Server 2003 Performance Guide

Capacity Planning

Finally, to implement proactive capacity planning, in which you identify workload
growth trends, reliably predict workload growth, and forecast future requirements,
you track and accumulate historical data on key resource usage and consumption lev-
els over time. You will probably need to do this for only a small number of key com-
puter components such as the processor, the networks and the disks, and a few key
applications. The counter log data that feeds your management reporting processes
will be edited and summarized again to support capacity planning, at which point the
emphasis shifts to building an historical record of computer resource usage data.

You can reliably predict the future with reasonable accuracy only when you have
amassed a considerable amount of historical data on the patterns of workload growth.
For example, for every unit of time that you want to predict future workload growth,
you need, at a minimum, an historical record equal to twice that amount of time. Thus,
capacity planning requires that you maintain a record of resource usage over long peri-
ods of time. Typically, only when you have accumulated at least 2–3 years of data can
you make reasonably accurate forecasts of capacity requirements that will feed deci-
sion making for an annual budget cycle.

In planning for future capacity requirements, seasonal patterns of activity often have a
major impact. Seasonal variations in many production workloads commonly occur in
monthly and annual cycles. For example, higher rates of financial transaction process-
ing are often associated with month-end and year-end closings. You will need to pro-
vide computer capacity that is sufficient to absorb these month-end and year-end peak
loads. In a retail sales organization, you are likely to find that patterns of consumer
purchases are tied to holiday gift giving, when you can expect much higher transac-
tion volume. It goes without saying that these peak transaction rates must be accom-
modated somehow. You will be able to factor in seasonal variations in workload
demand only after you accumulate historical data reflecting multiple cycles of that sea-
sonal activity.

Daily Server Monitoring Procedures
This section details a model daily performance monitoring procedure, which is part of
a comprehensive program of proactive performance management. This procedure
includes the following daily activities:

Chapter 4: Performance Monitoring Procedures 317

■ Automatically gathering an in-depth view of system performance using counter
logs

■ Monitoring key system and server application error indicators

■ Setting up alerts that automatically trigger the collection of detailed, diagnostic
counter logs

■ Developing management reports on key performance metrics that can be
viewed by interested parties in your organization

■ Retaining summarized performance statistics to support capacity planning

■ Managing the counter logs that are created automatically during these processes

Remember that the model performance monitoring practices and procedures dis-
cussed here will require tailoring for use in your environment, based on your site-spe-
cific requirements. For instance, each IT organization tends to have unique
management reporting requirements impacting the type and quantity of reports gen-
erated and the data included on those reports. The practices and procedures here rep-
resent a good place for you to start building an effective performance management
function within your IT organization.

Daily Counter Logs

The first step in monitoring machines running Windows Server 2003 is to establish
automated data logging using the Log Manager (logman) command-line utility.

The command shown in Listing 4-1 establishes a daily performance logging proce-
dure using a settings file that defines the performance counters you want to gather. (A
sample settings file is described later.) The command also references a command file
to be executed when the daily counter log files are closed. (A sample script to perform
typical post-processing is also illustrated.)

Listing 4-1 Establishing Daily Performance Logging
logman create counter automatic_DailyLog -cf "c:\perflogs\basic-counters-

setting-file.txt" -o C:\Perflogs\Today\BasicDailyLog -b 1/1/2004 00:00:00

-cnf 24:00:00 -si 1:00 -f BIN -v mmddhhmm -rc c:\perflogs\post-process.vbs

After you execute this command, the counter log you defined is visible and should
look similar to the display shown in Figure 4-1. If you use the counter log’s graphical
user interface, you can confirm the properties used to establish the logging session, as
illustrated.

318 Microsoft Windows Server 2003 Performance Guide

Figure 4-1 Properties used to establish the logging session

As documented in Chapter 2, “Performance Monitoring Tools,” the Log Manager util-
ity allows you to configure background counter log data-gathering sessions. Table 4-1
parses the Log Manager command parameters that are used in Listing 4-1 and
explains what it is they accomplish.

The Log Manager -v parameter allows you to generate unique file names for the
counter logs created daily. The Performance Logs and Alerts snap-in supports an addi-
tional file versioning option that specifies the date in yyyymmdd format. If you prefer
to have counter log file names automatically versioned using a yyyymmdd format, you

Table 4-1 Parsing the Log Manager Command Parameters

Log Manager Parameter Explanation

-cf “c:\perflogs\
basic-counters-
setting-file.txt"

The counters to log are specified in a counters settings file.
An example of a basic-counters-setting-file is provided in
the section “A Sample Counter Settings File” in this chapter.

-b 1/1/2004 00:00:00 -cnf
24:00:00

Logging is initiated automatically by the System Monitor
logging service as soon as your machine reboots and runs
continuously for a 24-hour period.

-si 1:00 Data samples are collected once per minute.

-f BIN Data logging is performed continuously to a binary log file.
The binary format is used for the sake of efficiency and to
save on the amount of disk space consumed.

-v mmddhhmm Automatic versioning is used to create unique daily
counter log file names.

-rc c:\perflogs\
post-process.bat

At the end of a data logging session, when the log file is
closed, a script is launched. This script performs file man-
agement and other post-processing. This post processing
includes deleting older copies of the counter log files that
were created previously, and summarizing the current log
file for daily reporting. A sample post-processing script is
provided in “Automated Counter Log Processing” in this
chapter.

Chapter 4: Performance Monitoring Procedures 319

can use the Performance snap-in afterward to manually modify the counter log prop-
erties to append the year, month, and day to the counter log file name.

When you are satisfied that the counter logging session you created is correctly spec-
ified, issue the command shown in Listing 4-2 to start logging data.

Listing 4-2 Starting Logging Data
logman start counter automatic_DailyLog

Logging Local Counters to a Local Disk

The daily performance monitoring procedure recommended here generates counter
logs that contain local counters that are written in binary format to a local disk. The
example writes counter log files to a local disk folder named C:\Perflogs\Today,
although any suitable local disk folder will do. Binary log file format is recommended
because it is more efficient and consumes less overhead.

Logging local counters to a local disk permits you to implement a uniform perfor-
mance monitoring procedure across all the machines in your network, enabling you to
scale these procedures to the largest server configurations, no matter what the net-
work topology is.

The daily performance monitoring procedures documented here assume that local
counter log data is written to a local disk folder, although other configurations are
possible. Counter logs, for example, can be used to gather data from remote comput-
ers. Gathering data remotely is appropriate when you cannot get physical access to the
remote machine. In those circumstances, it is simpler to perform performance data
gathering on one centrally located machine that is designed to pull counter data from
one or more remote machines. However, such a procedure is inherently less robust
than having counter logs running locally, because a data collection problem on any
remote machine can impact all machines that the centralized process is designed to
monitor. The network impact of monitoring remote machines must also be under-
stood. This topic is discussed in greater detail in the “Counter Log Scenarios” section.

When you log counter log data to a local disk, you are required to manage the counter
log files that are created on a regular basis so that they do not absorb an inordinate
amount of local disk space. Without some form of file aging and cleanup, the counter
logs you generate daily can be expected to absorb as much as 30–100 MB of local disk
space on your servers each day they are active. In the section “Automated Counter Log
Processing,” a sample post-processing script is provided that uses Microsoft Visual
Basic Scripting Edition (VBScript) and Windows Script Host (WSH) and can perform
this daily file management and cleanup.

320 Microsoft Windows Server 2003 Performance Guide

Using the Relog command-line utility, you can transform binary format files later into
any other form. For example, you can create summarized files that can then be trans-
ferred to a consolidation server on the network. You can also create comma-delimited
text files for use with programs like Microsoft Excel, which can generate useful and
attractive charts and graphs. Using Relog, you can also build and maintain a SQL
Server database of consolidated counter log data from a number of servers that will
serve the needs of capacity planners.

Logging to a Network Share

Instead of generating counter logs in binary format to a local disk folder, many people
prefer to write counter logs to a network-shared folder. Because it can simplify file
management, this approach is often preferred. If you opt for this method, however,
note the following considerations, which might affect the scalability of your perfor-
mance monitoring procedures at sites where a large number of servers exist:

■ Be careful not to overload the network. If your daily counter log consumes 50
MB of disk space per day, spread over a 24-hour period, that consumption
amounts to only about 600 bytes per server per second of additional load that
your network must accommodate. To determine the approximate load on the
network to perform remote data logging, multiply by the number of servers that
will be logging to the same network shared folder.

■ Make sure that your counter log session runs under a User ID that has permis-
sion to access the shared network folder. This User ID also must also be a mem-
ber of the built-in Performance Log Users group. To add User credentials to a
Log Manager session, use the -u parameter to specify UserName and Password.
Using Performance Logs and Alerts in the Performance Monitor console, you
must set the Run As parameter on the General properties page for your counter
log.

■ Ensure that the Windows Time Service is used to synchronize the clocks on all
the servers that are writing counter log files to a shared network folder.

More Info For a description of how to use the Windows Time Service to syn-
chronize the clocks on the machines on your Windows Server 2003 network, see
the documentation entitled “Windows Time Service Technical Reference”
posted on TechNet at http://www.microsoft.com/resources/documentation
/WindowsServ/2003/all/techref/en-us/W2K3TR_times_intro.asp.

■ Embed the computer name in the file names of the counter log files so that you
can easily identify the machine they come from.

Chapter 4: Performance Monitoring Procedures 321

These considerations can be easily accomplished using a WSH script. For example,
the VBScript shown in Listing 4-3 returns the local computer name in a variable
named LogonServer.

Listing 4-3 Identifying the Source Machine
Set WshShell = CreateObject("Wscript.Shell")

Set objEnv = WshShell.Environment("Process")

LogonServer = objENV("COMPUTERNAME")

Next, you can construct a file name with the local computer name embedded in it
using the script code shown in Listing 4-4.

Listing 4-4 Constructing a File Name
Const PerflogFolderYesterday = "Z:\SharedPerflogs\Yesterday"

Const LogType = "blg"

Const LogParms = " -b 1/1/2004 00:00:00 -cnf 24:00:00 -si 1:00 -f BIN

-v mmddhhmm -rc c:\perflogs\post-process.vbs"

DailyFileName = PerflogFolderYesterday & "\" & LogonServer & "." &

"basicDailyLog" & "." & LogType

LogSessionName = LogonServer & "-daily-log"

Then you can execute the Logman utility from inside the script using WSH Shell’s
Exec method, as illustrated in Listing 4-5.

Listing 4-5 Executing the Logman Utility
Const logSettingsFileName = "Z:\SharedPerflogs\log-counters-setting-file.txt"

command = "logman create counter " & LogSessionName & " -o " & DailyFileName & " -cf

" & logSettingsFileName & " " & LogParms

Set WshShell = Wscript.CreateObject("WScript.Shell")

Set execCommand = WshShell.Exec(command)

Wscript.Echo execCommand.StdOut.ReadAll

The final line of the script obtains the ReadAll property of the StdOut stream, which
contains any messages generated by the Logman utility from the Shell Object’s Exec
method, allowing you to determine whether the utility executed successfully.

Additional considerations for performing remote logging and writing counter logs to
a remote disk are discussed in “Counter Log Scenarios.”

Baseline Measurements

Baseline performance data is a detailed performance profile of your machine that you
store for future use in case you need to determine what has changed in your environ-
ment. You can compare the previous baseline set of measurements to current data to
detect any major changes in the workload. Sometimes, small incremental changes that

322 Microsoft Windows Server 2003 Performance Guide

occur slowly add up to major changes over time. By using performance reports that
are narrowly focused in time, you can easily miss seeing the extent and scope of these
incremental changes. One good way to assess the extent of these changes over time is
to compare a detailed view of the current environment with one of your more recent
sets of baseline measurements.

The daily performance monitoring procedure recommended here is suitable for estab-
lishing a set of baseline measurements for your machine. Every six months or so, copy
this counter log file and set it aside. Copy the counter log to a secure location where
you can store it long-term. It is also a good idea to save a baseline counter log before
and after any major system hardware or software configuration change.

To be useful as a baseline set of measurements, all counter data you gather should be
kept in its original binary format. You might want to save these baseline measurement
sets to offline archived storage so that you can keep them around for several years
without incurring much cost.

Using a Counter Settings File

Using a counter settings file to specify the counters that you want to gather makes it
easy to create and maintain uniform performance monitoring procedures across all
your machines with similar requirements. For example, you might create a counter
settings file for use on all your machines that are running Microsoft SQL Server. Sim-
ilarly, your Web server machines running Internet Information Services (IIS) and
.NET Framework applications would require a different counter settings file for best
results.

Any counter settings file that you create is likely to include a base set of counters that
reports utilization of the machine’s principal resources—processors, memory, disks,
and network interfaces. A simple counter settings file that would form the heart of
almost any application-specific counter settings that you will need to create might
look the example in Listing 4-6.

Listing 4-6 Simple Counter Settings File
\LogicalDisk(*)\% Free Space

\LogicalDisk(*)\Free Megabytes

\PhysicalDisk(*)*

\Cache*

\Processor(*)*

\Memory*

\System*

\Network Interface(*)*

\IPv4*

\TCPv4*

Chapter 4: Performance Monitoring Procedures 323

Listing 4-6 gathers Logical Disk free space statistics and all counters from the Cache,
Memory, Network Interface, Physical Disk, Processor, and System objects. The Logical
Disk free space measurements enable you to determine when your file system is run-
ning out of capacity.

Adding application-specific counters The counter settings file shown in Listing 4-
6 lacks any application-specific performance data. This simple counter settings file
can be enhanced significantly by adding counters associated with applications that
the server runs. (See Table 4-2.)

Table 4-2 Adding Counters

Role That Your Windows
Server 2003 Machine
Serves Gather Counters from These Objects

Gather Counters from
These Processes

Domain Controller NTDS lsass, smss

Remote Access Server RAS Total, RAS Port svchost

Database Server SQL Server:General Statistics, SQL
Server:Databases, SQL Server:Buffer
Manager, SQL Server:Cache Manager,
SQL Server:SQL Statistics, SQL
Server:Locks

sqlserver, sqlagent

Web Server Internet Information Services Global,
FTP Service, Web Service, Web Service
Cache

inetinfo, svchost

File and Print Server Server, Server Work Queues, Print
Queue, NBT Connection

svchost, spoolsv

Terminal Server Terminal Services, Terminal Services
Session

svchost; tssdis

Exchange Server MSExchangeAL, MSExchangeDSAccess
Caches, MSExchangeDSAccess
Contexts, MSExchangeDSAccess Pro-
cesses, Epoxy, MSExchangeIS Mailbox,
Database ==> Instances,
MSExchange Transport Store Driver,
MSExchangeIS Transport Driver,
MSExchangeSRS, MSExchange Web
Mail, MSExchangeIMAP4,
MSExchangePOP3, MSExchangeMTA,
MSExchangeMTA Connections, SMTP
Server, SMTP NTFS Store Driver

store, dsamain

Application Server MSMQ Session, MSMQ Service,
MSMQ Queue

dllhost

324 Microsoft Windows Server 2003 Performance Guide

To limit the size of the counter log files that are generated daily, do not create a single
settings file that contains all the application-specific counters in Table 4-2 and their
associated process-level data. Instead, create a series of application-specific settings
files.

Tip When you do not know what server applications are installed and active on a
machine, the typeperf command-line utility, documented in Chapter 2, “Performance
Monitoring Tools,” can be used. It generates a settings file that provides a full inven-
tory of the extended application counters available for collection on the machine.

A sample counter settings file Following the guidelines given in the preceding
section, a counter settings file for a File and Print Server might look like the sample in
Listing 4-7.

Listing 4-7 Example Counter Settings File for a File and Print Server
\LogicalDisk(*)\% Free Space

\LogicalDisk(*)\Free Megabytes

\LogicalDisk(*)\Current Disk Queue Length

\PhysicalDisk(*)\Current Disk Queue Length

\PhysicalDisk(*)\Avg. Disk Queue Length

\PhysicalDisk(*)\Avg. Disk sec/Transfer

\PhysicalDisk(*)\Avg. Disk sec/Read

\PhysicalDisk(*)\Avg. Disk sec/Write

\PhysicalDisk(*)\Disk Transfers/sec

\PhysicalDisk(*)\Disk Reads/sec

\PhysicalDisk(*)\Disk Writes/sec

\PhysicalDisk(*)\Disk Bytes/sec

\PhysicalDisk(*)\Disk Read Bytes/sec

\PhysicalDisk(*)\Disk Write Bytes/sec

\PhysicalDisk(*)\Avg. Disk Bytes/Transfer

\PhysicalDisk(*)\Avg. Disk Bytes/Read

\PhysicalDisk(*)\Avg. Disk Bytes/Write

\PhysicalDisk(*)\% Idle Time

\PhysicalDisk(*)\Split IO/Sec

\Server\Bytes Total/sec

\Server\Bytes Received/sec

\Server\Bytes Transmitted/sec

\Server\Sessions Timed Out

\Server\Sessions Errored Out

\Server\Sessions Logged Off

\Server\Sessions Forced Off

\Server\Errors Logon

\Server\Errors Access Permissions

\Server\Errors Granted Access

\Server\Errors System

\Server\Blocking Requests Rejected

Chapter 4: Performance Monitoring Procedures 325

\Server\Work Item Shortages

\Server\Pool Nonpaged Bytes

\Server\Pool Nonpaged Failures

\Server\Pool Nonpaged Peak

\Server\Pool Paged Bytes

\Server\Pool Paged Failures

\Server Work Queues(*)\Queue Length

\Server Work Queues(*)\Active Threads

\Server Work Queues(*)\Available Threads

\Server Work Queues(*)\Available Work Items

\Server Work Queues(*)\Borrowed Work Items

\Server Work Queues(*)\Work Item Shortages

\Server Work Queues(*)\Current Clients

\Server Work Queues(*)\Bytes Transferred/sec

\Server Work Queues(*)\Total Operations/sec

\Server Work Queues(*)\Context Blocks Queued/sec

\Cache\Data Maps/sec

\Cache\Data Map Hits %

\Cache\Data Map Pins/sec

\Cache\Pin Reads/sec

\Cache\Pin Read Hits %

\Cache\Copy Reads/sec

\Cache\Copy Read Hits %

\Cache\MDL Reads/sec

\Cache\MDL Read Hits %

\Cache\Read Aheads/sec

\Cache\Lazy Write Flushes/sec

\Cache\Lazy Write Pages/sec

\Cache\Data Flushes/sec

\Cache\Data Flush Pages/sec

\Processor(*)\% Processor Time

\Processor(*)\% User Time

\Processor(*)\% Privileged Time

\Processor(*)\Interrupts/sec

\Processor(*)\% DPC Time

\Processor(*)\% Interrupt Time

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

\Memory\Write Copies/sec

\Memory\Transition Faults/sec

\Memory\Cache Faults/sec

\Memory\Demand Zero Faults/sec

\Memory\Pages/sec

\Memory\Pages Input/sec

\Memory\Page Reads/sec

\Memory\Pages Output/sec

\Memory\Pool Paged Bytes

\Memory\Pool Nonpaged Bytes

\Memory\Page Writes/sec

326 Microsoft Windows Server 2003 Performance Guide

\Memory\Pool Paged Allocs

\Memory\Pool Nonpaged Allocs

\Memory\Free System Page Table Entries

\Memory\Cache Bytes

\Memory\Cache Bytes Peak

\Memory\Pool Paged Resident Bytes

\Memory\System Code Total Bytes

\Memory\System Code Resident Bytes

\Memory\System Driver Total Bytes

\Memory\System Driver Resident Bytes

\Memory\System Cache Resident Bytes

\Memory\% Committed Bytes In Use

\Memory\Available KBytes

\Memory\Available MBytes

\Memory\Transition Pages RePurposed/sec

\Paging File(*)\% Usage

\Paging File(*)\% Usage Peak

\System\Context Switches/sec

\System\System Up Time

\System\Processor Queue Length

\System\Processes

\System\Threads

\Process(svchost,*)\% Processor Time

\Process(svchost,*)\% User Time

\Process(svchost,*)\% Privileged Time

\Process(svchost,*)\Virtual Bytes Peak

\Process(svchost,*)\Virtual Bytes

\Process(svchost,*)\Page Faults/sec

\Process(svchost,*)\Working Set Peak

\Process(svchost,*)\Working Set

\Process(svchost,*)\Page File Bytes Peak

\Process(svchost,*)\Page File Bytes

\Process(svchost,*)\Private Bytes

\Process(svchost,*)\Thread Count

\Process(svchost,*)\Priority Base

\Process(svchost,*)\Elapsed Time

\Process(svchost,*)\ID Process

\Process(svchost,*)\Pool Paged Bytes

\Process(svchost,*)\Pool Nonpaged Bytes

\Print Queue(*)\Total Jobs Printed

\Print Queue(*)\Bytes Printed/sec

\Print Queue(*)\Total Pages Printed

\Print Queue(*)\Jobs

\Print Queue(*)\References

\Print Queue(*)\Max References

\Print Queue(*)\Jobs Spooling

\Print Queue(*)\Max Jobs Spooling

\Print Queue(*)\Out of Paper Errors

\Print Queue(*)\Not Ready Errors

\Print Queue(*)\Job Errors

\Print Queue(*)\Enumerate Network Printer Calls

Chapter 4: Performance Monitoring Procedures 327

\Print Queue(*)\Add Network Printer Calls

\Network Interface(*)\Bytes Total/sec

\Network Interface(*)\Packets/sec

\Network Interface(*)\Packets Received/sec

\Network Interface(*)\Packets Sent/sec

\Network Interface(*)\Current Bandwidth

\Network Interface(*)\Bytes Received/sec

\Network Interface(*)\Packets Received Unicast/sec

\Network Interface(*)\Packets Received Non-Unicast/sec

\Network Interface(*)\Packets Received Discarded

\Network Interface(*)\Packets Received Errors

\Network Interface(*)\Packets Received Unknown

\Network Interface(*)\Bytes Sent/sec

\Network Interface(*)\Packets Sent Unicast/sec

\Network Interface(*)\Packets Sent Non-Unicast/sec

\Network Interface(*)\Packets Outbound Discarded

\Network Interface(*)\Packets Outbound Errors

\Network Interface(*)\Output Queue Length

\IPv4\Datagrams/sec

\IPV4\Datagrams Received/sec

\IPV4\Datagrams Received Header Errors

\IPV4\Datagrams Received Address Errors

\IPV4\Datagrams Forwarded/sec

\IPV4\Datagrams Received Unknown Protocol

\IPV4\Datagrams Received Discarded

\IPV4\Datagrams Received Delivered/sec

\IPV4\Datagrams Sent/sec

\IPV4\Datagrams Outbound Discarded

\IPV4\Datagrams Outbound No Route

\IPV4\Fragments Received/sec

\IPV4\Fragments Re-assembled/sec

\IPV4\Fragment Re-assembly Failures

\IPV4\Fragmented Datagrams/sec

\IPV4\Fragmentation Failures

\IPV4\Fragments Created/sec

\TCPV4\Segments/sec

\TCPV4\Connections Established

\TCPV4\Connections Active

\TCPV4\Connections Passive

\TCPV4\Connection Failures

\TCPV4\Connections Reset

\TCPV4\Segments Received/sec

\TCPV4\Segments Sent/sec

\TCPV4\Segments Retransmitted/sec

Depending on such factors as the number of physical processors installed, Physical
Disks attached, the number of Logical Disks defined, and the number of Network
Interface adaptors, the volume of counter data generated by the counter settings file in
Listing 4-7 would generate could range from 30 MB per day for a small machine to 100
MB or more per day on a very large machine.

328 Microsoft Windows Server 2003 Performance Guide

Gathering error indicators Many of the counters included in the sample counter
settings file in Listing 4-7 are indicators of specific error conditions. These error
conditions are not limited to resource shortages—some reflect improperly config-
ured system and networking services, for example. Others might indicate activity
associated with unauthorized users attempting to breach the machine’s security.
The value of including these counters in your daily performance monitoring proce-
dures is that they allow you to pinpoint the times when system services encounter
these error conditions.

Listing 4-8 shows counters that were included in the settings file in Listing 4-7; these
counters are included primarily as error indicators on a File and Print Server. This set
of counters includes error indicators for File Server sessions, printer error conditions,
and generic networking errors.

Listing 4-8 Counters That Are Error Indicators for a File and Print Server
\Server\Sessions Timed Out

\Server\Sessions Errored Out

\Server\Sessions Logged Off

\Server\Sessions Forced Off

\Server\Errors Logon

\Server\Errors Access Permissions

\Server\Errors Granted Access

\Server\Errors System

\Server\Blocking Requests Rejected

\Server\Work Item Shortages

\Server\Pool Nonpaged Bytes

\Server\Pool Nonpaged Failures

\Server\Pool Paged Failures

\Print Queue(*)\Out of Paper Errors

\Print Queue(*)\Not Ready Errors

\Network Interface(*)\Packets Received Discarded

\Network Interface(*)\Packets Received Errors

\Network Interface(*)\Packets Received Unknown

\Network Interface(*)\Packets Outbound Discarded

\Network Interface(*)\Packets Outbound Errors

\IPV4\Datagrams Received Header Errors

\IPV4\Datagrams Received Address Errors

\IPV4\Datagrams Received Unknown Protocol

\IPV4\Datagrams Received Discarded

\IPV4\Datagrams Outbound Discarded

\IPV4\Datagrams Outbound No Route

\IPV4\Fragment Re-assembly Failures

\IPV4\Fragmentation Failures

\TCPV4\Connection Failures

\TCPV4\Connections Reset

Chapter 4: Performance Monitoring Procedures 329

Counters, such as the ones featured in Listing 4-8 that record the number of error con-
ditions that have occurred, are usually instantaneous, or raw counters. However, the
counter values they contain are cumulative values. Because the number of error con-
ditions that should be occurring is small, using an interval difference counter to track
errors would result in reporting error rates per second that are so small that they
would report zero values. So, to avoid reporting the valuable metrics as zero values,
these counters report cumulative error counts.

The one drawback of this approach is that you cannot use the Alerts facility of the Per-
formance Monitor to notify you when error conditions occur. The chart in Figure 4-2
plots values for one Network Interface error condition counter over the course of a 2-
hour monitoring session. Notice that the curve marking the values of the Network
Interface\Packets Received Unknown counter increases steadily during the monitor-
ing interval. Whatever error condition is occurring is occurring regularly. Because the
counter maintains the cumulative number of error conditions that have occurred
since the system was last booted, once an error condition occurs, the counter value
remains a nonzero value. You can see that once the alert on one of these counters is
triggered, the alert will continue to occur at every measurement interval that follows.
Such alerts will overrun the Application event log.

Figure 4-2 Values for one Network Interface error condition counter over the course of a
2-hour monitoring session

330 Microsoft Windows Server 2003 Performance Guide

An easy and quick way to check to whether these error conditions are occurring is to
develop a report using the Histogram view, which allows you to identify all the non-
zero error conditions. An example of this approach is shown in Figure 4-3, which
shows that only the Packets Received Unknown error indicator occurs over a two-day
monitoring interval

Figure 4-3 Histogram view showing error condition counters that have nonzero values

If you remove all the error condition counters from the Histogram that report zero val-
ues, you can then switch to the Chart view to investigate the remaining nonzero
counters. Using the Chart view, you can determine when these error conditions
occurred and the rate at which they occurred.

Using Alerts Effectively

Because of the resulting overhead and the size of the counter logs, it is rarely possible
to gather all the performance statistics you would need all the time. Gathering pro-
cess-level data tends to contribute most to the size of the counter log files you gener-
ate—even smaller machines running Windows Server 2003 typically have numerous
processes running and thus large counter log files. In the sample counter settings file
in Listing 4-7, this potential problem was addressed by collecting process-level perfor-
mance counters for a only few processes at a time. In Listing 4-7 and in the examples
listed in Table 4-1, process-level performance data was selected only for processes that
were central to the server application running.

Chapter 4: Performance Monitoring Procedures 331

However, this selective garnering of data is not a wholly satisfactory solution because
process-level performance data is required to detect runaway processes that are
monopolizing the processor or are leaking virtual memory. The solution to this quan-
dary is to use the Alerts facility of the Performance Monitor console to trigger a Log
Manager counter log data collection session automatically when an alert has tripped
its threshold. Implementing counter logging procedures in this fashion allows you to
gather very detailed information about problems automatically, without resorting to
gathering all the performance data all the time.

Follow these simple steps to set up a Log Manager counter log data collection session
that starts automatically when an alert fires:

1. Define the Log Manager counter log you plan to use to gather detailed perfor-
mance data about a specific condition.

2. Define the alert condition that will be used to trigger the counter log session.

3. In the definition of the alert action, start the counter log session you defined in
step 1.

For example, to help detect that a process is leaking virtual memory, define a counter
log session that will gather data at the process level on virtual memory allocations.
Then define an alert condition that will be triggered whenever virtual memory alloca-
tions reach a critical level. Finally, define an alert action that will start the counter log
session you defined in step 1 (of the preceding procedure) when the alert condition
occurs.

The next section walks you through a sample implementation of an alert that will fire
when there is a virtual memory shortage and then initiate a counter log data gathering
session that will enable you to determine which process is responsible for the virtual
memory shortage. In Chapter 5, “Performance Troubleshooting,” additional tech-
niques for detecting and diagnosing virtual memory leaks are discussed.

Caution You need to be careful that your performance alerts do not result in flood-
ing the Application event log with an excessive number of messages. You should peri-
odically review the Application event log to ensure that your alerts settings are not
generating too many event log entries. Note that programs like the Microsoft Opera-
tions Manager can actively manage your event logs and consolidate and suppress
duplicate event log entries so that duplicate alert messages are not generated for the
same condition over and over.

332 Microsoft Windows Server 2003 Performance Guide

Triggering Counter Logs Automatically

This section walks you step by step through a procedure that will generate diagnostic
counter logs whenever there is a virtual memory shortage that might be caused by a
runaway process leaking virtual memory.

Step 1: Define the counter log settings These are the counter log settings you
want to use when the alert trips its threshold condition. For example, use the follow-
ing command:

Logman create counter MemoryTroubleshooting -v mmddhhmm -c "\Memory\Available Bytes"

"\Memory\% Committed Bytes in Use" "\Memory\Cache Bytes" "\Memory\Pool Nonpaged Bytes"

"\Memory\Pool Paged Bytes" "\Process(*)\Pool Nonpaged Bytes" "\Process(*)\Pool Paged

Bytes" "\Process(*)\Pool Virtual Bytes" "\Process(*)\Pool Private Bytes"

"\Process(*)\Page Faults/sec" "\Process(*)\Pool Working Set" -si 00:30 -o

"c:\Perflogs\Alert Logs\MemoryTroubleshooting" -max 5

This command defines a MemoryTroubleshooting counter log session, which gathers
virtual memory allocation counters at a process level, along with a few system-wide
virtual memory allocation counters. In this example, these counters are sampled at
30-second intervals. Specifying the -max parameter shuts down data collection when
the counter log reaches 5 MB. Using the Performance Monitor console, you could also
limit the duration of the data collection session to a value of, for example, 10–15 min-
utes. Notice that the counter logs will be created in a C:\Perflogs\Alert Logs\ folder,
distinct from the folder in which you create your regular daily performance logs. This
separate folder enables you to more easily distinguish alert-triggered counter logging
sessions from other counter logs that you create, and also makes it easier for you to
manage them based on different criteria. For example, this MemoryTroubleshooting
log is a detailed view that is limited to data on virtual memory allocations. You would
never need to summarize this type of counter log, nor would you normally need to
keep a detailed historical record on these types of problems.

Step 2: Define the alert General Properties You define the counter value thresh-
old test (or tests) that trigger the specific alert condition using the tabs of the Virtual
Memory Alert Properties page. In our ongoing example, to create an alert that is trig-
gered by a virtual memory shortage, the threshold test is the value of the Memory\%
Committed Bytes In Use exceeding 85 percent, as illustrated in Figure 4-4.

Chapter 4: Performance Monitoring Procedures 333

Figure 4-4 The Memory\% Committed Bytes in Use over 85%

The rate at which the alert scan samples the performance counter (or counters) you
select determines how frequently alert messages can be generated. In this example, the
alert scan is scheduled to run once per minute. On a virtual memory-constrained
machine in which the value of the Memory\% Committed Bytes In Use counter consis-
tently exceeds the 85 percent alert threshold, this alert condition is triggered once every
minute. Depending on the alert action you choose, this frequency might prove excessive.

Tip Where possible, define alert conditions that are triggered no more frequently
than several times per hour under normal circumstances. Adjust those alert conditions
that are triggered more frequently than 5–10 times per hour, even under severe con-
ditions, so that they fire less frequently.

Alerts that occur too frequently annoy recipients. Psychologically, alert conditions that
are triggered too frequently lose their effectiveness as notifications of significant
events. Ultimately, they become treated as commonplace events that are safe to
ignore. These human responses to the condition are understandable, but highly unde-
sirable if the alert threshold truly represents an exceptional condition worthy of atten-
tion and additional investigation.

You can easily control the frequency for triggering alerts in either of the following ways:

1. Adjust the threshold condition so that the alert fires less frequently.

2. Slow down the rate at which the alert scan runs.

In addition, you might choose to limit alert actions to those that are calculated not to
annoy anyone.

334 Microsoft Windows Server 2003 Performance Guide

Step 3: Define the alert schedule The alert schedule parameters determine the
duration of an alert scan. For best results, limit the duration of alert scans to 1–2
hours. For continuous monitoring, be sure to start a new scan when the current scan
finishes, as illustrated in Figure 4-5.

Figure 4-5 Use the Start A New Scan check box

Step 4: Define the alert action The alert action parameters determine what action
the alert facility will take when the alert condition is true. In this example, you want
the alert facility to initiate the counter log you defined in step 1 to gather more
detailed information about application performance at the process level at the time
the alert was triggered. Note that the counter log you specify will be started just once
per alert scan. In contrast, event log entries are generated at each sampling interval
where the alert condition is true. Alert messages are also generated at each sampling
interval where the alert condition is true. If you choose to run a program (Figure 4-6),
the Alerts facility will schedule it to run only once per alert scan.

Chapter 4: Performance Monitoring Procedures 335

Figure 4-6 You can choose to run a program

The counter log or specified program is started immediately following the first sample
interval of the alert scan in which the Alert condition is true. The duration of the
counter logging session is determined by the schedule parameters you specified at the
time you defined the counter log session. As noted earlier, using the command-line
interface to the Log Manager, you can limit the size of the counter log file that will be
created. Using the Performance Monitor console interface, you can limit the duration
of the counter log session. A detailed counter log that allows you to explore the con-
dition of the machine in depth over the next 10–30 minutes is usually effective. Obvi-
ously, if the alert conditions are triggered frequently enough and the detailed counter
log sessions are relatively long, there is a risk that you will gather much more data
about a potential problem than you can effectively analyze later. You might also use
too much disk space on the machine that is experiencing the problem.

General Alerting Procedures

You will want to define similar alert procedures to launch counter logs that will allow
you to investigate periods of excessive processor utilization, physical memory short-
ages, and potential disk performance problems. Table 4-3 summarizes basic Alert pro-
cedures that are valuable for your production servers. Refer to the discussion in

336 Microsoft Windows Server 2003 Performance Guide

Chapter 3 on establishing configuration-dependent alert thresholds for the excessive
paging alert condition.

The alert threshold tests illustrated in Figure 4-3 show representative values that are
good for many machines. For more specific recommendations on Alert thresholds for
these counters, see the extended discussion in Chapter 3, “Measuring Server Perfor-
mance.”

Table 4-3 Settings for General Alert Conditions

Condition Threshold Tests

Scan
Frequency

(In
Seconds)

Additional Counters
to Log

Log
Sample
Interval

(In
Seconds)

Excessive CPU
utilization; po-
tential pro-
cess in an
infinite loop

Processor(*)\
% Processor Time >
98%

10–30 Processor(*)*;

Process(*)\% Processor
Time, Process(*)\
% Privileged Time;
Process(*)\% User Time

10–20 for
10–20
minutes

Process
leaking
virtual
memory

Memory\
% Committed Bytes In
Use > 85%

10–30 Memory*;

Process(*)\Private Bytes,
Process(*)\Virtual Bytes,
Process(*)\Pool
Nonpaged Bytes,
Process(*)\Pool Paged
Bytes, Process(*)\
Page File Bytes

15–30 for
10–30
minutes

Excessive
paging to
disk

Memory\Available
Kbytes < <threshold>;

Memory\Pages/sec >
<threshold>

10–30 Memory*;

Physical Disk(n)\% Idle
Time, Physical
Disk(n)\Avg. Disk Secs/
Transfer, Physical
Disk(n)\Transfers/sec;

Process(*)\Page Faults/
sec

10–20 for
10–20
minutes

Poor disk
performance

Physical Disk(n)\
Avg. Disk Secs/
Transfer > 20;

Physical Disk(n)\
Transfers/sec > 200

Physical Disk(n)\
Current Disk Queue
Length > 5

15 Physical Disk(n)\% Idle
Time, Physical
Disk(n)\Avg. Disk Secs/
Transfer, Physical
Disk(n)\Transfers/sec

10 for 10
minutes

Chapter 4: Performance Monitoring Procedures 337

Application Alerts

You might also want to define additional alert scans that are based on application-spe-
cific alerting criteria. In each situation, focus on alert conditions associated with exces-
sive resource consumption, indicators of resource shortages, measurements showing
large numbers of requests waiting in the queue, and other anomalies related to appli-
cation performance. For some applications, it is worthwhile to generate alerts both
when transaction rates are heavy and when transaction rates are unusually light, per-
haps indicating the application stopped responding and transactions are blocked
from executing.

Table 4-4 lists suggested settings for alerts for several popular server applications. The
values you use in alert condition threshold tests for application servers usually varies
with each site, as illustrated.

More Info For additional assistance in setting application-specific alert thresholds,
consult the Microsoft Operations Framework documentation online, at the TechNet
Products and Technologies section, at http://www.microsoft.com/technet/.

Table 4-4 Sample Settings for Application-Specific Alert Conditions

Application Condition Threshold Tests Additional Objects to Log

Domain
Controllers

Excessive Active
Directory
requests

NTDS\LDAP Searches/
sec > <threshold>

NTDS*

Active Server
Pages (or .NET
Framework
ASPX
applications)

Excessive ASP
request
queuing

ASP\Requests Queued >
<threshold>

ASP; Internet Information
System Global; Web Ser-
vice; Process(w3wp)*

File Server Resource short-
ages

Server Work
Queues(*)\Queue Length
> <threshold>

Server; Server Work
Queues; Cache; Memory;
Processor; Pro-
cess(svchost)\% Processor
Time

SQL Server Excessive
database
transaction
rates

SQL Server:Databas-
es(n)\Transactions/
sec > <threshold>

SQL Server:Buffer Manag-
er; SQL Server:Cache
Manager; SQL
Server:Memory Manager;
SQL Server:Locks; SQL
Server:SQL Statistics;SQL
Server:Databases

338 Microsoft Windows Server 2003 Performance Guide

Daily Management Reporting

Management reporting is a way to ensure that all parties at your installation who are
interested in server performance have access to key information and reports that
describe the behavior of your machines running Windows Server 2003. Management
reporting should not be confused with the detailed and exploratory data analysis per-
formed by experienced performance analysts when there are performance problems
to diagnose. Management reporting focuses on a few key metrics that can be readily
understood by a wide audience. Keep the charts and graphs you produce relatively
simple and uncluttered.

The metrics that technical managers and other interested parties request the most
include:

■ Utilization measures of key resources like processors, memory, disks, and the
network

■ Availability and transaction rates of key applications such as Web servers, data-
base servers, and Exchange mail and messaging servers

■ Transaction service and response times of key applications, when they are
available

Summarizing Daily Counter Logs

Because management reports should provide a high-level view of performance, you
will want to generate daily files containing summarized performance data using the
Relog utility. The detailed daily counter logs you generate are not the most efficient
way to produce management reports. A daily counter log that gathers 1-minute sam-
ples continuously over the course of a 24-hour period accumulates 1440 observations
daily of each performance counter you are logging. (The actual number of samples
that would be generated daily is 1441 because one extra sample is needed at the outset
to gather the starting values of all counters.) That is much more data than the System
Monitor can squeeze onto a Chart view, which is limited to plotting 100 data points
across its time-based x-axis. To create a Chart view for a 24-hour period, the System
Monitor is forced to distill 14 separate measurements and plot summary statistics
instead, which can easily create a distorted view of the performance statistics.

Using the Relog utility to create a summarized version of the daily counter logs you
are gathering will simplify the process of creating useful daily management reports.
For example, issuing the following command creates a compact version of one of your
daily counter logs, summarized to convenient 15-minute intervals:

relog basicDailyLog_20031228.blg -o <computer-name>.basicDailyLog.blg

-f BIN -t 15

Chapter 4: Performance Monitoring Procedures 339

These summarized versions of your daily counter logs are very handy for building
management reports quickly and efficiently.

Using summarized data in your management reports eliminates any distortions that
can be introduced when the Chart view is forced to drop so many intermediate obser-
vations. Summarizing a 24-hour period to fifteen-minute intervals yields slightly fewer
than 100 observations per counter, a number that fits neatly in a System Monitor
Chart view. Note that summarizing the measurement data to this degree will smooth
out many of the highs and lows evident in the original, detailed counter log. When
you are investigating a performance problem, you will want to access the original
counter log data, along with any detailed counter logs for the interval that were gener-
ated automatically by your alert procedures.

Tip The detailed counter logs that you create daily are suitable for generating man-
agement reports that focus on a peak 1- or 2-hour period. When peak hour transac-
tion rates are two or more times heavier than average transaction rates, management
reports that concentrate on these peak periods are extremely useful. When perfor-
mance bottlenecks are evident only during these peak loads, reports that concentrate
on these narrow periods of time are very helpful.

Consolidating performance data from multiple servers If you are responsible
for the performance of a large number of servers, you will probably want to gather the
counter logs from many of these servers so that you can report on them from a single
location. To save on disk space at a central location, you might want to perform this
consolidation using summarized counter logs, rather than the bulky, detailed daily
counter logs that you collect initially. This consolidation can be performed daily using
a series of automated procedures, as follows:

1. Use the Relog utility on the local server machine to create a summarized version
of the daily counter log files that you produce.

2. Embed the computer name of the machine where the counter log originated
into the summarized file name that Relog produces as output.

3. Copy the summarized counter log file to a central location.

4. At the consolidation server, use Relog to combine all the counter logs into a sin-
gle output file that can be used for daily reporting.

Later in this section, examples of scripts that you can use to automate these daily pro-
cessing functions are provided. As an alternative to consolidating counter logs gath-
ered across many servers at a central location during a post-processing stage, you
might consider creating all your counter logs at a centralized location at the outset. As

340 Microsoft Windows Server 2003 Performance Guide

discussed in “Logging to a Network Share” in this chapter, this option has scalability
implications for very large server farms, so it should be implemented with caution. For
a more detailed discussion of these issues, see the section entitled “Logging Local
Counters to a Local Disk” earlier in this chapter.

When you execute the Relog utility to create summarized daily counter logs suitable
for management reporting and archiving, you might choose to edit the performance
metrics being retained even further, eliminating counters that you do not intend to
report on in your management reports. When you execute the Relog utility to create
summarized daily counter logs, you can reference a counter log settings file that will
perform this editing.

For example, you can invoke Relog as follows, where relog-counters-setting-file.txt is a
narrower subset of the original basic-counters-setting-file.txt that you used to generate
the full daily counter logs.

relog basicDailyLog_20031228.blg -o <computer-name>.basicDailyLog.blg -cf relog-

counters-setting-file.txt -f BIN -t 15

Listing 4-9 shows the contents of a recommended Relog counter settings file suited to
creating summarized files for daily management reporting.

Listing 4-9 relog-counters-setting-file.txt
\LogicalDisk(*)\% Free Space

\LogicalDisk(*)\Free Megabytes

\LogicalDisk(*)\Current Disk Queue Length

\PhysicalDisk(*)\Current Disk Queue Length

\PhysicalDisk(*)\Avg. Disk Queue Length

\PhysicalDisk(*)\Avg. Disk sec/Transfer

\PhysicalDisk(*)\Avg. Disk sec/Read

\PhysicalDisk(*)\Avg. Disk sec/Write

\PhysicalDisk(*)\Disk Transfers/sec

\PhysicalDisk(*)\Disk Reads/sec

\PhysicalDisk(*)\Disk Writes/sec

\PhysicalDisk(*)\Disk Bytes/sec

\PhysicalDisk(*)\Disk Read Bytes/sec

\PhysicalDisk(*)\Disk Write Bytes/sec

\PhysicalDisk(*)\Avg. Disk Bytes/Transfer

\PhysicalDisk(*)\Avg. Disk Bytes/Read

\PhysicalDisk(*)\Avg. Disk Bytes/Write

\PhysicalDisk(*)\% Idle Time

\Processor(*)\% Processor Time

\Processor(*)\% User Time

\Processor(*)\% Privileged Time

\Processor(*)\Interrupts/sec

\Processor(*)\% DPC Time

\Processor(*)\% Interrupt Time

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

Chapter 4: Performance Monitoring Procedures 341

\Memory\Commit Limit

\Memory\Transition Faults/sec

\Memory\Cache Faults/sec

\Memory\Demand Zero Faults/sec

\Memory\Pages/sec

\Memory\Pages Input/sec

\Memory\Page Reads/sec

\Memory\Pages Output/sec

\Memory\Pool Paged Bytes

\Memory\Pool Nonpaged Bytes

\Memory\Page Writes/sec

\Memory\Cache Bytes

\Memory\Pool Paged Resident Bytes

\Memory\System Code Resident Bytes

\Memory\System Driver Resident Bytes

\Memory\System Cache Resident Bytes

\Memory\% Committed Bytes In Use

\Memory\Available KBytes

\Memory\Available MBytes

\Memory\Transition Pages RePurposed/sec

\System\Context Switches/sec

\System\Processor Queue Length

\Process(sqlserver)\% Processor Time

\Process(sqlserver)\% User Time

\Process(sqlserver)\% Privileged Time

\Process(sqlserver)\Virtual Bytes

\Process(sqlserver)\Page Faults/sec

\Process(sqlserver)\Working Set

\Process(sqlserver)\Private Bytes

\Process(sqlserver)\Elapsed Time

\Process(sqlserver)\Pool Paged Bytes

\Process(sqlserver)\Pool Nonpaged Bytes

\Process(inetinfo)\% Processor Time

\Process(inetinfo)\% User Time

\Process(inetinfo)\% Privileged Time

\Process(inetinfo)\Virtual Bytes

\Process(inetinfo)\Page Faults/sec

\Process(inetinfo)\Working Set

\Process(inetinfo)\Private Bytes

\Process(inetinfo)\Elapsed Time

\Process(inetinfo)\Pool Paged Bytes

\Process(inetinfo)\Pool Nonpaged Bytes

\RAS Total\Bytes Transmitted/Sec

\RAS Total\Bytes Received/Sec

\RAS Total\Total Errors/Sec

\Print Queue(*)\Total Jobs Printed

\Print Queue(*)\Bytes Printed/sec

\Print Queue(*)\Total Pages Printed

\Print Queue(*)\Jobs

\Network Interface(*)\Bytes Total/sec

\Network Interface(*)\Packets/sec

\Network Interface(*)\Packets Received/sec

\Network Interface(*)\Packets Sent/sec

\Network Interface(*)\Current Bandwidth

342 Microsoft Windows Server 2003 Performance Guide

\Network Interface(*)\Bytes Received/sec

\Network Interface(*)\Bytes Sent/sec

\Network Interface(*)\Output Queue Length

\IP\Datagrams/sec

\IP\Datagrams Received/sec

\IP\Datagrams Sent/sec

\TCP\Segments/sec

\TCP\Connections Established

\TCP\Connections Active

\TCP\Connection Failures

\TCP\Connections Reset

\TCP\Segments Received/sec \TCP\Segments Sent/sec

\TCP\Segments Retransmitted/sec

Sample Management Reports

The following section illustrates the management reports that you are likely to find
most useful for presenting summarized performance statistics. These examples pri-
marily use the System Monitor console’s Chart view to present the performance data.
You can, of course, always build more elaborate reporting charts and graphs than are
available from the System Monitor console by using tools like Microsoft Excel or other
charting programs.

Note that the sample management reports presented here showcase the key perfor-
mance counters you should display. They also present uncluttered charts and graphs
that are easy to read and decipher. The counter logs used to generate these charts were
gathered from a relatively quiet machine performing little or no work during much of
the reporting interval. The intent here is to focus your attention on the presentation of
the data, not on the data itself. If you are interested in seeing examples of interesting
charts and reports illustrating machines experiencing performance problems, you can
find many relevant examples in Chapter 5, “Performance Troubleshooting.”

For information about how to use the System Monitor Automation Interface to gener-
ate management reports like these automatically, see the section entitled “System
Monitor Automation Interface” in Chapter 6, “Advanced Performance Topics.”

Processor utilization Figure 4-7 illustrates a basic Chart view template that is suit-
able for many management reports. The report shows overall processor utilization
and also breaks out processor utilization into its component parts. A large, easy-to-
read font was selected, x- and y-axis gridlines were added, and a descriptive title was
used. After you create report templates, selecting the counters you want and adding
the proper presentation elements, you can save your settings as a Microsoft Manage-
ment console .msc settings file that you can reuse.

Chapter 4: Performance Monitoring Procedures 343

Figure 4-7 Daily Processor Utilization Report

A similar chart that zooms in on a two-hour peak processing period is illustrated in
Figure 4-8. Reusing the chart templates for similar management reports simplifies
your task of explaining what these various charts and graphs mean.

Figure 4-8 Peak Hour Processor Utilization Report

344 Microsoft Windows Server 2003 Performance Guide

The daily processor utilization management report illustrated in Figure 4-7 used a
summarized daily counter log file created using the Relog utility as input. The peak
hour report in Figure 4-8 uses the full, unsummarized daily counter log with the Time
Window adjusted to show approximately two hours of peak load data.

Available disk space The Histogram view illustrated in Figure 4-9 works well for
reporting data from counters that tend to change very slowly, such as Logical
Disk(*)\Free Megabytes. Using the Histogram view, you can show the amount of free
space available on a large number of server disks very succinctly.

Figure 4-9 Disk Free Space Report

Disk performance Figure 4-10 illustrates the readability problems that occur when
you are forced to graph multiple counters against a single y-axis. The judicious use of
scaling values makes this possible, of course. However, reporting metrics that require
different scaling values to permit them all to be displayed against a single y-axis fre-
quently confuses viewers. Figure 4-10 illustrates this problem, using disk performance
measurements of idle time, device activity rates, and disk response time. Together,
these three metrics accurately characterize physical disk performance. However, each
individual counter usually requires using a separate scaling factor, and this tends to
create confusion.

Chapter 4: Performance Monitoring Procedures 345

Figure 4-10 Measuring disk performance using three metrics

The % Idle Time counter neatly falls neatly within the default y-axis that ranges from
zero through 100, but the other metrics do not. Physical Disk Transfers/sec frequently
exceeds 100 per second, so this counter cannot always be properly graphed against
the same y-axis scale as % Idle Time. In addition, disk response time, measured in mil-
liseconds, has to be multiplied by a scaling factor of 1000 to be displayed against the
same y-axis as % Idle Time. Placing several counters that all use different scaling fac-
tors on the same chart invites confusion.

Nevertheless, this practice is sometimes unavoidable. Specifying an appropriate y-axis
label can sometimes help minimize confusion. The alternative of providing three sep-
arate graphs, one for each measurement, has limited appeal because the content in an
individual counter value chart is substantially diluted.

Network traffic Network traffic can be reported from the standpoint of each net-
work interface, or summarized across all existing network interfaces. Because the Net-
work Interface counters do not report network utilization directly, a report template
like the one illustrated in Figure 4-11, which shows both the total bytes transferred
across the network interface and the current bandwidth rating of the card, makes it
relatively easy to visualize what the utilization of the interface is. Change the default y-
axis maximum so that the Current Bandwidth counter represents a 100 percent utili-
zation level at the top of the scale. Then the Bytes Total /sec counter for the network
interface instance can be visualized as a fraction of the interface bandwidth. Be sure to
label the y-axis appropriately, as in Figure 4-11.

346 Microsoft Windows Server 2003 Performance Guide

Figure 4-11 Network Interface Traffic Report

Historical Data for Capacity Planning

Capacity planning refers to the practices and procedures you institute to avoid perfor-
mance problems as your workloads grow and change. When you maintain an histori-
cal record of computer resource usage by important production workloads, you can
forecast future resource requirements by extrapolating from historical trends.

Capacity planning processes also benefit from growth forecasts that people associated
with your organization’s key production workloads can provide for you. Often, these
growth forecasts are projections based on adding more customers who are users of
these production systems. You must then transform these growth projections into a
set of computer resource demands based on the resource usage profile of existing cus-
tomers. Usually, a capacity plan brings together both kinds of forecasting information
to project future workload requirements and the kinds of computer resources
required to run those workloads.

This section focuses on procedures you can use to harness the daily performance
counter logs you generate to create and maintain a database containing an historical
record of computer resource usage data. You can then use this data to support capac-
ity planning and other system management functions. This historical record of com-
puter performance data is known as a performance database, or PDB. This section also
describes procedures you can use to build a SQL Server–based performance database

Chapter 4: Performance Monitoring Procedures 347

using the command-line tools discussed in Chapter 2, “Performance Monitoring
Tools.” A later section of this chapter, entitled “Using a SQL Server Repository,” dis-
cusses using tools like Microsoft Excel to analyze the data in this SQL Server PDB and
provides an example of using Excel to forecast future capacity requirements.

Why SQL Server?

Microsoft SQL Server makes an ideal performance database. If you are an inexperi-
enced user of SQL Server, you might be reluctant to implement a SQL Server perfor-
mance database. Rest assured that when you use command-line tools such as Logman
and Relog, you can quite easily use SQL Server for this purpose. Microsoft SQL Server
is an advanced Relational Database Management System (RDBMS) that is well suited
to this task, particularly to handling the large amounts of capacity planning data you
will eventually accumulate. Using SQL Server, you do not have to be responsible for
managing lots of individual counter log files. Instead, you can consolidate all your his-
torical information in one place in one or more sets of SQL Server Tables.

Another advantage of using SQL Server as the repository for your capacity planning
data is that you are not limited to using the System Monitor for reporting. Once your
counter log data is loaded into SQL Server, you can use a variety of data access, report-
ing, and analysis tools. One of the most popular and powerful of these reporting and
analysis tools is Microsoft Excel. The section of this chapter entitled “Using a SQL
Server Repository” discusses using Microsoft Excel to analyze, report, and forecast
performance data that has been stored in a SQL Server PDB.

Creating Historical Summary Logs

Capacity planning requires summarized data that is accumulated and stored over
long periods of time so that historical trends become evident. This section shows how
the Relog utility can be used to summarize data and accumulate this counter log data
to support capacity planning.

The summarized daily counter log files that are used for management reporting con-
tain too much detail to be saved for weeks, months, and years. Consider running
Relog again on the summarized daily counter log files that your daily performance
monitoring procedure produces to edit these counter logs and summarize them fur-
ther. Listing 4-10 provides an example.

Listing 4-10 Editing and Summarizing Daily Count Logs
relog <computer-name>.basicDailyLog.blg -o <computer-name>.dailyHistoryLog.blg -cf

summary-counters-setting-file.txt -f BIN -t 4

348 Microsoft Windows Server 2003 Performance Guide

In this code, because the counter log files defined as input were already summarized
to 15-minute intervals, the -t 4 subparameter performs additional summarization to
the 1-hour level.

Only a small number of counters are valuable for long-term capacity planning. The
counter log settings file referenced by this Relog command drops many counter val-
ues that have little or no value long term. An example counter log settings file for a File
and Print Server that is suitable for capacity planning is illustrated in Listing 4-11.

Listing 4-11 Counter Log Settings File for a Capacity Planning Database
\LogicalDisk(*)\% Free Space

\LogicalDisk(*)\Free Megabytes

\PhysicalDisk(*)\Avg. Disk sec/Transfer

\PhysicalDisk(*)\Avg. Disk sec/Read

\PhysicalDisk(*)\Avg. Disk sec/Write

\PhysicalDisk(*)\Disk Transfers/sec

\PhysicalDisk(*)\Disk Reads/sec

\PhysicalDisk(*)\Disk Writes/sec

\PhysicalDisk(*)\Disk Bytes/sec

\PhysicalDisk(*)\Disk Read Bytes/sec

\PhysicalDisk(*)\Disk Write Bytes/sec

\PhysicalDisk(*)\Avg. Disk Bytes/Transfer

\PhysicalDisk(*)\Avg. Disk Bytes/Read

\PhysicalDisk(*)\Avg. Disk Bytes/Write

\PhysicalDisk(*)\% Idle Time

\Processor(*)\% Processor Time

\Processor(*)\% User Time

\Processor(*)\% Privileged Time

\Processor(*)\Interrupts/sec

\Processor(*)\% DPC Time

\Processor(*)\% Interrupt Time

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

\Memory\Transition Faults/sec

\Memory\Cache Faults/sec

\Memory\Demand Zero Faults/sec

\Memory\Pages/sec

\Memory\Pages Input/sec

\Memory\Page Reads/sec

\Memory\Pages Output/sec

\Memory\Pool Paged Bytes

\Memory\Pool Nonpaged Bytes

\Memory\Page Writes/sec

\Memory\Cache Bytes

\Memory\Pool Paged Resident Bytes

\Memory\System Cache Resident Bytes

\Memory\% Committed Bytes In Use

Chapter 4: Performance Monitoring Procedures 349

\Memory\Available KBytes

\Memory\Available MBytes

\Memory\Transition Pages RePurposed/sec

\Process(svchost,*)\% Processor Time

\Process(svchost,*)\% User Time

\Process(svchost,*)\% Privileged Time

\Process(svchost,*)\Virtual Bytes

\Process(svchost,*)\Page Faults/sec

\Process(svchost,*)\Working Set

\Print Queue(*)\Bytes Printed/sec

\Print Queue(*)\Total Pages Printed

\Print Queue(*)\Jobs

\Network Interface(*)\Bytes Total/sec

\Network Interface(*)\Bytes Received/sec

\Network Interface(*)\Bytes Sent/sec

\IPv4\Datagrams/sec

\IPv4\Datagrams Received/sec

\IPv4\Datagrams Sent/sec

\TCPv4\Segments/sec

\TCPv4\Segments Received/sec

\TCPv4\Segments Sent/sec

As just mentioned, because only a small number of counters are valuable for capacity
planning, the counter log settings file can be even more concise than the example in
Listing 4-11. In this listing, only high-level statistics on processor, memory, disk, and
network utilization are kept, along with some server application-related process statis-
tics and server application-specific statistics related to the printer workload through-
put.

Accumulating historical data The Relog command procedure (Listing 4-10) con-
structs a binary counter log from your daily file and summarizes it to 1-hour intervals.
One-hour intervals are suitable for longer-term capacity planning, forecasting, and
trending. For capacity planning, you will want to build and maintain a summarized,
historical counter log file that will contain information spanning weeks, months, and
even years. You can use the Append option of the Relog utility to accomplish this. For
instance, the following command uses Relog to append the daily summarized counter
log to a counter log file that contains accumulated historical data using the -a append
parameter:

relog <computer-name>.dailyHistoryLog.blg -o

<computer-name>.historyPerformanceLog.blg -f BIN -a

Note that the -a option assumes that the output counter log file already exists.

350 Microsoft Windows Server 2003 Performance Guide

Creating a SQL Server PDB

Before you are ready to use command-line tools like Logman and Relog to populate a
SQL Server performance database, you must install an instance of SQL Server and
define and configure the SQL Server database that you intend to use as a PDB. You can
install a separate instance of SQL Server for your use exclusively as a PDB, or share an
instance of SQL Server with other applications. Once you select the instance of SQL
Server that you intend to use, follow these steps to define a performance database:

1. Define the database where you intend to store the performance data. Using
the SQL Enterprise Manager console, define a new database and allocate disk
space for it and its associated database recovery log. For the purpose of this
example, the database that will be used has been called PDB. Once the database
is created, you can access the system tables that are built automatically.

2. Define the database security rules. Security is a major aspect of SQL Server
database administration. Until you specifically define their access rights, no
external users can log on to gain access to the information stored in the PDB
database. You must define at least one new database logon and grant that user
access to the PDB database, as illustrated in Figure 4-12. In this example, the
new database logon is called PDB-Access, which is defined by default to have
access to the PDB database.

Figure 4-12 Defining a new database logon

Note that the SQL Server instance you use must be set up to use Microsoft Win-
dows NT Authentication only. In addition, you must define a named user with
the proper credentials, in this example a user named PDB-Access. At the level of

Chapter 4: Performance Monitoring Procedures 351

the PDB database, you must also define the permissions for the logon you just
defined. Figure 4-13 illustrates the PDB database user properties for the PDB-
Access logon. Here PDB-Access has been granted permission to use all database
security roles that are available. At a minimum, give this logon db_owner and
db_datawriter authority. The db_owner role allows it to define, add, and change
database tables, and db_datawriter gives the user permission to update and add
data to the defined tables.

Figure 4-13 Database user properties for the PDB-Access logon

3. Define the ODBC connection that will be used to access the PDB database.
To allow programs like the Relog utility, the Performance Logs and Alerts ser-
vice, the System Monitor console for reporting, and Microsoft Excel for data
mining and analysis to access the PDB database, you must define a System DSN
connection. Using the ODBC Administrator, add a new System DSN connection
that uses the SQL Server driver to allow access to the PDB database that you just
defined, as illustrated in Figure 4-14.

352 Microsoft Windows Server 2003 Performance Guide

Figure 4-14 Using the SQL Server driver to allow access to the PDB database

Doing this launches the ODBC connection wizard, which will enable you to con-
figure this connection, as illustrated in Figure 4-15.

Figure 4-15 Using the ODBC connection wizard

You must supply a connection name, as illustrated, and point the connection to
the SQL Server instance and database. In this example, the connection name is
PDB. Then you must supply information about the security of the connection, as
illustrated in Figure 4-16.

Chapter 4: Performance Monitoring Procedures 353

Figure 4-16 Verifying the authenticity of the connection

The Connect To SQL Server To Obtain Default Settings For The Additional Con-
figuration Options check box, which is shown as selected in Figure 4-16, allows
you to fully test the permissions on the connection when the connection defini-
tion is complete. Continue to fill out the forms provided by the ODBC connec-
tion wizard and click Finish to test the connection.

Populating the Repository

After the ODBC connection is defined, you can start loading counter log data into the
PDB database you created. Because you plan to accumulate a large amount of histori-
cal performance information in the PDB, even the summarized daily counter log,
which you created to build daily management reports, contains much more data than
you will need for capacity planning purposes. Similar to the processing you per-
formed when maintaining an historical binary format counter log, as discussed in
“Creating Historical Summary Logs,” you probably want to summarize this data even
further and drop any counters that will not prove worthwhile to retain over long peri-
ods of time.

For example, the following Relog command takes one or more daily counter log files
that are summarized to create a history file and inserts the output into the PDB data-
base:

relog <computer-name>.historyPerformanceLog.blg -o "SQL:PDB!ByHour" -f SQL -cf

c:\perflogs\summary-counters-setting-file.txt

354 Microsoft Windows Server 2003 Performance Guide

The output file specification, -o “SQL:PDB!ByHour", identifies the ODBC connection
named PDB and defines a subsection of the PDB database that is called ByHour. You
can define multiple capacity planning databases within the PDB database by identify-
ing them using separate names.

After this command executes, it creates the PDB database tables that are used to store
the counter log data. Using the SQL Enterprise Manager console, you can verify that
the counter log tables have been created properly. Figure 4-17 illustrates the state of
the PDB database following execution of the Relog command that references the SQL
Server PDB ODBC connection.

Figure 4-17 The state of the PDB database following execution of the Relog command

The counter log data is stored in three SQL Server tables—CounterData, CounterDe-
tails, and DisplayToID. The format of these SQL Server tables reflects the data model
that the performance monitoring facilities and services use to maintain a SQL Server
repository of counter log data. This data model is discussed in detail below in the sec-
tion entitled Using a SQL Server Repository.

Automated Counter Log Processing

In the preceding sections of this chapter, procedures were outlined to perform the fol-
lowing functions:

■ Gather daily performance counter logs

■ Gather diagnostic counter logs in response to alerts

■ Summarize the daily performance counter logs to build management reports

■ Populate a repository inside SQL Server that can be used in capacity planning

Chapter 4: Performance Monitoring Procedures 355

These are functions that need to be performed automatically on all the Windows
Server 2003 machines requiring continuous performance monitoring. This section
provides a sample WSH script to automate these daily procedures. This script is writ-
ten in VBScript, and you can easily tailor it to your environment. It will reference the
counter log settings files that were shown in the preceding sections, which create sum-
marized counter log files and reference the PDB database in SQL Server defined in the
previous section.

The complete sample post-processing script is shown in Listing 4-12. It is heavily com-
mented and sprinkled with Wscript.Echo messages; this information will allow you to
modify the script easily to suit your specific requirements. To enable these
Wscript.Echo diagnostic messages, remove the Microsoft Visual Basic comment indica-
tor, which is a single quotation mark character (').

Listing 4-12 Sample Post-Processing Script
‘VBscript for post-processing daily performance Counter Logs

‘

‘Initialization

CreatedTodayDate = Now

Const OverwriteExisting = True

Const LogType = "blg"

Const OldLogType = "Windows Backup File"

Const PMFileType = "Performance Monitor File"

Const relogSettingsFileName = "c:\perflogs\relog-counters-setting-file.txt"

Const relogParms = "-f BIN -t 15"

Const relogSummaryParms = "-f BIN -t 4"

Const relogHistoryParms = "-f BIN -a"

Const HistorySettingsFileName = "c:\perflogs\summary-counters-setting-file.txt"

Const PerflogFolderToday = "C:\Perflogs\Today"

Const PerflogFolderYesterday = "C:\Perflogs\Yesterday"

Const PerflogFolderAlerts = "C:\Perflogs\Alert Logs"

Const PerflogFolderHistory = "C:\Perflogs\History"

Set WshShell = CreateObject("Wscript.Shell")

Set objEnv = WshShell.Environment("Process")

LogonServer = objENV("COMPUTERNAME")

DailyFileName = PerflogFolderYesterday & "\" & LogonServer & "." & _

 "basic_daily_logDailyLog" & "." & LogType

SummaryFileName = PerflogFolderYesterday & "\" & LogonServer & "." & _

 "basic_history_logHistoryLog" & "." & LogType

HistoryFileName = PerflogFolderHistory & "\" & LogonServer & "." & _

 "history_performance_logPerformanceLog" & "." & LogType

‘WScript.Echo DailyFileName

‘WScript.Echo SummaryFileName

‘WScript.Echo HistoryFileName

356 Microsoft Windows Server 2003 Performance Guide

Const AlertDaysOld = 3 ‘Number of days to keep Alert-generated

 Counter Log files

Set objFSO1 = CreateObject("Scripting.FileSystemObject")

If objFSO1.FolderExists(PerflogFolderYesterday) Then

 Set objYesterdayFolder = objFSO1.GetFolder(PerflogFolderYesterday)

Else

 Wscript.Echo "Yesterday folder does not exist. Will create " &

 PerflogFolderYesterday

 Set objYesterdayFolder = objFSO1.CreateFolder(PerflogFolderYesterday)

End If

Set objYesterdayFolder = objFSO1.GetFolder(PerflogFolderYesterday)

Set objTodayFolder = objFSO1.GetFolder(PerflogFolderToday)

Set objAlertsFolder = objFSO1.GetFolder(PerflogFolderAlerts)

‘Wscript.Echo "Begin Script Body"

objYesterdayFolder.attributes = 0

Set fc1 = objYesterdayFolder.Files

‘Wscript.Echo "Look for Yesterday's older backup files..."

 For Each f1 in fc1

 ‘Wscript.Echo "Found " & f1.name & " in " & PerflogFolderYesterday

 ‘Wscript.Echo "File type is " & f1.type

 If f1.type = OldLogType Then

 ‘Wscript.Echo "Old files of type " & f1.type & " will be deleted."

 filename = PerflogFolderYesterday & "\" & f1.name

 ‘Wscript.Echo "Delete " & filename

 objFSO1.DeleteFile(filename)

 End If

 Next

‘Wscript.Echo "Look for Yesterday's .blg files..."

 For Each f1 in fc1

 ‘Wscript.Echo "Found " & f1.name & " in " & PerflogFolderYesterday

 If f1.type = PMFileType Then

 NewName = PerflogFolderYesterday & "\" & f1.name & "." & "bkf"

 ‘Wscript.Echo f1.name & " will be renamed to " & NewName

 filename = PerflogFolderYesterday & "\" & f1.name

 ‘Wscript.Echo "Rename " & filename

 objFSO1.MoveFile filename, NewName

 End If

 Next

objYesterdayFolder.attributes = 0

‘Wscript.Echo "Look at Today's files..."

‘Wscript.Echo "Today is " & CStr(CreatedTodayDate)

Chapter 4: Performance Monitoring Procedures 357

 Set fc2 = objTodayFolder.Files

 For Each f2 in fc2

 filename = PerflogFolderToday & "\" & f2.name

 FileCreatedDate = CDate (f2.DateCreated)

 ‘Wscript.Echo filename & " was created on " & CStr (FileCreatedDate)

 If DateDiff ("d", CreatedTodayDate, FileCreatedDate) = 0 Then

 ‘Wscript.Echo "Skipping the file currently in use: " & filename

 Else

 ‘Wscript.Echo filename & " is " & CStr(DateDiff("d", FileCreatedDate,

CreatedTodayDate)) & " day(s) old."

 ‘Wscript.Echo "Copying " & filename & " to " & PerflogFolderYesterday

 objFSO1.CopyFile filename, PerflogFolderYesterday & "/"

 relogfiles = relogfiles & PerflogFolderYesterday & "\" & f2.name & " "

 End If

 Next

‘Wscript.Echo "Today's files to send to relog: " & relogfiles

command = "relog " & relogfiles & "" -o " & DailyFileName & " -cf " _

 & relogSettingsFileName & " " & relogParms

‘Wscript.Echo "Relog command string: " & command

Set WshShell = Wscript.CreateObject("WScript.Shell")

Set execCommand = WshShell.Exec(command)

Wscript.Echo execCommand.StdOut.ReadAll

command = "relog " & DailyFileName & _

 " -o " & SummaryFileName & " -cf " & HistorySettingsFileName _

 & " " & relogSummaryParms

‘Wscript.Echo "Relog command string: " & command

Set WshShell = Wscript.CreateObject("WScript.Shell")

Set execCommand = WshShell.Exec(command)

Wscript.Echo execCommand.StdOut.ReadAll

If (objFSO1.FileExists(HistoryFileName)) Then

 command = "relog " & HistoryFileName & " " & SummaryFileName & _

 " -o " & HistoryFileName & " " & relogHistoryParms

 ‘Wscript.Echo "Relog command string: " & command

 Set WshShell = Wscript.CreateObject("WScript.Shell")

 Set execCommand = WshShell.Exec(command)

 Wscript.Echo execCommand.StdOut.ReadAll

Else

 objFSO1.CopyFile SummaryFileName, HistoryFileName

End If

‘Copy the summarized daily file to a Counter Log data consolidation server

‘ objFSO1.CopyFile DailyFileName, <somewhere>

358 Microsoft Windows Server 2003 Performance Guide

‘Wscript.Echo "Deleting files after processing"

 For Each f2 in fc2

 filename = PerflogFolderToday & "\" & f2.name

 FileCreatedDate = CDate (f2.DateCreated)

 If DateDiff ("d", CreatedTodayDate, FileCreatedDate) = 0 Then

 ‘Wscript.Echo "Skipping the file currently in use: " & filename

 Else

 ‘Wscript.Echo "Deleting " & filename & " from " & PerflogFolderToday

 objFSO1.DeleteFile(filename)

 End If

 Next

Set fc3 = objAlertsFolder.Files

‘Wscript.Echo "Look for older Alert-generated log files ..."

 For Each f3 in fc3

 ‘Wscript.Echo "Found " & f3.name & " in " & PerflogFolderAlerts

 filename = PerflogFolderAlerts & "\" & f3.name

 FileCreatedDate = CDate (f3.DateCreated)

 ‘Wscript.Echo filename & " is " & CStr(DateDiff("d", FileCreatedDate,

 CreatedTodayDate)) & " day(s) old."

 If DateDiff ("d", FileCreatedDate, CreatedTodayDate) < AlertDaysOld Then

 ‘Wscript.Echo "Skipping recently created Alert Counter Log file: " &

 filename

 Else

 ‘Wscript.Echo "Deleting " & filename & " from " &

 PerflogFolderToday

 objFSO1.DeleteFile(filename)

 End If

 Next

This sample script is designed to be launched automatically by the Performance Logs
and Alerts service when smlogsvc closes one daily counter log and opens the next.
You can also use the Task Scheduler to launch this script automatically whenever you
decide to perform these post-processing steps.

The sections that follow discuss in detail the logic used by the post-processing script,
in case you need to customize it.

Script Initialization

The Initialization section of this sample script sets initial values for a number of con-
stants that are used. By changing the initial values that these variables are set to, you
can easily change the behavior of the script to conform to your environment without
having to alter much of the script’s logic. For example, the following lines set initial

Chapter 4: Performance Monitoring Procedures 359

values for four string variables that reference the folders containing the counter logs
that the script will manage:

Const PerflogFolderToday = "C:\Perflogs\Today"

Const PerflogFolderYesterday = "C:\Perflogs\Yesterday"

Const PerflogFolderAlerts = "C:\Perflogs\Alert Logs"

Const PerflogFolderHistory = "C:\Perflogs\History"

It assumes that PerflogFolderToday points to the folder where the daily counter logs are
being written by the Performance Logs and Alerts service. It also assumes that Perflog-
FolderAlerts points to the folder where counter logs that are triggered by hourly alert
scans are written. The script will move yesterday’s counter logs from C:\Per-
flogs\Today to C:\Perflogs\Yesterday, creating C:\Perflogs\Yesterday if it does not
already exist. The script will also delete counter logs in the C:\Perflogs\Alert Logs
folder if they are older than three days. Another constant named AlertDaysOld con-
tains the aging criteria for the Alert Logs folder. If you prefer to keep diagnostic
counter logs that were automatically generated by alert thresholds being tripped for
10 days, simply change the initialization value of the AlertDaysOld variable as follows:

Const AlertDaysOld = 10

The script uses the WshShell object to access the built-in COMPUTERNAME environ-
ment variable. This variable is used to create a file name for the summarized counter
log file that relog will create from any detail counter logs that are found. Having the
computer name where the counter log originated embedded in the file name makes
for easier identification.

Set WshShell = CreateObject("Wscript.Shell")

Set objEnv = WshShell.Environment("Process")

LogonServer = objENV("COMPUTERNAME")

DailyFileName = PerflogFolderYesterday & "\" & LogonServer & "." &

 "basic_daily_log" & "." & LogType

‘WScript.Echo DailyFileName

Following initialization of these and other constants, the script initializes a FileSystem-
Object, which it uses to perform various file management operations on the desig-
nated folders and the counter log files they contain:

Set objFSO1 = CreateObject("Scripting.FileSystemObject")

The FileSystemObject is then used to identify the file folders the script operates on. For
example, the following code initializes a variable named fc1, which is a collection that
contains the files in the C:\Perflog\Yesterday folder:

Set objYesterdayFolder = objFSO1.GetFolder(PerflogFolderYesterday)

Set fc1 = objYesterdayFolder.Files

360 Microsoft Windows Server 2003 Performance Guide

Cleaning Up Yesterday’s Backup Files

The body of the script begins by enumerating the files in the C:\Perflogs\Yesterday
folder where older counter logs are stored. At this point, any files in the C:\Perf-
logs\Yesterday folder that match the OldLogType are deleted. The next section of the
script renames any .blg files that it finds in the C:\Perflogs\Yesterday folder with the
OldLogType suffix, which is appended to the file name using this section of code:

 For Each f1 in fc1

 If f1.type = PMFileType Then

 filename = PerflogFolderYesterday & "\" & f1.name

 NewName = PerflogFolderYesterday & "\" & f1.name & "." & "bkf"

 objFSO1.MoveFile filename, NewName

 End If

 Next

The sample script initializes the value of OldLogType to associate it with Windows
Backup File, which uses a file name suffix of .bkf. You can change this to any value
appropriate for your environment. (Alternately, you could parse the file name string to
look for this file extension.)

The effect of this processing on the files in the C:\Perflogs\Yesterday folder is that the
folder will contain counter logs from yesterday and backup versions of the counter
logs used the day before yesterday. This provides a margin of safety that allows you to
go back in time at least one full day when something goes awry with any aspect of the
daily counter log post-processing procedure.

Managing Yesterday’s Daily Counter Logs

Next, the script enumerates the counter log files that exist in the C:\Perflogs\Today
folder. This should include the counter log binary file where current measurement
data is being written, along with any earlier counter logs that are now available for
post-processing. The script determines whether the counter log files in the C:\Perf-
logs\Today folder are ready for processing by comparing their creation date to the cur-
rent date. Files in the C:\Perflogs\Today folder from the previous day are then copied
to the C:\Perflogs\Yesterday folder using the DateDiff function. Meanwhile, the
names of the files being copied are accumulated in a string variable called relogfiles for
use later in the script.

Creating Summarized Counter Logs

After all the older counter logs in the C:\Perflogs\Today folder are processed, the
script executes the Relog utility using the Exec method of the WshShell object:

Chapter 4: Performance Monitoring Procedures 361

command = "relog " & relogfiles & "-o " & DailyFileName & " -cf " _

 & relogSettingsFileName & " " & relogParms

Set WshShell = Wscript.CreateObject("WScript.Shell")

Set execCommand = WshShell.Exec(command)

This creates a binary counter log denoted by the DailyFileName string variable, which
is summarized to 15-minute intervals.

The line that follows the invocation of the Relog utility gives you access to any output
messages that Relog produces, if you remove the comment character and enable the
call to Wscript.Echo:

‘Wscript.Echo execCommand.StdOut.ReadAll

Once this summarized daily counter log is created using the Relog utility, you will
probably want to add a processing step in which you copy the daily log to a counter
log consolidation server somewhere on your network. Replace the following comment
lines, which reserve a space for this processing, with code that performs the file trans-
fer to the designated consolidation server in your environment:

‘ Copy the summarized daily file to a Counter Log data consolidation server

‘ objFSO1.CopyFile DailyFileName, <somewhere>

The script issues a second Relog command to summarize the daily log to 1-hour inter-
vals. Next, it uses Relog again to append this counter log to an historical summary log
file in the C:\Perflogs\History folder that is also summarized hourly. At the conclu-
sion of this step, a file named <computer-name>.history_performance_log.blg, which
contains all the accumulated historical data you have gathered, summarized to 1-hour
intervals, is in the C:\Perflogs\History folder. Because this historical summary file will
continue to expand at the rate of about 300–500 KB per day, you might want to
archive it periodically for long-term storage in another location. For instance, after one
year, the historical summarized counter log will grow to approximately 100–200 MB
per machine.

Alternatively, at this point in the procedure, you could chose to store the historical,
summarized counter log data in a SQL Server performance database. If you decide to
use a SQL Server repository for historical counter data, first insert the following initial-
ization code:

Const relogSQLParms = "-f SQL -t 4"

Const relogSQLDB = """SQL:PDB!ByHour"""

Const SQLSettingsFileNane = "c:\perflogs\summary-counters-setting-file.txt"

362 Microsoft Windows Server 2003 Performance Guide

Next, replace the last two Relog commands with a single Relog command to insert the
hourly counter log data that is generated directly into SQL Server, as follows:

command = "relog " & DailyFileName & " -o " & relogSQLDB & " -cf " & SQLSettingsFileNane

& " " & relogSQLParms

Tip For maximum flexibility, you might want to build and maintain both summa-
rized data and historical data in binary format logs that are easy to transfer from com-
puter to computer in your network and to a consolidated historical PDB using SQL
Server.

The script then contains a comment that instructs you to copy the summarized daily
counter log file that was just created to a consolidation server somewhere on your net-
work, where you will use it in your management reporting process:

‘ objFSO2.CopyFile DailyFileName, <somewhere>

Next, the script returns to the C:\Perflogs\Today folder and deletes the older files that
were previously copied to C:\Perflogs\Yesterday and processed by Relog.

Managing Counter Logs Automatically Generated by Alerts

Finally, the script enumerates all the files in the C:\Perflogs\Alert Logs folder and
deletes any that are older than the value set in the AlertDaysOld constant, which by
default is set to 3 days. The rationale for deleting older counter logs in the Alert Logs
folder is that the crisis has probably passed. Like the C:\Perflogs\Today folder where
you are writing daily counter logs, if you neglect to perform some sort of automatic file
management on the C:\Perflogs\Alert Logs folder, eventually you are going to run out
of disk space on the machine.

Scheduled Monthly Reports and Archiving

Additional relogging can be done on a scheduled basis using the Scheduled Tasks util-
ity. Tasks scheduled to run by a service other than the Performance Logs and Alerts ser-
vice should use active log files very cautiously. Having an active log file open by
another process might prevent the log service from closing it properly, or prevent the
command file that is executed after the current log is closed from functioning correctly.

At the end of the month, the log files that were collected each day throughout the
month can be consolidated into a single archival summary log file. In most cases, this
will provide sufficient detail while not consuming unnecessary disk space.

Chapter 4: Performance Monitoring Procedures 363

The end-of-the-month processing consists of two main functions:

1. Reducing the number of samples

2. Consolidating the daily files into a single log file representing the month

For best processing performance, first compress the individual files and then concat-
enate them. Because Relog tries to join all the input files together before processing
them, working with smaller input files makes the resulting join much quicker. Listing
4-13 is an example of typical monthly processing using a command file.

Listing 4-13 Monthly Processing Example
Rem ***

Rem * arg 1 is the name of the month that the performance data logs

Rem * are being compiled for.

Rem *

Rem * arg 2 is the directory path in which to put the output file

Ren *

Ren * NOTE: This procedure should not run when a daily log is being

Ren * processed. It should run after the last daily log of the month has

Rem * been processed and moved to the SAVE_DIR

Rem *

Rem ***

set LOG_DIR <directory path containing these files>

set SAVE_DIR <directory path where daily log files are saved>

set TEMP_DIR <directory path where compressed daily log files are saved>

echo Archiving logs in %SAVE_DIR% at %date% %time%>> %LOG_DIR%\SAMPLE_RELOG.LOG

Rem compress each daily log and store the output files in the TEMP_DIR

for %a in (%SAVE_DIR%) do %LOG_DIR%\Montlhy_Compress.bat "%a" "%TEMP_DIR%"

if errorlevel 1 goto COMPRESS_ERROR

Rem concatenate the compressed log files into monthly summary file

relog %TEMP_DIR%*.blg -o %2\%1.blg

if errorlevel 1 goto RELOG_ERROR

Rem clear out the temp directory to remove the temp files

Del /q %TEMP_DIR%*.*

Rem clear out the original files if you want to free up the space

Rem or you may wish to do this manually after insuring the files were

Rem compressed correctly

Del /q %SAVE_DIR%*.*

exit :COMPRESS_ERROR

echo Compress error at %date% %time%>> %LOG_DIR%\SAMPLE_RELOG.LOG

exit

:RELOG_ERROR

echo Relog error at %date% %time%>> %LOG_DIR%\SAMPLE_RELOG.LOG

exit

364 Microsoft Windows Server 2003 Performance Guide

In the command file in Listing 4-13, the log files stored in the SAVE_DIR directory are
compressed with another command file and then merged together.

Listing 4-14 Command File Invoked by the Monthly Processing Job
Rem ***

Rem * arg 1 is the filename of the daily performance data log file to

Rem * compress for subsequent concatenation.

Rem *

Rem * arg 2 is the directory path in which to put the output file

Ren *

Rem ***

set LOG_DIR <directory path containing these files>

set SAVE_DIR <directory path where daily log files are saved>

set TEMP_DIR <directory path where compressed daily log files are saved>

echo Compressing file: %1 at %date% %time%>> %LOG_DIR%\SAMPLE_RELOG.LOG

Rem compress each daily log and store the output files in the TEMP_DIR

Relog %1 -config %LOG_DIR%\COMPRESS_CFG.TXT -o %2\%~nx1 >>

%LOG_DIR%\SAMPLE_RELOG.LOG

The command file in Listing 4-14 is separate from the main command file so that the
file name parsing features of the command interpreter can be used.

After the data collected during the month is consolidated into a condensed summary
file, monthly reports can be produced using the summary file. In fact, the same
counter log configuration files could be used for a monthly summary of the same data
reported in the daily reports. The only difference is in using a different input file—the
monthly summary log file instead of the daily performance data log file.

Defining Log Configurations for Multiple Servers

Configuration files can also be used to establish uniform counter log collection proce-
dures across multiple computers. The following configuration file illustrates the basic
log settings that might be used in a server configuration consisting of many servers.
Note that additional counters can be added if necessary.

[name]

Basic Performance Data Log

[sample]

15

[format]

bin

[--max]

[--append]

Chapter 4: Performance Monitoring Procedures 365

[version]

nnnnnn

[runcmd] <insert the full path name of command file to run when this log file is

closed>

[counters]

\Processor(_Total)\% Processor Time

\LogicalDisk(_Total)\% Disk Time

\Memory\Pages/sec

\Network Interface (*)\Bytes Total/sec

Using a SQL Server Repository
The SQL Server support for counter log data is flexible and provides a good way to
build and maintain a long-term repository of counter log data for both analysis and
capacity planning. This section discusses the use of a SQL Server repository for report-
ing counter log performance data. It discusses the database schema that is employed
to store the counter log data. It then describes how to use data mining tools like
Microsoft Excel to access counter log data in a SQL Server repository and report on it.
Finally, an example is provided that retrieves counter log data from SQL Server using
Excel and produces a workload growth–based forecast, performing a statistical analy-
sis of historical usage trends.

When counter log data is stored in a SQL Server repository, it is organized into three
database tables. In general, data in database tables is arranged into rows and columns.
Rows are equivalent to records in a file, whereas columns represent fields. Each
counter log table is indexed using key fields. Keys uniquely identify rows in the table
and allow you to select specific rows directly without having to read through the entire
table. Each counter log table contains foreign keys, which are the key fields that allow
you to link to another, related table. If two tables share a common key field, you can
join them, which is a logical operation that combines data from two tables into one.
The language used to select and join database tables is known as SQL, which is based
on relational algebra. Fortunately, you do not have to know how to use the SQL lan-
guage to access and manipulate the counter log tables inside SQL Server. You can rely
on tools like Microsoft Excel, Microsoft Query, and Microsoft Access that allow you to
access SQL Server data without ever having to code SQL statements. Nevertheless,
when you are using one of these tools to access counter log data stored in SQL Server,
it is helpful to have an understanding of how the counter log is organized into data-
base tables.

366 Microsoft Windows Server 2003 Performance Guide

Although you can store any type of counter log in a SQL Server database, the database
is ideal for storing summarized counter log data that is consolidated from multiple
machines for longer-term trending, forecasting, and capacity planning. The proce-
dures described in this chapter focus on this type of usage.

If you are creating a SQL Server repository of summarized counter log data for capac-
ity planning, you will use procedures like the ones described earlier in “Populating the
Repository,” in which you relog the data to create concise summaries and send the
output from the Relog utility to SQL Server. For example, the following Relog com-
mand takes one or more daily counter log files summarized to 15-minute intervals,
summarizes them even further to 1-hour intervals, and inserts the output into a SQL
Server database named PDB:

relog <summaryfile-list> -o "SQL:PDB!ByHour" -f SQL -t 4 -cf c:\perflogs\summary-

counters-setting-file.txt

The output file specification, -o “SQL:PDB!ByHour", identifies the ODBC connection
named PDB and also identifies a log set of the PDB database, called ByHour.

Using the System Monitor Console with SQL Server

You can continue to use the System Monitor console to report on counter log data that
is stored in a SQL Server performance database. In the Chart view, click the View Log
Data toolbar button (which looks like a disk drive), and then select Database as the
data source, as illustrated in Figure 4-18.

Figure 4-18 Database selected on the Source tab

Chapter 4: Performance Monitoring Procedures 367

Select the System DSN and the Log Set, and then click Apply. At this point, you will be
able to create charts and histograms for any of the historical data that is stored in the
SQL Server database. For example, Figure 4-19 shows a Chart view of Committed
Bytes compared to the machine’s Commit Limit over a 3-day span using counter log
data retrieved from a SQL Server database.

Figure 4-19 A Chart view illustrating memory capacity planning data from SQL Server

How to Configure System Monitor to Log to SQL Server

Although these procedures focus on using SQL Server as a repository of summarized
counter log data for capacity planning, it is also possible to direct counter log data to
SQL Server when the data is initially created.

1. To configure Performance Monitor to Log to SQL Server from Performance Logs
and Alerts, right-click Counter Logs, and then click New Log Settings. Type a
name for this log, and then click OK.

2. On the General tab, click Add Objects to add the objects you want to log, and
then click Add. Enter the counters that you want to monitor, and then click
Close. In the Run As box, be sure to supply a user name that has the proper cre-
dentials to create and store data in the SQL Server database selected. The follow-
ing permissions are required:

❑ The correct rights to run System Monitor

❑ The correct rights to the SQL Server database (both create and read)

368 Microsoft Windows Server 2003 Performance Guide

3. Click the Log Files tab, click SQL Database in the Log File Type list, and then
click Configure, as illustrated in Figure 4-20. The Configure SQL Logs dialog
box is displayed.

Figure 4-20 Configuring the SQL database

Note that using automatic versioning when you are logging counter log data
directly to SQL Server is usually not advisable, as illustrated. Versioning will cre-
ate new counter log sets continuously and increase the size of the CounterDe-
tails table accordingly. This table growth will make using the counter logs stored
in the SQL Server database more complicated when you employ query and anal-
ysis tools such as Microsoft Excel.

4. In the System DSN box, click the DSN that you want to connect to and provide
a name for the counter log set you want to log to, as illustrated in Figure 4-21. If
this log set already exists, the counter log data will be added to the existing log
set. If the log set is new, it will be created when the counter log session is started.

Chapter 4: Performance Monitoring Procedures 369

Figure 4-21 Setting the DSN and naming the log set

After you start the counter log session, you can verify that the counter log was created
properly inside SQL Server using SQL Server Enterprise Manager. Navigate to the
database to which you are logging counter data and access its tables. You can then
right-click the DisplayToID table, select Open Table, Open All Rows. You should see
a display similar to Figure 4-22.

Figure 4-22 Using SQL Server Enterprise Manager to verify that a counter log was created
properly inside SQL Server

Counter Log Database Schema

When you first use the SQL Server support in either Logman or Relog to create a
counter log data repository, three new tables are defined to store the counter log data,
as illustrated in Figure 4-17. Counter log data is stored in SQL Server in three inter-
linked tables:

■ The CounterData table contains individual measurement observations, with
one measurement sample per row.

■ The CounterDetails table tells you what counter fields are stored in the data-
base, with one set of counter identification information stored per row.

■ The DisplayToID table contains information used to identify one or more sets of
counter log data stored in the database.

370 Microsoft Windows Server 2003 Performance Guide

CounterData Table

The CounterData table contains a row for each observation of a distinct counter value
measured at a specific time. Each individual counter measurement is stored in a sepa-
rate row of the table, so you can expect this table to grow quite large.

The columns (or fields) of the CounterData table that you are likely to use most fre-
quently are described in Table 4-5.

The CounterData table also contains the raw performance data values that were nec-
essary to calculate the formatted data value. Deriving the formatted counters might
require up to four raw performance data values that are used in the formatted counter
value calculation. If available, these raw performance data values are stored in FirstVal-
ueA, FirstValueB, SecondValueA, and SecondValueB. When you use the Relog utility to
summarize data from a SQL Server database, the raw performance counters are put to
use. For most other purposes, you can ignore them.

The primary key for this table is a combination of the GUID, CounterID, and RecordIn-
dex fields. That means that a SQL SELECT statement identifies a unique row in the
CounterTable when you specify a value for the CounterID, GUID, and RecordIndex
fields.

Even though it contains the measurement data for all the counters you are interested
in, by itself the CounterData table is not usable. However, once you join the Counter-
Table with the CounterDetails table that identifies each counter by its CounterID, the
CounterData yields the measurement data you are interested in.

CounterDetails Table

The CounterDetails table associates the CounterID that is the key to the CounterData
table with fields that identify the counter by name. It stores the counter type, which is

Table 4-5 Frequently Used CounterData Columns (Fields)

Column Name Explanation

CounterID Part of the primary key to the table; foreign key to the
CounterDetails table

CounterDateTime The start time when the value of this counter was collected,
based on Coordinated Universal Time (UTC)

CounterValue The formatted value of the counter, ready to be displayed

GUID Part of the primary key to the table; foreign key to the Dis-
playToID table

RecordIndex Part of the primary key to the table; uniquely identifies the
data sample

Chapter 4: Performance Monitoring Procedures 371

required for summarization. CounterDetails provides the fully qualified counter
name, which it breaks into a series of fields so that the counter name value can be
stored and retrieved readily. For example, to build a fully qualified counter name such
as \\Computer\Processor(1)\% Processor Time, the CounterDetails table supplies
values for the ComputerName, ObjectName, CounterName, and InstanceName columns.
The CounterID field is the key to the CounterDetails table. The fields listed in Table
4-6 are available in the CounterDetails table.

When you join the CounterDetails table with the CounterData table in a SQL query,
you can associate the measurement data values stored in CounterData with the
proper counter name identification. Storing the counter name details once in a sepa-
rate table is an example of database normalization, and saves a great of deal of disk
space in the database tables. It does require an extra step during reporting, namely,
that you must join the two tables first. But this is very easy to do using the rich data
mining tools that are provided in programs like Microsoft Excel and Microsoft Query,
which is illustrated in the “Querying the SQL Performance Database” section.

Note If you intend to code SQL statements to retrieve data from counter logs
stored in SQL Server, you must first join the CounterData and CounterDetails tables, as
in the following generic example:

Select * from CounterData, CounterDetails where CounterData.CounterID

= 50

Table 4-6 Fields Available in the CounterDetails Table

Column Name Explanation

CounterID A unique identifier; foreign key to the CounterData table

MachineName The machine name portion of the fully qualified counter name

ObjectName The object name portion of the fully qualified counter name

CounterName The counter name portion of the fully qualified counter name

InstanceName The counter instance name portion of the fully qualified
counter name, if applicable

InstanceIndex The counter instance index portion of the fully qualified
counter name, if applicable

ParentName The name of the parent instance, if applicable

ParentObjectID The parent object ID, if applicable

CounterType The counter type for use in summarization

DefaultScale The default scaling factor to be applied when the counter val-
ue is charted using the System Monitor console

372 Microsoft Windows Server 2003 Performance Guide

DisplayToID Table

The DisplayToID table serves several purposes. Primarily, it associates the character
string you specified when you originally created the SQL Server counter log database
with a GUID that can serve as a unique identifier for the counter log database. This
character string is for reference only. For example, in the following Relog command,
the character string “ByHour” identifies the log set of the PDB database that is refer-
enced:

relog <summaryfile-list> -o "SQL:PDB!ByHour" -f SQL -t 4 -cf

c:\perflogs\summary-counters-setting-file.txt

This character string is stored in the DisplayToID table in a field called DisplayString,
which is automatically associated with a GUID to create a unique identifier that can be
used as a key to both this table and the CounterData table. The fields listed in Table
4-7 are in the DisplayToID table.

The Time conversion data present in the DisplayToID table allows you to convert the
datetime field in the CounterData table to local time.

Table 4-7 Fields in the DisplayToID Table

Column Name Explanation

GUID A unique identifier; also a foreign key to the CounterData ta-
ble. Note this GUID is unique; it is not the same GUID stored
in the registry at HKEY_LOCAL_MACHINE\SYSTEM\Current-
ControlSet\Services\SysmonLog\Log Queries\.

DisplayString Equivalent to a log file name; the character string specified
with the -o subparameter following the exclamation point
character (!) in the SQL Server database output file reference.

LogStartTime Log start and end times in yyyy-mm-dd hh:mm:ss:nnn format.
Note that the datetime values in the LogStartTime and
LogStopTime fields allow you establish the time range for the
log without scanning the entire CounterData table.

LogStopTime

NumberOfRecords The number of CounterData table rows associated with this
log file.

MinutesToUTC Add this value to CounterData.CounterDateTime to convert
the CounterData datetime field to local time.

TimeZoneName The name of the time zone where the CounterData was gath-
ered.

RunID A reserved field used for internal use only.

Chapter 4: Performance Monitoring Procedures 373

If you now issue a different Relog command, such as the one that follows, separate
rows will be created in the DisplayToID table—one set of rows that store the ByHour
summary log and another set that corresponds to the ByShift summary log:

relog <summaryfile-list> -o "SQL:PDB!ByShift" -f SQL -t 32 -cf

c:\perflogs\summary-counters-setting-file.txt

Counter measurement data from both logs will be stored together in the same Coun-
terData table. A unique GUID is generated for each log. This GUID identifies the log
set uniquely and is used as the key to the DisplayToID table. The GUID also serves as
foreign key to the CounterData table so that the rows associated with each log can be
distinguished.

Note If, as in the example just discussed, multiple logs are stored in a single data-
base, you must join all three tables first before attempting to utilize the counter log
data in a report. For a simple example, the following SELECT statement will join all
three tables and retrieve information from just the ByHour counter log:

Select * from CounterData, CounterDetails, DisplayToID where

DisplayToID.DisplayString = ‘ByHour' and CounterData.GUID =

DisplayToID.GUID and CounterData.CounterID = 50

Fortunately, the SQL Server Query Optimizer will ensure that this complex, nested
SELECT statement executes as efficiently as possible against the database.

To keep your SQL statements from growing complex as a result of maintaining multi-
ple logs in a single SQL Server database, you can define additional counter log data-
bases in the same instance of SQL Server or in separate instances of SQL Server.

Querying the SQL Performance Database

Once Performance Monitor data is stored in one or more SQL Server databases, you
can access it for reporting and analysis in a variety of ways. You can, for example, use
the Relog command-line utility to access performance data stored data in a SQL
Server log set and export it to a .csv file. You are also free to develop your own tools to
access and analyze the counter log data stored in SQL Server databases. Finally, you
might want to take advantage of the data mining capabilities built into existing tools
like Microsoft Excel, which can be used to query SQL Server databases and analyze
the data stored there. This section will walk you step by step through a typical SQL
Server counter log database access scenario. This scenario analyzes the ByHour
counter log file example using Microsoft Excel to retrieve the counter log data stored
there.

374 Microsoft Windows Server 2003 Performance Guide

More Info For more information about developing your own tools to access and
analyze the counter log data stored in SQL Server databases, see the topic entitled
“Using the PDH Interface” in the SDK documentation available at http://
msdn.microsoft.com/library/en-us/perfmon/base/using_the_pdh_interface.asp.

To use the Excel database access component to access counter log data stored in SQL
Server, you follow two simple steps. The first step is to access the CounterDetails table
to generate a list of CounterIDs and counter names. If only one counter log file is
stored in the specified SQL Server database, a simple SQL SELECT operation returns
all rows:

USE PDB

SELECT * FROM CounterDetails

However, if multiple counter logs are stored in a single database, you will need to
select the appropriate DisplayString in the DisplayToID table and perform a join with
CounterDetails on the corresponding GUID:

USE PDB

SELECT * from CounterDetails, DisplayToID where DisplayToID.DisplayString = ‘ByHour'

and CounterData.GUID = DisplayToID.GUID

Creating a worksheet first that contains all the information from CounterDetails allows
you to determine which counter IDs to use in subsequent selections from the Counter-
Data table. Because the CounterData table can grow quite large, you want to avoid any
operation that involves scanning the entire table. To select specific rows in the Coun-
terData based on CounterIDs, you must first determine the correlation between the
CounterID field, which is a foreign key to the CounterData table, and the
Object:Counter:Instance identification information, which is stored in CounterDetails.

When you use Excel, you do not need to code any SQL statements to execute queries
of this kind against the counter log database. Excel supports Microsoft Query, which
generates the appropriate SELECT statement as you step through a Query generation
wizard with a few mouse clicks, as illustrated in the next procedure.

Here is the procedure for using Excel to access a counter log file stored in a SQL Server
database. It uses the PDB!ByHour counter log file example that has been referenced
throughout this chapter.

Chapter 4: Performance Monitoring Procedures 375

To access a Counter Log file stored in SQL Server

1. Start with an empty Excel worksheet and workbook. From the Data menu,
select Get External Data, New Database Query. This invokes the Microsoft
Query Wizard.

2. In the Choose Data Source dialog box, click the Databases tab, shown in Fig-
ure 4-23. Select your defined ODBC connection to the counter log SQL Server
database.

Figure 4-23 The Databases tab in Choose Data Source

3. Make sure that the Use The Query Wizard To Create/Edit Queries check box
is selected and click OK. The Choose Columns dialog box is displayed.

4. In the Available Tables And Columns section, select the CounterDetails table.
All the columns from CounterDetails appear in the Columns In Your Query list,
as illustrated in Figure 4-24. Click Next.

Figure 4-24 Displaying the columns from the CounterDetails query

5. Skip the next step of the Query Wizard in which you would normally enter your
filtering criteria to build the SQL SELECT statement’s WHERE clause. Because
the information you are retrieving from the CounterDetails table is intended to
act as a data dictionary for all subsequent requests, unless the result set of rows

376 Microsoft Windows Server 2003 Performance Guide

is too large for Excel to handle conveniently, there is no reason to filter this
request.

Optionally, you can select a sort sequence for the result set by specifying the
fields in any order that will help you find what you want fast. For example, if you
want to gather data from multiple machines, sort the result set by ObjectName,
CounterName, and InstanceName, and MachineName, as illustrated in Figure 4-
25. If you are focused instead on the measurements from a single machine, sort
by MachineName, followed by ObjectName, CounterName, and InstanceName.

Figure 4-25 Gathering data from multiple machines

6. Select Return Data To Microsoft Excel and click Finish. When the query runs,
you will have an Excel worksheet that looks similar to Figure 4-26.

Figure 4-26 Data returned to an Excel worksheet

Chapter 4: Performance Monitoring Procedures 377

Scan this Excel worksheet and look for the CounterIDs that are of interest in the next
procedure, which will retrieve counter log measurement data from the CounterData
table.

To retrieve Counter Log measurement data from the CounterData table

1. Repeat the procedure titled “To access a counter log file stored in SQL Server.”
Start with a blank worksheet. Select Get External Data, Edit Query from
Excel’s Data menu. This invokes the Microsoft Query Wizard with the settings
from the last SQL Query intact.

2. This time you want to execute a query that will join the CounterData and Coun-
terDetail tables. To the previous query, add the columns from the CounterData
table you want to see (for example, CounterData and CounterDateTime), as
shown in Figure 4-27.

Figure 4-27 Choosing columns to include in a query

3. Filter on specific CounterIDs; in this example, select only CounterData rows in
which the CounterID equals 27 or 132, which in this case (Figure 4-28) repre-
sents instances of Processor(_Total)\% Processor Time counter from two differ-
ent machines.

378 Microsoft Windows Server 2003 Performance Guide

Figure 4-28 Including data from two different machines

Or, for example, for a generic Processor\% Processor Time query that will
retrieve counter data about all instances of the Processor object that are stored
in the counter log database, filter on values of Processor in the ObjectName field,
as illustrated in Figure 4-29.

Figure 4-29 Filtering on values of Processor in the ObjectName field

4. Microsoft Query will generate a SQL SELECT statement according to these spec-
ifications and execute it, returning all the rows that meet the selection criteria
and placing the result set of columns and rows inside your spreadsheet. The
result will appear similar to Figure 4-30.

Chapter 4: Performance Monitoring Procedures 379

Figure 4-30 The Excel Workbook For SQL PDB Reporting & Alalysis.xls

5. Finally, execute another query on the DisplayToID table to gain access to the
MinutesToUTC field for this counter log so that you can adjust the CounterData
CounterDateTime to local time, if necessary.

Capacity Planning and Trending
Capacity planning refers to processes and procedures designed to anticipate future
resource shortages and help you take preventative action. Because preventative
actions might include acquiring more hardware to handle the workload, computer
capacity planning is closely tied to the budget process and has a strong financial com-
ponent associated with it. Many successful IT organizations make it a practice to coor-
dinate major hardware acquisition with resource planners.

Capacity planners rely on historical information about computer resource usage taken
from counter logs. Their planning horizon often encompasses decisions like whether
to build or extend a networking infrastructure or build a new computing site, which
would involve major capital expenditures that need approval at the highest levels of
your organization. As you can see, capacity planners are typically not concerned with
day-to-day computer performance problems (although some planners wear many
hats). Rather, they need information that can support strategic planning decisions,
and they need the performance databases that can supply it.

380 Microsoft Windows Server 2003 Performance Guide

Capacity planners also receive input on growth, expansion plans, acquisitions, and
other initiatives that might affect the computer resource usage that supports various
business functions. Capacity planners must understand the relationship between
business factors that drive computer resource usage. Historical information that
shows how these business drivers operated in the past often plays a key role in pre-
dicting the future.

To cope with anticipated shortages of critical resources, capacity planners prepare a
forecast of future computer resource requirements and their associated costs. This
forecast normally takes into account historical data on resource usage, which is kept
in the performance database. The computer capacity planners then factor in growth
estimates that are supplied by business planners. Like any prognostication about the
future, an element of guesswork is involved. However, by relying on extrapolations
from historical trends that are derived from empirical measurement data, capacity
planners strive to make their forecasts as accurate as possible.

In this section, using counter log data on resource usage to assist in long-range com-
puter capacity planning is discussed. It also discusses basic statistical techniques for
performing workload forecasting using the resource data you have gathered. It will
provide guidelines for establishing a useful capacity planning function in your organi-
zation.

Organizing Data for Capacity Planning

The data of interest to capacity planners includes:

■ The utilization of major resource categories, including processors, disks, net-
work, and memory

■ The throughput and transaction rates of key server applications

The measurement data best suited for capacity planning largely overlaps with the rec-
ommendations made earlier for management reporting in the section entitled “Sam-
ple Management Reports.” This means that that the counter log data you gather to
produce those reports will also feed a longer-term capacity planning process.

Because capacity planning focuses on longer-term usage trends, it deals exclusively
with summarized data and is usually limited to resources and workloads that have a
major financial impact on information technology (IT) costs and services. Planning
horizons span months and years, so you must accumulate a good deal of historical
data before you can reliably use it to make accurate predictions about the future.

Chapter 4: Performance Monitoring Procedures 381

Tip As a general rule, for every unit of time that you have gathered accurate histor-
ical data, you can forecast a future trend line that is one-half that length of time. For
example, to forecast one year of future workload activity with reasonable accuracy,
you should have amassed two years of historical data.

Because you can accumulate data points faster, building a capacity planning database
initially that consists of measurement data organized for weekly reporting is a good
place to start. (Data organized monthly is usually more attuned to financial planning
cycles, which makes it more useful in the long run.) In the example discussed here,
measurement data has been organization by week for an entire year, allowing you to
produce a workload forecast for the next six month period. As you accumulate more
and more measurement data, over time you may prefer to shift to monthly or even
quarterly reporting.

Accumulating measurement data from counter logs into a performance database
using the procedures outlined in this chapter is only the first step in providing a deci-
sion support capability for computer resource capacity planning. Both data mining
and data analysis need to be performed outside the scope of these automated proce-
dures. Data analysis in particular seeks to uncover any patterns that would seriously
undermine the accuracy of a capacity forecast based purely on statistical techniques.
Some of the key considerations include:

■ Identifying periods of peak load Summarization tends to smooth data over
time, eliminating the most severe peaks and values, as illustrated in Chapter 1,
“Performance Monitoring Overview.” Because performance problems are most
acute during periods of peak load, an important function of capacity planning is
identifying these periods of peak load. Machines and networks should be sized
so that performance is acceptable during peak periods of activity that occur with
predictable regularity. In the process of summarizing data for capacity planning
purposes, attempt to identify periods of peak usage so that requirements for
peak load processing can also be understood. In the next example examined in
this chapter, workload activity was summarized over a prime shift interval of
several hours involving a five-day work week. In addition to calculating average
utilization over that extended period, the peak level of activity for any one- hour
processing window within the summarization interval was retained. As illus-
trated, analysis of the peak workload trend, in comparison to the trend in the
smoothed average data, is usually very instructive.

382 Microsoft Windows Server 2003 Performance Guide

■ Cleansing the performance database of anomalies and other statistical outliers

In its original unedited form, the performance database is likely to contain many
measurement data points made during periods in which the operational envi-
ronment was irregular. Consider, for example, the impact on measurement data
over an extended time period in which one of the application programs you
tracked was permitted to execute undetected in an infinite processor loop. This
creates a situation where the measured processor utilization statistics greatly
overestimate the true workload. So that future projections are not erroneously
based on this anomalous measurement data, these statistical outliers need to be
purged from the database. Instead of deleting these observations and diluting
the historical record, one option is to replace outlying observations with a more
representative calculation based on a moving average.

■ Ensuring that the historical record can account for seasonal adjustments and other

predictable cycles of activity that contribute to variability in load Many load fac-
tors are sensitive to both time and date. To understand the full impact of any sea-
sonal factors that contribute to variability in the workload, it is important to
accumulate enough data about these cycles. For example, if your workload
tends to rise and fall predictably during an annual cycle, it is important to accu-
mulate several instances of this cyclic behavior.

After the data points in the capacity planning database are analyzed and statistical
anomalies are removed, you can safely subject the database to statistical forecasting
techniques. Figure 4-31 illustrates this approach using measurement data on overall
processor utilization accumulated for 52 weeks on a 4-way system that is used as a pri-
mary mail server. The time series plot shows average weekly utilization of the proces-
sors during the prime shift, alongside the peak hour utilization for the summarization
interval.

Figure 4-31 Processor utilization data accumulated for 52 weeks on a 4-processor system

Processor utilization (4 CPUs)

0

50

100

150

200

250

300

0 13 26 39 52
By week

Pe
rc

en
t

Average utilization Peak hour utilization

Chapter 4: Performance Monitoring Procedures 383

Overall utilization of the four processors was less than 50 percent on average across
the week at the outset of the tracking period, but rose to over 100 percent utilization
(one out of the four processors was busy on average during the weekly interval) by the
end of the one-year period. Looking at peak hour utilization over the interval reveals
peak hour utilization growing at an even faster rate. In the next section, statistical fore-
casting techniques are used to predict the growth of this workload for the upcoming
half-year period.

Notice in Figure 4-31 that by the end of the one-year period, peak hour utilization is
approaching 300 percent (three out of four processors are continuously busy during
the interval), which suggests a serious resource shortage is looming. This resource
shortage will be felt initially only during peak hour workloads. But as the upward
growth trend continues, this resource shortage will impact more and more hours of
the weekly prime processing shift. Statistical forecasting techniques can now be
applied to predict when in the future this out-of-capacity condition will occur.

Tip To justify an upgrade, you might need to supplement simple measurements of
resource utilization with empirical data that suggests performance degradation is
occurring when the resource saturates. In the case of a mail server, for example, evi-
dence that Microsoft Exchange Server message delivery queue lengths are growing,
or that average message delivery times are increasing, bolsters an argument for add-
ing more processing resources before the resource shortage turns critical.

Forecasting Techniques

Capacity planners use forecasting techniques that are based on statistical models. The
simplest techniques are often the most effective, so unless you are competent to use
advanced statistical techniques, you should stick with basic methods such as linear
regression. Linear regression derives a straight line in the form of an equation, y=mx+b,
based on a series of points that are represented as (x,y) coordinates on a Cartesian
plane. The regression formula calculates the line that is the best fit to the empirical
data. (There is one and only one such line that can be calculated for any series of three
or more points.) Because the x values of each of the (x,y) coordinates used in this
regression line calculation represent time values, the series of points (x,y) is also
known as a time series.

Note Just because a regression procedure derives a line that is the best fit to a series
of (x,y) coordinates does not mean that the line is a good fit to the underlying data that
is suitable for forecasting. Linear regression models also produce goodness-of-fit sta-
tistics that help you determine whether the regression line is a good fit to the under-
lying data. The most important goodness-of-fit statistic in linear regression is the
correlation coefficient, also known as r2.

384 Microsoft Windows Server 2003 Performance Guide

Forecasts Based on Linear Regression

The Excel function LINEST uses linear regression to derive a line from a set of (x,y)
coordinates, produce a trendline forecast, and also return goodness-of-fit statistics,
including r2. In the following example, Excel’s LINEST function is used to generate a
linear regression line that could be used for forecasting. Excel also provides a linear
regression–based function called TREND that simply returns the forecast without pro-
viding any of the goodness-of-fit statistics. If you do not feel competent to interpret the
linear regression goodness-of-fit statistics, the TREND function will usually suffice.

More Info For more information about the use of the LINEST function, see Help in
Microsoft Excel.

Figure 4-32 illustrates the use of the Excel TREND function to forecast workload
growth based on fitting a linear regression line to the historical data. In this chart of
the actual measured values of the workload and the 26-week forecast, the historical
data is shown using a heavy line, whereas the linear trend is shown as a dotted line. In
an Excel chart, this is accomplished by creating an xy-scatterplot chart type based on
the historical data, and then adding the forecasting time series to the plot as a new
series. Making the forecast trend a separate data series from the actual history data
makes it possible to use formatting that clearly differentiates each on the chart.

Figure 4-32 A chart showing both actual historical data and forecasted future data points

Processor utilization (4 CPUs)

0

50

100

150

200

250

350

300

0 13 26 39 78
By week

Pe
rc

en
t

52 65

Average utilization Peak hour utilization
Peak (Forecast) Average (Forecast)

Chapter 4: Performance Monitoring Procedures 385

If you use the Excel LINEST function that returns goodness-of-fit statistics, the r2 cor-
relation coefficient for the linear regression line that was used as the basis of the fore-
cast is available. In this instance, an r2 value of 0.80 was calculated, indicating that the
regression line can “explain” fully 80 percent of the variability associated with the
underlying data points.

Note The r2 correlation coefficient ranges from 0, which means there is no signifi-
cant correlation among the observations, to 1, which means all the observed data
points fall precisely on the regression line and the fit is perfect. For a more elaborate
discussion of the linear regression goodness-of-fit statistics, see the Microsoft Excel
Help for the LINEST function or any good college-level introductory text on statistics.

This would be regarded as a relatively weak correlation for measurement data
acquired under tightly controlled circumstances—for example, in drug testing effec-
tiveness trials, in which people’s lives are at risk. However, for uncontrolled opera-
tional environments like most real-world computer workloads, it is a strong enough
correlation to lend authority to any forecasts based on it. In the uncontrolled opera-
tional environments of computers, you are fortunate when you can observe correla-
tion coefficients of 0.75 or higher, and even then only when the underlying
measurement has been thoroughly scrubbed.

Nonlinear Regression Models

Workload growth trends are often nonlinear, causing forecasts based on linear mod-
els to underestimate actual growth. That is because many growth processes are cumu-
lative, operating on both the base workload and the growth portion of the workload,
just like compounded interest. Figure 4-33 is a variation of Figure 4-31 in which the
Add Trendline feature of the Excel (x,y) scatterplot is employed to plot the linear
regression line that the TREND function calculates against the underlying data. For
the Peak Hour Utilization data, the trend line tends to be above the actual values in
the first half of the time series and below the actual values toward the end of the chart.
This is often a sign of a nonlinear upward growth trend.

386 Microsoft Windows Server 2003 Performance Guide

Figure 4-33 A chart variation showing a nonlinear trendline that can be used in forecasting

Because Excel also supports nonlinear regression models, it is easy to compare linear
and nonlinear models to see which yield better goodness-of-fit statistics for the same
set of data points. LOGEST is the nonlinear regression function in Excel that corre-
sponds to LINEST. Excel also provides a nonlinear regression–based function called
GROWTH that returns only the forecast, without providing any of the goodness-of-fit
statistics. If you do not feel competent to interpret the nonlinear regression goodness-
of-fit statistics, the GROWTH function might suffice.

Figure 4-34 adds an exponential growth trendline calculated based on the peak hour
utilization measurements, forecasting peak hour utilization that diverges significantly
from the linear estimate. Comparing goodness-of-fit statistics for the two models, LIN-
EST reports an r2 of 0.84, whereas LOGEST reports an even higher r2 value of 0.90.
The exponential growth model is evidently a better fit to the underlying data. The
exponential growth trend predicts that the machine will be running at its absolute
CPU capacity limit by week 80, whereas the linear estimate suggests that saturation
point might not be reached for another six months.

Processor utilization (4 CPUs)

0

50

100

150

200

250

300

0 13 26 39 52
By week

Pe
rc

en
t

Average utilization Peak hour utilization
Linear (Average utilization) Expon. (Peak hour utilization)

Chapter 4: Performance Monitoring Procedures 387

Figure 4-34 An exponential growth trend added to the chart

In this example, the nonlinear growth forecast for peak hour utilization is the safer
bet. The goodness-of-fit statistics recommend the nonlinear model as the better fit to
the underlying data. The nonlinear trendline also forecasts a serious out-of-capacity
condition six months sooner than the linear estimate. Budget impact, technical feasi-
bility, and other considerations might also bear on a decision to relieve this capacity
constraint during the next six-month period, sometime before the saturation point is
reached.

The Problem of Latent Demand
Once resources saturate, computer capacity limits will constrain the historical
workload growth trends that are evident in this example. The measurements
taken during periods in which resource constraints are evident will show the
historical growth trend leveling off. In many instances, you will find that the his-
torical growth trend will resume once the capacity constraint that is dampening
growth is removed. In other instances, demand for new processing resources
might simply have leveled off on its own. This is known in capacity planning cir-
cles as the problem of latent demand. When a resource constraint is evident in
the measurement data, there is normally no way to determine definitively from
the historical record alone whether latent demand exists or the workload
growth has tailed off of its own accord.

Processor utilization (4 CPUs)

0

50

100

150

200

250

400

300

0 13 26 39 78
By week

Pe
rc

en
t

52 65

350

Average utilization Peak hour utilization
Peak (Forecast) Average (Forecast)
Expon. (Peak hour utilization)

388 Microsoft Windows Server 2003 Performance Guide

In forecasting, what to do about the possibility of latent demand is complicated by
evidence that users alter their behavior to adapt to slow systems. End users who
rely on transaction processing systems to get their work done, will adapt to a con-
dition of shortage that slows their productivity. Assuming suitable facilities are
available, they tend to work smarter so that their productivity does not suffer as a
consequence of the resource shortage. One example of this sort of adaptation is
the behavioral change in end users who use search engines. When search engine
response time is very quick, a user is more likely to scroll through pages and pages
of results, one Web page at a time. However, if response time is slow, end users are
more likely to use advanced search capabilities to narrow the search engine result
set, thus boosting their productivity while using the application.

Counter Log Scenarios
This chapter has focused on uniform counter log data collection, summarization, and
reporting procedures that support both performance management and capacity plan-
ning, and that can scale effectively to even the largest environments. Still, these model
procedures might not be ideal for every situation. This section discusses alternative
ways to approach counter log data collection.

In particular, the model counter log data collection procedures described here rely on
gathering local counter data and writing counter log files to a local disk. Other
counter log scenarios exist as well and are explained in this section. You can use per-
formance data logging and analysis tools to gather both local and remote perfor-
mance data. You can store the data you collect in a file on the local computer you are
monitoring, or write to a file stored on a remote computer. Where to monitor the data
from and log the data to depends on your environment and how you want to store
and process the logged data.

When you encounter a performance problem and need to initiate a counter log ses-
sion promptly to identify the problem in real time, you cannot always rely on logging
local counters to a local disk. You might have difficulty gaining physical access to the
machine experiencing the problem, and you might not be able to use the Remote
Desktop facility to gain access either. In situations like this, you must rely instead on
facilities to gather counter logs remotely. Remote counter log sessions and their spe-
cial performance considerations are discussed in this section.

Logging Local Counters

When you specify the specific objects and counters you want to gather, you have the
option to gather these counters from only the local computer or to use the Remote

Chapter 4: Performance Monitoring Procedures 389

Registry service to gather them from a remote machine somewhere on the network.
For efficiency, gathering counter log data from the local computer only is usually the
recommended approach. However, you would be forced to gather measurement data
from a remote machine in real time to diagnose a problem that is currently happening.
Considerations for gathering data from remote machines in real time for problem
diagnosis are discussed later in “Using the Performance Console for Remote Perfor-
mance Analysis.”

Logging data from only the local machine is more efficient because of the architecture
of the Performance Monitoring facility in Windows Server 2003. (This architecture
was discussed extensively in Chapter 2, “Performance Monitoring Tools.”) Figure 4-
35 shows a simple view of this architecture and focuses on a single aspect of it—
namely, the facilities used to identify and gather only a specific set of counters out of
all the counters that are available. It shows a performance monitoring application,
such as the System Monitor console or the background Counter Logs and Alerts ser-
vice, specifying a list of counters to be gathered and passing that list to the Perfor-
mance Data Helper library (Pdh.dll) interface. It shows the PDH library sitting
between the calling application and the set of Performance Library (Perflib) DLLs that
are installed on the machine.

Figure 4-35 The facilities used to identify and gather a specific set of counters

PDH.DLL

Counter List Selection Interface

Open:
Collect:
Close:

Perflib

DLLs

Monitoring Application:
(System Monitor Console, Counter Logs

and Alerts service, etc.)

Counter List Selection

390 Microsoft Windows Server 2003 Performance Guide

Each Perflib DLL is defined using a performance subkey in the registry at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. This performance
subkey defines the library name so that Pdh.dll can locate and load it as well as iden-
tifying three external functions that Pdh.dll can call. These are the Open, Collect, and
Close routines. The Open routine is called to inventory the objects and counters that
the Perflib DLL supplies. The Collect routine is called to gather the measurement data.

Ultimately, no matter which application programming interface is used for the
counter log data, a single Performance Library DLL is responsible for gathering the
data for individual counter values. These Performance Library DLLs reply to Collect
function calls to gather the counters they maintain. Only one Collect function call is
defined for each Performance Library DLL, and it is designed to return all the current
counter values that the Perflib DLL maintains. Even if the calling program using the
PDH interface to the counter log data requests a single counter value, the Performance
Library DLL returns current data from all the counters that it is responsible for. An
editing function provided by the PDH interface is responsible for filtering out all the
counter values that were not requested by the original caller and returning only the
values requested.

When you gather counter log data from a remote machine, the Remote Registry ser-
vice that provides network access to a Performance Library DLL that is executing
remotely must transfer all the data gathered from the call to the Perflib DLL Collect
routine across the network, back to the PDH function. It is the responsibility of the
PDH counter selection editing function to then discard the counter data not explicitly
requested by the original caller. As you might expect, this architecture has major impli-
cations on performance when you need to gather counter log data from a remote
machine. The biggest impact occurs when counters are selected that are part of a very
voluminous set of counter data that one of the Perflibs is responsible for gathering.
The most common example where extreme care should be exercised involves any
counter from either the Process or Thread objects.

Process and Thread counter data is supplied by the Perfproc.dll Perflib, which is asso-
ciated with the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ser-
vices\PerfProc\Performance Registry Key. The Collect routine of the Perfproc.dll
Perflib returns all counters for all instances of the Process and Thread objects. When
you request a single Process or Thread counter from a remote machine, it is necessary
for all the data—returned by the Perfproc.dll Perflib Collect routine—to be transferred
across the network back to the local machine where the performance monitoring
application is running. This architecture for remote machine monitoring is discussed
in more detail in the section entitled “Monitoring Remote Servers in Real Time.”

Local Logging—Local Log File

In local logging with a local log file, the performance data from the local computer is
logged, the log service of the local computer is configured and started locally, and the

Chapter 4: Performance Monitoring Procedures 391

log file is stored on the local computer. This combination is the most efficient way to
manage counter log data collection and has no impact on the network. Use this sce-
nario to collect performance data for baseline use, or to track down a suspected per-
formance problem on the local computer.

The model daily performance monitoring procedures described in this chapter all rely
on logging local data to a local disk. They assume you will want to consolidate on a
centrally located machine Counter Logs gathered across multiple machines on your
network for the purpose of reporting, building, and maintaining a capacity planning
repository of Counter Log data. This will necessitate implementing daily performance
procedures, such as the ones described here, to transfer Counter Log files from each
local machine to a consolidation server on a regular basis. To minimize the network
impact of these file transfers, the model procedures recommended here perform this
data transfer on summarized files, which are much smaller than the original counter
logs. It is also possible that you can arrange to have these file transfers occur during
periods of slack network activity.

Local Logging—Remote Log File

In local logging with a remote log file, you configure the local log service to collect per-
formance data from the local computer, but the log file is written to another computer.
This combination is useful on a computer with limited hard disk space. It is also use-
ful when you need to ensure that the performance of the local hard disk is not
impacted by your performance monitoring procedure. The network impact of using
local logging to a remote log file is minimal because the only counter data sent across
the network are those specific counter values that were selected to be logged.
Although this network workload is typically small in proportion to the rest of the net-
work traffic that occurs, it does start to add up when the data from many computers
that are being monitored is written to the remote disk.

Remote Logging—Local Log File

If you are responsible for monitoring several computers in a small enterprise, it might
be simplest to implement daily performance monitoring procedures in which the log
service runs on one machine, gathering data from the local machine and from several
remote computers (the other servers in your enterprise, for example). To limit the net-
work impact of performing remote logging, you can log counter data to a consolidated
log file on the local computer. In a small environment, this saves the trouble of having
to consolidate multiple log files for analysis and reporting later. It also simplifies file
management because it is not necessary to have an automated procedure, like the one
documented in “Automated Counter Log Processing,” to perform file management on
each monitored system.

As long as you are careful about which counters you gather from the remote machines
and the rate at which you gather them, this scheme is easy to implement and relatively

392 Microsoft Windows Server 2003 Performance Guide

efficient. When there is a performance problem and you need to initiate a Counter Log
session promptly to identify the problem in real time, and you encounter difficulty
gaining physical access to the machine experiencing the problem, you are advised to
try this logging scenario.

The most frequent performance concern that arises in this scenario occurs when you
need to gather data at the process or thread level from the remote machine. Even if
you select only a single Process or Thread counter to monitor, the call to the Collect
routine of the Perflib DLL loaded on the remote machine will cause all the current
counter data associated with every counter and instance to be transferred across the
network back to the local machine each sample interval.

Remote logging might also have additional security considerations. These are dis-
cussed later in the section entitled “Monitoring Remote Servers in Real Time.”

Remote Logging—Remote Log File

Gathering counter data from one or more remote machines and writing the Counter
Log to a remote disk causes the biggest network impact of any logging scenario. It
might be necessary to engage in remote logging using a remote log file if the condi-
tions are favorable for remote logging and there is not ample disk space on the local
computer. If you are very careful about which counters you gather from the remote
machines, the rate at which you gather them, and the amount of data that must be
sent across the network to be written to the remote disk, you can implement this
scheme without paying a prohibitively large performance penalty. If the computer
being monitored is connected to the central monitoring server via a high-speed net-
work, the best configuration might be to copy the detailed file to the central monitor-
ing server and have it processed there. The optimum configuration cannot be
prescribed in this text because there are too many site-specific factors to weigh.

Monitoring Remote Servers in Real Time

In any enterprise, large or small, you can’t always have physical access to the computer
you want to monitor. There are several ways to remotely obtain performance data
from a system or group of systems. Reviewing performance parameters of several
computers at the same time can also be a very effective way to study how multiple sys-
tems interact.

Monitoring performance counters remotely requires that you have network access to
the remote computer and an agent on the remote computer that collects performance
data and returns it to the local computer that requested it. The remote collection agent
supplied with the Windows Server 2003 family is the Remote Registry service
(Regsvc.dll). Regsvc.dll collects performance data about the computer it is running on
and provides a remote procedure call (RPC) interface, which allows other computers

Chapter 4: Performance Monitoring Procedures 393

to connect to the remote computer and collect that data. This service must be started
and running on the remote computer for other computers to connect to it and collect
performance data. Figure 4-36 illustrates the different interfaces and functional ele-
ments used when monitoring performance data remotely.

Figure 4-36 Remote performance monitoring architecture

Performance
application based

on the performance
registry (for example

Perfmon.exe)

User-defined
HTML page

or script

System Monitor

Performance Data Helper (PDH) library
pdh.dll

Performance registry

System
performance

DLL

System Calls

Performance
counter text
string files

Performance
extension

DLL

Remote Registry service
Regsvc.dll

Monitoring Computer

Remote Computer Being Monitored

Performance Logs
and Alerts snap-in

Performance Logs
and Alerts service

Performance registry Performance
data log file

2 2

3

1

4

4

5

66

7

8 9

Legend:

Windows system call
API: each API is specific to
information requested

Standard performance
library interface

Registry internal
interface

RefQueryValueEx API to
performance registry key

PDH internal log
file interface

Published PDH API

Registry internal
RPC interface

System Monitor ActiveX
control interface

Log service internal
configuration interface

2

3

1

4

5

6

7

8

9

394 Microsoft Windows Server 2003 Performance Guide

Access Rights and Permissions

A discretionary access control list (DACL) controls access to the performance data on
the remote computer. The user or account (in the case of a service) must have permis-
sion to log on to the remote computer and read data from the registry.

Performance counter text string files To save space in the registry, the large
REG_MULTI_SZ string variables that make up the names and explanatory text of the
performance counters are saved in performance counter text string files outside the
registry. These files are mapped into the registry so that they appear as normal regis-
try keys to users and applications. Although this all takes place transparently to the
calling user or application, the user or application must still have access to these files
to access the performance data on the system. The performance counter text string
file names are:

■ %windir%\system32\perfc009.dat

■ %windir%\system32\perfh009.dat

If these files are installed on an NTFS file system partition, the DACLs on both files
must grant at least read access to the intended users of the performance data. By
default, only the Administrators group and interactive users are given sufficient access
to these files; therefore, the values of entries in the
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVer-
sion\Perflib\009 subkey are invisible to all other users. Note that both files must have
the correct ACL; if they do not, neither will be visible.

Using the Performance Console for Remote Performance Analysis

The Performance console that is used to monitor a local computer can also be used to
monitor remote computers at the same time. The ability to monitor local and remote
computers by using the same tool makes it possible for you to easily observe the inter-
action of the different components in a client/server application.

Selecting systems to monitor To interactively monitor the performance of remote
systems, select or enter the name of the system you want to monitor in the Select
Counters From Computer box in the System Monitor Add Counters dialog box. There
is normally a delay between the time you specify the remote computer name and the
time that its performance counters and objects appear in the dialog box. During the
delay, the local computer is establishing a connection with the remote computer’s per-
formance registry and retrieving the list of performance counters and objects that are
available on the remote computer.

Chapter 4: Performance Monitoring Procedures 395

Saving console settings for remote performance analysis When you save the
settings from a Performance console that is monitoring remote computers, be sure the
counter paths are saved the way you want to apply them later. Determine exactly
which counters you will want the user of that settings file to monitor, then use the cor-
rect setting for those counters. This determination is made in the Add Counters dialog
box of the Performance console. In the Add Counters dialog box, you can choose from
two options that determine from where the performance counters are read:

■ Use Local Computer Counters If this option is selected, only counters from the
local computer are displayed in the Add Counters dialog box. When the Perfor-
mance console settings are saved and sent to another computer, the same list of
counters from the computer loading the settings file will be displayed in System
Monitor.

■ Select Counters From Computer If this option is selected, the name of the com-
puter you specify is saved along with the counters from that computer. No mat-
ter where that Performance console settings file is sent, the counter data from
the original computer specified in each counter path will always be used.

Sending console settings to others for remote performance analysis How you
specify the computer you want to monitor in the Add Counters dialog box determines
how the settings will be applied on another computer. For example, if you click the
Select Counters From Computer option, and the computer specified in the combo
box is the current computer (\\MyMachine, for example), when Performance console
settings from \\MyMachine are sent to another computer (\\YourMachine, for exam-
ple) and opened in the Performance console on \\YourMachine, that Performance
console will try to connect to \\MyMachine to collect performance data. This might
not be what you want, so make this selection carefully.

Troubleshooting Counter Collection Problems
As you come to rely on counter logs for detecting and diagnosing common perfor-
mance problems, you will develop less and less tolerance for any problems that
interfere with your ability to gather counter logs reliably. Most of the counter col-
lection problems you are likely to encounter are associated with unreliable
extended counters supplied by third-party Performance Library DLLs. In this sec-
tion, a variety of troubleshooting procedures to cope with common counter collec-
tion problems are discussed.

396 Microsoft Windows Server 2003 Performance Guide

Missing Performance Counters

When Performance Monitoring API calls that are routed via Pdh.dll to Performance
Library DLLs fail, counter values that you expected to gather are missing. (See the dis-
cussion earlier in this chapter about the internal architecture of the performance mon-
itoring API in the section entitled “Counter Log Scenarios.”) When these failures
occur, the Performance Data Helper library routines attempt to document the error
condition and isolate the failing component so that the component does not cause
system-wide failure of the performance monitoring data gathering functions. This sec-
tion reviews some of the common error messages that can occur and what should be
done about them. It also discusses the Disable Performance Counter function, which
is performed automatically to isolate the failing component and prevent it from caus-
ing a system-wide failure. If you are unable to gather some performance counters that
should be available on a machine, it is usually because the Performance Library asso-
ciated with those counters has been disabled automatically because of past errors.

Common Perflib Error Messages

When Performance Monitoring API calls that are routed via Pdh.dll to Performance
Library DLLs fail, the PDH routines attempt to recover from those failures and issue a
diagnostic error message. These error messages are written to the Application event
log with a Source identified as “Perflib.” These error messages are a valuable source of
information about counter collection problems.

The performance monitoring API defines three external function calls that each Per-
formance Library DLL must support. These are Open, Collect, and Close. Errors are
most common in the Open routine, where the Performance Library DLL responds
with a set of counter definitions that it supports, and in the Collect routine, where the
Performance Library DLL supplies current counter values. (See Table 4-8.)

Table 4-8 Error Messages in the Open and Collect Routines

Event ID Message/Explanation

1008 The Open Procedure for service (service name) in DLL (DLL name)
failed. Performance data for this service will not be available. Status
code returned is DWORD 0.

Self-explanatory. The DisablePerformanceCounters flag in the associ-
ated registry key at HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon-
trolSet\Services\<service-name>\Performance is set to 1 to prevent
the problem from recurring.

Chapter 4: Performance Monitoring Procedures 397

When serious Perflib errors occur that generate Event ID 1008, 1009, and 1010 mes-
sages, steps are taken to isolate the failing component and safeguard the integrity of
the remainder of the performance monitoring facility. Performance data collection for
the associated Perflib is disabled until you are able to fix the problem. Fixing the prob-
lem might require a new or an upgraded version of the Perflib. After the problem is
resolved, you can re-enable the Performance Library and begin gathering performance
statistics from it again.

1009 The Open Procedure for service (service name) in DLL (DLL name)
generated an exception. Performance data for this service will not be
available. Exception code returned is DWORD 0.

Self-explanatory. The DisablePerformanceCounters flag in the associ-
ated registry key at HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon-
trolSet\Services\<service-name>\Performance is set to 1 to prevent
the problem from recurring.

1010 The Collect Procedure for the (service name) service in DLL (DLL
name) generated an exception or returned an invalid status. Perfor-
mance data returned by counter DLL will not be returned in Perf Data
Block. Exception or status code returned is DWORD 0.

Self-explanatory. The DisablePerformanceCounters flag in the associ-
ated registry key at HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon-
trolSet\Services\<service-name>\Performance is set to 1 to prevent
the problem from recurring.

1011 The library file (DLL name) specified for the (service name) service
could not be opened. Performance data for this service will not be
available. Status code is data DWORD 0.

Perflib failed to load the performance extensions library. The status
code from GetLastError is posted in the data field of the event. For ex-
ample, 7e means the DLL could not be found or the library name in
the registry is not correct.

1015 The timeout waiting for the performance data collection function
(function name) to finish has expired. There may be a problem with
that extensible counter or the service from which it is collecting data.

The Open or Collect routine failed to return in the time specified by
the Open Timeout, Collect Timeout, or OpenProcedureWaitTime reg-
istry fields. If no registry values are set for the Perflib, the default time-
out value is 10 seconds.

Table 4-8 Error Messages in the Open and Collect Routines

Event ID Message/Explanation

398 Microsoft Windows Server 2003 Performance Guide

Additional error conditions in which the Perflib DLL returns invalid length perfor-
mance data buffers also cause the performance monitoring API to disable the Perflib
generating the error.

More Info For more information about these other Perflib error messages, see KB
article 226494, available at http://support.microsoft.com/default.aspx?scid=kb;zh-
tw;226494.

A Collect Timeout value can be specified (in milliseconds) in the HKLM\System\Cur-
rentControlSet\Services\<Service-name>\Performance key for the Performance
Library DLL. If this value is present, the performance monitoring API sets up a timer
value prior to calling the Perflib’s Collect routine. If the Collect function of the Perflib
does not return within the time specified in this registry value, the call to Collect fails
and an Event ID 1015 error message is posted to the event log.

Similarly, there is an Open Timeout value in the registry under the Performance subkey
that functions in the same fashion for calls to the Perflib’s Open routine.

A registry field called OpenProcedureWaitTime at HKLM\SOFTWARE\Microsoft\Win-
dows NT\CurrentVersion\Perflib establishes a global default timeout value for all Per-
formance Library DLLs if Open Timeout or Collect Time are not set explicitly. The
OpenProcedureWaitTime registry value defaults to a timeout value of 10,000 millisec-
onds, or 10 seconds.

Disable Performance Counters

To maintain the integrity of the performance data and to improve reliability, the per-
formance monitoring API disables any performance DLL that returns data in the
incorrect format, causes an unhandled program fault, or takes too long to return the
performance data. As a result of an error condition of this magnitude, a field is added
to the registry in the HKLM\System\CurrentControlSet\Services\<Service-
name>\Performance key named Disable Performance Counters. When Disable Perfor-
mance Counters is set to 1, no performance monitoring application will be able to
gather the counters that the disabled Perflib is responsible for gathering. Perflib Event
ID 1017 and 1018 messages are written to the Application event log at the time the Dis-
able Performance Counters flag is set.

Note When a Performance Library DLL is disabled, the performance counters gath-
ered by that DLL are not available through the System Monitor console, the back-
ground Counter Logs and Alerts service, or any other performance application that
calls Performance Data Helper API functions. Disabled Perflib DLLs remain disabled
until the Disable Performance Counters flag in the registry is reset manually. Disabled
DLLs are not reloaded when the system is restarted.

Chapter 4: Performance Monitoring Procedures 399

Sometimes, the problem that leads to the Performance Library is transient and will
clear up on its own. You can try re-enabling the extension DLL using the ExCtrLst util-
ity (part of the Windows Server 2003 Support Tools) and restarting the counter log
session. Alternatively, you can use the registry Editor to change the value of the Dis-
able Performance Counters flag to zero.

Sometimes, by the time you notice that some performance counters are disabled, the
event log messages that informed you of the original Perflib failure are no longer avail-
able. The only way to reconstruct what might have happened is to reset the Disable
Performance Counters flag and try to perform the counter logging again.

If the problem persists and the Disable Performance Counters flag is set again, contact
the vendor that developed the Performance Library for a solution. If the object is a
Windows Server 2003 system object (such as the Process object), please contact
Microsoft Product Support Services (PSS). See the procedures discussed in “Trouble-
shooting Counter Collection Problems” for more information.

Troubleshooting Counter Collection Problems

If you are having problems gathering performance counters provided by a Microsoft
or a third party–supplied Performance Library DLL, you might be expected to gather
the following information to assist your vendor in determining the problem.

1. Obtain a copy of the HKLM\SYSTEM\CurrentControlSet\Services registry
hive.

2. Obtain a copy of the Perfc009.dat and Perfh009.dat files in %System-
Root%\system32.

3. Copy the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Per-
flib\009 key. To do this, double-click both the Counter and Help fields and copy
their contents to a .txt file because they cannot be exported to a .reg file.

4. Obtain a copy of this registry hive: HKEY_CURRENT_USER\Soft-
ware\Microsoft\PerfMon.

5. Start a counter log session that attempts to gather every counter registered on
your system for a brief interval. The counter log can be compared to the Perfor-
mance subkeys in the registry at HKLM\SYSTEM\CurrentControlSet\Services
to see what objects, counters, and instances are missing.

400 Microsoft Windows Server 2003 Performance Guide

Restoring Corrupt Performance Counters

Problems associated with a bad Performance Library DLL might become so serious
you find it necessary to reconstruct the base set of performance counter libraries that
come with Windows Server 2003, along with any extensible counters associated with
other Perflib DLLs. The procedure for rebuilding the performance counters is to issue
the following command:

lodctr /r

This command restores the performance counters to their original baseline level, plus
applies any extended counter definitions that have been added later through subse-
quent software installations.

401

Chapter 5

Performance
Troubleshooting

In this chapter:

Bottleneck Analysis . 402

Analysis Procedures . 404

Processor Troubleshooting. 406

Memory Troubleshooting. 430

Disk Troubleshooting . 464

Network Troubleshooting . 509

A framework for proactive performance monitoring of your Microsoft Windows
Server 2003 infrastructure was provided in Chapter 4, “Performance Monitoring Pro-
cedures.” Sample procedures that illustrated ways to implement systematic perfor-
mance monitoring were discussed, as were the measurements and the procedures for
gathering those measurements. These measurements are used to establish a baseline,
documenting historical levels of service that your Windows Server 2003 machines are
providing to the client customers of your server applications. By extrapolating from
historical trends in resource usage—that is, processor usage, disk space consumption,
network bandwidth usage, and so on—you can use the data collection, summariza-
tion, and archival procedures described in Chapter 4 to anticipate and detect periods
during which resource shortages might cause severe availability and performance
problems, and also take action to keep these issues from disrupting the orderly deliv-
ery of services to server application clients.

However, despite your best efforts at proactive performance monitoring, some prob-
lems will inevitably occur. The range and complexity of at least some of your Win-
dows Server 2003 machines may mean that the relatively simple performance data
gathering procedures discussed in Chapter 4 are not going to catch everything occur-
ring on your machines. There is simply too much performance data on too many oper-
ating system and application functions to gather all the time.

In this chapter, procedures for troubleshooting performance problems in specific
areas are discussed and illustrated. The focus is primarily on troubleshooting perfor-
mance problems and identifying the precise cause of a shortage in any of the four
classes of machine resources common to all application environments: processor,

402 Microsoft Windows Server 2003 Performance Guide

physical memory and paging, disk, and network. This analysis cannot be performed
in a vacuum. The load on these resources is generated by specific application requests.
The troubleshooting procedures you use might have to be tailored for each applica-
tion-specific environment that you are responsible for managing.

The troubleshooting procedures documented here all begin with the baseline of per-
formance data you have been accumulating (using procedures similar to the ones
described in Chapter 4, “Performance Monitoring Procedures”) to identify resource
bottlenecks. Resources that are bottlenecks are not sized large enough to process all the
requests for service they receive, thus causing serious delays. Bottleneck analysis is the
technique used to identify computer resource bottlenecks and systematically elimi-
nate them. Identifying the root cause of a resource shortage often involves the use of
very fine-grained troubleshooting tools. This chapter will illustrate how to use perfor-
mance baseline measurements to identify resource shortages and how to use trouble-
shooting tools to hone in on specific problems.

Bottleneck Analysis
Analyzing a performance problem is easier if you already have established data collec-
tion and analysis procedures, and have collected performance data at a time when the
system or enterprise is performing optimally.

Baseline Data

The procedures for capturing, reporting, and archiving baseline performance data are
described in Chapter 4, “Performance Monitoring Procedures.” Collecting and analyz-
ing baseline data before you have to conduct any problem analysis or troubleshooting
makes the troubleshooting process much easier. Not only will you have a set of refer-
ence values with which you can compare the current values, but you will also gain
some familiarity with the tools.

The baseline data to use during a troubleshooting or analysis session can exist in sev-
eral forms:

■ Tables of data collected from baseline analysis can be used in hardcopy form as
a reference for comparison to current values. Graphs can also be used for base-
line data that varies over time.

■ Performance data logs saved during baseline analysis can be loaded into one
System Monitor window and compared with current performance data dis-
played in another System Monitor window.

Chapter 5: Performance Troubleshooting 403

Tip You might find it useful to save baseline workload data from a System
Monitor Report view in .tsv format. Then you can open open several .tsv files
that reflect different points in time in Microsoft Excel and compare them side by
side in a spreadsheet.

Although having this baseline data on hand is the ideal case, it is not always possible.
There might be times during the installation or setup of a system or an application
when performance is not as good as it needs to be. In those cases, you will need to
troubleshoot the system without the benefit of a baseline to help you isolate or iden-
tify the problem. Both approaches to troubleshooting—with baseline data and with-
out—are covered in this chapter.

Current Performance Levels

The first step in a performance analysis is to ensure performance data is being logged.
Even though System Monitor can monitor and display performance data interactively,
many problems show up more clearly in a performance data log.

When collecting performance data for problem analysis, you typically collect data at a
higher rate (that is, using a shorter sample interval) and over a shorter period of time
than you would for routine data logging of the type recommended in Chapter 4, “Per-
formance Monitoring Procedures.” The goal is to generate a performance data log file
with sufficient resolution to perform a detailed investigation of the problem. Other-
wise, important information from instantaneous counters can be lost or obscured in
the normal performance logs that use a longer sample interval. Creating a separate
performance log query for each task is one way to accomplish this. Of the possible
performance data log formats, the binary format gives the best results. The binary log
retains the most information and allows for the most accurate relogging to other for-
mats. Whenever raw data is processed into formatted data (which occurs with all
other data formats), some information is lost; therefore, subsequent computations on
formatted data are less accurate than computations performed on the raw, original
logged data that is stored in the binary log file format. If you have many servers to
monitor, creating a SQL database for your performance data might be useful as well,
making consolidation and summarization of the data easier.

Resource Utilization and Queue Length

To identify saturated resources that might be causing performance bottlenecks, it is
important to focus on the following activities:

404 Microsoft Windows Server 2003 Performance Guide

■ Gathering measurement data on resource utilization at the component level

■ Gathering measurement data on queuing delays that are occurring at the
resource that might be overloaded

■ Determining the relationship between resource utilization and request queuing
that exists at a particular resource

Theoretically, a nonlinear relationship exists between utilization and queuing, which
becomes evident when a resource approaches saturation. When you detect one of
these characteristically nonlinear relationships between utilization and queuing at a
resource, there is a good chance that this overloaded resource is causing a perfor-
mance constraint.

Decomposition

Once you identify a bottlenecked resource, you often break down utilization at the
bottlenecked resource according to its application source, allowing you to hone in on
the problem in more detail. Several examples that illustrate bottleneck detection and
decomposition are provided later in this chapter.

Analysis Procedures
Listing all possible problems and their subsequent resolutions in this chapter is
impossible. It is possible, however, to describe common problems, the steps to take
when analyzing those problems, and the data you should gather so that you can per-
form your own analysis of similar problems.

Understanding the Problem

The obvious but often overlooked first step in problem analysis is to understand the
problem being observed or reported. The initial indication of a potential problem can
come from a user, a customer, or even a superior. Each person might characterize the
same problem differently or use the same characterization for different problems. As
the person doing the analysis, you need to clearly understand what the person report-
ing the problem is describing.

Analyzing the Logged Performance Data

The performance counters you log to provide data for troubleshooting are listed later
in this chapter. These lists are different from the lists of counters that you evaluate and

Chapter 5: Performance Troubleshooting 405

analyze daily, because logging the data to a binary log file is best done by performance
object, whereas the actual analysis is performed on the individual performance
counters. Also, having more available data (to a point) is better than having less dur-
ing analysis. Then, if you find something interesting when examining one of the key
counters, you will have additional data at your disposal for further investigation. On
the other hand, if your system is resource-constrained and you are trying to generate
the smallest possible log file, you can collect only the key counters to analyze, with the
understanding that you might not have all the data you need to do a comprehensive
analysis. Of course, some analysis is usually better than no analysis.

Analyzing Performance Data Interactively

For the performance problems that result from a lengthy and subtle change in system
behavior, the best way to start your analysis is by using a log file; however, some prob-
lems are immediate and must be analyzed interactively. In such cases, the counters
you need to monitor interactively are the same ones listed later in this chapter. During
an interactive analysis session, the counters listed are the first ones that should be
loaded into the interactive tool.

Fine-Grained Analysis Tools

In many problem-solving scenarios, gathering counter log data is often only the first
step in your analysis. You will often need to rely on more fine-grained performance
analysis tools, some of which are described in the “Help and Support” section of the
Windows Server 2003 documentation. In this chapter, how to use the following fine-
grained analysis tools is discussed:

■ Kernrate for the analysis of processor bottlenecks

■ Trace logs, Kernel Debugger commands, and the Poolmon utility for the analysis
of physical and virtual memory shortages

■ Trace logs for the analysis of disk bottlenecks

■ Server Performance Advisor reports for troubleshooting networking problems

■ Network Monitor packet traces and trace logs for the analysis of network bottle-
necks

406 Microsoft Windows Server 2003 Performance Guide

What to Check Next in the Enterprise

In most cases, the next step in evaluating a problem at the enterprise level is to go to
the system exhibiting the problem and investigate further. In the case of a network
problem, look at the system components and the role they play in the enterprise
before examining the system itself. For example, heavier-than-normal network traffic
on one client might be the result of an errant application on the client, or it might be
a problem on a server that is not responding correctly to requests from that client. For
more information, see “Network Troubleshooting” later in this chapter.

Tip A quick way to localize the source of an overloaded server is to temporarily
remove it from the network (if you can do that safely).

Monitor the Processor(_Total)\% Processor Time counter by using the Performance
console on the server in question. If it is not possible to observe the System Monitor
directly, make sure this performance counter is logged to a performance data log file
while performing this test.

Briefly, remove the server from the network for a period at least as long as several
sample intervals. If you are monitoring interactively, observe the value of the Proces-
sor(_Total)\% Processor Time performance counter. If the value drops when the server
is disconnected from the network, the load on the server is the result of client-induced
requests or operations. If the value remains more or less the same, the load is the result
of a process or application that resides on that server.

Be sure to reconnect the server to the network when this test is complete.

Processor Troubleshooting
Processor bottlenecks occur when the processor is so busy that it cannot respond to
requests for a noticeable period of time. Extended periods of near 100 percent proces-
sor utilization, accompanied by an increase in the number of ready threads delayed in
the processor dispatcher queue, are the primary indicators of a processor bottleneck.
These indicators reflect direct measurement of resource utilization and the queue of
requests delayed at a busy resource.

Chapter 5: Performance Troubleshooting 407

Resource Utilization and Queue Length

The major indicators of a processor bottleneck are the system-level measurements of
processor utilization and processor queuing, as shown in Table 5-1.

In addition to the recommended threshold levels in Table 5-1, take note of any mea-
surements that differ sharply from the historical baseline.

The combination of high processor utilization and a lengthy processor queue signals
an overloaded processor. Often the situation is unambiguous, for example, a program
thread stuck in an infinite loop of instructions that drives processor utilization to 100
percent. This condition is normally a programming bug that can be alleviated only by
identifying the offending program thread and ending its parent process. A sudden
spike in demand or even a gradual, sustained increase in the customer workload
might also create an evident out-of-capacity situation. The proactive performance
monitoring procedures discussed in Chapter 4, “Performance Monitoring Proce-
dures,” of course, are designed to allow you to detect and anticipate an out-of-capacity
situation and intervene before it impacts daily operations.

Note This section ignores complex measurement and interpretation issues intro-
duced by hyperthreaded processors, multiprocessors, and Non-Uniform Memory
Access (NUMA) architectures. These are all subjects discussed in Chapter 6, “Advanced
Performance Topics.”

Table 5-1 Primary Indicators of a Processor Bottleneck

Counter Primary Indicator Threshold Values

Processor(_Total)\
% Processor Time

Processor utilization Sustained values > 90% busy on a
uniprocessor or sustained values >
80% on a multiprocessor should be
investigated.

System\Processor Queue
Length

Current depth of the
thread Scheduler Ready
Queue

Numerous observations > 2 Ready
threads per processor should be in-
vestigated.

Observations > 5 Ready threads
per processor are cause for alarm.*

* This is an instantaneous counter and, therefore, often can report data that is not repre-
sentative of overall system behavior.

408 Microsoft Windows Server 2003 Performance Guide

On the other hand, in many situations, you need to exercise considerable judg-
ment. The interpretation of the two performance counters described in Table 5-1,
which are the primary indicators of a resource shortage, is subject to the following
considerations:

■ Processor state is sampled several hundred times per second and the results are
accumulated over the measurement interval. Over small intervals, the sampling
data can be skewed.

■ Beware of program threads that are soakers, that is, capable of absorbing any
excess processor cycles that are available. Screen savers, Web page animation
controls, and other similar applications need to be excluded from your analysis.

■ Processor Queue Length is an instantaneous counter reflecting the depth of the
Ready Queue at the last processor state sample.

■ Polling threads of various kinds that are activated by a timer interrupt that can
pop in tandem with the measurement timer can create a false impression about
the size of the Ready Queue

■ Individual Processor Queue Length counter samples can occur at intervals that
are at odds with the processor-busy measurements accumulated continuously
during the interval.

■ Most threads are in a voluntary Wait state much of the time. The remaining
threads that are actively attempting to run—ordinarily a small subset of the total
number of threads that exist—form the practical upper limit on the number of
threads that you can observe in the processor queue.

Any normal workload that drives processor utilization to near 100 percent for an
extended period of time is subject to a processor capacity constraint that warrants
some form of relief. This is self-evident even if the processor queue of Ready threads
remains low. Such a CPU-bound workload will undoubtedly benefit from a faster pro-
cessor. If the workload is multithreaded and can proceed in parallel, a multiprocessor
upgrade should also relieve the situation.

If an afflicted machine is truly short of processor capacity, a range of possible solu-
tions to increase processor capacity are available, including these:

■ Moving the workload to a faster machine

■ Adding processors to the current machine

■ Directing the workload to a cluster of machines

Figure 5-1 illustrates a processor out-of-capacity condition in which processor utiliza-
tion remains at or near 100 percent for an extended period of time. The observed max-

Chapter 5: Performance Troubleshooting 409

imum Processor Queue Length during this measurement interval is 18 threads
delayed in the Ready Queue. The Chart view also reveals several observations in
which the Processor Queue Length exceeds 10 on this machine, which happens to be
a uniprocessor.

Figure 5-1 Out-of-capacity condition

Note that the scale for the System\Processor Queue Length scale in the Chart view
has been changed from its default value, which multiples the observed values by 10, to
a scaling value of 1.

Decomposition

After you identify a processor out-of-capacity condition, you need to investigate fur-
ther. Initially, you have three lines of inquiry:

■ Determine processor utilization by processor state The processor state mea-
surements allow you to determine whether the component responsible for the
processor load is a User mode or Privileged mode application, which includes
device interrupt processing routines.

■ Determine processor utilization by processor This is usually necessary only
when the machine is deliberately configured for asymmetric multiprocessing.
Asymmetric multiprocessing is an important subject that is addressed at length
in Chapter 6, “Advanced Performance Topics.”

410 Microsoft Windows Server 2003 Performance Guide

■ Determine processor utilization by process and thread When the processor
overload originates in a User-mode application, you should be able to identify
the process or processes responsible.

In each of these cases, it might also be necessary to determine processor utilization by
application module and function.

Processor Use by State

When the processor executes instructions, it is in one of two states: Privileged mode or
User mode.

Privileged mode Authorized operating system threads and interrupts, including
all device driver functions, execute in Privileged mode. Kernel-mode threads also exe-
cute in Privileged mode.

Processor(n)\% Privileged Time records the percentage the system was found busy
while executing in Privileged mode. Within % Privileged Time, you can also distin-
guish two additional modes: Interrupt mode and deferred procedure call (DPC)
mode, which typically account for only a small portion of the time spent in Privileged
mode.

Interrupt mode is a high-priority mode reserved for interrupt service routines (ISRs),
which are device driver functions that perform hardware-specific tasks to service an
interrupting device. Interrupt processing is performed at an elevated dispatching level,
with interrupts at the same or lower priority disabled.

Note Although interrupt priority is a hardware function, the Windows Server 2003
Hardware Abstraction Level (HAL) maintains an interrupt priority scheme known as
interrupt request levels (IRQLs), which represent the current dispatching mode of a
processor. Processing at a higher IRQL will preempt a thread or interrupt running at a
lower IRQL. An IRQL of 0 means the processor is running a normal User- or Kernel-
mode thread. There is also an IRQL of 1 for asynchronous procedure calls, or APCs. An
IRQL value of 2 indicates a deferred procedure call (DPC) or dispatch-level work, dis-
cussed in more detail later. An IRQL greater than 2 indicates a device interrupt or other
high priority work is being serviced. When an interrupt occurs, the IRQL is raised to the
level associated with that specific device and calls the device’s interrupt service rou-
tine. After the ISR completes, the IRQL is restored to the previous state when the inter-
rupt occurred. Once the IRQL on the processor is raised to an interrupt-level IRQL,
interrupts of equal or lower IRQL are masked on that processor. Interrupts at a higher
IRQL can still occur, however, and will preempt the current lower priority activity that
was running.

Chapter 5: Performance Troubleshooting 411

Processor(n)\% Interrupt Time records the percentage of time the system was found
busy while it was executing in Interrupt mode, or other high IRQL activity. This
includes the execution time of ISRs running at a higher priority than any other Kernel
or User-mode thread. The amount of % Interrupt Time measured is included in the %
Privileged Time measurement. % Interrupt Time is broken out separately to make
identifying a malfunctioning interrupt service routine easier.

DPC mode is time spent in routines known as deferred procedures calls, which are
device driver–scheduled routines called from ISRs to complete device interrupt pro-
cessing once interrupts are re-enabled. DPCs are often referred to as soft interrupts.
DPCs run at dispatch level IRQL, just below the priority level of interrupt service
routines. DPCs at dispatch level IRQL will be interrupted by any interrupt requests
that occur because hardware interrupts have IRQL greater than the dispatch level. In
addition to DPCs, there are other sources of dispatch level activity on the system.

Processor(n)\% DPC Time records the percentage of time the system was found busy
while at dispatch level. This represents the execution time of DPCs running at a
higher priority than any other Kernel- or User-mode thread, excluding ISRs and other
dispatch level activity. The amount of % DPC Time that is measured is also included
in the % Privileged Time measurement. % DPC Time is broken out separately to make
identifying a malfunctioning interrupt service routine’s DPC easier.

User mode Program threads from services and desktop applications execute in
User mode. User-mode threads cannot access system memory locations and perform
operating system functions directly. Processor(n)\% User Time records the percent-
age the system was found busy while it was executing in User mode. Figure 5-2 shows
the % Processor Time on the same machine broken down by Processor State.

The relative proportion of % User Time and % Privileged Time is workload-depen-
dent. Do not expect a constant relationship between these two counters on machines
running different workloads. In this example, time spent in User mode is only slightly
more common than Privileged-mode execution time. On the same machine running a
similar workload, the relative proportion of User-mode and Privilege-mode execution
time should be relatively constant. Compare measurements from the current system
to the historical baseline measurements you have put aside. Unless the workload
changes dramatically, the proportion spent in User mode and Privileged mode should
remain relatively constant for the same machine and workload over time. Are you able
to observe a major change in the ratio of User- to Privileged-mode processing? This
could be an important clue to understanding what has changed in the interim.

412 Microsoft Windows Server 2003 Performance Guide

Figure 5-2 Percentage of processor time broken down by processor state

The relative proportion of time spent in Interrupt mode—generally, a function of net-
work and disk interrupt rates—is normally quite small. In the example shown in Fig-
ure 5-2, the amount of time was insignificant, consistently less than 2 or 3% busy. If
the current amount of % Interrupt Time is much higher than historical levels, you
might have a device driver problem or a malfunctioning piece of hardware. Compare
the current Interrupts/sec rate to historical levels. If the current Interrupts/sec rate is
proportional to the level measured in the baseline, device driver code is responsible
for the increase in % Interrupt Time. If the Interrupt rate is sharply higher, you have a
hardware problem. In either case, you will want to use the Kernrate utility to hone in
on the problem device. (Kernrate is discussed later.) If you observe a spike in the
amount of % DPC Time being consumed, identical considerations apply.

If the bulk of the time is being spent in User-mode processing, proceed directly to ana-
lyzing processor usage at the process level. For Privileged-mode processing, you might
or might not find a clear relationship to a specific process or processes. Nevertheless,
because both User-mode and Privileged-mode processing are broken out at the pro-
cess level, checking out the process level measurements, even when excessive Privi-
leged-mode execution time is the concern, is worthwhile.

Chapter 5: Performance Troubleshooting 413

Processor Use by Process

The sample measurements that determine the state of the machine when it is busy
executing instructions also track the process and thread context currently executing.
Once you determine which process instance or instances you need to observe closely,
select their Process(n)\% User Time and Process(n)\% Privileged Time counters. You
can even drill down to the thread level, as illustrated in Figure 5-3.

Figure 5-3 A single thread impacting the percentage of processor time consumed

In this example, a single thread from an Mmc.exe parent process is responsible for
about 40 percent of the total % Processor Time recorded in Figure 5-2. The complica-
tion introduced when you need to drill down to the process or thread level is that
there are many individual processes to examine. It is often easier to use Task Manager
first to identify a CPU-bound process, as discussed later.

Identifying a Runaway Process by Using Task Manager

If you are diagnosing a runaway process in real time, use Task Manager to help you
zero in on a problem process quickly.

1. Press CTRL+SHIFT+ESC to launch Windows Task Manager, or click the Task Man-
ager icon in the system tray if Task Manager is already active.

414 Microsoft Windows Server 2003 Performance Guide

2. Click the Processes tab. Select View, choose Select Columns, and make sure that
the CPU Usage field is displayed. This column is labeled CPU in the Processes
view.

3. Click the CPU column label to sort the displayed items in sequence by proces-
sor usage. You should see a display similar to the one in Figure 5-4. To sort the
display in reverse order, click the column heading again.

Figure 5-4 Processes in sequence by processor usage (CPU column)

When the display is sorted, a runaway process will appear at the top of the dis-
play and remain there for an extended period of time.

4. Select the runaway process, right-click, and then click Set Priority to reset the
dispatching priority to Low or Below Normal, as illustrated in Figure 5-5.

Chapter 5: Performance Troubleshooting 415

Figure 5-5 Resetting the dispatching priority

Once this action is successful, you will find that desktop applications are much more
responsive to keyboard input and mouse actions. You can allow the runaway process
to continue to run at a lower dispatching priority while you attempt to figure out what
is wrong with it. You can now work at a more leisurely pace, because the runaway pro-
cess can consume only as much excess processor time as is available after all other
processes have been serviced. So it can continue to run at Low or Below Normal pri-
ority without causing any harm to overall system performance.

As you proceed to determine the root cause of the problem, your next step is to per-
form one of the following actions:

■ If you are familiar with the application, use the Task Manager context menu to
attach the debugger that was used to develop the application.

■ If you are not familiar with the application, you can run the Kernrate utility to
determine which parts of the program are consuming the most processor time.

When you are finished, you might want to end the runaway process. One approach is
to use the Task Manager context menu and click End Process to end the process.

416 Microsoft Windows Server 2003 Performance Guide

Identifying a Runaway Process by Using a Counter Log

You can also work with counter logs to diagnose a problem with a runway process by
using the performance data recorded there, assuming you are gathering process level
statistics.

1. Using either the Histogram view or the Report view, select all process
instances of the % Processor Time counter. The Histogram view is illustrated
in Figure 5-6.

Figure 5-6 Histogram view of process instances of the % Processor Time counter

2. Click the Freeze Frame button to freeze the display once you can see that there
is a runaway process.

3. Click the Highlight button and then, using the keyboard, scroll through the leg-
end until you can identify the instance of the process that is consuming an
excessive amount of processor time.

4. Delete all the extraneous process instances, unfreeze the display, and revert to
Chart view to continue to observe the behavior of the runaway process over
time.

Chapter 5: Performance Troubleshooting 417

Processor Use by Module and Function

When you have a runaway process disrupting service levels on a production machine,
the first step is to identify the process and remove it before it causes any further dam-
age. You might be asked to investigate the problem further. If the application that is
causing the problem was developed in-house, the programmers involved might need
help in further pinpointing the problem. If the excessive processor utilization is asso-
ciated with a Kernel-mode thread or device driver function, you need more informa-
tion to determine which kernel module is involved.

The Kernrate utility included in the Windows Server 2003 Resource Kit is an efficient
code-profile sampling tool that you can use to resolve processor usage at the applica-
tion and kernel module level, and at the function level. Using Kernrate, you can drill
deep into your application and into the operating system functions that are executing.

Caution Kernrate is a potentially high-overhead diagnostic tool that can be
expected to impact normal operations. The sample rate used in Kernrate can be
adjusted to trade off sampling accuracy against the tool’s impact on the running sys-
tem. Use Kernrate carefully in a production environment and be sure to limit its use to
very small measurement intervals.

The Overhead of the System Monitor

In skilled hands, the System Monitor is a very powerful diagnostic and reporting tool.
It can also be misused. The following examples illustrate some of the dos and don’ts
of using the System Monitor effectively.

Figure 5-7 shows a very busy system running only two applications. The first is the
System Monitor console (Sysmon.ocx embedded in the Microsoft Management Con-
sole, Mmc.exe). The System Monitor console is being used very inappropriately. In a
real-time monitoring session, the System Monitor is gathering every instance of every
Process and Thread object and counter. This is occurring on a 1.2-GHz machine with
approximately 50 active processes and 500 active threads running Windows Server
2003. Obviously, this is not something anyone would do in real life—it is an example
illustrating how the System Monitor application works.

418 Microsoft Windows Server 2003 Performance Guide

Figure 5-7 A very busy system running only two applications

The overall system averages 83 percent busy during the approximately 10-minute
interval illustrated. The Mmc.exe process that runs the System Monitor accounts for
over 90 percent busy over the reporting interval. At the bottom of the chart, the % Pro-
cessor Time for the Smlogsvc process is shown, broken out, like Sysmon, into % User
Time and % Privileged Time. Over the same 10-minute interval, Smlogsvc accounts for
less than 1 percent processor busy.

Smlogsvc is the service process that gathers performance logs and alerts to create
both counter logs and trace logs. Smlogsvc also provides performance data collection
services for the Logman utility. Smlogsvc runs as a background service. In this exam-
ple, it is writing performance data on processor utilization to a binary log file.
Smlogsvc gathered the performance data on processor usage per process, which is
being reported in Figure 5-7, using the System Monitor console. Smlogsvc gathered
performance data on itself and on the other main application running on the system,
which happened to be the interactive System Monitor session. Smlogsvc is writing
performance data once a second to a binary log file. Obviously, there is a big differ-
ence in the amount of processor overhead associated with the two performance data
collectors that are running concurrently and performing similar tasks.

This example helps to answer the question, “What is the processor overhead of the
System Monitor?” The answer, of course, is, “It depends.” It depends on what func-

Chapter 5: Performance Troubleshooting 419

tions you are performing with the System Monitor. As you can see, the background
data collection functions are very efficient when the binary format file is used. In fore-
ground mode, the System Monitor is expensive, by comparison. However, no one
would use the System Monitor in the foreground in the manner illustrated, unless he
or she were interested in generating an excessive processor load.

The point of this exercise is to illustrate that you do not have to guess at the overhead
of a system performance monitoring session. You can use the performance monitor-
ing tools that Windows Server 2003 supplies to find out for yourself how much pro-
cessor time a monitoring session uses.

Figure 5-8 provides a fairer comparison of a background performance data collection
session by using Smlogsvc to gather the same process and thread objects and
counters at 1-second intervals as the interactive System Monitor session gathered, as
illustrated in Figure 5-7. The processor utilization is so small—approximately 1 percent
busy—that it was necessary to reduce the y-axis scale of the System Monitor Chart
view to render the display meaningful.

Figure 5-8 A background performance data collection session using Smlogsvc

420 Microsoft Windows Server 2003 Performance Guide

Counter Selection Logic

Smlogsvc runs even more efficiently in this example in Figure 5-8 than it did in the
previous one. The only difference in the two counter log sessions was that the first col-
lected process level data for a few selected processes and threads. In the second exam-
ple, illustrated in Figure 5-8, the Smlogsvc gathered performance data for every
process and thread. In Figure 5-8, Smlogsvc is gathering much more performance
data, but evidently executing more efficiently. As the measurement indicates, the
counter log service performs more efficiently when it can gather data from a Perfor-
mance Library and write that data directly to a binary log file without subjecting it to
any intervening object instance or counter selection logic. This is the factor that
accounts for the greater efficiency of the counter log session illustrated in Figure 5-8.
Counters from all process and thread instances are being logged, compared to Figure
5-7, which shows only select instances and counters being logged.

Even though this approach is the most efficient way to gather performance data, there
can be problems. When you gather all the instances and all the counters from high-
volume objects like Process and Thread, the data collection files grow extremely fast.
In approximately the same amount of time, the binary log file holding selected Pro-
cess and Thread data grew to about 15 MB in the logging session documented in Fig-
ure 5-7. By comparison, the binary log file holding every Process and Thread counter
from the logging session illustrated in Figure 5-8 grew to about 50 MB in just over 10
minutes. Although gathering all instances and counters might be the most efficient
way to gather performance data from the standpoint of processor utilization, the size
of the binary format files is prohibitively large, making this approach generally unde-
sirable to take.

Log file formats Figure 5-9 illustrates another significant aspect of System Monitor
overhead—the difference between using a binary file format and a text file format file
to log performance data. Figure 5-9 shows another Smlogsvc data gathering session,
identical to the one in Figure 5-8, except that a text format output log file is being cre-
ated instead of a binary one. Processor utilization increases dramatically, as illus-
trated. Note also that the bulk of the processing to create a text format file takes place
in User mode. Compare the proportion of Privileged-mode processing here to that
shown in Figure 5-7, in which System Monitor processing in real-time mode is gather-
ing the same set of objects and counters. In Figure 5-7, the proportion of time spent in
Privileged mode was substantial. This is because of the number of Graphics Device
Interface (GDI) calls required to update the Chart view every second. In Figure 5-9,
the amount of Privileged-mode processing is negligible.

Chapter 5: Performance Troubleshooting 421

Figure 5-9 Increase in processor utilization because of using a text file format file

Again, the explanation is that the counter log service operates most efficiently when it
can gather data from a Performance Library and write it directly to a binary log file
without much intervening processing logic. In fact, the data stored in a binary format
counter log file is in a raw form, identical to the buffers returned by calls to Perfor-
mance Library DLL Collect routines. There is no intervening processing of these raw
data buffers—they are simply written directly and efficiently to the output log file.

Comparing Figure 5-7 to Figure 5-8 illustrates one form of intervening processing
logic that needs to occur when only specific object and counter instances are selected
for output. A call to the Perfib DLL Collect routine responsible for process and thread
performance data returns data for all object instances and counters in a series of raw
buffers. Counter selection requires parsing the raw data buffers to identify individual
object instances and counters, and discarding data about objects and counters that
were not selected. This selection logic is one of the functions that the Performance
Data Helper (PDH) Library of routines provides. The System Monitor console appli-
cation and the Smlogsvc Counter Logs and Alerts service both rely on these PDH
functions to parse the raw data buffers returned by Perflib DLL data Collect routines.
Moreover, by relying on the same set of common PDH routines to parse and interpret
Perflib DLL raw data, the System Monitor console can process and display data repre-
senting current activity—either directly from the Performance Library DLLs or from
binary log files in which the raw collection data is stored in its original format.

422 Microsoft Windows Server 2003 Performance Guide

When creating a text format counter log, significant processing needs to be per-
formed. This processing is similar to the logic that the System Monitor console applies
to raw binary format data when transforming that data into displayable counters. This
essential processing logic is also provided by PDH routines. These helper routines are
associated with the supported performance counter types. Consider, for example, a
PERF_COUNTER_RAWCOUNT, which is an instantaneous observation of a single
measurement. An instantaneous counter requires very little processing needs—only
the transformation of the original numeric value in binary format into a text represen-
tation. But consider a different counter of the popular PERF_COUNTER_COUNTER
type. Here the Perflib DLL raw data buffers contain only the current value of this con-
tinuously accumulated metric. PDH routines must locate the raw value of this counter
in the data buffers retained from the previous data collection interval to calculate an
interval activity rate that is generated as the current counter value. This is not a trivial
effort. First, a large number of instances of process and thread data are contained in
both sets of Perflib DLL raw data collection buffers—which correspond to the current
and previous measurement intervals—that must be parsed. Second, the dynamic
nature of process and thread creation and destruction ensures that the sequence of
data in the raw buffer can change from one interval to the next.

PDH routines exist that parse these raw data Perflib buffers and derive the current
counter values, which are then generated to create text format counter logs. To be
sure, these are the same PDH functions that the System Monitor console relies on to
format data to generate its Chart and Report views. In Chart view, showing many
counter values in the same display is impractical, so using selection logic first to trim
the amount of raw data needing to be processed speeds up the processing.

The two factors affecting the overhead incurred by creating a text format counter log
are:

■ The number of instances and counters contained in the raw data buffers

■ The need to apply selection logic to weed out instances and counters that are
not written to the data file

If the text format counter log file is restricted to a few object instances and counters,
much less parsing of raw data buffers is required. Counter log files limited to a few
object instances and counters can be created relatively efficiently. But, as Figure 5-9
indicates, creating text format file counter logs that track large numbers of object
instances and counters can be prohibitively expensive. This is especially true when
voluminous raw data buffers associated with process and thread objects and counters
require parsing. This relative inefficiency of text format file counter log creation under-

Chapter 5: Performance Troubleshooting 423

lies the recommendations in Chapter 4, “Performance Monitoring Procedures,” to use
binary format log files for bulk data collection.

One mystery that still needs to be addressed is why the background logging session
illustrated in Figure 5-9 uses as many processor resources as the interactive fore-
ground session, illustrated in Figure 5-7. In both cases, because system-wide % Pro-
cessor Time is pinned at 100 percent busy, processing is probably constrained by
processor capacity. The implication of the System Monitor data collection functions
being processor-constrained is that there is little or no processor idle time between
data collection intervals. In both the foreground System Monitor console session and
the background text file format counter log session, as soon as the program is fin-
ished gathering and processing one interval worth of data, it is time to gather the next.
In the case of Figure 5-7, it seems reasonable to assume that GDI calls to update the
Chart view are responsible for at least some of the heavy processing load. In Figure 5-
9, performance logging by Smlogvc has no associated GUI overhead but uses every bit
as much processing time. Using Kernrate, it will be possible to get to the bottom of
this mystery.

Using Kernrate to Identify Processor Use by Module and Function

Complete documentation for the Kernrate tool is included in the Windows Server
2003 Resource Kit Help. Using Kernrate, you can see exactly where processor time is
spent inside processes, their modules, and module functions. Kernrate is an efficient
code-profiling tool that samples processor utilization by process virtual address. This
includes instructions executing inside the operating system kernel, the HAL, device
drivers, and other operating system functions. It is similar to some of the CPU execu-
tion profilers available from third-party vendors.

This section illustrates using Kernrate to resolve processor usage at the process, mod-
ule, and function level. This example answers the questions raised earlier in the chap-
ter about the performance impact of the Performance Monitor application. A Kernrate
CPU execution profile is useful whenever you need to understand processor usage at
a finer level of detail than the Performance Monitor objects and counters can provide.

Listing 5-1 shows the output from a Kernrate monitoring session, initiated by the fol-
lowing command:

kernrate -n smlogsvc -s 120 -k 100 -v 2 -a -e -z pdh

424 Microsoft Windows Server 2003 Performance Guide

Table 5-2 briefly explains the Kernrate command-line parameters. Note that if the
_NT_SYMBOL_PATH environment variable is not set, you can specify it using the -j
switch.

In this example, Kernrate is monitoring the Smlogsvc process in the midst of a text file
format counter log session identical to the one illustrated in Figure 5-9. This is the ses-
sion that used a surprising amount of User-mode processor time. Kernrate allows you
to drill down into the Smlogsvc process to see what modules and instructions are
being executed. In this example, Kernrate is also used to drill down into the Pdh.dll
Performance Data Helper library that it relies on to parse raw performance data buff-
ers and calculate counter type values.

Table 5-2 Key Kernrate Run-Time Parameters

Switch Parameter Function

-n process-name Multiple processes can be monitored in a single run.

-s Duration in seconds Gathers instruction execution observations for the
specified number of seconds. Because of the overhead
of Kernrate sampling, it is wise to limit the duration of
a Kernrate profile.

-k Hit count Restricts output to only those modules and buckets
that equal or exceed the Hit count threshold. Defaults
to 10.

-v Verbosity-level Controls the output that Kernrate supplies. Verbosity
level 2 displays instruction information per bucket, in-
cluding symbols and source-code line information for
every bucket.

-i Sets the sampling interval. More frequent sampling
provides more accurate data but is more intrusive. If
the CPU impact of Kernrate sampling is a concern, use
a less frequent sampling interval.

-a Performs a consolidated Kernel- and User-mode in-
struction execution profile.

-e Prevents gathering of system-wide and process-spe-
cific performance metrics (context switches, memory
usage, and so on) to reduce processing overhead.

-z module-name Multiple modules can be monitored in a single run.

Chapter 5: Performance Troubleshooting 425

Note The Kernrate output has been edited for the sake of conciseness.

Listing 5-1 A Kernrate Report on Processor Usage
Starting to collect profile data

Will collect profile data for 120 seconds

===> Finished Collecting Data, Starting to Process Results

------------Overall Summary:--------------

P0 K 0:00:03.094 (2.6%) U 0:01:19.324 (66.1%) I 0:00:37.584 (31.3%) DPC 0:00

:00.200 (0.2%) Interrupt 0:00:00.991 (0.8%) Interrupts= 190397, Interrupt Ra

te= 1587/sec.

The Kernrate Overall Summary statistics are similar to the Processor(_Total)\% Pro-
cessor Time counters. They break down the execution profile samples that Kernrate
gathers by processor state, including the Idle state. Note that DPC and interrupt time
are included in Kernrate’s calculation of the kernel time. Kernrate identifies 31.3 per-
cent of the sample duration as time spent in the Idle thread. Kernrate examples will
further illuminate the Idle thread implementation details in a moment—a discussion
that is also relevant to some of the multiprocessing discussion in Chapter 6,
“Advanced Performance Topics.”

Continuing to review the Kernrate output in Listing 5-1, you can see that Kernrate
found the processor busy executing a User-mode instruction 66.1 percent of the time
and a Privileged (Kernel) mode instruction 2.6 percent of the time. The sum of Idle-,
User-, and Kernel-mode processing is, of course, equal to 100 percent, after allowing
for possible rounding errors.

Following the Overall Summary statistics, Kernrate lists all the processes that were
active during the monitoring session (not shown), which, in this case, includes the
Smlogsvc process and the Kernrate process. Kernrate then provides a hit count of the
Kernel-mode modules that executed instructions during the interval, as shown in
Listing 5-2.

426 Microsoft Windows Server 2003 Performance Guide

Listing 5-2 A Kernrate Report on Processor Usage by Kernel Routines (continued)
Results for Kernel Mode:

OutputResults: KernelModuleCount = 619

Percentage in the following table is based on the Total Hits for the Kernel

Time 20585 hits, 19531 events per hit --------

Kernel CPU Usage (including idle process) based on the profile interrupt

total possible hits is 33.50%

Module Hits Shared msec %Total %Certain Events/Sec

ntoskrnl 15446 0 120002 75 % 75 % 2513923

processr 4381 0 120002 21 % 21 % 713032

hal 524 0 120002 2 % 2 % 85283

win32k 114 0 120002 0 % 0 % 18554

Ntfs 42 0 120002 0 % 0 % 6835

nv4_disp 22 0 120002 0 % 0 % 3580

nv4_mini 12 0 120002 0 % 0 % 1953

USBPORT 11 0 120002 0 % 0 % 1790

The Kernrate output explains that its resolution of instructions being executed for
modules and routines in the Kernel state includes samples taken during the Idle state.
Including Idle state samples, Kernel-mode instructions have been detected 33.5 per-
cent of the time for a total of 20,585 module hits. Seventy-five percent of the module
hits are in Ntoskrnl, 21 percent are in Processr.sys, and 2 percent are in Hal.dll. Other
than being in the Idle state (31.3 percent), very little Kernel-mode processing is taking
place.

Listing 5-3 continues the example with a Kernrate report on processor usage at the
module level. The process-level statistics for the Smlogsvc process are reported next.

Listing 5-3 A Kernrate Report on Processor Usage by Module Level (continued)
Results for User Mode Process SMLOGSVC.EXE (PID = 2120)

OutputResults: ProcessModuleCount (Including Managed-Code JITs) = 41

Percentage in the following table is based on the Total Hits for this Process

Time 40440 hits, 19531 events per hit --------

User-

Mode CPU Usage for this Process based on the profile interrupt total possible hits i

s 65.82%

Module Hits Shared msec %Total %Certain Events/Sec

pdh 31531 0 120002 77 % 77 % 5131847

kernel32 6836 0 120002 16 % 16 % 1112597

msvcrt 1700 0 120002 4 % 4 % 276684

ntdll 362 0 120002 0 % 0 % 58917

Chapter 5: Performance Troubleshooting 427

Smlogsvc has 40,440 hits, which means the machine is executing Counter Logs and
Alerts service User-mode instructions 65.8 percent of the time. Inside Smlogsvc, only
four modules have more than the threshold number of hits. Calls to the Pdh.dll Per-
formance Data Helper function account for 77 percent of the User-mode processing
within the Smlogsvc. The Kernel32.dll and Msvcrt.dll run-time libraries account for
16 percent and 4 percent of the Smlogsvc hits, respectively. The fourth runtime
library, Ntdll.dll, yields less than 1 percent of the instruction execution hits.

Listing 5-4 is the Kernrate report on processor usage by module function. The mod-
ule-level statistics for Pdh.dll provide additional insight.

Listing 5-4 A Kernrate Report on Processor Usage by Module Function (continued)
===> Processing Zoomed Module pdh.dll...

----- Zoomed module pdh.dll (Bucket size = 16 bytes, Rounding Down) --------

Percentage in the following table is based on the Total Hits for this Zoom Module

Time 31671 hits, 19531 events per hit -------- (33371 total hits from summing-

up the module components)

(51.55% of Total Possible Hits based on the profile interrupt)

Module Hits Shared msec %Total %Certain Events/Sec

StringLengthWorkerA 23334 1 119992 69 % 69 % 3798056

IsMatchingInstance 1513 0 119992 4 % 4 % 246269

GetInstanceByName 1374 0 119992 4 % 4 % 223644

IsMatchingInstance 1332 0 119992 3 % 3 % 216808

NextInstance 1305 12 119992 3 % 3 % 212413

GetInstanceName 829 0 119992 2 % 2 % 134935

PdhiHeapFree 495 428 119992 1 % 0 % 80570

GetInstance 469 11 119992 1 % 1 % 76338

PdhiHeapReAlloc 428 0 119992 1 % 1 % 69665

GetCounterDataPtr 338 338 119992 1 % 0 % 55015

NextCounter 246 1 119992 0 % 0 % 40041

GetInstanceByName 233 229 119992 0 % 0 % 37925

FirstInstance 121 121 119992 0 % 0 % 19695

PdhiHeapFree 121 0 119992 0 % 0 % 19695

PdhiMakePerfPrimaryLangId 108 108 119992 0 % 0 % 17579

PdhiWriteTextLogRecord 101 0 119992 0 % 0 % 16439

GetObjectDefByTitleIndex 93 3 119992 0 % 0 % 15137

FirstObject 84 30 119992 0 % 0 % 13672

GetPerfCounterDataPtr 84 0 119992 0 % 0 % 13672

GetInstanceByUniqueId 77 77 119992 0 % 0 % 12533

GetQueryPerfData 75 0 119992 0 % 0 % 12207

_SEH_prolog 53 0 119992 0 % 0 % 8626

NextObject 40 39 119992 0 % 0 % 6510

FirstInstance 36 13 119992 0 % 0 % 5859

UpdateRealTimeCounterValue 31 0 119992 0 % 0 % 5045

_SEH_epilog 31 5 119992 0 % 0 % 5045

PdhiPlaInitMutex 30 30 119992 0 % 0 % 4883

GetStringResource 30 0 119992 0 % 0 % 4883

428 Microsoft Windows Server 2003 Performance Guide

Kernrate reports that the PDH module has 31,671 hits, accounting for 51.6 percent of
the total instruction samples collected. Fully 69 percent of these hits are associated
with an internal helper function called StringLengthWorkerA, which is called repeat-
edly to parse current and previous raw data buffers. Additional raw data buffer pars-
ing helper functions such as IsMatchingInstance, GetInstanceByName,
IsMatchingInstance, NextInstance, GetInstanceName, GetInstance, GetCounterDataPtr,
NextCounter, and GetInstanceByName account for another 20 percent of the instruc-
tions inside Pdh.dll. The column that indicates the number of shared hits refers to
address range buckets that span function boundaries and make identification less
than certain. The default address bucket range is 16 bytes, an alignment that is consis-
tent with the optimized output from most compilers. If too many uncertain hits occur,
the bucket size can be adjusted downward using the -b command-line switch.

The details Kernrate provides at the Module level are mainly of interest to the pro-
grammers responsible for building the software module and maintaining it, so explor-
ing the inner workings of PDH any further isn’t necessary here.

Idle thread processing Kernrate can also be used to drill down into Kernel-mode
modules, which allows you to identify device drivers or other Kernel-mode functions
that are consuming excessive CPU time. This function of Kernrate is illustrated in the
following code—it drills down into Ntoskrnl and Processr.sys to illuminate the mech-
anism used to implement the Idle thread that plays a distinctive role in the processor
utilization measurements.

Under circumstances identical to the previous example that illustrated the use of
Kernrate and produced the output in Listings 5-1 through 5-4, the following Kern-
rate command was issued to drill down into the Ntoskrnl.exe and Processr.sys mod-
ules that, along with the HAL, lie at the heart of the Windows Server 2003 operating
system:

kernrate -s 120 -k 10 -v 2 -x -a -e -z processr -z ntoskrnl

This Kernrate session gathered Module level hits against these two modules. Listing
5-5 shows a Kernrate report on processor usage for the Processr.sys Kernal module by
function.

Chapter 5: Performance Troubleshooting 429

Listing 5-5 A Kernrate Report on Processor Usage by Function
===> Processing Zoomed Module processr.sys...

----- Zoomed module processr.sys (Bucket size = 16 bytes, Rounding Down) -------

-

Percentage in the following table is based on the Total Hits for this Zoom Module

Time 4474 hits, 19531 events per hit -------- (4474 total hits from summing-

up the module components)

(7.28% of Total Possible Hits based on the profile interrupt)

Module Hits Shared msec %Total %Certain Events/Sec

AcpiC1Idle 4474 0 120002 100 % 100 % 728168

Kernrate found instructions being executed inside the Processr.sys module 7.28 per-
cent of the time. The Processr.sys device driver module is a new feature of the Win-
dows Server 2003 operating system. It provides hardware-specific processor support,
including implementation of the processor power management routines. Depending
on the processor model and its feature set, the operating system will provide an opti-
mal Idle thread implementation. In a multiprocessor configuration, for example, the
operating system will issue no-operation (NOP) instructions inside the Idle loop to
ensure no memory bus traffic can clog up the shared memory bus. Here, a call is made
to the Advanced Configuration and Power Interface (ACPI) C1 Idle routine because
the target processor is a machine that supports this power management hardware
interface.

Listing 5-6 A Kernrate Report on Processor Usage for Ntoskrnl.exe by Function
===> Processing Zoomed Module ntoskrnl.exe...

----- Zoomed module ntoskrnl.exe (Bucket size = 16 bytes, Rounding Down) -------

-

Percentage in the following table is based on the Total Hits for this Zoom Module

Time 15337 hits, 19531 events per hit -------- (15639 total hits from summing-

up the module components)

(24.96% of Total Possible Hits based on the profile interrupt)

Module Hits Shared msec %Total %Certain Events/Sec

KiIdleLoop 14622 0 120002 93 % 93 % 2379812

KiDispatchInterrupt 104 104 120002 0 % 0 % 16926

KiSwapContext 104 0 120002 0 % 0 % 16926

READ_REGISTER_BUFFER_UCHAR 46 46 120002 0 % 0 % 7486

READ_REGISTER_ULONG 46 0 120002 0 % 0 % 7486

430 Microsoft Windows Server 2003 Performance Guide

FsRtlIsNameInExpressionPrivate 44 0 120002 0 % 0 % 7161

FsRtlIsNameInExpressionPrivate 39 0 120002 0 % 0 % 6347

READ_REGISTER_USHORT 30 30 120002 0 % 0 % 4882

READ_REGISTER_UCHAR 30 0 120002 0 % 0 % 4882

KiTrap0E 24 0 120002 0 % 0 % 3906

KiSystemService 24 0 120002 0 % 0 % 3906

WRITE_REGISTER_USHORT 15 15 120002 0 % 0 % 2441

WRITE_REGISTER_UCHAR 15 0 120002 0 % 0 % 2441

FsRtlIsNameInExpressionPrivate 14 0 120002 0 % 0 % 2278

ExpCopyThreadInfo 13 0 120002 0 % 0 % 2115

KiXMMIZeroPagesNoSave 13 13 120002 0 % 0 % 2115

KiTimerExpiration 13 0 120002 0 % 0 % 2115

ObReferenceObjectByHandle 10 0 120002 0 % 0 % 1627

SwapContext 10 0 120002 0 % 0 % 1627

Ninety-three percent of the module hits inside Ntoskrnl are for the KiIdleLoop rou-
tine. This is the Idle thread routine that eventually calls the Processr.sys AcpiC1Idle
function.

In summary, Kernrate is a processor instruction sampling tool that allows you to pro-
file processor usage at a considerably more detailed level than the Performance Mon-
itor counters allow. Kernrate can be used to understand how the processor is being
used at the module and instruction level. It is capable of quantifying processor usage
inside system functions, device drivers, and even operating system kernel routines
and the HAL.

Memory Troubleshooting
Memory problems—either a shortage of memory or poorly configured memory—are a
common cause of performance problems. This section looks at two types of memory
bottlenecks. The first is a shortage of RAM, or physical memory. When there is a
shortage of RAM, the virtual memory manager (VMM) component, which attempts to
keep the most recently accessed virtual memory pages of processes in RAM, must
work harder and harder. Performance might suffer as paging operations to disk
increase, and these paging operations can interfere with applications that need to
access the same disk on which the paging file (or files) is located. Even though exces-
sive paging to disk is a secondary effect of a RAM shortage, it is the symptom that is
easiest to detect. Examples are discussed that illustrate how to identify a system with
a shortage of RAM that is encountering this type of memory bottleneck.

Chapter 5: Performance Troubleshooting 431

A second type of memory bottleneck occurs when a process exhausts the amount of
virtual memory available for allocation. Virtual memory can become depleted by a
process with a memory leak, the results of which, if undetected, can be catastrophic.
The program with the leak might fail, or it might cause other processes to fail because
of a shortage of resources. Memory leaks are usually program defects.

Normal server workload growth can also lead to a similar shortage of virtual memory.
Instead of a virtual memory leak, think of this situation as virtual memory creep. Vir-
tual memory creep is very easy to detect and avoid. There is an example later in this
chapter that illustrates what to look for to diagnose a memory leak or virtual memory
creep. A useful technique to use in memory capacity planning is also discussed in
Chapter 6, “Advanced Performance Topics.”

The memory on a computer is not utilized in quite the same fashion as other hard-
ware resources. You cannot associate memory utilization with specific requests for
service, for example, or compute a service time and response time for memory
requests. Program instructions and data area occupy physical memory to execute.
They often occupy physical memory locations long after they are actively addressed. A
program’s idle virtual memory code and data areas are removed from RAM only when
new requests for physical memory addresses cannot be satisfied from current sup-
plies of unallocated (or available) RAM. Another factor that complicates the memory
utilization measures is that RAM tends to look fully utilized all the time because of the
way a process’s virtual memory address space is mapped to physical memory on
demand.

The statistics that are available to measure memory utilization reflect this dynamic
policy of allocating virtual memory on demand. The performance measurements
include instantaneous virtual memory allocation counters, instantaneous physical
memory allocation counters, and continuous interval counters that measure paging
activity. These measurements are available at both the system and process levels.

Counters to Evaluate When Troubleshooting Memory Performance

The first step in analyzing memory problems is determining whether the problem is a
result of insufficient available physical memory leading to excessive paging. Even
though insufficient available memory can cause excessive paging, excessive paging
can occur even when there is plenty of available memory, when, for example, an appli-
cation is functioning improperly and leaking memory.

432 Microsoft Windows Server 2003 Performance Guide

Ideally, compare the values of the counters listed in Table 5-3 to the value of these
same counters that you archived in your baseline analysis. If you do not have a base-
line analysis to go by, or the system has changed considerably since you last made
baseline measurements, the suggested thresholds listed in Table 5-3 can be used as
very rough usage guidelines.

Table 5-3 Memory Performance Counters to Evaluate

Counter Description Suggested Threshold

Memory\% Committed
Bytes in Use

This value should be relatively stable
during a long-term view.

Investigate if greater
than 80%.

Memory\Available
Bytes

If this value is low, check the Memory\
Pages/sec counter value. Low available
memory and high paging indicate a
memory shortage resulting from an
excessive application load or a
defective process.

Investigate if less than
5% of the size of RAM.

Alarm if less than 0.5%
of the size of RAM.

Memory\Commit
Limit

This value should stay constant, indicat-
ing an adequately sized paging file. If
this value increases, the system en-
larged the paging file for you, indicating
a prolonged virtual memory shortage.

Investigate if the trend
of this value is increas-
ing over time.

Memory\Committed
Bytes

This represents the total virtual memory
allocated by the processes on the sys-
tem. If it increases over an extended
period of time, a process might be
leaking memory

Investigate if the trend
of this value is increas-
ing over time.

Memory\Pages/sec Tracks page fault pages generated by
read (input) and write (output) opera-
tions. If this value is high, check the
Pages Input/sec to see whether
application(s) are waiting for pages
that could slow response time.

Depends on page file
disk speed. Additional
investigation might be
required when there
are more than 40 per
second on slow disks or
more than 300 per sec-
ond on faster disks.

Memory\Pages
Input/sec

Tracks page faults requiring data to be
read from the disk. Unlike output pages,
the application must wait for this data
to be read, so application response time
can be slowed if this number is high.

Check the disk % Idle Time to see
whether the page file drive is so busy
that paging performance might be
adversely affected.

Varies with disk hard-
ware and system per-
formance.

More than 20 might be
a problem on slow disk
drives, whereas faster
drives can handle
much more.

Chapter 5: Performance Troubleshooting 433

If the paging file shows a high degree of usage, the paging file might be too small for
the applications you are running on the system. Likewise, a disk that holds the paging
file or files that is too busy can also impact overall performance.

Memory leaks in applications are indicated in several places. First, you might get an
error message indicating the system is low on virtual memory. If you have logged

Memory\Pool
Nonpaged Bytes

Tracks memory that is always resident
in physical memory. Primarily device
drivers use this memory.

The value of this counter should be
relatively stable. An increasing value
over time might indicate a pool
memory leak.

Investigate if Pool
Nonpaged Bytes is
running at > 80% of its
maximum configured
pool size.

Memory\Pool Paged
Bytes

Tracks memory that can be paged out
of physical memory. Any service or ap-
plication can use this memory.

The value of this counter should be rel-
atively stable. An increasing value over
time might indicate a pool memory
leak.

Investigate if Pool
Paged Bytes is running
at > 70% of its maxi-
mum configured pool
size.

Process(_Total)\
Private Bytes

Monitors the sum of all private virtual
memory allocated by all the processes
running on that system.

If this value increases over a long period
of time, an application might be leaking
memory.

Investigate if the trend
of this value is increas-
ing over time.

LogicalDisk(pagefile
drive)\% Idle Time

Monitors the idle time of the drive (or
drives) on which the paging file resides.

If this disk is too busy (that is, has a very
low idle time), virtual memory opera-
tions to that disk will slow down.

Investigate paging
drives with less than
50% Idle Time.

LogicalDisk(pagefile
drive)\Split I/O/sec

Monitors the rate that Split I/Os are oc-
curring on the drive (or drives) with the
paging file(s).

A higher than normal rate of Split I/Os
on a drive with a paging file can cause
virtual memory operations to that disk
to take longer.

The threshold value for
this counter depends
on the disk drive type
and configuration.

Table 5-3 Memory Performance Counters to Evaluate

Counter Description Suggested Threshold

434 Microsoft Windows Server 2003 Performance Guide

performance data on the computer over a period of time, a memory leak in an appli-
cation process will show up as a gradual increase in the value of the Memory\Com-
mitted Bytes counter, as well as an increase in the value of the Process(_Total)\Private
Bytes counter. A memory leak in one process might also cause excessive paging by
squeezing other process working sets out of RAM. An example of this condition is dis-
cussed later in “Virtual Memory Leaks.”

What to Check Next When Troubleshooting Memory Performance

If you determine that the system needs more physical memory, you can either install
more physical memory or move applications to another computer to relieve the exces-
sive load. If you decide that you do not have a physical memory shortage or problem,
the next step is to evaluate another component—for example, the processor or disk—
depending on the value of other performance counters.

If memory seems to be a problem, the next step is to determine the specific cause.
Sometimes in a large Terminal Services environment, there is simply too much
demand for memory from multiple application processes. Other times, you can isolate
a memory problem to a specific process, and most likely that problem will be the
result of one of two situations: either an application needs more memory than is
installed on the system, or an application has a problem that needs to be fixed. If the
memory usage of a specific process rises to a certain level and stabilizes, you can
increase available virtual memory by expanding the paging file. Eventually, if the
application is not defective, its memory consumption should stabilize. If the amount
of physical memory installed is inadequate, the application might perform poorly,
and it might cause a significant amount of paging to disk. However, its consumption
of virtual memory normally will not increase forever.

If the application is defective and continually consumes more and more memory
resources, its memory usage, as indicated by the Process(ProcessName)\Private Bytes
performance counter, will constantly increase over time. This situation is known as a
memory leak—where memory resources are reserved and used but not released when
they are no longer required. Depending on the severity of the leak, this condition of
using memory but not releasing it can consume all available memory resources in a mat-
ter of days, hours, or even minutes. Generally, the serious leaks are caught before an
application is released to customers, so only the slow leaks are left to be noticed by the
end users of the production application. Consequently, a counter log file that tracks
memory usage over a long period of time is the best way to detect slow memory leaks
before they cause problems in the rest of the system. The example performance moni-

Chapter 5: Performance Troubleshooting 435

toring procedures recommended in Chapter 4, “Performance Monitoring Procedures,”
incorporate the measurements you need to identify a system with a memory leak.

If the paging file is fragmented or is located on a disk that is heavily used by other
applications, memory performance can be degraded even though there is no shortage
of either physical or virtual memory. A consistently low value of the LogicalDisk(Page-
FileDrive)\% Idle Time performance counter indicates that the disk is very busy,
which might contribute to degraded memory performance. Moving the paging file to
another disk drive might improve performance in this situation. If the value of the
LogicalDisk(PageFileDrive)\Split I/O/sec counter is high on the drive that contains
the paging file, the disk or the paging file might be fragmented. If either is the case,
accessing that disk is going to take longer than it would without the fragmentation.
Defragmenting the drive or moving the paging file to a less crowded disk should
improve memory performance.

Tip The built-in Disk Defragmenter tool does not defragment paging files. To
defragment the paging file, either use a third-party defragmenter that supports this
feature or follow the procedure outlined in article 229850 “Analyze Operation Sug-
gests Defragmenting Disk Multiple Times” in the Microsoft Knowledge Base at http://
support.microsoft.com.

Excessive Paging

You want to install enough RAM to prevent excessive paging from impacting perfor-
mance, but you should not attempt to install enough RAM to eliminate paging activity
completely. In a virtual memory computer system, some page fault behavior—for
instance, when a program first begins to execute—is inevitable. Modified virtual pages
in memory have to be updated on disk eventually, so some amount of Page Writes/sec
is also inevitable.

Two types of serious performance problems can occur if too little RAM is available:

■ Too many page faults Too many page faults leads to excessive program execu-
tion delays.

■ Disk contention Virtual memory machines that sustain high page-fault rates
might also encounter disk performance problems.

Too many page faults is the more straightforward performance problem associated
with virtual memory and paging. Unfortunately, it is also the one that requires the

436 Microsoft Windows Server 2003 Performance Guide

most intense data gathering to diagnose. A commonly encountered problem occurs
when disk performance suffers because of excessive paging operations to disk. Even
though it is a secondary effect, it is often the easier condition to recognize. The extra
disk I/O activity resulting from paging can easily interfere with applications attempt-
ing to access their data files stored on the same disk as the paging file.

Table 5-4 shows three primary indicators of a shortage of RAM, and these indicators
are all interrelated. The overall paging rate to disk includes both Page Reads/sec and
Page Writes/sec. Because the operating system must ultimately write changed pages
to disk, it is not possible to avoid most page write operations. Page Reads/sec—the
hard page fault rate—is the measurement most sensitive to a shortage of RAM. As Avail-
able Bytes—the pool of unallocated RAM—becomes depleted, the number of hard page
faults that occur normally increases. The total number of Pages/sec that the system
can sustain is a function of disk bandwidth. When the disk or disks where the paging
files are located become saturated, the system reaches an upper limit for sustainable
paging activity to disk. However, because paging operations consist of a mixture of
sequential and random disk I/Os, you will discover that this limit on paging activity is
quite elastic. The performance of disks on sequential and random access workloads is
discussed further in the section entitled “Establishing a Disk Drive Performance Base-
line” later in this chapter.

Because the limit on the number of Pages/sec that the system can read and write is
elastic, no simple rule-of-thumb approach is adequate for detecting thrashing, the clas-
sic symptom of a machine that is memory constrained. A better approach is to com-
pare the amount of disk traffic resulting from paging to overall disk operations. If
paging accounts for only 20 percent or less of total disk operations, the impact of vir-

Table 5-4 Primary Indicators of a Memory Bottleneck

Counter Primary Indicator Threshold Values

Memory\Pages/sec Paging operations to
disk (Pages input +
Pages output)

Pages/sec × 4K page size > 70%
of the total number of Logical
Disk Bytes/sec to the disk(s)
where the paging file is located.

Memory\Page Reads/sec Page faults that were
resolved by reading the
disk

Sustained values > 50% of the
total number of Logical Disk op-
erations to the disk(s) where the
paging file is located.

Memory\Available Bytes Free (unallocated) RAM Available Bytes < 5% of the size
of RAM is likely to mean there is
a shortage of physical memory.

Chapter 5: Performance Troubleshooting 437

tual memory management is tolerable. If paging accounts for 70 percent or more of all
disk operations, the situation is probably not tolerable.

Figure 5-10 illustrates these points, showing a system that is paging heavily during a 2-
minute interval. The number of available bytes plummets about 30 seconds into this
monitoring session, when the Resource Kit resource consumer tool, Consume.exe, is
launched to create a shortage of RAM on this machine:

C:\>consume -physical-memory -time 600

Consume: Message: Time out after 600 seconds.

Consume: Message: Successfully assigned process to a job object ...

Consume: Message: Total physical memory: 1FF6F000

Consume: Message: Available physical memory: 7036000

Consume: Message: Will attempt to create 1 baby consumers ...

Consume: Message: Sleeping ...

Figure 5-10 A system that is paging heavily during a 10-minute interval

When the consume process acquired 600 MB of virtual memory to create a memory
shortage, available bytes dropped to near zero. As server applications continued to
execute, they encountered serious paging delays. The operating system was forced to
perform 37 Page Reads/sec on average during this period of shortage. A spike of over
300 Page Reads/sec occurred during one interval, along with several peak periods in
which the number of Page Reads/sec exceeded 200.

438 Microsoft Windows Server 2003 Performance Guide

At this rate, paging activity will consume almost all the available disk bandwidth. You
can see this consumption better in Figure 5-11, which compares Page Reads/sec and
Page Writes/sec to Disk Transfers/sec. It is apparent that almost all disk activity at this
point results from page fault resolution. This is a classic illustration of a virtual mem-
ory system that is paging heavily, possibly to the detriment of its designated I/O work-
load execution.

Figure 5-11 Comparing Page Reads/sec and Page Writes/sec to Disk Transfers/sec

Because the operating system often attempts bulk paging operations, especially on
Page Writes, comparing bytes moved for paging operations to total Disk Bytes/sec is a
better way to determine the amount of disk capacity devoted to paging. Multiply the
Memory\Pages/sec counter by 4096, the size of an IA-32 page, to calculate bytes
moved by disk paging. Compare that value to Logical Disk\Disk Bytes/sec. If the per-
centage of the available disk bandwidth devoted to paging operations exceeds 50 per-
cent, paging potentially will impact application performance. If the percentage of the
available disk bandwidth devoted to memory management–initiated paging opera-
tions exceeds 70 percent, the system is probably experiencing excessively high paging
rates, that is, performing too much work in virtual memory management and not
enough of its application-oriented physical disk work.

The standard remedy for a system that is paging too much is to add RAM and increase
the pool of Available Bytes. This will fix most performance problems resulting from
excessive paging. If you cannot add RAM to the machine, other remedies include con-

Chapter 5: Performance Troubleshooting 439

figuring faster paging disks, more paging disks, or a combination of both. Any of the
disk tuning strategies discussed later that improve disk service time can also help,
including defragmentation of the paging file disk.

Caution Some paging activity cannot be eliminated entirely by adding more RAM.
Page Reads that occur at process initialization cannot be avoided by adding more
RAM. Because the operating system must ensure that modified pages are current on
the paging file, many Page Writes cannot be avoided either. Demand zero paging is
the allocation of virtual memory for new data areas. Demand zero paging occurs at
application startup and, in some applications, as new data structures are allocated
during run time. Adding memory will often reduce paging and improve memory effi-
ciency, but generally does not reduce the demand zero fault rate.

Available Memory

The other primary indicator of a memory bottleneck is that the pool of Available Bytes
has become depleted. Understanding how the size of the Available Bytes pool affects
paging is very important. This relationship is so important that three Available Bytes
counters are available: one that counts bytes, one that counts kilobytes, and a third
that counts megabytes. Page trimming by the virtual memory manager is triggered by
a shortage of available bytes. Page trimming attempts to replenish the pool of Avail-
able Bytes by identifying virtual memory pages that have not been referenced for a rel-
atively long time. When page trimming is effective, older pages that are trimmed from
process working sets are not needed again soon. These older pages are replaced by
more active, recent pages. Trimmed pages are marked in transition and remain in
RAM for an extra period of time to reduce the amount of paging to disk that occurs.
Dirty pages must be written to disk if more pages are on the Modified List than the
list’s threshold value allows, so there is usually some cost associated with page trim-
ming even though the process is very effective.

If there is a chronic shortage of Available Bytes, page trimming loses effectiveness and
leads to more paging operations to disk. There is little room in RAM for pages marked
in transition; therefore, when recently trimmed pages are referenced again, they must
be accessed from disk instead of RAM. When dirty pages are trimmed frequently,
more frequent updates of the paging file are scheduled. This paging to disk interferes
with application-directed I/O operations to the same disk.

Following a round of page trimming, if the memory shortage persists, the system is
probably in store for more page trimming. Figure 5-12 zooms in on the value of Avail-
able MBytes during the same period shown in Figure 5-10, when Consume.exe was

440 Microsoft Windows Server 2003 Performance Guide

active. Notice that following the initial round of page trimming to replenish the Avail-
able Bytes pool, the value of Available MBytes increases, but in an oscillating manner
depending on how effective the previous round of page trimming was. It is apparent
that additional rounds of page trimming are initiated because the physical memory
shortage persists. When a persistent memory shortage occurs, page trimming can
combat the problem, but do little to relieve the shortage for good. The only effective
way to relieve the shortage is to add RAM to the machine.

Figure 5-12 The value of Available MBytes oscillates between rounds of page trimming

As a general rule, you can avoid a memory shortage by ensuring that Available Bytes
does not drop below 5 percent of RAM for an extended period of time. However, this
rule of thumb can be fallible if you are running server applications that manage their
own working sets. Applications that can manage their own working sets include
Microsoft Internet Information Services (IIS) 6.0, Microsoft Exchange Server, and
Microsoft SQL Server. As described in Chapter 1, “Performance Monitoring Over-
view,” these applications interact with the virtual memory manager to expand their
working sets when free RAM is ample and contract them when RAM is depleted.
These applications rely on RAM-resident cache buffers to reduce the amount of I/O
they must direct to disk. When you are running server applications that manage their
own working sets, RAM will always look full. Available Bytes will remain within a nar-
row range, and the only reliable indicator of a RAM shortage will be a combination of
more paging to disk and less effective application caching.

Chapter 5: Performance Troubleshooting 441

Memory Allocation

After you determine that physical memory is saturated and paging is excessive,
exploring the way physical memory is allocated is often useful. Figure 5-13 shows the
four major counters that tell you how RAM is allocated.

Figure 5-13 The four major counters indicate how RAM is allocated

The following memory allocation counters are shown against a scale that reflects the
size of RAM on the machine in Figure 5-13, namely 1 GB:

■ Memory\Available Bytes RAM that is currently available for immediate alloca-
tion. Available Bytes is the sum of the Zero, Free, and Standby lists.

■ Memory\Cache Bytes The pageable working set associated with allocated sys-
tem memory. Cache Bytes is the sum of four counters: System Cache Resident
Bytes, System Driver Resident Bytes, System Code Resident Bytes, and Pool
Paged Resident Bytes.

■ Memory\Pool Nonpaged Bytes The current nonpageable pool allocation.

■ Process(_Total)\Working Set The sum of each process’s current working set.
Resident pages from shared DLLs are counted as part of every process address
space that loaded the DLL.

442 Microsoft Windows Server 2003 Performance Guide

You do not have to use the default scaling factor associated with these counters; they
have all been adjusted to use a scale factor of .000001. Presentation in this straightfor-
ward format, with all the measurements on the chart reported in MB, prevents any
misinterpretation or distortion of the measurements reported.

As Available Bytes is consumed, this type of report allows you to determine what kind
of memory allocations are responsible for the increase in memory usage. The system
working set can be further broken down into four classes of allocation requests: the
System Cache Resident Bytes, System Driver Resident Bytes, System Code Resident
Bytes, and Pool Paged Resident Bytes. The working set sizes of individual process
address spaces are also available, but only at the cost of data gathering at the process
level. The processes responsible for pageable and nonpageable pool allocations can
also be identified.

Caution The four physical memory allocation counters depicted in Figure 5-13
cannot be added together reliably to determine the exact size of RAM. Dirty pages
currently on the Modified list that still need to be written to the paging file are not
included in any of these counter values. In addition, resident pages from shared DLLs
are counted in the working set of each process address space where they are loaded,
so they are subject to being counted multiple times.

Note that the only way to determine the number of dirty pages currently resident on
the Modified List is to use the !vm command extension with the Kernel Debugger.
Using the !vm command extension is illustrated later.

Another way to view the same physical memory allocation data is to relog the binary
counter log data to text format and use Excel to create a stacked area or bar chart, as
illustrated in Figure 5-14.

The advantage of the stacked format is that the charted values are cumulative. It is eas-
ier to see how the changes in the value of one of the memory allocation counters affect
the overall size of the pool of Available Bytes. The page trimming operations per-
formed by the virtual memory manager, which remove older pages from process
working sets and add them to the pool of Available Bytes, are also clearly visible when
you look at the measurement data in this format.

Chapter 5: Performance Troubleshooting 443

Figure 5-14 Using an Excel chart to view physical memory allocation data

Other Memory Reporting Tools

The System Monitor counters are not the only means of viewing the memory alloca-
tion statistics. The Processes tab in Task Manager allows you to view the current pro-
cess working set (Memory Usage), total virtual memory allocations, and virtual
memory allocations to the system pools. Task Manager also offers you the conve-
nience of sorting the Processes display based on the values in any one of the measure-
ment fields currently selected for display. If you need to identify a process address
space that is consuming too much RAM, using Task Manager is quick and easy. Mean-
while, the Performance tab in Task Manager reports available memory, the current
size of the System Cache, and current physical memory allocations for the Paged and
Nonpaged pools.

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

Time of day

3:
55

:0
9

PM

3:
55

:3
9

PM

3:
56

:1
0

PM

3:
56

:4
1

PM

3:
57

:1
1

PM

By
te

s

Memory\Available bytesMemory\Pool nonpaged bytes
Memory\Cache bytesProcess(_Total)\Working set

444 Microsoft Windows Server 2003 Performance Guide

When you use a Kernel Debugger session, you can view additional information by
issuing the !vm command extension. The !vm command returns a number of interest-
ing statistics that are mainly concerned with virtual memory allocations. The !vm
command also reports the number of dirty pages currently resident on the Modified
Page List, as illustrated in Listing 5-7. This example shows a snapshot of the virtual
memory usage information from the !vm command for the machine in Figure 5-10
before and after the Consume.exe tool was run.

Before Consume.exe executes, 489 dirty pages are awaiting output to disk on the
Modified Page List, as shown in Listing 5-7.

Listing 5-7 Output from the Kernel Debugger !vm Command Extension
lkd> !vm

*** Virtual Memory Usage ***

Physical Memory: 130927 (523708 Kb)

Page File: \??\C:\pagefile.sys

Current: 786432Kb Free Space: 603720Kb

Minimum: 786432Kb Maximum: 1572864Kb

Available Pages: 66935 (267740 Kb)

ResAvail Pages: 93140 (372560 Kb)

Locked IO Pages: 247 (988 Kb)

Free System PTEs: 204707 (818828 Kb)

Free NP PTEs: 28645 (114580 Kb)

Free Special NP: 0 (0 Kb)

Modified Pages: 489 (1956 Kb)

Modified PF Pages: 489 (1956 Kb)

NonPagedPool Usage: 2694 (10776 Kb)

NonPagedPool Max: 33768 (135072 Kb)

PagedPool 0 Usage: 3622 (14488 Kb)

PagedPool 1 Usage: 1277 (5108 Kb)

PagedPool 2 Usage: 1247 (4988 Kb)

PagedPool Usage: 6146 (24584 Kb)

PagedPool Maximum: 138240 (552960 Kb)

Shared Commit: 5513 (22052 Kb)

Special Pool: 0 (0 Kb)

Shared Process: 3398 (13592 Kb)

PagedPool Commit: 6153 (24612 Kb)

Driver Commit: 1630 (6520 Kb)

Committed pages: 98489 (393956 Kb)

Commit limit: 320257 (1281028 Kb)

Immediately after Consume.exe triggers a round page trimming, the number of Mod-
ified Pages in RAM increases sharply:

*** Virtual Memory Usage ***

Physical Memory: 130927 (523708 Kb)

Page File: \??\C:\pagefile.sys

Current: 786432Kb Free Space: 472328Kb

Minimum: 786432Kb Maximum: 1572864Kb

Available Pages: 4920 (19680 Kb)

ResAvail Pages: 358 (1432 Kb)

Chapter 5: Performance Troubleshooting 445

Locked IO Pages: 251 (1004 Kb)

Free System PTEs: 204387 (817548 Kb)

Free NP PTEs: 28645 (114580 Kb)

Free Special NP: 0 (0 Kb)

Modified Pages: 596 (2384 Kb)

Modified PF Pages: 660 (2640 Kb)

NonPagedPool Usage: 2750 (11000 Kb)

NonPagedPool Max: 33768 (135072 Kb)

PagedPool 0 Usage: 3544 (14176 Kb)

PagedPool 1 Usage: 1359 (5436 Kb)

PagedPool 2 Usage: 1340 (5360 Kb)

PagedPool Usage: 6243 (24972 Kb)

PagedPool Maximum: 138240 (552960 Kb)

Shared Commit: 6842 (27368 Kb)

Special Pool: 0 (0 Kb)

Shared Process: 3688 (14752 Kb)

PagedPool Commit: 6398 (25592 Kb)

Driver Commit: 1630 (6520 Kb)

Committed pages: 211846 (847384 Kb)

Commit limit: 320257 (1281028 Kb)

A large quantity of dirty pages recently trimmed from process address spaces and
added to the Modified List triggers page write operations to disk.

The Kernel Debugger can also report on virtual memory and pool usage, as discussed
in greater detail in a later section titled “System Pools.”

Page faults per process One side effect of a global LRU page replacement policy
like the one Windows Server 2003 uses is that the memory allocation pattern of one
process can influence what happens to every other process address space running on
the system. You’ll find it extremely useful to drill down to the process level to see
which processes are consuming the most RAM and which processes are suffering the
most page faults.

Process level statistics on paging activity are available in both the System Monitor and
Task Manager. Both tools can display similar process level statistics that record the
number of page faults each executing process incurs during each interval. However,
neither tool can differentiate between hard and soft page faults per process, which lim-
its their usefulness in this specific context. Hard page faults have the most serious per-
formance implications because, in the time it takes to read in the page from disk, the
fault stops the execution of the thread that encounters the addressing exception. Nei-
ther System Monitor nor Task Manager allows you to break out hard page fault activity
per process.

Two other tools can be used to gather information on hard page faults at the process
level: the Event Tracing for Windows (ETW) facility and the Page Fault Monitor tool
(Pfmon.exe) available in the Windows Server 2003 Resource Kit. ETW distinguishes
page fault events according to whether they are a TransitionFault, DemandZeroFault,

446 Microsoft Windows Server 2003 Performance Guide

CopyOnWrite, GuardPageFault, or a HardPageFault. To gather only hard page faults, you
must use the Logman command-line interface, as shown in this example:

logman create trace pagefault_trace -p “Windows Kernel Trace” 0x00002003 -

o C:\Perflogs\pagefault_trace -v mmddhhmm -f BIN -rf 600 -u admin “adminpassword"

logman start trace pagefault_trace

tracerpt pagefault_trace_2003090314.etl -o pagefault_trace_2003090314.csv

The first Logman command creates the trace, specifying that only Hard Page Fault,
Process, and Thread events are to be captured. Each Page Fault event identifies the
Thread ID that encountered the page fault, the virtual address reference that caused
the fault, and the value of the Program Counter showing the address of the instruc-
tion that was being executed when the page fault occurred. The second Logman com-
mand starts the trace. Finally, the Tracerpt command formats the trace file binary
output into a .csv format file that you can review using Excel. There are no built-in
reports that summarize the page fault trace data. Table 5-5 illustrates the trace data
fields you will see from a page fault event tracing session.

Using Excel, you can read each PageFault trace event record, as illustrated in the list-
ing here that was assembled from related rows of an Excel worksheet. The Event Trace
Header record is augmented here with labels for the two PageFault User Data fields.
The PageFault trace events here are associated with Thread Id 0x00000924. Manually,
you have to match the Thread Id from the PageFault event to an earlier Thread Event
and its corresponding Process Event trace record to identify the process that encoun-
tered the page fault. Notice in this example that the second and third hard page faults

Table 5-5 An ETW Hard Page Fault Trace

Event
Name Type Thread ID Clock-Time

Kernel
(ms) User (ms) User Data

Process DCStart 0x00000924 12707116810
6866000

104270 1261200 0x00008BF7 0x00000AE0

Thread DCStart 0x00000924 12707116810
6866000

104270 1261200 0x00000AE0 0x00000924

Event
Name Type TID Clock-Time

Kernel
(ms) User (ms)

Virtual
Address

Program
Counter

Page-
Fault

HardPageFault 0x00000924 12707116836
4036000

104490 1261500 0x302393DE 0x302393DE

Page-
Fault

HardPageFault 0x00000924 12707116836
4336000

104490 1261500 0x037DA074 0x30C84CEF

Page-
Fault

HardPageFault 0x00000924 12707116836
4336000

104490 1261500 0x037D9FF4 0x30C84CEF

Chapter 5: Performance Troubleshooting 447

occur at the same Program Counter address. In this example, it appears that a two-
operand instruction encountered a page fault in translating both address operands.

If you want to focus on the page fault activity inside a single process, consider using
the Page Fault Monitor utility, Pfmon.exe, that is available in the Windows Server 2003
Resource Kit. Pfmon captures information about every page fault that occurs for a given
process. You can limit the recording to capturing only hard page faults, the results of
which are illustrated in Table 5-6. Output from the following Pfmon execution is
shown in Table 5-6.

C:\PerfLogs>pfmon /h /l /p 976

Table 5-6 Capturing Only Hard Page Faults

Page
Fault
Number

Module at Program
Counter

Program
Counter Symbol Virtual Address

0 MsoFGetTbShowKbd-
Shortcuts+0x123

820481951 Ordinal961+0
x00013554

825688908

1 Ordinal999+0x3b7 820479383 Ordinal961+0
x00012670

825685096

2 MsoSzCopy+0x26b 816932780 00136c2c 1272876

3 MsoSzCopy+0x26b 816932780 00135a4c 1268300

4 MsoSzCopy+0x26b 816932780 00134a4c 1264204

5 MsoSzCopy+0x26b 816932780 00133a34 1260084

6 MsoSzCopy+0x26b 816932780 132854 1255508

7 MsoSzCopy+0x26b 816932780 131854 1251412

8 CoFileTimeNow+0xd68 1998196073 31f90000 838402048

9 CoFileTimeNow+0xd68 1998196073 31f91000 838406144

10 CoFileTimeNow+0xd68 1998196073 31f99000 838438912

11 CoFileTimeNow+0xd68 1998196073 31fa1000 838471680

12 CoFileTimeNow+0xd68 1998196073 31fa9000 838504448

13 CoFileTimeNow+0xd68 1998196073 31fb1000 838537216

14 CoFileTimeNow+0xd68 1998196073 32060000 839254016

15 MLPGetPrivateFile-
Name+0xae21

1610935641 MLPGet-
PrivateFile-
Name+0x000
0AE20

1610935640

16 CoFileTimeNow+0xd68 1998196073 32643000 845426688

17 CoFileTimeNow+0xd68 1998196073 32644000 845430784

448 Microsoft Windows Server 2003 Performance Guide

The /l option of Pfmon writes the output to Pfmon.log, a tab-delimited .txt file that
you can readily view using Excel, as illustrated above in Table 5-6.

Like an ETW trace log, the information Pfmon gathers about every page fault includes
the address of the instruction that was executing when the page fault occurred and
the virtual address of the referenced page that caused the fault. In addition, Pfmon
attempts to map these addresses into the virtual address space of the monitored pro-
cess. This allows you to see for yourself which instructions and data accesses caused
page faults. Similar information is available for soft faults, which reveals the virtual
memory access patterns of the target program. This information can be especially use-
ful to the programmer who developed an application program that is causing exces-
sive paging.

Virtual Memory Shortages

The system’s Commit Limit is an upper limit on how much virtual memory can be
allocated and used across all executing processes.

Note Virtual memory pages that are merely reserved do not count against the
Commit Limit. But requests to reserve virtual memory are uncommon. Because the
great majority of virtual memory allocations request committed bytes, not reserved
memory, the discussion here uses the term virtual memory allocations to refer to com-
mitted bytes.

Virtual memory pages that are committed must be backed by either RAM or space in
the paging file. Therefore, the size of RAM plus the size of the paging file represents an
upper limit on the amount of virtual memory that can be allocated. When committed
virtual memory begins to approach the Commit Limit, routine function calls to allo-
cate virtual memory can fail.

If paging files are configured with flexible extents, as the virtual memory committed
bytes approaches the Commit Limit, the operating system will attempt to extend a
paging file and increase the Commit Limit. This provides more head room for allocat-
ing additional virtual memory. You receive notification the first time that the paging
file is extended, as illustrated in Figure 5-15.

Chapter 5: Performance Troubleshooting 449

Figure 5-15 Notification that the paging file is extended

Virtual memory shortages can be accompanied by performance problems because of
excess paging activity. Figure 5-16 shows excessive paging activity during a period of
virtual memory shortage.

Figure 5-16 Excessive paging activity during a period of virtual memory shortage

450 Microsoft Windows Server 2003 Performance Guide

Figure 5-16 shows Available MBytes plunging to values near zero, triggering rounds of
page trimming that are reminiscent of the virtual memory manager’s behavior in Fig-
ure 5-10. The drop in the size of the Available Bytes pool is accompanied by an
increase in hard page faults. Similar to the scenario shown in Figure 5-11, the hard
page fault rate closely shadows the total disk paging rate.

A shortage of virtual memory is not always accompanied by the symptoms of RAM
shortage leading to excessive paging, as illustrated here. If the growth in virtual mem-
ory is slow enough, the performance impact can be minimal. Virtual memory is a
finite resource, however. The system cannot sustain continuous expansion of the size
of virtual memory forever. When total virtual memory allocation reaches the system’s
Commit Limit, no more requests for virtual memory allocation can be satisfied. The
most straightforward way to monitor virtual memory growth is to track the Mem-
ory\% Committed Bytes In Use counter, as shown in Figure 5-17.

Figure 5-17 Monitoring virtual memory growth by tracking the Memory\% Commited
Bytes In Use counter

The % Committed Bytes In Use counter is calculated from Committed Bytes and the
Commit Limit, as shown here:

% Committed Bytes in Use = (Committed Bytes / Commit Limit) × 100

Chapter 5: Performance Troubleshooting 451

The counter % Committed Bytes In Use approaching 100 percent signals a virtual
memory shortage.

The Chart view in Figure 5-17 also shows the two fields from which the % Committed
Bytes In Use counter is calculated. Also displayed is a related measure, the Paging
File(n)\% Usage counter, which shows how full the paging file is. At the top of the
chart is the Commit Limit. To fit all four counters in the same chart, scaling factors
and the y-axis have been adjusted. It should be apparent that all four measures are
interrelated.

The operating system will adjust the Commit Limit upward when there is a shortage
of virtual memory, as discussed in Chapter 1. This paging file extension occurs when
the % Usage of a paging file reaches 90 percent. Raising the Commit Limit causes the
value of the % Committed Bytes In Use counter to drop, temporarily relieving the vir-
tual memory shortage.

Because the Commit Limit can be adjusted upward by extending the paging file (or
files), also monitor the Memory\Committed Bytes and Memory\Commit Limit
counters in tandem to create an accurate picture of the situation.

Situations like those shown in Figures 5-16 and 5-17, in which the demand for virtual
memory suddenly surges, require determining the underlying cause. Is the increase in
virtual memory allocations that are causing a shortage of RAM a consequence of nor-
mal workload growth, a one-time workload aberration, or a condition known as a
memory leak?

Virtual Memory Leaks

Running out of virtual addresses often happens suddenly and is the result of a pro-
gram with a memory leak. Memory leaks are program bugs that cause a process to
allocate virtual memory repeatedly but then neglect to free it when done using it.
The performance impact of a memory leak varies. If the program leaking memory
allocates virtual memory and forgets to free it afterwards, page trimming can fre-
quently identify the older, idle pages of virtual memory as good candidates to be
removed from RAM. As long as the page trimming process can keep up with the
leaking program’s demand for new virtual memory, there will be little performance
impact. However, when a program leaks memory rapidly in large chunks, periods of
excessive paging are likely to also accompany these acquisitions of large blocks of
virtual memory.

452 Microsoft Windows Server 2003 Performance Guide

Program bugs in which a process leaks virtual memory in large quantities over a short
period of time are usually relatively easy to spot. The more sinister problems arise
when a program leaks memory slowly, or only under certain circumstances. In these
cases, the problem manifests itself only at erratic intervals or only after a long period
of continuous execution time. This section offers some tips for diagnosing memory
leaks.

Unfortunately, many programs contain memory leaks. Not all programs with memory
leaks execute for a long enough time or leak memory at fast enough rates to do much
damage. But those that do can cause great havoc. If a process leaking virtual memory
exhausts the system’s supply of virtual memory, routine calls by program functions to
allocate virtual memory can fail. When virtual memory allocations fail, the results are
usually catastrophic—service processes fail, the system can lock up, and so on.

Commit Limit

A virtual memory shortage occurs when the system approaches its virtual memory
allocation Commit Limit. Figure 5-18 reveals rapid growth in virtual memory, trigger-
ing a paging file extension near the end of the period shown.

Figure 5-18 Rapid growth in virtual memory as the system approaches its virtual memory
allocation Commit Limit

Chapter 5: Performance Troubleshooting 453

The y-axis in Figure 5-18 represents MBs, with each of the counters scaled by a factor
of 0.000001 to be displayed correctly. At the outset of this period, the Commit Limit
is approximately 800 MB, rising in one expansion to just above 800 MB near the end
of this 30-minute period. Each incremental expansion of the Commit Limit is associ-
ated with the operating system extending the paging file. The number of Committed
Bytes increases from 600 MB at the outset to a maximum value near 800 MB, at which
point the paging expansion occurs. By the end of the period, Committed Bytes has
retreated back to 600 MB. This expansion and contraction of Committed Bytes con-
tradicts the classic pattern of a memory leak in which the number of Committed Bytes
never decreases.

During this virtual memory shortage, the server experienced operational problems as
new processes were unable to be launched because of a lack of resources. Some exist-
ing processes also failed and had to be restarted. Once the paging file was expanded,
which raised the Commit Limit, these operational problems abated. But the perfor-
mance problems associated with an over-commitment of physical memory leading to
excessive paging remained.

As noted earlier, this virtual memory shortage is accompanied by excess paging. Fig-
ure 5-19 explores the dimensions of physical memory allocation for the system pools
and by processes.

Figure 5-19 Physical memory allocated for the system pools and by processes

454 Microsoft Windows Server 2003 Performance Guide

Figure 5-19 clearly indicates that the expansion of process working sets is responsible
for the depletion of the pool of Available Bytes. At this point, it is appropriate to shift
your attention to process level virtual memory allocation statistics to see what process
is consuming excessive amounts of virtual memory.

Process Virtual Memory Allocations

The sheer number of processes that are active makes locating the source of a virtual
memory leak tedious. If you are able to investigate the problem in real time while the
condition is occurring, the Task Manager Processes display, which can be sorted by
the values per column, is an effective problem-solving tool. But Task Manager can
show you only what is happening in real time. To properly diagnose a memory leak,
you need an historical view of the process’s virtual memory usage.

The System Monitor Histogram view is one good way to search among the many pro-
cesses that are running to find one that might be leaking virtual memory. Figure 5-20
shows a Histogram view of maximum values for the Process(*)\Private Bytes counter
for every active process.

Figure 5-20 Histogram view of maximum values for the Process(*)\Private Bytes counter
for every active process

Chapter 5: Performance Troubleshooting 455

Tip A process’s Private Bytes counter tracks virtual memory allocations that can be
accessed by that process only. Virtual Bytes includes allocations to the system pools
that can be addressed by threads running in different processes. Virtual Bytes also
includes private memory that is Reserved but not Committed.

Scrolling through the process instances using the keyboard while highlighting is
enabled allows you to identify processes that are consuming large amounts of virtual
memory. In Figure 5-20, a process named sqlservr is identified as the largest con-
sumer of private virtual memory, with peak usage for MS SQL Server of 200 MB on a
server that contains only 256 MB of RAM.

After you identify the offending process or processes, you want to analyze the pro-
cess’s pattern of virtual memory usage over time. Figure 5-21 zooms in on the virtual
memory usage of the sqlserver process over time.

Figure 5-21 Virtual memory usage of the perf process over time

Values for both Process(sqlservr)\Private Bytes and Process(sqlservr)\Virtual Bytes
are shown in Figure 5-21, alongside the value of Committed Bytes. Pro-
cess(sqlservr)\Private Bytes and Committed Bytes produce virtually identically
shaped lines. Notice that Process(sqlservr)\Virtual Bytes remains flat. Where Pro-
cess(sqlservr)\Private Bytes increases, Committed Bytes also increases, in tandem. In

456 Microsoft Windows Server 2003 Performance Guide

intervals where Process(sqlservr)\Private Bytes drops, Committed Bytes also falls by a
similar amount. It is possible to conclude that the sharp increase in Committed Bytes
during the interval results from virtual memory allocation requests that come from
the sqlservr process.

Still, the pattern of Process(sqlservr)\Private Bytes expanding and contracting likely
does not correspond to a memory leak. A leaky application is most clearly identified
as one that allocates virtual memory and never frees it. In a leaky application, Virtual
Bytes allocations only increase, never decrease.

This specific problem will require more study to resolve definitively. Certain opera-
tions initiated against the SQL Server database may require more RAM than this
machine has installed. The virtual memory shortage that occurred created a serious
performance problem. It also caused operational problems prior to the expansion of
the paging file that increased the Commit Limit. Is this a persistent problem that will
recur repeatedly over the next few days and weeks? Or was it a one-time aberration
that is unlikely to recur? To answer questions like these, it will be necessary to con-
tinue to review the virtual memory allocation behavior of the suspect process carefully
in the days ahead.

32-Bit Virtual Memory Addressing Limits

The 32-bit addresses that can be used on IA-32-compatible Intel servers are an archi-
tectural constraint. This architectural constraint can manifest itself as a performance
problem in several ways. The first performance problem results from running up
against the Commit Limit, an upper limit on the total number of virtual memory
pages the operating system will allocate. As discussed earlier in “Virtual Memory
Shortages,” this is a straightforward problem that is easy to monitor and easy to
address—up to a point. Fortunately, for systems that are limited by a 32-bit virtual
address space, 64-bit Windows-based systems from Intel and AMD are now available.

The second problem occurs when a User process exhausts the 2-GB range of private
addresses that are available for its exclusive use. The processes that are most suscepti-
ble to running out of addressable private area are database applications that rely on
memory-resident caches to reduce the amount of I/O operations they perform. Win-
dows Server 2003 supports a boot option that allows you to specify how a 4-GB vir-
tual address space is divided between User private area virtual addresses and shared
system virtual addresses. This boot option extends the User private area to 3 GB and
reduces the system range of virtual memory addresses to 1 GB. An extended discus-

Chapter 5: Performance Troubleshooting 457

sion of this virtual memory configuration and tuning option is provided in Chapter 6,
“Advanced Performance Topics.”

If you specify a User private area address range that is larger than 2 GB, you must also
shrink the range of system virtual addresses that are available by a corresponding
amount. This can easily lead to the third type of virtual memory limitation, which is
when the range of system virtual addresses that are available is exhausted. Because
the system range of addresses is subdivided into several different pools, it is also pos-
sible to run out virtual addresses in one of these pools long before the full range of sys-
tem virtual addresses is exhausted.

Virtual memory creep caused by slow but inexorable workload growth can also
exhaust the virtual memory address range that is available. You can detect virtual
memory creep by following continuous performance monitoring procedures. Detec-
tion allows you to intervene in advance to avoid otherwise catastrophic application
and system failures. This section discusses these performance monitoring procedures,
as well as other helpful diagnostic tools for Windows Server 2003–based machines
that you should employ to detect virtual memory constraints.

System Virtual Memory

Operating system functions also consume virtual memory. The system has a working
set that needs to be controlled and managed like any other process. The upper half of
the 32-bit 4-GB virtual address range is earmarked for system virtual memory
addresses. By setting a memory protection bit in the PTE associated with pages in the
system range, the operating system assures that only privileged mode threads can
allocate and reference virtual memory in the system range.

Both system code and device driver code occupy areas of the system memory region.
On a large 32-bit system, running out of virtual memory in the system address range
is not uncommon. The culprit could be a program that is leaking virtual memory from
the Paged pool. Alternatively, it could be caused by active usage of the system address
range by a multitude of important system functions—Kernel threads, TCP session
data, the file cache, or many other normal functions. When the number of free System
PTEs reaches zero, no function can allocate virtual memory in the system range.
Unfortunately, you can even run out of virtual addressing space in the Paged or Non-
paged pools before all the System PTEs are used up.

Whenever you run out of system virtual memory addresses, either because of a mem-
ory leak or a virtual memory creep, the results are often catastrophic. When not out-
right catastrophic, the consequences can certainly be confusing. An application might

458 Microsoft Windows Server 2003 Performance Guide

fail during some system operation because a system allocation fails. Assuming the
application can recover from this failure, the application might then issue a mislead-
ing error message.

System Pools

The system virtual memory range, 2-GB wide, is divided into three major pools: the
Nonpaged pool, the Paged pool, and the file cache. When the Paged pool or the Non-
paged pool is exhausted, system functions that need to allocate virtual memory from
the system pools fail. These pools can be exhausted before the system Commit Limit
is reached. If the system runs out of virtual memory for the file cache, file cache per-
formance can suffer, but the situation is not as dire.

Data structures accessed by operating system and driver functions when interrupts
are disabled must be resident in RAM at the time they are referenced. These data struc-
tures and file I/O buffers are allocated from the nonpageable pool so that they remain
in RAM. The Pool Nonpaged Bytes counter in the Memory object shows the amount
of RAM currently allocated in this pool that is permanently resident in RAM.

Most system data structures are pageable—they are created in a pageable pool of stor-
age and subject to page replacement like the virtual memory pages of any other pro-
cess. The operating system maintains a working set of active pages in RAM for the
system address space that is subject to the same LRU page replacement policy as ordi-
nary process address spaces. The Memory\Pool Paged Bytes counter reports the
amount of Paged pool virtual memory that is allocated. The Memory\Pool Paged Res-
ident Bytes counter reports on the number of Paged pool pages that are currently res-
ident in RAM.

The size of the three main system area virtual memory pools is based initially on the
amount of RAM. Predetermined maximum sizes exist for the Nonpaged and Paged
pools, but they are not guaranteed to reach their predetermined limits before the sys-
tem runs out of virtual addresses. This is because a substantial chunk of system vir-
tual memory remains in reserve to be allocated on demand—depending on which
memory allocation functions requisition it first.

The operating system’s initial pool sizing decisions can also be influenced by a series
of settings in the HKLM\SYSTEM\CurrentControlSet\Control\Session Man-
ager\Memory Management key, listed in Table 5-7. Both NonpagedPoolSize and Paged-
PoolSize can be specified explicitly in the registry. Rather than force you to partition
the system area exactly, the system allows you to set either the NonpagedPoolSize or
PagedPoolSize to 0xffffffff for 32-bit and 0xffffffffffffffff for 64-bit Windows-based sys-

Chapter 5: Performance Troubleshooting 459

tems. (This is equivalent to setting a -1 value.) This -1 setting instructs the operating
system to allow the designated pool to grow as large as possible. The Registry Editor
does not allow you to assign a negative number, so you must instead set 0xffffffff on
32-bit systems and 0xffffffffffffffff on 64-bit systems.

Note There is also a registry value named LargeSystemCache at HKLM\SYS-
TEM\CurrentControlSet\Control\Session Manager\Memory Management that influ-
ences the size of the system working set, which includes the file cache. By default,
LargeSystemCache is set to 1, which favors the system working set over process
address space working sets. If none of your server applications requires the use of the
file cache, LargeSystemCache can be set to 0.

Caution Using the /userva or /3 GB boot options that shrink the system virtual
address range in favor of a larger process private address range substantially increases
the risk of running out of system virtual memory. For example, the /3 GB boot option
reduces the system virtual memory range to 1 GB and cuts the default size of the Non-
paged and Paged pools in half for a given size RAM. Also note that the /3 GB boot
option cannot be used on systems with more than 16 GB of physical memory. For an
extended discussion of these issues, see Chapter 6, “Advanced Performance Topics.”

Memory\Pool Nonpaged Bytes and Memory\Pool Paged Bytes are the two perfor-
mance counters that track the amount of virtual memory allocated to these two sys-
tem memory pools. By using the Kernel Debugger !vm extension command, you can

Table 5-7 HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management Settings

NonpagedPoolSize Defaults based on the size of
RAM

Can be set explicitly.

A setting of -1 extends Nonpaged-
PoolSize to its maximum.

PagedPoolSize Defaults based on the size of
RAM

Can be set explicitly.

A setting of -1 extends PagedPool-
Size to its maximum.

LargeSystemCache Defaults to 1, which favors
the system working set over
other process address space
working sets

Can be set to 0 when server applica-
tions do not require the system file
cache. Setting LargeSystemCache to
1 will tune Windows memory man-
agement for file server functions.
Setting it to 0 will tune for an appli-
cation server.

460 Microsoft Windows Server 2003 Performance Guide

see more detail, such as the maximum allocation limits of these two pools. You can
also monitor current allocation levels, as illustrated in Listing 5-8.

Listing 5-8 Results of Using the Kernel Debugger !vm Extension Command
lkd> !vm

*** Virtual Memory Usage ***

Physical Memory: 130927 (523708 Kb)

Page File: \??\C:\pagefile.sys

Current: 786432Kb Free Space: 773844Kb

Minimum: 786432Kb Maximum: 1572864Kb

Available Pages: 73305 (293220 Kb)

ResAvail Pages: 93804 (375216 Kb)

Locked IO Pages: 248 (992 Kb)

Free System PTEs: 205776 (823104 Kb)

Free NP PTEs: 28645 (114580 Kb)

Free Special NP: 0 (0 Kb)

Modified Pages: 462 (1848 Kb)

Modified PF Pages: 460 (1840 Kb)

NonPagedPool Usage: 2600 (10400 Kb)

NonPagedPool Max: 33768 (135072 Kb)

PagedPool 0 Usage: 2716 (10864 Kb)

PagedPool 1 Usage: 940 (3760 Kb)

PagedPool 2 Usage: 882 (3528 Kb)

PagedPool Usage: 4538 (18152 Kb)

PagedPool Maximum: 138240 (552960 Kb)

Shared Commit: 4392 (17568 Kb)

Special Pool: 0 (0 Kb)

Shared Process: 2834 (11336 Kb)

PagedPool Commit: 4540 (18160 Kb)

Driver Commit: 1647 (6588 Kb)

Committed pages: 48784 (195136 Kb)

Commit limit: 320257 (1281028 Kb)

The NonPagedPool Max and PagedPool Maximum rows show the values for these two
virtual memory allocation limits. In this example, a PagedPoolSize registry value of -1
was coded to allow the Paged pool to expand to its maximum size, which turned out
to be 138,240 pages (or 566,231,040 bytes), a number slightly higher than the
amount of RAM installed. Because pages in the Paged pool are pageable, Performance
Monitor provides another counter, Memory\Pool Paged Resident Bytes, to help you
keep track of how much RAM these pages currently occupy.

System PTEs are built and used by system functions to address system virtual mem-
ory areas. When the system virtual memory range is exhausted, the number of Free
System PTEs drops to zero, and no more system virtual memory of any type can be
allocated. On 32-bit systems with large amounts of RAM (1–2 GB or more), it is also
important to track the number of Free System PTEs.

Chapter 5: Performance Troubleshooting 461

Because the Paged pool and Nonpaged pool are dynamically resized as virtual mem-
ory in the system range is allocated, pinpointing exactly when you have exhausted
one of these pools is not always easy. Fortunately, at least one server application, the
File Server service, reports on Paged pool memory allocation failures when they occur.
Nonzero values of the Server\Pool Paged Failures counter indicate virtual memory
problems, which works even for machines not primarily intended to serve as network
file servers.

Investigating Pool Usage

As noted earlier, a process could also leak memory in the system’s Paged pool. The
Process(n)\Pool Paged Bytes counter allows you to identify processes that are leaking
memory in the system’s Paged pool. A memory leak in the system area could be
caused by a bug in a system function or by a defective device driver. Faced with a
shortage of virtual memory in the system area, it might be necessary to dig into the
Nonpaged and Paged pools to determine which operating system functions are allo-
cating memory there at any point in time. This requires using debugging tools that
can provide more detail than the performance monitoring counters. The Kernel
Debugger can also be used in a post mortem to determine the cause of a memory leak
in the Nonpaged or Paged pool that caused a crash dump.

Device driver work areas accessed during interrupt processing and active file I/O buff-
ers require memory from the Nonpaged pool. So do a wide variety of other operating
system functions closely associated with disk and network I/O operations. These
include storage for active TCP session status data, which imposes a practical upper
limit on the number of TCP connections the operating system can maintain. The con-
text blocks that store the server message block (SMB) request and reply messages are
also allocated from the Nonpaged pool.

Any system function called by a process allocates pageable virtual memory from the
Pageable pool. For each desktop user application program, a Kernel-mode thread is
created to service the application. The Kernel thread’s stack—its working storage—is
allocated from the Pageable pool. If the Pageable pool is out of space, system functions
that attempt to allocate virtual memory from the Pageable pool will fail. When the sys-
tem cannot allocate its associated Kernel thread stack, process creation fails because
of a resource shortage. The Pageable pool can be exhausted long before the Commit
Limit is reached.

Virtual memory allocations are directed to the Nonpaged pool primarily by device
drivers and related routines. Device drivers initiate I/O requests and then service the

462 Microsoft Windows Server 2003 Performance Guide

device interrupts that occur subsequently. Interrupt service routines (ISRs) that ser-
vice device interrupts run with interrupts disabled. All virtual memory locations that
the ISR references when it executes must be resident in RAM. Ordinarily, a page fault
occurs if a virtual memory address that is not currently resident in RAM is referenced.
But because interrupts are disabled, page faults in ISR code become unhandled pro-
cessor exceptions and will crash the machine. To avoid the page faults, virtual mem-
ory locations that can be referenced by an ISR must be allocated from the Nonpaged
pool. Obviously, memory locations associated with I/O buffers that are sent to devices
and received back from them are allocated from the Nonpaged pool.

The fact that the Nonpaged pool is of limited size creates complications. So that the
range of virtual addresses reserved for the Nonpaged pool is not easily exhausted,
other Kernel-mode functions not directly linked to servicing device interrupts should
allocate virtual memory from the Paged pool instead. For the sake of efficiency, how-
ever, many Kernel-mode functions that interface directly with device driver routines
allocate memory from the Nonpaged pool. (The alternative—incessantly copying I/O
buffers back and forth between the Nonpaged pool and the Paged pool—is inefficient,
complicated, and error prone.) Some of these kernel functions that can be major con-
sumers of Nonpaged pool memory include the standard layers of the TCP/IP software
stack that processes all network I/Os and interrupts. Networking applications that
plug into TCP/IP sockets such as SMB protocol file and printer sharing, and Internet
Web services such as the HTTP and FTP protocols, also allocate and consume Non-
paged pool memory.

Memory allocations in the system area are tagged to make debugging a crash dump
easier. Operating system functions of all kinds, including device drivers that run in
Kernel mode, allocate virtual memory using the ExAllocatePoolWithTag function call,
specifying a pool type that directs the allocation to either the Paged pool or Nonpaged
pool. To assist device driver developers, memory allocations from both the Nonpaged
and Paged pools are tagged with a 4-byte character string identifier. Using the Kernel
Debugger, you can issue the !poolused command extension to view Nonpaged and
Paged pool allocation statistics by tag, as shown in Listing 5-9.

Listing 5-9 Results of Using the !poolused Command Extension
lkd> !poolused 2

Sorting by NonPaged Pool Consumed

Pool Used:

NonPaged Paged

Tag Allocs Used Allocs Used

LSwi 1 2576384 0 0

NV 287 1379120 14 55272

Chapter 5: Performance Troubleshooting 463

File 2983 504920 0 0

MmCm 16 435248 0 0

LSwr 128 406528 0 0

Devi 267 377472 0 0

Thre 452 296512 0 0

PcNw 12 278880 0 0

Irp 669 222304 0 0

Ntfr 3286 211272 0 0

Ntf0 3 196608 1770 54696

MmCa 1668 169280 0 0

Even 2416 156656 0 0

MmCi 554 127136 0 0

CcVa 1 122880 0 0

Pool 3 114688 0 0

Vad 2236 107328 0 0

Mm 12 87128 5 608

CcSc 273 85176 0 0

TCPt 19 82560 0 0

usbp 26 79248 2 96

NtFs 1872 75456 2109 122624

Ntfn 1867 75272 0 0

Io 110 72976 90 3688

NDpp 30 71432 0 0

AmlH 1 65536 0 0

MmDb 409 64200 0 0

CPnp 257 63736 0 0

Ntfi 223 60656 0 0

FSfm 1387 55480 0 0

…

Of course, to make sense of this output, you need a dictionary that cross-references
the memory tag values, and this dictionary is contained in a file named Pooltag.txt. In
the preceding code example, the LSxx tags refer to context blocks allocated in the
Nonpaged pool by Lanman server, the File Server service; Mmxx tags refer to Memory
Management functions; Ntfx tags refer to NTFS data structures; and so on, all courtesy
of the Pooltag.txt documentation.

An additional diagnostic and debugging utility named Poolmon, illustrated in Figure
5-22, is available in the Device Driver Development Kit (DDK) that can be used in con-
junction with the Pooltag.txt file to monitor Nonpaged and Paged pool allocations
continuously in real time. The Poolmon utility can be used, for example, to locate the
source of a leak in the Nonpaged pool caused by a faulty device driver. Figure 5-22
illustrates the output from the Poolmon utility, with the display sorted by bytes allo-
cated in the Nonpaged pool.

464 Microsoft Windows Server 2003 Performance Guide

Figure 5-22 Poolmon utility from the Device Driver Development Kit (DDK)

In addition to sorting options, Poolmon has options that help you track down func-
tions that are leaking memory in the System pools. You can monitor pool usage con-
tinuously and highlight changes in the number of bytes allocated and the number of
function calls to allocate memory over time.

Disk Troubleshooting
Mechanical disks are the slowest component of most computer systems. As such, they
often become performance bottlenecks. Performance counters are provided for both
Logical and Physical Disks that report disk utilization, response time, throughput, and
queue length. The statistics are available for each Logical and Physical Disk, and are
further broken down into rates for read and write operations. The primary perfor-
mance indicators that you would use to detect a disk bottleneck are shown in Table 5-8.

Table 5-8 Disk Performance Counters to Log

Counter Primary Indicator Threshold Values

Physical Disk(n)\% Idle Time Disk utilization Sustained values < 40% Idle
busy should be investigated.

Physical Disk(n)\Avg. Disk
secs/Transfer

Disk response time Depends on the “disk,” but
generally response times >
15-25 milliseconds should be
investigated

Physical Disk(n)\Current Disk
Queue Length

Current number of I/O
requests in process for
the specified disk.

Numerous observations > 2
active requests per physical disk
should be investigated.

Observations > 5 active requests
per physical disk are cause for
alarm.

Chapter 5: Performance Troubleshooting 465

The primary indicator of disk performance is response time.

Important Starting with Windows Server 2003, disk performance counters are
always enabled; it is no longer necessary to enable or disable them manually using the
Diskperf command-line utility. The Diskperf utility is still available on the Windows
Server 2003 operating system so that computers with older operating systems can be
controlled from servers running Windows Server 2003.

Disk response time can be broken down into disk service time and disk queue time,
measurements that can be derived from the basic statistics the System Monitor pro-
vides. The simple formulas used to calculate these important metrics are provided in
Table 5-9.

Different tuning strategies apply, depending on whether device service time or queue
time exceeds expectations. If device service time exceeds expectations, the effective
tuning strategies include:

■ Using disk defragmentation tools to increase the number of sequential disk
accesses and reduce seek distances for random access disk requests

■ Upgrading to faster mechanical disks with improved performance characteristics

■ Adding or using more effective disk caching

If device queue time exceeds expectations, the effective tuning strategies
include:

■ Spreading I/O activity over more physical disks by changing file allocations

■ Using array controllers to spread I/O activity over more physical disks automat-
ically

■ Using scheduling to ensure that peak workloads, such as backup and database
replication, do not overlap with each other or other critical production workloads

■ Improving disk service time to lower disk utilization, which indirectly lowers
queuing delays

These tuning strategies are discussed in greater detail in a later section entitled “Disk
Tuning Strategies.”

Table 5-9 Formulas for Calculating Additional Disk Measurements

Metric Formula

Physical Disk(n)\% Disk Busy 100% − Physical Disk(n)\% Idle Time

Physical Disk(n)\Avg. Disk
Service Time/Transfer

Physical Disk(n)\% Disk Busy ÷ Physical Disk(n)\Disk
Transfers/sec

Physical Disk(n)\Avg. Disk
Queue Time/Transfer

Physical Disk(n)\Avg. Disk secs/Transfer − Physical
Disk(n)\Avg. Disk Service Time/Transfer

466 Microsoft Windows Server 2003 Performance Guide

Disk Performance Expectations

As discussed in Chapter 1, “Performance Monitoring Overview,” disk service time is
usually broken down into the three components associated with access to a mechani-
cal disk: seek time, rotational delay, and data transfer. Based on the physical character-
istics of the disk being accessed, you can set realistic disk service time expectations. If
the measured service times of the disk you are monitoring are significantly greater
than these expectations, adopt an appropriate tuning strategy to improve disk perfor-
mance. The most effective strategies for improving disk performance are discussed in
the section “Disk Tuning Strategies,” appearing later in this chapter.

Logical Disks

A Logical Disk is a partition on one or more physical disks that is usually assigned a
drive letter, such as C, and is formatted to represent a single file system. A file system
supports the disk-resident structures that let you build folders and directories in
which you can store individual files. For compatibility with older operating systems,
Windows Server 2003 does support the FAT16 and FAT32 file systems. However,
rarely would you use those older and less capable file systems on your machines run-
ning Windows Server 2003. Instead, you would use the NTFS file system.

NTFS is an advanced file system that provides a number of features that surpass any-
thing available in the FAT file system. Most importantly, NTFS maintains a transac-
tion-based recovery log that allows the operating system to recover the file system
back to its last, consistent form following a system crash. With NTFS, you should
never have to chase broken file pointer chains again. In addition, many Windows
Server 2003–based applications like Active Directory require the use of NTFS. Some of
the other advanced features you can take advantage of when you use NTFS include:

■ A single logical disk can span multiple physical disk partitions and can be
expanded on the fly so that you can avoid out-of-space failures.

■ Files and folders can be compressed to save space or encrypted for security rea-
sons.

■ Permissions can be set on individual files, rather than just folders.

■ Disk quotas can be used on shared volumes to monitor and control the amount
of disk space used by individual users.

In some circumstances, NTFS provides performance advantages over FAT. In particu-
lar, it scales better on large physical disk drives, and it allows you more control over

Chapter 5: Performance Troubleshooting 467

the file system block size that determines the size of disk I/O requests. Because it is
simpler, the FAT file system is likely to be marginally faster. If circumstances render
recoverability and security considerations of little consequence, you might prefer to
use FAT32 for some volumes. For example, if you create a Logical Disk designed
exclusively to hold a paging file, FAT32 is an acceptable choice.

Physical Disks

A physical disk is a hardware entity, or at least something that looks like a hardware
entity, to the operating system. You can view the physical disks that are attached to
your machine using the Disk Management snap-in available under Computer Manage-
ment. A physical disk drive that is an actual hardware entity normally consists of a
spindle containing one of more platters coated with a material capable of being magne-
tized, which is how digital data is stored. Data on a platter is recorded on tracks, which
are arranged in concentric circles on the recording media. Tracks are further divided
into sectors, usually 512 bytes wide, which are the smallest units of data that the disk
can address individually. The platters on a spindle rotate continuously. Positioning
arms that hold the actuators—the recording and playback heads—are interspersed
between platters to access data tracks directly. These features of a typical physical disk
drive are illustrated in Figure 5-23.

Figure 5-23 Elements of a mechanical disk drive

The time it takes to access data on a spinning disk is the sum of the following mechan-
ical components:

Disk service time = seek time + rotational delay + data transfer

Seek

Actuator
Arm

Concentric
Data Tracks

468 Microsoft Windows Server 2003 Performance Guide

Seek time is the time it takes to reposition the read/write actuator from the current
track location to the selected track location. This is sometimes called a motion seek
because it requires a mechanical motion to move the disk arm from one spot on the
disk to another. Seek time is roughly a linear function of the distance between the cur-
rent track and the destination track, if you allow for some additional delay to over-
come initial inertia, reach maximum speed, and brake at the end of the mechanical
operation. A minimum seek is the time it takes to position the disk arm from one track
to its neighbor. A maximum seek moves the arm from one end of the disk to the other.
A zero seek refers to an operation on the current track that requires no mechanical
delay to reposition the read/write arm.

Rotational delay refers to the time it takes a selected sector within the designated track
to rotate under the read/write head so that the sector can be accessed. This time delay
is often called the device latency. This delay is a function of the disk’s rotation speed.
If the platters spin continuously at 10,000 revolutions per minute (rpm), a complete
rotation of the disk takes about 6 milliseconds, which is the maximum rotational
delay. The specific sector being accessed that will begin the read or write operation
can be located anywhere within the designated track, as the track spins relative to the
read/write head. Consequently, an average rotational delay is one-half of a complete
revolution.

Data transfer time refers to the time it takes to transfer data from the host to the disk
during a write operation, or from the disk to the host during a read operation. The
device’s data transfer rate, normally specified in MBps, is the product of the track bit
density multiplied by the track rotational speed. Whereas rotational speed is constant
for all tracks on a platter, the recording density is not. Data tracks that reside on the
outer surface of the platter ordinarily contain twice as many data sectors as inner
tracks. As a result, data can be transferred to and from outside tracks at twice the data
rate of an inner track. The size of the data block being transferred also figures into the
data transfer time. For example, if the average block size is 12 KB and the track trans-
fer rate is 60 MBps, data transfer time is approximately 0.5 ms.

Note Normally, the file system allocation unit size determines the size of I/O
requests. However, the operating system will transform individual I/O requests into
bulk requests under some circumstances. Demand page reads are sometimes grouped
into bulk requests, as discussed in Chapter 1, “Performance Monitoring Overview.” In
addition, write requests subject to the lazy write file cache flushes are almost always
transformed into bulk requests. Bulk requests usually increase the average size of data
transfers to blocks that are 2–3 times the file system allocation unit size.

Chapter 5: Performance Troubleshooting 469

The disk manufacturer’s specifications provide the basic device performance informa-
tion you need to determine reasonable disk service time expectations. Table 5-10
shows speeds of a representative server disk.

These physical device characteristics are not the only factors that determine I/O per-
formance, however. Additional factors that are quite important include the interface
type and speed, and the use of the cache buffer on the physical disk to improve per-
formance.

The common interface types include ATA, SCSI, and Fibre Channel. Each of these
interface specifications has distinctive performance characteristics and supports a
range of data transfer rates. The performance requirement of the interface is that it
meet or exceed the fastest burst data rate of the disk that is connected to it. When mul-
tiple devices are configured as a string that shares an interface bus, channel, or link, a
few active devices can normally saturate the link. This suggests configuring small
strings consisting of no more than two or three disks attached to a single controller for
optimal results. Any more devices sharing the link will likely create a bottleneck on
the channel. This is an especially important consideration when you hang a series of
disks off a single channel RAID controller card. Multiple disks that are intended to
operate in parallel must serialize when they are attached to the host machine using a
single link.

ATA is a simple, lightweight device protocol that is frequently supported using an
embedded controller chip integrated on the motherboard. There are several popular
variants of the ATA interface, including UltraATA and Serial ATA. Because it relies on
a serial interface, Serial ATA (SATA) is on a trajectory to deliver 150, 300, and then
600 MBps transfer rates. Another benefit of some SATA disks is the ability to specify

Table 5-10 Performance Characteristics of a Typical Disk Drive

Performance Characteristic Speed Rating

Spindle rotational speed 10,000 rpm

Average latency 2.99 ms

Seek Time

 Average seek 5.0 ms

 Minimum seek (track-to-track) 0.4 ms

Data Transfer Rate

Inner track (minimum) 43 MBps

Outer track (maximum) 78 MBps

470 Microsoft Windows Server 2003 Performance Guide

operations that Write-Through directly to the disk, bypassing any on-board disk
cache. This is an important data integrity requirement for any disks that you use with
critical server workloads, which makes less expensive SATA disks suitable for many
environments.

SCSI is a venerable protocol that utilizes parallel bus technology. The UltraSCSI flavor
of the protocol can obtain instantaneous data transfer speeds of 320 MBps. The effec-
tive throughput of a SCSI connection is far less, however, because of protocol over-
head. A time-consuming bus arbitration sequence is required to establish a
connection between the device and its controller (or initiator, to use SCSI terminol-
ogy). SCSI bus arbitration can take 0.5 ms to establish a SCSI connection to process
read or write commands. Protocol overhead reduces the effective bandwidth of a SCSI
connection to only about 50 percent of its rated (theoretical) bandwidth. When more
than one device on a string tries to gain access to the SCSI bus, a fixed priority scheme,
based on the SCSI address (or target), is used to break the tie. The notoriously “unfair”
scheduling policy SCSI uses can cause serious performance anomalies when heavily
used disks share a single SCSI bus.

Fibre Channel is a serial protocol that has emerged to dominate the world of high per-
formance storage devices, including the Storage Area Networks (SANs) used to inter-
connect server farms to disk farms. Fibre Channel links are available in 100, 200, and
400 MBps flavors. With the ability to intersperse packets from multiple active trans-
fers, the Fibre Channel protocol can utilize 80 percent or more of the effective capacity
of its link. While maintaining upward compatibility with the SCSI command set, Fibre
Channel eliminates the time-consuming handshaking protocol associated with SCSI
and SCSI’s priority scheme. Fibre Channel also provides more flexible cabling and
addressing options than SCSI.

For a system with one or two disks, the interface type and speed rarely has much of a
performance impact. That is because the bandwidth of the interface is normally sev-
eral times the maximum data rate at which a single disk is capable of transferring data.
As the number of disks attached to the host increases—especially for RAID disk con-
trollers—the interface speed gains importance as a performance consideration.

Almost all commercial disk drives in widespread use are single servers—they can
respond to only one I/O request at a time. Requests sent to a device that is already
busy servicing a request are queued. Many devices and controllers have the ability to
select among queued disk requests to enable them to process shorter requests first.
Sorting queued requests in this fashion is “unfair,” but serves to improve disk service
time under load. When the disk request queue is sorted to perform requests that can
be serviced faster first, disks act as load-dependent servers, as discussed in Chapter 1,
“Performance Monitoring Overview.”

Chapter 5: Performance Troubleshooting 471

Most performance-oriented disks incorporate RAM that is configured as a multiseg-
mented track buffer. After tracks of data are stored in the cache, subsequent requests to
access data in cache can be satisfied without returning to the disk. On a read cache hit,
for example, there is no seek or rotational delay, only data transfer time. Moreover,
data can be transferred to and from the cache at full interface speed, usually signifi-
cantly faster than data can be transferred to and from the disk. This caching is so effec-
tive that disks typically can process 10 or 20 times more sequential I/O requests than
random I/Os. The multisegmented aspect of the on-board disk cache refers to cache
management algorithms, which can do read-ahead, delete-behind processing on
behalf of several sequential processes simultaneously. There is usually some imple-
mentation-dependent limit on the number of independent sequential processes that
the disk cache firmware can recognize before performance begins to drop back
toward the level of random disk I/O. The disk benchmark example discussed later
highlights the benefit of on-board disk cache for sequential disk processing.

Tip The dramatic improvement in disk performance that on-board caches provide
favors any tuning strategy, such as disk defragmentation, that serves to increase the
amount of sequential disk processing that your machines perform.

The disk’s built-in multisegmented cache buffer is the performance-oriented feature
that has the greatest impact on disk performance. When the disk workload can be
effectively cached, disk I/O throughput can increase several fold. Empirically, this
cache effect creates a wide range of performance levels that you are able to observe
when you monitor the Logical or Physical Disk statistics, reflecting a workload mix
that can shift at almost any time from sequential to random processing. Because no
statistics are available on disk cache hit rates, you cannot measure the disk cache’s
effectiveness directly. When the majority of I/O requests can be satisfied from the
built-in disk cache, significantly higher I/O rates and correspondingly lower disk ser-
vice time are reported. Assuming that

Disk service time = seek + rotational delay + data transfer time + protocol time

for the representative disk described in Table 5-10

Disk service time = 5.0 + 3.0 + 0.2 + 0.1 = 8.3 ms

when it is performing a conventional read or write operation. However, when the
operation is a cache hit,

Disk service time = 0 + 0 + 0.1 + 0.1 = 0.2 ms

a potential 40-fold improvement.

472 Microsoft Windows Server 2003 Performance Guide

Multipathing Multipathing I/O solutions are available for many SCSI and Fibre
Channel interface adapters and disks. Multipathing provides for high availability data
access by allowing a host to have up to 32 paths to an external disk device. Additional
paths are configured for redundancy, automatic failover, and load balancing. Multi-
pathing is not a feature of the operating system, but is supported through the MPIO
Driver Development Kit (DDK), which allows storage vendors to develop multipath-
ing solutions designed to work with their equipment. Check with your hardware ven-
dor to see whether multipathing I/O support is available for your storage
configuration.

Characterizing the Disk I/O Workload

Physical disk characteristics establish a baseline set of performance expectations. The
disk I/O workload characteristics that influence disk performance in your specific
environment are described in Table 5-11.

No measurements are available to report on the percentage of sequential vs. random
disk requests. Instead, the rate of sequential disk requests, which are cached very
effectively at the disk level, must be inferred indirectly from improved disk service
time measurements at higher I/O rates.

Table 5-11 Disk I/O Workload Characteristics

Counter Primary Indicator Notes

Physical Disk(n)\Disk Reads/
sec

Disk reads Heightened data integrity con-
cerns mean that physical disk
reads are often executed slightly
faster than disk writes.

Physical Disk(n)\Disk Writes/
sec

Disk writes Caching for disk writes should
be enabled only when the disk
controller has a dependable re-
dundant power scheme.

Physical Disk(n)\Avg. Disk
Bytes/Read

Average block size of
read requests

Normally, a function of the file
system allocation unit. Sequen-
tial prefetching increases the
size of the average read request.

Physical Disk(n)\Avg. Disk
Bytes/Write

Average block size of
Write requests

Deferred writes because of lazy
write cache buffering are usually
performed in bulk, increasing
the size of the average write
request.

Chapter 5: Performance Troubleshooting 473

Establishing a Disk Drive Performance Baseline

Because disk drive performance is a function of the hardware and your specific work-
load characteristics, it is useful to establish a disk performance baseline independent
of your workload. The technical specifications for most hard disk drives are available
at their manufacturers’ Web sites. Average seek time, drive rotation speed, and mini-
mum and maximum data transfer rates are commonly reported. These specifications
are a good start, but they do not address the performance of the built-in disk cache,
which is a very important component. To understand how the disk cache works, you
probably need to measure your disk in a controlled benchmark environment. Doing
this is simpler than it sounds. You can determine the capabilities of your disk equip-
ment using Performance Monitor and almost any decent I/O stress-testing program.

Table 5-12 shows a minimal set of disk access specifications that can be used to char-
acterize disk performance for most devices. These access specifications represent a
thorough workout for your disk hardware and will allow you to determine the effec-
tive limits on the disk’s operating characteristics.

Comparing and contrasting small 4-KB blocks to larger 32-KB blocks should allow
you to extrapolate performance levels across a range of block sizes. Focusing on 100
percent read vs. write workloads allows you to isolate any differences in the ways
reads and writes are handled. The sequential workload will allow you to observe the
performance of the on-board disk buffer. Cache will have little or no impact on the
random I/O workload—this workload will allow you to measure the performance
capabilities of the native disk hardware by minimizing any cache effects.

Table 5-12 Benchmark Specifications to Characterize Physical Disk Performance

Specification Block Size Read/Write Random/Sequential

4-KB random read 4096 100% read Random

4-KB random write 4096 100% write Random

4-KB sequential read 4096 100% read Sequential

4-KB sequential write 4096 100% write Sequential

32-KB random read 32768 100% read Random

32-KB random write 32768 100% write Random

32-KB sequential read 32768 100% read Sequential

32-KB sequential write 32768 100% write Sequential

474 Microsoft Windows Server 2003 Performance Guide

Figure 5-24 shows the results for the 4-KB series of benchmark runs against a simple,
one-disk configuration.

Figure 5-24 Sequential vs. random I/O throughput for a single disk system

The results in Figure 5-24 reveal the performance impact of the disk cache. When
sequential reads can be satisfied from the on-board disk cache in this example, the
physical disk can sustain I/O rates that are 25 times higher, compared to that of ran-
dom requests. This disk evidently utilizes its cache to buffer writes, deferring its
update of the physical media until an entire track’s worth of data can be destaged
from the cache to the disk in a single burst. With sequential writes, caching improves
throughput and service time by a factor of at least 10, compared to random I/O pro-
cessing. Random writes apparently also benefit some from the disk cache because
throughput rates were 40 percent higher for random writes compared to random
reads.

Figure 5-25 shows the corresponding service times for the simple, single-disk system
being tested. The average service time of a sequential disk read request was reported
as 0.4 milliseconds, compared to an average of 11.1 ms for a random read request.
Write operations took slightly longer. Applying the Utilization Law, you can multiply
the disk service time by the I/O rate and verify that the disk is 100 percent utilized
during the test.

0

500

1000

1500

2000

3000

2500

Reads Writes

Th
ro

ug
hp

ut
 (I

O
PS

)
1711

90 137

RandomSequential

2373

Chapter 5: Performance Troubleshooting 475

Figure 5-25 Sequential vs. random I/O service time for a single disk system

These empirical results should reinforce the argument that on-board disk caches are
highly effective for sequential processing. Almost anything that you can do that will
increase the amount of sequential disk I/O performed to a single disk—including disk
defragmentation—will improve disk service time. Optimizations built into the system
file cache that perform sequential prefetching on user files, and the aggressive antici-
patory paging performed by the operating system, also increase the amount of
sequential I/O processing.

Figure 5-26 shows the throughput results when large 32-KB blocks are used instead.
Throughput of random writes is slightly higher than for reads, indicating that write
caching remains a benefit. The performance of large block sequential reads and writes
is quite similar, perhaps indicating that some component of the link between the host
computer and the disk has itself reached saturation.

Figure 5-26 Sequential vs. random I/O throughput for a single disk system using 32-KB
blocks

0

0.004

0.002

0.006

0.008

0.01

0.012

Reads Writes

Se
co

nd
s

RandomSequential

0.0004 0.0006

0.0111
0.0104

74

0

200

150

100

50

250

300

350

400

Reads

353 367

94

Writes

Th
ro

ug
hp

ut
 (I

O
PS

)

32KB random32KB sequential

476 Microsoft Windows Server 2003 Performance Guide

A final exercise is to compare service times for small 4-KB blocks to large 32-KB
blocks. This comparison is shown for sequential reads and writes in Figure 5-27.

Figure 5-27 Data transfer rate as a linear function of block size

Because sequential reads are subject to near 100 percent cache hits, the service time of
cache hits consists almost entirely of data transfer time. The data transfer time is
roughly a linear function of the request block size. The trend line drawn between the
4 KB and 32 KB points that were measured is an approximation of this linear function,
assuming 32 KB performance is not constrained by some other factor, such as the link
speed. The fact that the trend line drawn between the two measured write points runs
parallel to the line drawn between the two read points is also convincing evidence that
corroborates this interpretation of the results.

Applying the benchmark results to the real world The benchmark results
reported here all use uniform workload distributions. Each separate test is either 100
percent read or 100 percent write, 100 percent sequential or 100 percent random, and
uses a constant block size. This is the point of this synthetic benchmark—to exercise
control over the workload so that the measurement results can be interpreted unam-
biguously. In the real world, the I/O workload is a mixture of these elements—there is
a mix of random I/O requests and sequential I/O requests, for example. The block
size also varies depending on whether individual or bulk requests to the disk are
issued. Your actual real-world I/O workloads are an amalgamation of these synthetic
ones.

0

0.001

0.002

0.004

0.003

Bytes
0 4096 12288 20480 28672 36864

Se
co

nd
s

Reads Trend lineWr ites

Chapter 5: Performance Troubleshooting 477

The benchmark tests reveal that the single most important factor influencing disk ser-
vice time is whether the I/O request is sequential or random. The service time of
sequential requests is 10–20 times faster than random disk I/O requests. Your real
disk I/O workloads contain a mix of sequential and random I/O requests. When the
mix is richer with sequential requests, the average disk service time is faster. When a
higher proportion of random requests is issued, the average disk service time will be
slower. The capacity of your disks to perform I/O operations will vary substantially
during any measurement interval, depending on the mix of sequential and random I/O
processing. By using short measurement intervals, bursts of sequential activity are
often apparent, showing very high I/O rates and very low service times. With longer
measurement intervals—1–5 minutes or more—you will usually see a smoothing effect
so that the differences between one period and the next are less pronounced.

The available disk performance counters cannot be used to understand this crucial
aspect of the disk I/O workload. If you do need to characterize your I/O workload
based on the proportion of sequential and random I/O requests, you can gather Disk
I/O trace data that will show the sequence of each individual disk request and how
long the request took to execute. An example that illustrates the Disk I/O trace data is
discussed in the section entitled “Understanding File-Level Access Patterns.”

Storage Controllers and Virtual Disks

Disk hardware performance, which is something that you can easily assess for your-
self by following the stress testing methodology described earlier, is not the only cru-
cial factor in disk I/O performance. That is because disk operations are often not
directed against simple physical disks. An entity that appears to the operating system
to behave like a physical disk is often a collection of software and hardware within a
storage controller designed to impersonate the characteristics of a physical disk. For
want of a more descriptive term, these logical entities are often called virtual disks,
whereas the software that exposes physical disk images to the operating system and
performs the I/O processing that maintains this illusion is often called a virtualization
engine. Virtual volume management software, usually embedded within a storage con-
troller, maps virtual volume physical disk images into a set of disk sectors arrayed
across one or more physical disks.

The components of a typical storage controller that performs virtual volume mapping
and other storage functions are depicted in Figure 5-28.

478 Microsoft Windows Server 2003 Performance Guide

Figure 5-28 The elements of a typical storage controller that performs virtual volume
mapping

These components include:

■ One or more processors that run volume manager, cache management, and disk
array management software

■ Internal RAM for working storage and disk caching

■ One or more front-end channel interfaces that attach to host buses

■ One or more back-end disk controllers that attach to a series of disk arrays

■ Internal bus connections that tie these hardware components together into an
integrated system

■ Redundant power supplies, including a provision for battery backup to main-
tain power to critical components when the AC power supplies are cut

The fact that storage controllers export one or more virtual disks that look like physi-
cal disk entities to the operating system complicates the analysis of disk bottlenecks.
Under load, a disk subsystem might reveal an internal bottleneck that might not be
apparent externally. Another complication is that multiple virtual volumes could be
mapped to physical disks in ways that create hot spots of disk contention. Even
though the external signs of this disk congestion are readily apparent, determining
why Physical Disk volume performance is degraded might require you to investigate
the internal workings of these disk subsystems. You might need to pool all your host-

Internal buses

Battery
Backup

To
 H

os
t

Bu
s

A
d

ap
to

r

V
ir

tu
al

 V
ol

um
e

Disk
Controller

RAM
(for Cache)

Disk Array

C
ha

nn
el

In
te

rf
ac

es Processor
Volume Manager
Cache Manager
Array Manager

Chapter 5: Performance Troubleshooting 479

based measurements of virtual volumes and correlate them with performance statis-
tics on the disk subsystem’s internal workings.

Some common performance considerations for storage controllers include:

■ The organization of physical disks into arrays of redundant disks, or RAID

■ The mapping of virtual volumes—perceived as physical disks by an attached
host computer—onto disk arrays

■ The use of cache to improve disk performance and mask the performance pen-
alties associated with common forms of RAID disk organization

There is a great variety of storage controller architectures—too many to discuss here.
Not every consideration discussed here will apply to your disk hardware configura-
tion. These architectural considerations greatly complicate the task of establishing an
accurate performance baseline for virtual devices that are managed by one of these
storage controllers. An unbiased source of comparative information on disk storage
controllers is available from the Storage Performance Council (SPC), the sponsor of
the SPC benchmarks that many of the leading disk storage vendors participate in. The
SPC-1 benchmark uses a synthetic I/O workload that is designed to be similar to disk
I/O activity patterns evident on mail and messaging systems like Microsoft Exchange
Server. The audited SPC benchmark results posted at http://www.storageperformance.org/
results provide disk I/O subsystem response time measurements, and disclose the full
costs of the hardware configuration tested. This Web site is an excellent source of
unbiased, comparative cost/performance data for popular storage controller products
from major storage vendors.

RAID Redundant array of independent disks, or RAID, is the organization of inde-
pendent disks into arrays of disks that store both primary data and redundant data on
separate disk spindles. Storing redundant data on a separate disk allows the primary
data to be reconstructed in case of a catastrophic failure of one of the disks. RAID
technology organizes sectors across several physical disks into a logical volume that
can—in theory, at least—be accessed in parallel during a single I/O operation. To per-
form disk access in parallel, array controllers need dual front-end and back-end data
paths, dual internal buses, and dual processors, not just multiple disks. Disk arrays
also store data redundantly on disks separate from the data disks so that it is possible
to recover from a physical disk failure. Different schemes to accomplish these ends are
known as RAID levels, based on terminology first coined in the 1980s by researchers
at the University of California at Berkeley. Additional disk drives are required to store
the redundant data. The different RAID levels represent different ways to organize the

480 Microsoft Windows Server 2003 Performance Guide

primary data that corresponds to virtual volumes and the redundant data that pro-
vides protection across multiple physical disks.

Important Contrary to popular belief, RAID technology is not intended to be a
performance optimization. Redundant disk arrays are designed to provide high avail-
ability and fault tolerance. The performance of RAID configurations is usually worse
than simple JBOD (Just a Bunch Of Disks) disk connections, although some RAID levels
benefit from automatic load balancing across multiple disks.

RAID disk subsystems require that additional I/O operations be performed to main-
tain redundant copies of the data stored there. You need to understand the perfor-
mance trade-offs inherent in the various types of RAID disks. The most common
RAID levels and their relative benefits and trade-offs will be discussed briefly.

RAID 0 RAID 0 is also known as disk striping. RAID 0 organizes multiple disks (or
sections from multiple disks) into a single logical volume that can be accessed in par-
allel. Strictly speaking, RAID 0 is not a RAID level at all because there is no provision
for storing redundant data, which makes disk striping especially vulnerable to disk
failures. The advantages of accessing multiple disks in parallel are muted in Windows
Server 2003 because the native file systems do not support large enough allocation
units to make striping an effective optimization. Block sizes of 32 KB or less rarely
benefit from disk striping. One noteworthy benefit of disk striping is that the I/O load
tends to be balanced automatically across all disk volumes in the stripe set, something
that is difficult to achieve by placing files manually. Queuing delays are minimized
when the disk load is spread evenly across multiple devices, so this is a potentially sig-
nificant performance benefit.

RAID 1 RAID 1 is also known as disk mirroring. In RAID 1, data is always written to
two separate disks, one of the disks being a mirror image of the other. Strictly speak-
ing, there are data mirroring schemes that do not require that each secondary be an
exact duplicate of a primary disk. The only requirement for RAID 1 is that the data
exist on some other disk and that a primary volume can be reconstituted from data
stored elsewhere so that, in the case of a disk failure, there is always a full backup copy
of the data available for immediate access. As a data redundancy scheme, RAID 1 pro-
vides little or no performance advantage and some performance penalty. Some con-
troller implementations race the primary and secondary volumes during a read
operation. Because independent disks spin independently, racing the disks permits
the disk with less rotational delay to complete the operation first. The result is a bet-
ter-than-average rotational delay. The performance penalty associated with RAID 1 is

Chapter 5: Performance Troubleshooting 481

the duplication of all writes. This duplicate write activity is transparent to the host
computer, but it does lead to increased load on physical disks, controllers, and inter-
nal buses. From a disk capacity standpoint, RAID 1 requires configuring twice as
much physical disk space as conventional disks, which is also an added expense.

RAID 0/1 Combining disk mirroring and disk striping, RAID 0/1 requires at least
four physical disks. This type of RAID is also frequently called RAID 10. Because it
combines the advantages of disk striping with redundant data recording, RAID 0/1 is
often the choice recommended by performance experts. With the relatively small file
system allocation units available in Windows Server 2003, the performance advan-
tage of this RAID scheme is limited to the load balancing across physical disks that
striping affords. Nevertheless, in an I/O-intensive database environment, this auto-
matic hardware load balancing is a major advantage because balancing the disk load
might be very difficult to accomplish manually. RAID 0/1 does share with disk mirror-
ing the performance penalty of duplicate writes. Like RAID 1, it also requires config-
uring twice as much physical disk space as conventional disks.

RAID 5 RAID 5 uses rotated parity sectors, instead of mirroring. RAID 5 saves space
by storing a parity sector, instead of duplicating all the original data. The redundant
parity data is generated for each set of associated data sectors and then stored on a
disk separate from the data disks. Instead of doubling the amount of disks needed for
mirrored copies, RAID 5 adds the extra capacity of only a single parity disk to the
array storage requirements. One drawback, compared to mirroring, is performance
during reconstruction, which is poor. To reconstruct the original data following a disk
failure, all the remaining data disks plus the parity disk must be read. However,
because disk failures should be rare events, the performance of RAID 5 during recon-
struction is only a minor consideration. Compared to RAID 4, RAID 5 rotates the par-
ity sector among all the disks in the array stripe set to avoid having a single parity disk
itself become a hot spot. The effect is that each disk in a RAID 5 array contains mostly
data, but also some portion of parity data. On the plus side, RAID 5 does tend to bal-
ance disk activity across all the disks in the array.

The most serious drawback to RAID 5 is a severe write performance penalty. On an
update, both the data sector and its associated parity sector need to be updated. The
most economical way to accomplish this is to read the old parity sector, read the old
data sector, “subtract” the old data from the old parity, write the new data sector,
recompute the parity sector, and, finally, update the parity sector. This is also known
as a Read-Modify-Update sequence. With RAID 5, a single write operation requires four
I/Os to the array to maintain the parity information. This serious write performance
penalty might make RAID 5 unsuitable whenever the write activity is excessive. Write-

482 Microsoft Windows Server 2003 Performance Guide

intensive workloads run the risk of overloading the disks in the array and the internal
paths that connect them to the controller.

A number of approaches can reduce the impact of the RAID 5 write performance pen-
alty, but no known method can eliminate it entirely. One effective technique is to per-
form the two read operations in parallel, followed by the two write operations in
parallel. This cuts the overall duration of the delay in half, which is significant, but it
does not affect the need to perform the additional I/O operations. It also requires that
disks configured as part of the same RAID set be accessible on separate paths so that
it is physically possible to perform concurrent disk operations. Other optimizations
rely on the use of battery-backed cache memory in the controller to mask the latency
associated with RAID 5 write requests.

Tip The Volume Management software included with Windows Server 2003 allows
you to implement RAID 0, RAID 1, and RAID 5 disk striping, mirroring, and redundancy
options without resorting to special RAID controller cards. For more information, see
the “Disk Management” topic in the “Help and Support Center” documentation.

Comparing RAID levels Choosing among the different RAID volume mapping
techniques requires understanding the trade-offs between cost, disk capacity, poten-
tial performance advantages and disadvantages, and recovery time when a disk in the
array fails.

The four most common RAID volume-mapping schemes are pictured in Figure 5-29,
emphasizing the additional disk capacity required to implement data redundancy.

Figure 5-29 The four most common RAID volume-mapping schemes

RAID 0
(striping)

RAID 1
(mirroring)

RAID 5
(rotated parity)

RAID 0/1
(mirroring + striping)

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

3 5 8

1 2 3 1 2 3

1 2 31 2 3

1 7P 2 4 P 6 9P

Chapter 5: Performance Troubleshooting 483

Simple disk striping requires no additional disk capacity because no additional redun-
dant data is recorded. Mirrored disks require double the amount of disk capacity
because all data is duplicated on separate disks. Mirrored disk schemes can also incor-
porate disk striping (RAID 0/1), as shown. RAID 5 saves on storage requirements
because it requires only one additional parity disk per array. In a 4-disk array, like the
one illustrated in Figure 5-29, a RAID 5 configuration can store 50 percent more pri-
mary data than a 4-disk mirrored configuration.

Disk striping using either RAID 0 or RAID 0/1 can speed up disk operations by break-
ing very large block requests into smaller requests that can be processed in parallel
across multiple disks. In practice, performance improvement can be achieved only
when blocks significantly larger than the allocation units supported by the Windows
NTFS file system are used. Note that large block requests can occur frequently in Win-
dows Server 2003 bulk paging operations. If the cost of the extra physical disks in
RAID 0/1 striping and mirroring is not prohibitive, this alternative provides the best
overall performance of any of the redundancy schemes.

Disk striping and RAID 5 spread I/O activity automatically across multiple disks. This
balances the I/O load across multiple disks more effectively than any manual file
placement effort that you can perform, so this is an assured performance benefit. This
benefit should be weighed against the performance penalty associated with write
operations to both mirrored disks and RAID 5 arrays. With mirrored disks, each write
operation leads to two physical writes to separate disks. With RAID 5, the write pen-
alty is even more extreme. Each write operation in RAID 5 leads to two physical reads
followed by two physical writes to separate data and parity disks.

RAID 0 disk striping, without any data redundancy, affords no data protection. Disk
striping actually increases the vulnerability of a volume to a disk failure because an
error on any disk in the array is a failure that impacts the integrity of the volume.
Recovery from a failure when mirrored disks are used is straightforward because the
data appears on two separate disks. If either disk fails, its duplicate can be substituted.
In RAID 5, the original data has to be reconstituted by reading the parity disk and the
remaining data disks. Until the failed volume is fully reconstituted to a spare disk, the
damaged array is forced to run at a degraded performance level.

This discussion of the relative benefits and trade-offs of the various RAID level volume
mapping schemes is summarized in Table 5-13.

484 Microsoft Windows Server 2003 Performance Guide

Important When monitoring disk drives in a RAID volume, it is important to
understand how the performance counters are collected and displayed for the differ-
ent types of RAID systems.

Software RAID volumes, also know as dynamic volumes, will show one drive letter in
the Logical Disk instance list for each volume that is assigned a drive letter. Each phys-
ical disk in that set will be listed separately under the Physical Disk instance list.

Hardware RAID disks are listed as a single disk, regardless of how many physical drives
make up the RAID set. With hardware RAID, the instance list for the Logical Disk object
shows one drive letter per volume configured on that set, or possibly even no listing if
the drive is used as a raw disk drive. In the instance list for the Physical Disk object, one
physical drive will be listed for the entire RAID set, regardless of how many drives
make up the set. The RAID controller hardware operates its disk drives independently
from the disk device drivers in the operating system. To the disk drivers in the operat-
ing system, the physical disk drives behind the RAID controller are invisible. Whatever
virtual physical disk images the RAID controller software exports appear as Physical
Disk drives to the operating system.

Table 5-13 Cost/Benefits Analysis of RAID Volume Mapping Schemes

RAID Level Performance Advantages/Trade-Offs

RAID 0 ■ Availability: No redundant data protection.

■ Additional disk capacity: None.

■ Performance benefit: Automatic load balancing across multiple disks;
very large blocks might benefit from parallel operations .

■ Performance penalty: None.

RAID 1 ■ Availability: Duplicate data protects against hardware failure.

■ Additional disk capacity: 2 x the number of data disks.

■ Performance benefit: Might benefit from racing the disks.

■ Performance penalty: 2 x the number of writes.

RAID 0/1 ■ Availability: Duplicate data protects against hardware failure.

■ Additional disk capacity: 2 x the number of data disks.

■ Performance benefit: Automatic load balancing across multiple disks;
very large blocks might benefit from parallel operations.

■ Performance penalty: 2 x the number of writes.

RAID 5 ■ Availability: Data stored on a failed disk can be reconstituted by read-
ing the parity disk and the remaining data disks.

■ Additional disk capacity: +1 parity disk per array.

■ Performance benefit: Automatic load balancing across multiple disks.

■ Performance penalty: Each write request requires 4 physical disk op-
erations (2 reads + 2 writes).

Chapter 5: Performance Troubleshooting 485

Caching controllers Cache memory is a popular performance option available on
many disk controllers. Its use is heavily promoted by major disk subsystem manufac-
turers, but its role in improving disk performance is often misunderstood. The main
performance-related function of controller resident disk caches is to limit the impact
of the write performance penalty associated with the redundant data recording
scheme that is employed to provide data protection, as discussed earlier. One of the
most important performance-oriented functions of disk controller cache for machines
running Windows Server 2003 is to help mask the severe performance penalty asso-
ciated with RAID 5 writes. Properly configured, disk controller cache allows RAID-5
disk arrays to achieve performance levels comparable to other RAID levels.

Cache inside the controller is less significant on read operations. Cache memory
inside the controller is sitting in the data path between disks with on-board cache
memory and the potent, host memory-resident caches associated with most server
applications. A careful analysis of the data normally resident in the disk controller
cache shows it largely duplicates data that is already cached in host memory or in the
on-board disk cache. This renders large amounts of disk controller-resident cache
memory largely redundant for the purpose of caching reads.

Disk controller cache is effective in masking disk hardware performance problems,
especially disk latency associated with the RAID 5 write penalty. With cache, the
Read-Modify-Update sequence that requires four physical disk operations to execute
can be performed asynchronously from the standpoint of the host I/O request. On a
disk write operation, the host writes data to the controller cache first, which signals a
successful completion when the data has been safely deposited there. This is some-
times known as a Fast Write to cache. Later, asynchronous to the host machine, the
controller performs the Read-Modify-Update sequence of physical disk operations
that hardens the data stored in the array.

Utilizing fast writes to cache to mask the latency associated with disk write operations
creates a delay between the time the host machine considers the I/O operation com-
plete and the time the physical disks in the RAID 5 array are actually updated to
reflect the current data. During this delay, there is a data integrity exposure in which
the state of the host application is not consistent with the data recorded on the phys-
ical disks. Cache controllers must cope with this data integrity exposure somehow,
normally by using some combination of cache memory redundancy and fail-safe bat-
tery-backup schemes to ensure that all pending write operations ultimately complete
successfully. Loss of power to the cache memory is the most serious risk that must be
guarded against. Note that failure of one of the physical disk drives involved in the
operation is not a major concern because of the redundant data-recording scheme.

486 Microsoft Windows Server 2003 Performance Guide

Another performance-oriented optimization designed to help improve the perfor-
mance of disk writes in RAID 5 is deferring writing back to disk until an entire array
data stripe can be written. When the controller can defer writes until a full array data
stripe is updated—usually by a sequential write operation—the old parity sector associ-
ated with the data stripe never needs to be read and has to be written back only once.
This results in a significant reduction in the number of back-end disk operations that
need to be performed.

In configuring cached disk controllers to achieve the proper level of performance, two
considerations are paramount:

■ Battery backup of controller cache memory to preserve the updated data stored
there until it can be written to the back-end disks. This is essential.

■ Providing enough memory to cache most write activity, which typically occurs
in large bursts associated with lazy write flushes of host cache memory or data-
base commits.

Sizing controller cache A relatively small amount of battery-backed, controller cache
can shield your servers from the additional disk latency associated with RAID level 1
and 5 writes. To size the cache, observe the peak write I/O rate for your physical disks.
Then, assume the cache needs to be large enough to hold a 1-minute burst of write
activity. The following formula estimates the amount of battery-backed cache memory
you need per Physical Disk:

Cache memory = peak(PhysicalDisk(n)\Disk Writes/sec) × file system allocation unit × 60

Because write operations ultimately lead to physical disk operations, the overall level
of write activity a cached disk subsystem can sustain sets an upper limit on perfor-
mance. This is largely a function of the number of physical disks that the subsystem
contains. Generally speaking, having more disks to perform the work is always better.
In RAID levels 1, 0/1, and 5 configurations, remember that maintaining redundant
data requires two physical disk writes for every host-initiated write operation. Conse-
quently, the number of writes a RAID disk subsystem can handle is actually only one-
half of the capacity of its physical disk drives.

If the rate of write requests exceeds the capacity of the physical disks in the array to
perform writes, the cache begins to fill up with data waiting to be written to disk. If
this write activity is sustained for any period of time, the cache will fill up completely.
Once the cache is full, subsequent write requests must wait until physical back-end
operations to disk complete. When the cache saturates, the disk controller can no
longer effectively mask the poor performance of RAID write operations.

Chapter 5: Performance Troubleshooting 487

Windows Server 2003 provides two tuning parameters that allow you a degree of con-
trol over write caching. You can access these by using the Disk Management snap-in:
right-click a physical disk and open the Properties Pages. The Policies tab shows the
write caching parameters, as shown in Figure 5-30. By default, if the physical disk sup-
ports write caching, write caching is enabled, as illustrated. If the Enable Advanced
Performance option is selected, the disk device driver will not set the WRITE-
THROUGH flag on any SCSI write commands. This gives a cached disk controller the
freedom to defer all physical writes to disk. This option should never be enabled
unless you are positive the controller provides full battery backup for cache memory
and any attached disks.

Figure 5-30 Enable advanced performance only for disks that are fully protected by a
backup power supply

Virtual disks RAID controllers allow you to define virtual disk images that are
mapped to a set of physical disks in the array. The number of physical disks used in
the array, their RAID levels, and the number of virtual disk images that are mapped to
these disks are usually programmable options. Each virtual disk is identified by a
unique Logical Unit Number (LUN) used in the SCSI protocol, which in turn appears
as a physical disk to the Windows Server 2003 operating system. The operating sys-
tem is aware only of the apparent characteristics of the virtual disk. The operating sys-
tem cannot see what is happening under the covers of the disk controller—how many
physical disks are involved, the data redundancy scheme employed, whether there is

488 Microsoft Windows Server 2003 Performance Guide

controller cache memory, and so on. These details are frequently crucial in diagnosing
a disk performance problem.

Meanwhile, the disk performance statistics available in the Performance Monitor reli-
ably measure the performance of these virtual disks. The measurement layers in the I/O
Manager stack accurately measure the response time of disk requests. However, the
details of how a virtual disk is mapped to physical storage are transparent to the host
computer. Additional complications arise when the virtual disks are accessed via a
Storage Area Network (SAN) that supports connections to multiple host machines.
The virtual disk associated with your machine might be mapped to physical disks in
the SAN configuration that are shared by other host connections. The I/O operations
initiated by your host computer might be contending with I/Os from other host com-
puters directed to the same set of physical disks in the SAN.

Host-centric measurements cannot see the impact of I/O operations on virtual disks
on physical storage resources like disk drives, paths, and switches. Because these
resources are shared across host machines, the activity from any one host can interfere
with the activity of another. When disk performance suffers, you will likely need to
understand the details of how virtual disks are mapped to physical disks, the topol-
ogy of connecting links and switches that are shared by the devices, and so on. For a
complete picture of what is happening to the devices interconnected on a SAN, you
need to pool all the host-based measurements for the virtual disks that are defined.
These might also be internal measurements from storage controllers and other virtu-
alization engines that are available regarding physical disk, link, and switch perfor-
mance for devices in the shared storage pool. This might also include utilization
measurements of shared network switches. These internal measurements can be very
useful if they can be correlated with the host’s view of this disk activity provided by
the Performance Monitor.

A unified view of the shared hardware environment is often necessary to understand
why disk performance problems are occurring and what can be done about them.
During a disk-to-tape backup operation, for example, your host machine is attempting
to read data from a virtual disk as fast as possible and write it to the backup tape
device. Because tape drives usually have greater bandwidth than the disks, disk speed
is the bottleneck during direct disk-to-tape backup operations. (If one of the devices is
being accessed remotely, the bottleneck usually shifts to the network bandwidth.)
During disk-to-tape operations, the disk is accessed at its saturation level. If the disk is
a virtual disk that is in actuality mapped to a set of physical drives within the SAN, the
disk activity from the backup operation will likely impact any other attempts to access
those physical disks from other hosts. Storage administrators often find that they
must schedule disk-to-tape backups carefully in a SAN to minimize contention across
different host systems.

Chapter 5: Performance Troubleshooting 489

Diagnosing Disk Performance Problems

The first step in diagnosing a potential disk performance problem is to gather the disk
performance statistics using the Performance Monitor during a representative period
of peak usage. To enable you to analyze the performance data you gather, use a back-
ground data collection session using the Log Manager utility or the counter logs
graphical user interface in the System Monitor console. Gather the counters from the
Physical Disk object, as well as from any other counters that might be useful—the
Memory counters that report physical disk paging rates, processor utilization, and the
interrupt rate from the Processor object; the Processor Queue Length from the System
object; and the Logical Disk counters, if the way logical volumes are mapped to phys-
ical disks is significant.

The procedure is as follows:

1. Determine the disk workload characteristics: I/O rates, read vs. write rates, and
average block sizes. The counters in Table 5-14 provide this information.

2. Based on the manufacturer’s specifications or your own direct measurements,
determine the expected disk service time for this workload.

3. Compare the physical disk response time—Physical Disk(n)\Avg. Disk secs/
Read and Physical Disk(n)\Avg. Disk secs/Write—that you observe to the
expected disk service that the physical device can provide. If the observed disk
I/O response time is less than 150 percent of the expected disk service time, any
tuning strategies you employ cannot improve performance significantly. It is
usually not worth spending lots of time trying to improve disk performance by
that modest amount. If you need much better performance than your current
disks can provide, buy faster disks.

4. Calculate physical disk utilization:

Physical Disk(n)\% Busy = 100% -−Physical Disk(n)\% Idle Time

If the physical disk is only modestly busy—less than 10–20 percent busy, say— the disk
I/O response time is not likely to create an application bottleneck, no matter how bad it is.

If disk response time is poor compared to your service level expectation, and the disk
is at least 40–50 percent busy, decompose disk response time into its device service

Table 5-14 Counters That Characterize Disk Workload

Workload Characteristic Object\Counter

Read I/O rate Physical Disk(n)\Disk Reads/sec

Write I/O rate Physical Disk(n)\Disk Writes/sec

Read block size Physical Disk(n)\Avg. Disk Bytes/Read

Write block size Physical Disk(n)\Avg. Disk Bytes/Write

490 Microsoft Windows Server 2003 Performance Guide

time and device queue time components. To accomplish this, Relog the counters in
Table 5-15 into a text format file that you can process using Excel.

Applying the Utilization Law, calculate the metrics in Table 5-16:

For example, Figure 5-31 shows the disk performance statistics gathered for a single
disk on a Windows Server 2003–based machine that appeared to be running slowly.

Figure 5-31 Disk performance statistics gathered for a single disk on a Windows Server
2003–based machine

Table 5-15 Counters for Decomposing Disk Response Time

Object\Counter Corresponds To

Physical Disk(n)\% Idle Time The inverse of disk utilization

Physical Disk(n)\Avg. Disk sec/Transfer The disk response time

Physical Disk(n)\Disk Transfers/sec The I/O rate

Table 5-16 Formulas for Calculating Disk Service Time

Metric Formula

Physical Disk(n)\% Disk Busy 100%−Physical Disk(n)\% Idle Time

Physical Disk(n)\Avg. Disk Ser-
vice Time/Transfer

Physical Disk(n)\% Disk Busy ÷ Physical Disk(n)\Disk
Transfers/sec

Physical Disk(n)\Avg. Disk
Queue Time/Transfer

Physical Disk(n)\Avg. Disk secs/Transfer − Physical
Disk(n)\Avg. Disk Service Time/Transfer

Chapter 5: Performance Troubleshooting 491

The disk I/O rate and response time for a period of about 11 minutes is shown in the
figure. During this period, the I/O rate (highlighted) ranges from 6 to 1300 I/Os per
second, with an average of about 190 Disk Transfers/sec. The disk response time over
the same interval averaged a very respectable 8 milliseconds, but also showed several
spikes in which response time exceeded 20 milliseconds or more. Because the server
appeared sluggish during this interval, which was marked by heavy activity from cli-
ent machines accessing files over the network stored on this machine, further investi-
gation is necessary.

The next appropriate action is to check disk utilization, as shown in Figure 5-32, to see
whether the disk is a potential bottleneck.

Figure 5-32 Checking disk utilization

% Idle Time is a somewhat counter-intuitive way to look at disk utilization. Subtract %
Idle Time from 100 percent to calculate % Disk Busy. The average disk busy over the
same interval is only 50 percent, but many peaks exist where disk utilization exceeded
70 percent. The Current Disk Queue Length counter that reports an instantaneous
value of the number of outstanding I/Os to the device is also shown. This value is
charted using a scaling factor of 10 to make it easier to read alongside % Idle Time.
The highest instantaneous disk queue length value reported was 47. The average
reported was only 1. Although this is not a large backlog of requests, on average, there
is enough evidence of disk queuing delays to warrant further investigation.

At this point, it is helpful to examine the block size reported for both read and write
requests. This data is illustrated in Figure 5-33.

492 Microsoft Windows Server 2003 Performance Guide

Figure 5-33 Block size for both read and write requests

Caution Scaling values for each line on this chart have been set to .001, not to their
default values. This allows values for these counters to be plotted against a y-axis cal-
ibrated in kilobytes (KB). Modifying the automatic scaling of these values, which is
designed to fit them automatically into a range of values from 0–100, to report these
measures in KB makes the values reported less susceptible to errors of interpretation.
Use scaling factors judiciously when you need to display widely dissimilar values on a
single chart.

The overall average block size at about 17 KB is the highlighted line on this chart,
sandwiched between the average block size of read requests (the lower value) and the
much larger average value for write requests. Be careful when you need to interpret
values of these counters that report average values. The summary statistics calculated
by the System Monitor can be very misleading because they report an average of the
average values that are calculated at each interval. This issue is discussed in Chapter 2
and Chapter 3. Statistically, calculating a weighted average is the proper way to pro-
ceed. Calculating the average of a series averaged values can lead to many anomalies.
In this example, reads averaged almost 19 KB per disk I/O request, which reflects
many bulk requests larger than the 4-KB file system allocation unit. Meanwhile, the
average write block was about 29 KB, with the graph showing many intervals in which
the average write block size reached 64 KB. The statistical anomaly that results from

Chapter 5: Performance Troubleshooting 493

calculating the average of averages is that Avg. Disk Bytes/Transfer is less than the
average of both Avg. Disk Bytes/Read and Avg. Disk Bytes/Write. Be sure to relog these
measurements to a text format file that can be processed using Excel to calculate valid
weighted averages of these counters.

In the example, those large, multiblock write operations are the by-product of lazy
write file or database cache flushes, or both, that send writes to the disk in bulk. The
average rate of write requests was only 44.5 per second for a read/write ratio of about
3:1. But because the average bulk write request moved more data than the average
read request, almost twice as much data is being written to disk than is being read
back. This is normal. Effective host-caching reduces the number of disk read opera-
tions that need to be performed. Cache can postpone the need to post file updates to
the disk, but ultimately the data on disk must be changed to remain synchronized
with the application’s view of that data.

The next step in the analysis is to Relog the counters shown to a .csv format file that
can be processed in Excel. The following command string will accomplish this:

relog “Disk performance Test_2003081312.blg” -c “\PhysicalDisk(0 C:)\Avg. Disk sec/

Transfer” “\PhysicalDisk(0 C:)\Disk Transfers/

sec” “\PhysicalDisk(0 C:)\% Idle Time” “\PhysicalDisk(0 C:)\Current Disk Queue Lengt

h” -f csv -o “Disk performance Test_2003081312.csv” -y

Use Excel to calculate the disk utilization, disk service time, and disk queue time, as
described in Table 5-11. Graphing the results yields the chart shown in Figure 5-34.

Figure 5-34 Excel graph showing disk utilization, disk service time, and disk queue time

0. 000

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.040

0.050

0.045

0

70

60

50

40

30

20

10

80

100

90

D
is

k
re

sp
on

se
 t

im
e

(s
ec

s)

%
 D

is
k

b
us

y

Disk service timeDisk queue time Disk utilization

494 Microsoft Windows Server 2003 Performance Guide

In this Excel combination chart, disk service time and queue time are graphed using
a stacked Area chart against the left y-axis. Stacking the queue time on top of the ser-
vice time in this fashion allows your eye to add the two values visually—this is the
advantage of using a professional charting tool like Excel to augment the Performance
Monitor Chart view. Disk utilization is also calculated and shown as a dotted line plot-
ted against the right y-axis. When all the data is viewed in this fashion, the relation-
ship between spikes in disk utilization and disk response time degradation are clearly
visible.

Breaking down disk response time in this fashion allows you to determine whether
you have a disk that is performing poorly or is overloaded, and choose an appropriate
tuning strategy. If disk service time is much higher than can be reasonably expected
from that type of hardware, you might be able to improve disk performance signifi-
cantly by using the disk defragmentation utility. Instead, if the disk is overloaded, you
will probably need to try a different approach—adding more disks to the system or
spreading some of the load from this busy disk to some lower utilized ones in the con-
figuration. The various disk tuning strategies and when to use them are discussed in
the next section.

Meanwhile, it might be instructive to complete the analysis of this example. From the
chart in Figure 5-34, you can see that disk service time is consistently 5 ms or less,
which is better than the expected range of performance for this disk for this specific
workload. Because disk performance is adequate, performing a disk defragmentation,
or conducting other tuning actions designed to squeeze a bit more performance out of
this disk, is not likely lead to a major improvement in service time. (For more informa-
tion about the benefits of disk defragmentation, see the next section.) A faster disk
could perform the same workload as much as 30 percent faster, but you must con-
sider operational issues when making that kind of disruptive change. No doubt, some
positive incremental improvements can be made, but there is no magical solution.

The periods of performance degradation that do occur are evidently the result of the
disk becoming overloaded and disk requests being queued. Periods in which there is
an increase in disk queue time match almost exactly periods in which disk utilization
also spikes. The disk utilization spikes probably result from the bursty, bulk write
workload that is associated with lazy write cache flushes. These bulk writes tie up the
disk for a relatively long period and generate contention with the read workload. In
the interval observed, the periods of serious disk congestion are intermittent. When
disk contention of this sort starts to become chronic and is impacting the perfor-
mance of key server applications, it is time to do something about it.

Chapter 5: Performance Troubleshooting 495

Configuration and Tuning Strategies to Improve Disk Performance

The performance of many applications is constrained by the performance of the slow-
est computer component used to process client requests. The slowest internal compo-
nent of most servers is the disk. Server application responses are often found waiting
for disk requests to complete—more so than for any other computer processing com-
ponent. Even when computer disks are performing well—that is, disk service time is
within expectations and queuing delays are minimal—server application performance
suffers because of delays in processing I/O requests by relatively slow, mechanical
disks. Computer performance professionals call these applications I/O bound, com-
pared to applications that are compute-bound or network-constrained. The only way to
improve the performance of an I/O bound application significantly is to improve disk
performance.

This section discusses the most important and most common configuration and tun-
ing strategies that are employed to improve disk performance. Configuration options
include:

■ Deploying faster disks

■ Spreading the disk workload over more disks

■ Using disk array technology and RAID to spread the disk workload over more
disks

■ Implementing cached disk controllers

In addition, the following disk tuning strategies will be discussed:

■ Using memory-resident buffering to reduce physical disk I/Os

■ Eliminating disk hot spots by balancing the I/O workload across multiple disks

■ Defragmenting disks on a regular basis to increase the amount of sequential
disk processing

Adopting the most effective disk tuning strategy begins with understanding where
your disk bottleneck is. As discussed in the previous section, “Diagnosing Disk Perfor-
mance Problems,” you need to find out whether the disk is performing poorly or the
disk is overloaded. Some of the configuration and tuning strategies discussed here
attack the problem of poor disk service time. Improving disk service time reduces the
load on the disk, so indirectly these strategies also reduce queuing delays. Other strat-
egies are primarily aimed at workload balancing, which has very little to do with
improving disk service time, but directly reduces queuing delays. If disk service time is

496 Microsoft Windows Server 2003 Performance Guide

poor, a strategy that attacks queuing delays will yield little improvement. If disk queue
time delay is a major factor, a strategy aimed at balancing the disk workload better is
often the easiest and simplest approach. These considerations are summarized in Table
5-17 for each of the disk configuration and tuning strategies under consideration.

Many server applications are I/O bound, capable of running only as quickly or as
slowly as the mechanical disks they must access. Configuring a disk subsystem for
optimal performance and tuning it to maintain optimal performance levels is a critical
activity in many environments. When disk performance is so important, any action
that improves disk performance might be a worthwhile pursuit.

Performance-oriented disk configuration options The following list describes
the configuration options that can be employed to improve disk performance:

■ Faster disks Disk manufacturers build a range of devices that span a wide spec-
trum of capacity, price, and performance. You might be able to upgrade to disk
devices with improved seek time, faster rotational speeds, and higher through-
put rates. Faster devices will improve disk service time directly. Assuming I/O
rates remain constant, device utilization is lowered and queuing delays are
reduced.

Table 5-17 Disk Performance and Tuning Strategies

Strategy Performance Impact

Configuration Faster Disks ■ Directly improves disk service time.

■ Indirectly reduces queuing.

More disks ■ Directly reduces queuing.

Disk arrays ■ Directly reduces queuing by balancing the load
across multiple disks.

■ RAID configurations suffer a write performance
penalty.

Cached disks ■ Directly improves disk service time.

■ Indirectly reduces queuing.

Tuning Host-based cach-
ing

■ Reduces the overall physical disk I/O load.

■ Boosts the relative write content of the physical
disk workload.

■ Might increase disk service time.

Load balancing ■ Directly reduces queuing.

Defragmentation ■ Directly improves disk service time.

■ Indirectly reduces queuing.

Chapter 5: Performance Troubleshooting 497

Tip The highest performing disks are also the most expensive. A device that
improves disk service time by 20–30 percent might be 50 percent more expen-
sive than standard models.

When the other strategies under consideration may fail for one reason or
another, buying faster disks always accomplishes something. Of course, if you
are already using the fastest disk devices available, you will have to try some-
thing else.

■ More disks The driving force behind most disk purchases is storage capacity.
When cost and capacity are the only important considerations, you will buy
large capacity disks that have the lowest cost per megabyte of storage. When per-
formance is an important consideration, you need to purchase higher cost,
faster disks, and more of them. If you are running with the fastest disks possible
and you are driving utilization consistently above 50 percent busy, add more
disks to the configuration and spread the I/O workload across these additional
disks. Spreading the load across more disks lowers the average disk utilization,
which indirectly reduces queuing delays.

■ Disk arrays The simplest way to spread the I/O workload across multiple disks
is to install array controllers that automatically stripe data across multiple disks.
If you are also interested in adding fault tolerance to large disk configurations,
beware of the write performance penalty associated with RAID technology.
Unless you are reading and writing very large blocks, do not expect that using
disk arrays will improve device service time. However, by balancing the work-
load automatically across all the disks in the array, you eliminate disk hot spots
and reduce overall queue time delays.

■ Cached disks Cached disk controllers can often mask device latency and
improve disk service time dramatically. Cache hits eliminate all mechanical
device latency. Data can be transferred from the cache to the channel at full
channel speeds, which is faster than data can be read or written to the disk
media. For RAID controllers, consider battery-backed caches that are especially
effective in masking the device latency associated with RAID write operations.

Disk tuning strategies The following list describes tuning strategies that you can
use to improve disk performance:

■ Host-resident cache The best way to improve the performance of applications
constrained by disk I/O is to eliminate as many physical disk I/Os as possible
using RAM-resident cache buffering. Replacing an I/O operation to disk—even
one to the fastest disk drive around—with host memory access to disk data
cached in RAM achieves a splendid degree of speed-up. Providing more host
memory for larger application database and file caches should increase cache
buffer hit rates and reduce physical disk activity in tandem.

498 Microsoft Windows Server 2003 Performance Guide

Utilize the performance counters that report on cache effectiveness to help you
in this effort. These include the Hits % counters that are provided in the Cache
object for each of the three file cache interfaces. At the application level, the
cache hit ratio counters in the Internet Information Services Global object and
the Web Service cache object for Web-based IIS applications are extremely use-
ful. For SQL Server databases, detailed performance counters are available that
provide statistics on the Buffer Manager and the Cache Manager functions, both
of which play a crucial role in minimizing physical disk accesses. For Exchange
Server databases, the Database counters report on cache effectiveness, but there
are other counters that are relevant, too. Information in the MSExchangeDSAc-
cessCaches counters on the effectiveness in buffering the user credentials stored
in Active Directory can be very important in improving the responsiveness of
Exchange message delivery.

Another area of concern is where ample RAM is available, but application con-
figuration parameters restrict the application from allocating more database
buffers. Verify that the RAM available is being used by the applications that can
use it effectively to eliminate as many physical disk I/Os as possible.

Tuning application file and database buffers to reduce the I/O load to disk
almost always improves performance. However, no amount of host-resident
buffering can eliminate all I/O to disk. The most effective memory-resident buff-
ering succeeds in eliminating most disk read activity, except for those initial disk
accesses. File and database updates must be propagated to the physical disk
eventually, so write activity as a percentage of overall disk activity tends to
increase as host-memory caching gains in effectiveness. Effective caching also
tends to increase the burstiness of the physical disk operations that remain
because that behavior is characteristic of lazy write flushes.

Tip When effective host-resident caching is in place for your server applica-
tions, you might need to reconfigure the physical disks so that they are better
equipped to handle this bursty, large-block, write-oriented I/O workload. The
physical I/O operations that remain after host caching has effectively eliminated
most disk reads might take longer to service than the mix of I/Os that were per-
formed prior to optimizing for host caching. Refer to the earlier section entitled
“Sizing Controller Cache” for hints on how to configure cached disk subsystems
for optimal performance under these conditions.

Chapter 5: Performance Troubleshooting 499

■ Balance the disks Disk storage capacity and disk backup and restore—not disk
performance—are usually the primary considerations when you set up a new
server. But most system administrators initially try to arrange their files so they
are at least balanced across available volumes. This is difficult to do well when
you don’t have the experience yet to know how these disks are accessed in a live
production environment. Even if you have done a good job in balancing the I/O
workload initially across the available disks, changes in the configuration and
the workload over time inevitably create imbalances. Whenever one disk in the
configuration becomes overloaded, its disk queue elongates and disk response
time suffers. When this occurs, redistributing files and databases to better bal-
ance the I/O load will reduce disk queuing and improve response time.

Tip An easy way to balance the I/O load across multiple disk drives is to use
array controllers that automatically stripe data over multiple disks. Both RAID 0/1
and RAID 5 disk arrays spread I/O evenly across multiple disks.

■ Defragment disks to increase sequential disk reads As file allocations start to fill
up the logical disk volume (or file system), files are no longer stored on the disk
in contiguous sectors. If the sectors allocated to the file are not contiguous,
attempts to read the file sequentially (from beginning to end) require more disk
head movement because of this fragmentation. Instead of sequential operations
that need no disk arm seeks between successive disk requests, disk seeks back
and forth across the disk are required as successive fragments of the file are
accessed. Disk service time is impacted. Given how fast disk drives with built-in
cache buffers can process sequential requests, as illustrated in the section enti-
tled “Establishing a Disk Drive Performance Baseline,” increasing the percentage
of sequential disk requests that are issued will speed up disk processing. Long-
running sequential processing requests can especially benefit from defragmen-
tation. These include file transfers, disk-to-tape backup, and other lengthy file
copying requests.

Windows Server 2003 provides a built-in file system defragmentation utility. Some
tips on using the defragmentation utility effectively, along with a brief case study that
illustrates its benefits, are provided in the following sections.

Disk Defragmentation Made Easy

The Disk Defragmenter utility, which you can access from the Computer Management
program on the Administrative Tools menu, is shown in Figure 5-35.

500 Microsoft Windows Server 2003 Performance Guide

Figure 5-35 Disk Defragmenter utility

Using Explorer, you can also launch the Disk Defragmenter by right-clicking a vol-
ume, accessing its Properties Pages, and selecting the Tools Tab.

You can also execute the Disk Defragmenter utility from the command line. This capa-
bility allows you to develop automated procedures to defragment the disks on your
production servers on a regular basis.

Using the disk defragmentation utility effectively Setting up automated proce-
dures to run the Disk Defragmenter utility on a daily or a weekly basis by using the
Disk Defragmenter command-line utility is a simple matter. However, not every vol-
ume in your disk farm is likely to benefit equally from regular defragmentation. Con-
sider the following:

■ I/O activity from the Disk Defragmenter utility can tie up large volumes for a
considerable length of time.

■ The Disk Defragmenter utility needs adequate free space on the volume to run
efficiently and do a good job in reorganizing the volume. Defragmentation that
runs on volumes that are more than 75 percent allocated are likely to take con-
siderably longer to complete and might not yield dramatic performance
improvements.

■ For very volatile volumes—where files are subject to continuous allocation, dele-
tion, and growth—the benefit of defragmentation is liable to be very short-lived.

These factors all point to not implementing across-the-board defragmentation proce-
dures without performing some workload analysis to assess the relative benefits and
costs. Fortunately, the Disk Defragmenter utility contains a facility for reporting and
analysis, which you can use to fine-tune your regular defragmentation procedures.

Chapter 5: Performance Troubleshooting 501

Analyzing volumes before defragmenting them When the volume fragmenta-
tion analysis function completes, a dialog box displays the percentage of fragmented
files and folders on the volume and recommends whether or not to defragment the
volume.

Figure 5-36 illustrates the defragmentation analysis report for the logical volume
shown in Figure 5-35. An analysis report can also be generated using the Disk Defrag-
menter line command, as illustrated In Listing 5-10.

Listing 5-10 Results of Using the Disk Defragmenter Command
C:\>defrag c: /a /v

Windows Disk Defragmenter

Copyright (c) 2003 Microsoft Corp. and Executive Software International, Inc.

Analysis Report

Volume size = 16.66 GB

Cluster size = 4 KB

Used space = 12.81 GB

Free space = 3.85 GB

Percent free space = 23 %

Volume fragmentation

Total fragmentation = 18 %

File fragmentation = 35 %

Free space fragmentation = 2 %

File fragmentation

Total files = 27,633

Average file size = 563 KB

Total fragmented files = 3,086

Total excess fragments = 24,683

Average fragments per file = 1.89

Pagefile fragmentation

Pagefile size = 1.48 GB

Total fragments = 1

Folder fragmentation

Total folders = 2,452

Fragmented folders = 51

Excess folder fragments = 293

Master File Table (MFT) fragmentation

Total MFT size = 34 MB

MFT record count = 30,157

Percent MFT in use = 85

Total MFT fragments = 3

You should defragment this volume.

502 Microsoft Windows Server 2003 Performance Guide

Figure 5-36 Defragmentation analysis report

An important statistic is Average fragments per file, in this case, 1.89 fragments per
file. A file is fragmented if the file data is not contiguous. This metric reports the aver-
age number of noncontiguous fragments per file. The report also shows the total num-
ber of files that are fragmented—slightly over 10 percent in this case. For the files that
are fragmented, you can easily compute another useful metric—the average number of
fragments:

Avg. Fragments/file = Total excess fragments / Total fragmented files

Also notice in the bottom window of Figure 5-36 the list of the most fragmented files.
You can sort this list by clicking the appropriate header tab. Keep in mind that if the
large files that have the most file system fragments are ones that are frequently
updated or recreated, the benefit from running the Disk Defragmenter utility will
likely be short-lived. These files will fragment again the next time they are updated or
extended.

Another important consideration is that the Disk Defragmenter requires ample free
space on the disk to function effectively. The Disk Defragmenter works by copying a
fragmented file into a large contiguous free area on the volume and then reclaiming
the space associated with the old version of the data. This method requires a substan-
tial amount of free space on the volume to begin with. As the volume fills, the Disk
Defragmenter utility must move more and more files around, so not only do Disk
Defragmenter utility runs take longer, but these longer runs also yield less efficiently
reorganized volumes.

Chapter 5: Performance Troubleshooting 503

Tip For best results, defragment volumes when they have at least 25 percent free
space and the average number of file fragments for those files that are fragmented is
greater than five. By these criteria, defragmentation of the logical volume illustrated in
Figures 5-35 and 5-36 can be expected to be marginally productive.

The duration of a Disk Defragmenter run is also influenced by the size of the volume,
the number of files on the volume, and the number and size of the fragmented files
that will be moved. Open files cannot be defragmented, so you must choose a period
of relatively low file access activity to run the Disk Defragmenter utility. A Disk Defrag-
menter run against the logical volume pictured in Figures 5-35 and 5-36 took over 2
hours on an otherwise idle system. During that period, the logical volume was so busy
with defragmenting activity that the volume could sustain very little other I/O activity
from other sources. Try to pick a time to run the Disk Defragmenter utility when the
volume is otherwise idle.

Volumes can become excessively fragmented after any activity that adds a large
number of files or folders to the volume. For example, consider defragmenting vol-
umes immediately after installing software or after performing an upgrade or a clean
install of Windows. For maximum benefit, defragment a volume just before you run
backup or file replication utilities that move large numbers of files from disk-to-tape
or disk-to-disk.

Figure 5-37 shows the volume depicted earlier after defragging. The analysis report in
Figure 5-38 provides additional detail.

Figure 5-37 Volume after defragmenting

504 Microsoft Windows Server 2003 Performance Guide

Figure 5-38 Analysis report providing additional detail of the defragmentation

The volume contained 30 GB of data on a volume with only 23% free space. Because
there is adequate free space to aid and abet the reorganization process, following the
defragmentation run, there were no fragmented files remaining. Keep in mind that if
there are open files while the utility is running, it may not be possible to defragment
them completely. The Disk Defragmenter utility ran for slightly more than 2 hours to
achieve this result.

Another way to evaluate the success of a defragmentation is to test the performance of
the file system before and after the Disk Defragmenter utility has run. Table 5-18
shows the results of a file copy operation that moved 2.37 GB of data from this disk to
another disk on a separate server, connected using a 100-megabit Ethernet network.
In this case, both the source and destination disks were defragmented prior to repeat-
ing the test.

After defragging the disk, disk response time improved 43 percent, reflecting an
increased number of uninterrupted sequential accesses. Sequential operations benefit
so greatly from an on-board disk buffer, as demonstrated earlier, that any tuning action
you take to increase the number of sequential accesses usually pays big dividends.

Table 5-18 Disk Performance Before and After Defragmentation

Timing IOPS Disk Response Time (ms) Elapsed Time (min)

Before 34.5 5.6 23

After 33.9 3.2 20

% Improvement −2% +43% +13%

Chapter 5: Performance Troubleshooting 505

Understanding File-Level Access Patterns

Whenever you find an overloaded disk volume, it is often important to know which
applications are contributing to the physical disk I/O load. To attempt to balance disk
I/O manually across physical disks, for example, you need to understand which files
are being accessed.

The most effective way to determine which files are in use is to gather trace data. The
following command sequence will collect disk I/O trace data and file details, along
with process identification data:

logman create trace file_detail_trace -p “Windows Kernel Trace” 0x00000301 -

o C:\Perflogs\file_detail_trace -v mmddhhmm -f BIN -rf 600 -u admin “adminpassword"

logman start trace file_detail_trace

Caution You must be careful when you collect Disk I/O and File Details trace data,
because of the size of the trace data files that might result. Be sure to limit the dura-
tion of the trace so that the trace log file does not grow too large.

After you collect the I/O trace event data, use the Tracerpt program to generate a file-
level report and also generate a comma-delimited text file, which you can use to inves-
tigate file access patterns further using an application like Excel:

tracerpt file_detail_trace_08260156.etl -o file_detail_trace_08260156.csv -

report file_detail_trace_08260156.htm -f HTML

The File I/O report generated by the Tracerpt program looks similar to Table 5-19.

Table 5-19 Files Causing Most Disk IOs

File Disk Reads/Sec
Read size
(KB) Writes/Sec

Write
Size (KB)

C:\pagefile.sys 0 9.909 4 4.444 62

Idle 0x00000000 9.909 4 4.444 62

C:\$Mft 0 3.653 3 1.025 5

Idle 0x00000000 3.653 3 1.025 5

D:\temp\PerfLogs\SMB LAN
File transfer capture.cap

0 0.000 0 3.682 63

Idle 0x00000000 0.000 0 3.682 63

C:\WINDOWS\system32\
config\software

0 2.445 4 0.225 14

Idle 0x00000000 2.445 4 0.225 14

506 Microsoft Windows Server 2003 Performance Guide

The file I/O report shows the five files that were most active during the trace. (Only
the top four entries are illustrated in Table 5-19.) Note that the I/O rates reported
reflect the duration of the trace. If a file is active only during a small portion of the
trace, the average I/O rate reported will reflect that long idle interval. On most file
servers, for example, accesses patterns tend to be distributed over a wide range of files,
with very few files active for very long.

Because file system I/O requests are normally routed through the Cache Manager and
handled asynchronously, it is difficult to tie the physical disk activity to the originating
application process. You might have to do some detective work to tie the file name
back to the application that initiated the request. Read activity to Pagefile.sys indicates
sustained demand paging operations on program code or data segments. Notice that
the average block size of read requests to the paging file are quite large, reflecting
aggressive prefetching of contiguous pages from the paging file during the period that
the trace was active. Disks with on-board cache buffers handle sequential requests
very quickly, so this is an effective disk performance optimization.

File details Directing Tracerpt to produce a comma-delimited output file containing
the file I/O event trace detail data that you can access using Excel is useful for finding
hidden sources of disk activity. Using Excel to leaf through mountains of trace data is
less than ideal, but with a little ingenuity you can make the application work for you.
If you open the comma-separated version of the trace file in Excel or Microsoft Note-
pad, you will see a display similar to Table 5-20.

Each trace entry contains a set of standard header fields, followed by User Data, which
are data fields specific to the event type. The beginning of the file contains a series of
SystemConfig entries and other trace data that helps you identify processes, threads,
and open files. For troubleshooting disk performance problems, the DiskIo and FileIo
events are the most important.

Table 5-20 A File Details Event Trace Example

Event Name Type TID Clock-Time
Kernel
(ms)

User
(ms) User Data

EventTrace Header 0x00000F88 127063944258190000 0 0 131072

EventTrace Header 0x00000F88 127063944258190000 0 0 769

SystemConfig CPU 0x00000F88 127063944258591000 10 0 1595

SystemConfig Video 0x00000F88 127063944258991000 10 0 67108864

SystemConfig Video 0x00000F88 127063944258991000 10 0 67108864

SystemConfig PhyDisk 0x00000F88 127063944258991000 10 0 0

Chapter 5: Performance Troubleshooting 507

Follow these steps to work your way through a DiskIo trace file using Excel:

1. Use the Window, Freeze Panes command to establish the first line as a column
header that will remain fixed at the top of the display as you scroll through the
data.

2. Replace the User Data label in cell G1 with Disk Number. The first User Data
field in the DiskIo trace data contains the Disk Number.

3. Add the remaining column header names for the DiskIo User Data fields. Place
the following text in cells H1-L1: IRP Flags, Blksize, RespTm, Byte Offset, File
Object.

4. Find the first DiskIo entry in the Event Name column. You will see something
like the following results.

Notice that a FileIo Name trace entry immediately follows the DiskIo entry. The User
Data fields for FileIo Name Event entry contain the same File Object ID as the previ-
ous DiskIo event, followed by the file name. By matching the File Object ID of the Dis-
kIo event with a subsequent FileIo Name event, you can determine the file being
accessed.

The DiskIo trace User Data provides information about the type of I/O request, the
block size, the byte offset into the file system, and the response time. The response
time of the DiskIo event is recorded in timer units, which is a function of the -ct clock
timer parameter for that specific trace log.

Tip Response time of DiskIo events is measured and reported in the trace event
records in timer units. The -ct parameter determines the clock resolution of the timer
units used in the trace. For best results, use -ct perf when you are gathering file-level
I/O details. Neither the default value for the system clock resolution nor the more effi-
cient cycle time setting will provide enough granularity to accurately measure the
response time of individual I/O events.

508 Microsoft Windows Server 2003 Performance Guide

The IRP flags tell you the type of operation:

#define IRP_NOCACHE 0x00000001

#define IRP_PAGING_IO 0x00000002

#define IRP_MOUNT_COMPLETION 0x00000002

#define IRP_SYNCHRONOUS_API 0x00000004

#define IRP_ASSOCIATED_IRP 0x00000008

#define IRP_BUFFERED_IO 0x00000010

#define IRP_DEALLOCATE_BUFFER 0x00000020

#define IRP_INPUT_OPERATION 0x00000040

#define IRP_SYNCHRONOUS_PAGING_IO 0x00000040

#define IRP_CREATE_OPERATION 0x00000080

#define IRP_READ_OPERATION 0x00000100

#define IRP_WRITE_OPERATION 0x00000200

#define IRP_CLOSE_OPERATION 0x00000400

The I/O with IRP flags of 0x00000043 is a hard page fault. Because most file I/O is
diverted to use the system file cache, many DiskIo events appear to be initiated by the
operating system instead of by the original process that requested the data. This is
true of write operations as well. Writes to cached files remain in file cache virtual
memory until they are flushed by a Lazy Writer task. The write to disk occurs later
when it is initiated by a system cache lazy write thread. Alternatively, if the page con-
taining file cache happens to be a candidate selected for page trimming, that page will
be written to disk by the Modifed Page Writer thread. In either case, it is not possible
to tie the event back to the process that originally was updating the file. Of course, the
file name can usually help you determine the process or application that originated
the request.

The following is an ETW example showing a sequence of disk writes to a System Mon-
itor binary log file.

Chapter 5: Performance Troubleshooting 509

The FileIo event that contains the name of the file is followed by nine DiskIo events
that all reference the same File Object ID. Each of these DiskIo events is a 64-KB read
operation of the specified file that is issued by the system file cache, which is prefetch-
ing the file from disk in response to an initial request to read the file from a process. In
this case, the process initiating the file request presumably is the System Monitor con-
sole, which is being used to read in this counter log to check out some of the perfor-
mance data it contains. Notice that the first two requests take in excess of 20 ms,
whereas later requests seem to take only about 10 ms. This might reflect the operation
of the on-board disk cache, which is able to satisfy requests for data later in the file
directly from the device cache.

Network Troubleshooting
In a networked environment, network problems can affect the performance of appli-
cations running on the systems in that environment. Obviously, the network prob-
lems can affect the performance of applications that rely on the network to exchange
data between server and client. In addition, the network might be a key component in
the performance of many lower level tasks. For example, security checks and authen-
tication might use the network, affecting the performance of an application that might
not do any other obvious network-related task. Likewise, servers can be constrained
to service network requests in a timely manner because of contention from their other
workloads. In an increasingly interconnected world of distributed computing, the net-
work plays a major role in the performance of many server applications.

Counters to Log When Troubleshooting Network Performance

The networking measurements that are available parallel the structure of the TCP/IP
stack. At the lowest level—closest to the hardware—are the Network Interface counters.
The IP layer sits on top of the hardware layer, and TCP sits atop IP. The IP and TCP
counters are closely related to each other and to the lower level Network Interface sta-
tistics. The TCP segments that are sent and received are close cousins to the processed
IP datagrams and the Ethernet packets that circulate on the network. These measures
are highly correlated.

Note If you are monitoring the counters for Datagrams Sent on the sender and Dat-
agrams Received on the receiver, and your network adapter supports TCP Large Offload
(aka TCP Segmentation Offload), you will see a larger number of datagrams received
than are being sent. This is because the sender sends down larger datagrams to the net-
work adapter, while the receiver retrieves regular-sized datagrams off the network.

510 Microsoft Windows Server 2003 Performance Guide

Figure 5-39 illustrates the degree to which the Network Interface, IP, and TCP
counters are interrelated. This relationship among the counters implies that a mea-
sure from one layer can often be freely substituted for another. These counters were
drawn from a session in which a large file was being downloaded to test the through-
put of a wireless network interface. Three related counters are shown: Network Inter-
face\Packets Received/sec, IPv4\Datagrams Received/sec, and TCPv4\Segments
Received/sec. The values recorded for Network Interface\Packets Received/sec,
IPv4\Datagrams Received/sec, and TCPv4\Segments Received/sec are almost identi-
cal. Almost every TCP segment corresponded to a single IP datagram, which in turn
was received in a single Ethernet packet.

Figure 5-39 The degree to which the network interface, IP, and TCP counters are interre-
lated

To begin analyzing network performance, log the performance counters listed in
Table 5-21.

Table 5-21 Network Performance Counters to Log

Counter Description

Network Interface(*)* Network Interface performance counters. Log data for all net-
work interface cards (network adapters) except the Loopback
Interface.

IPv4* All IP layer performance counters.

TCPv4* All TCP layer performance counters.

IPv6* All IP layer performance counters.

TCPv6* All TCP layer performance counters.

Chapter 5: Performance Troubleshooting 511

Note If you are monitoring a computer that is used primarily for network-based
applications, such as a Web server or a file server, you should also log performance
counters provided by those services or applications. For example, when monitoring a
print server, you would add the Print Queue object to the list of performance counters
to log.

The measurements that are available for the three primary networking software layers
are throughput-oriented. Bytes, packets, datagrams, and segments sent and received
are the primary metrics. These throughput-oriented measurements are mainly useful
for capacity planning purposes—how much networking bandwidth is required for the
application, what links are currently underutilized, and so on. Diagnosing a perfor-
mance problem involving poor network response time requires measurements from a
different source. This section highlights using the Network Monitor to capture and
analyze individual packets to diagnose network performance problems.

Tip Pay special attention to performance counters that report error conditions,
including these counters:

■ Network Interface\Packets Outbound Errors

■ Network Interface\Packets Received Errors

■ IP\Fragmentation Failures

■ TCP\Segments Retransmitted/sec

■ TCP\Connection Failures

■ TCP\Connections Reset

If networking problems are being reported, any nonzero occurrences of these error
indicator counters should be investigated.

Above the three networking layers of system software are a number of application-ori-
ented protocols, including HTTP, SMTP, FTP, and SMB, that support important net-
working applications. Each of these networking applications also provides related
performance measurements: the Web service counters, the FTP and SMTP counters,
and the Server and Redirector counters, among others.

Counters to Evaluate When Troubleshooting Network Performance

Ideally, you should compare the values of the counters listed in Table 5-22 to the value
of these counters you derived from your baseline analysis. However, if you do not have
a baseline analysis to go by, or the system has changed considerably since you last

512 Microsoft Windows Server 2003 Performance Guide

made baseline measurements, the suggested thresholds listed in Table 5-22 can be
used as very rough guidelines..

Table 5-22 Network Performance Counters to Evaluate

Counter Description Suggested Threshold

Network Interface(*)\
Bytes Total/sec

Bytes Total/sec is the rate at which bytes
are sent and received through the spec-
ified network adapter. This value in-
cludes both data and framing
characters.

Investigate if less than
40% of the value of the
Current Bandwidth
counter.

Network Interface(*)\
Output Queue Length

Output Queue Length is the length of
the output packet queue (in packets).

If this is longer than 2,
there are delays and
the bottleneck should
be found and eliminat-
ed, if possible.

Redirector\Bytes Total/
sec

Bytes Total/sec is the rate at which the
Redirector is processing data bytes. This
includes all application and file data in
addition to protocol information such
as packet headers.

Use this value to determine how much
of the network traffic indicated by the
Network Interface(*)\Bytes Total/sec
counter the Redirector service is re-
sponsible for.

If this value makes up
the majority of the net-
work traffic, this service
should be investigated
further to determine
the cause of this traffic.

Server\
Bytes Total/sec

The number of bytes the server has sent
and received through the network. This
value provides an overall indication of
how busy the Server service is.

Use this value to determine how much
of the network traffic indicated by the
Network Interface(*)\Bytes Total/sec
counter the Server service is responsible
for.

If this value makes up
the majority of the net-
work traffic, this service
should be investigated
further to determine
the cause of this traffic.

RAS Total\
Bytes Transmitted/sec

The number of bytes transmitted per
second.

Use this value to determine how much
of the network traffic indicated by the
Network Interface(*)\Bytes Total/sec
counter the Remote Access Server ser-
vice is responsible for.

If this value makes up
the majority of the net-
work traffic, this service
should be investigated
further to determine
the cause of this traffic.

Chapter 5: Performance Troubleshooting 513

To quickly check current network performance on the local computer, you can also
use the Task Manager Networking tab. The important columns to display at the bot-
tom of the network performance graph are:

■ Adapter Name This is the same name used for the corresponding instance of
the Network Interface performance object, as viewed in System Monitor.

■ Network Utilization This is the percentage of bandwidth available on the spe-
cific network adapter that was used during the display update interval. Unless
the Task Manager display refresh rate is synchronized with System Monitor data
collection, the values displayed for this counter will most likely be slightly differ-
ent from those observed in System Monitor.

■ Bytes per Interval This is the textual, or raw data, value that should corre-
spond to the Network Interface(*)\Bytes Total/sec counter in System Monitor.
You will need to add this column by choosing Select Columns from the View
menu. Unless the Task Manager display refresh rate is synchronized with Sys-
tem Monitor data collection, the values displayed for this counter will most
likely be slightly different from those observed in System Monitor.

The purpose of listing the different network service and application performance
counters is to try to determine which, if any, is handling the most traffic. As men-
tioned earlier, if the server being analyzed is being used for a specific purpose, review

RAS Total\
Bytes Received/sec

The number of bytes received per
second.

Use this value to determine how much
of the network traffic indicated by the
Network Interface(*)\Bytes Total/sec
counter the Remote Access Server ser-
vice is responsible for.

If this value makes up
the majority of the net-
work traffic, this service
should be investigated
further to determine
the cause of this traffic.

Process(LSASS)\
% Processor Time

The percentage of the total processor
time used by the Lsass process.

The Lsass process handles local security,
Active Directory, and Netlogon re-
quests.

If this value is high,
look at these services
to determine the root
cause of the Lsass
activity.

Process(System)\
% Processor Time

The percentage of the total processor
time used by the System process.

The System process handles NetBIOS
and SMB accesses.

If the System process is
unusually busy, look at
these services to deter-
mine the root cause.

Table 5-22 Network Performance Counters to Evaluate

Counter Description Suggested Threshold

514 Microsoft Windows Server 2003 Performance Guide

the performance counters specific to that application or service in addition to the
counters listed in Table 5-22.

The Lsass process and the System process might handle a significant amount of net-
work-related traffic, in addition to their other functions. If network traffic is excessive
and one or both of these processes show higher-than-normal processor activity, the
traffic and processor activity might be related.

LAN Performance

In general, Local Area Network problems center on throughput and response time
issues. Configuring LANs for optimal throughput and least response time by reducing
congestion and minimizing contention for shared resources is the principal concern.
The Network Interface counters provide genuinely useful measurement data regard-
ing bandwidth utilization—with three major caveats:

■ The Network Interface counters reflect only the host computer’s view of net-
work traffic. You must aggregate the traffic reported in the Network Interface
counters across all the servers on a LAN segment to get an accurate picture of
the entire network. This is best accomplished by relogging the Network Inter-
face counters from separate machines to text format files and processing them
together using an application like Excel.

■ Network activity associated with retransmits because of congestion or dropped
packets is aggregated across the whole networking layer, and there is no way of
isolating the retransmits to a single Network Interface for investigation. This
makes it difficult to determine which culprit is causing the retransmissions and
degrading throughput.

■ The Network Interface\Current Bandwidth counter reflects the theoretical max-
imum capacity of the link. If the link is running in a degraded mode because it
negotiated a lower speed with some remote peer, that is not reflected in this
counter’s value.

The Network Interface counters provide much needed help in planning for network
capacity. The statistics are economical and easy to gather. Compared to network
packet sniffers, for example, they provide comprehensive, concise, and accurate infor-
mation on network load factors. Relying on short-lived packet traces to plan for large-
scale enterprise networks is very short-sighted, compared to utilizing the Network
Interface counters to plan for network capacity. Nevertheless, for troubleshooting net-
work performance problems, packet traces are greatly preferred because they supply

Chapter 5: Performance Troubleshooting 515

a clear and unambiguous picture of events as they occur on the network. For more
information about the use of the Network Monitor, the network packet tracing tool
included with Windows Server 2003, see the section in this chapter entitled “Network
Monitor Packet Traces.”

Network Capacity Planning

With typical transmission latencies of 1 µsec or less, LAN technology is characterized
by rapid response times over short distances. When LAN performance is not ade-
quate, usually the reason is a shortage of resources on one of the host systems, or con-
gestion on the wire that introduces major delays in successful LAN transmissions

The Network Interface counters indicate current throughput levels on that hardware
interface. Even though the theoretical capacity of a link might be 10, 100, 1000, or
10,000 megabits per second, the effective throughput of the link is normally slightly
less because of the overhead of protocol layers.

Tip Ethernet segments can usually saturate up to 95 percent of the theoretical net-
work capacity. The effective utilization of an Ethernet link is reduced because of the
extra network traffic and latency that gets generated from retransmits or dropped
packets. Ethernet retransmits start to occur with some frequency as latency increases
on the line or when network adapter buffers become saturated.

When network bandwidth is not adequate for the current tasks, you might need to
upgrade your network infrastructure to provide additional bandwidth for LAN traffic.
Some or all of the following upgrade paths should be considered:

■ Upgrade hubs to switches Whereas wiring hubs provide bandwidth that must
be shared across all ports, switches provide dedicated bandwidth between any
two ports involved in a transmission. Collisions still occur on switched net-
works when two clients attempt to transmit data to the same station at the same
time.

■ Upgrade to faster interfaces The upgrade path could be accomplished by
swapping out all the Ethernet interface cards and the switches used to intercon-
nect them, thus avoiding the need to change the wiring infrastructure. During a
transitional phase, until all network interfaces along a segment have been
upgraded to support the higher clock transmission rates of the faster protocol,
the segment is forced to run at the speed of its slowest component.

516 Microsoft Windows Server 2003 Performance Guide

Adoption of 10-gigabit Ethernet technology is currently proceeding slowly
because it often requires a costly upgrade of the wiring infrastructure, too.

■ Split over-utilized segments into multiple segments If one network segment
appears to be saturated during peak periods, it can often be segmented further
to create additional capacity.

■ Use TCP/IP offload TCP Offload Engine (TOE) is a technology touted by many
hardware vendors to increase effective network bandwidth, especially with
higher speed interfaces. TCP offload performs most common TCP/IP functions
inside the network interface hardware, significantly reducing the amount of
host CPU resources that need to be devoted to processing networking traffic.

Note If the underlying network adapter supports TCP Segmentation Off-
load and the feature is enabled, FTP and other network-oriented protocols
might be able to move a 64-KB block from one location to another using a
single interrupt.

Another strategy for improving the performance of local area networking is to shift the
workload for disk-to-tape backup of network clients to direct-attached or SAN-
attached devices. Such “LAN-free” backups benefit from the use of the Fibre Channel
protocol, which was specifically designed to optimize I/O device throughput. Com-
pared to TCP/IP, Fibre Channel performs packet defragmentation and reassembly in
a hardware layer to reduce the load on the host computer. A network-oriented proto-
col like FTP or SMB requires 45 Ethernet packets to move a 64 KB chunk of a file, with
each packet interrupting the host machine so that it can be processed by the TCP/IP
software layer in Windows Server 2003. Note that considerably fewer interrupts will
be needed if the network adapter uses Interrupt Moderation. A single SCSI command
issued over a Fibre Channel link can accomplish the same result with only one host
interrupt required.

Server Performance Advisor System Network Diagnosis

Server Performance Advisor (SPA) is a server performance diagnostic tool developed
to diagnose root causes of performance problems in a Microsoft® Windows Server™
2003 operating system, including performance problems for network-oriented Win-
dows components like Internet Information Services (IIS) 6.0 and the Active Direc-
tory® directory service. Server Performance Advisor measures the performance and
use of resources by your computer to report on the parts that are stressed under your
workload. The Server Performance Advisor can be downloaded from Microsoft at

Chapter 5: Performance Troubleshooting 517

http://www.microsoft.com/downloads/details.aspx?FamilyID=61a41d78-e4aa-47b9-
901b-cf85da075a73&displaylang=en and is an outstanding diagnostic tool for identi-
fying network-related problems and for capacity planning.

SPA is a tool that alerts the user when a potential problem needs further investigation.
In some instances, SPA offers suggestions for how to improve performance and
resolve some of the issues identified with your workload and configuration. By using
the networking counters and learning the details of the underlying network configu-
ration and the network adapters used on the host system, the user gains a better
understanding of the system behavior and how it can be tuned for optimal perfor-
mance. Some examples of the kind of detail a user gets from SPA include offload fea-
tures on the network adapter and whether the adapter is able to keep up with the
processing of incoming and outgoing traffic. Users also get information about key
TCP registry settings like MaxUserPort and TcpWindowSize and whether they might be
affecting their performance.

Figure 5-40 is a snapshot that shows what SPA has to offer. The figure shows that the
user got an alert regarding the Output Queue Length parameter, which normally means
that the network adapter is low on buffer resources and might start dropping packets.
This would lead to retransmits on the link and reduce overall network performance.
Most network adapters offer the option to increase their Receive Buffers to values
higher than their installation defaults.

Figure 5-40 An alert regarding the Output Queue Length parameter

SPA also provides the user with insight about how interrupts are distributed across
the processors and whether the network adapter has support for interrupt modera-
tion. Interrupt moderation allows multiple packets to be sent and received within the
context of a single interrupt issued. This reduces the overall host CPU consumption
and improves overall system performance.

Figure 5-41 illustrates another SPA network performance diagnostic display. Here SPA
displays the Network Offload information table for the network adapter in use. Off-
load features save host CPU cycles as more of the processing gets offloaded to the net-
work adapter, freeing up resources on the host to do more. Web Servers, for example,

518 Microsoft Windows Server 2003 Performance Guide

that use network offload are able to handle more client Web page requests and send
response messages quicker.

Figure 5-41 The network offload information table for the network adapter in use

Network Monitor Packet Traces

The Network Monitor is a built-in diagnostic tool that allows you to capture and view
network packets. To install the Network Monitor, use the Add/Remove Windows
Components function to add the Network Monitoring Tools. This installs both the
Network Monitor program software and inserts the Network Monitor Driver into the
NDIS layer of the networking stack. The Network Monitor Driver enables the Net-
work Monitor to capture network packets as they are being processed. A more power-
ful version of the Network Monitor that lets you view all the traffic on a network
segment at one time is provided with the Microsoft System Management Server. In a
switched network, however, the version of the Network Monitor that is included with
the base operating system is perfectly adequate, because the host NIC will see only
those packets specifically addressed to it.

Using the Network Monitor effectively to solve networking performance problems
requires an understanding of the network protocols that your machines use to com-
municate across the network. These networking protocols are standardized across the
computer industry. If you understand how the major network protocols work from
another context, you can apply that knowledge to the Windows Server 2003 environ-
ment. An outstanding reference work is Microsoft Windows Server 2003 TCP/IP Proto-
cols and Services: Technical Reference. This book provides encyclopedic coverage of the
networking protocols that Windows Server 2003 employs. The discussion here is
intended to build on the basic information provided in that book.

The Network Monitor packet traces help resolve networking performance problems,
and they are also an extremely useful tool for diagnosing a wide variety of other LAN
problems that can impact performance, including:

Chapter 5: Performance Troubleshooting 519

■ Extraneous network traffic associated with error detection and recovery from
unreachable destinations and other configuration problems

■ “Hidden” network traffic associated with authentication and security protocols

■ Extra network traffic originating from hackers, worms, and viruses that have
breached network security

Capturing network packets To begin a Network Monitor capture session, follow
these steps:

1. Run the Network Monitor capture program, Netmon.exe. It is normally
installed in %windir at \system32\netmon.

2. Configure a Network Capture session by selecting a Network and configuring
the Network Monitor capture buffers using the Capture menu. If you configure
a large number of memory-resident buffers, you will be able to capture packets
efficiently, but you might steal RAM from other, active networking applications.
If you are interested only in the performance-oriented information contained in
packet headers, you can save on the RAM needed for a Capture session by
restricting the amount of data you capture per packet.

3. Invoke the Start command from the Capture menu. While the trace session is
active, the Station Stats window is shown, as illustrated in Figure 5-42.

Figure 5-42 The Station Stats window that is shown while the trace session is active

520 Microsoft Windows Server 2003 Performance Guide

4. Stop the capture session by using the Capture menu.

5. Select Save As from the File menu to save a packet trace to a .cap capture file for
subsequent viewing and analysis.

Capture session stats are shown in four separate windows. At the upper left corner is
a series of histograms that report on overall network traffic captured during the ses-
sion. More detailed capture session statistics are provided in the right column. The
session statistics reported in this column include the number of frames captured, the
amount of RAM buffer space utilized, and the number of frames lost when the buffer
overflowed. Some important Network Interface Card (NIC) statistics are also pro-
vided when you scroll down the right column display.

The left middle column shows the amount of network traffic (in packets) that was
transmitted between any two addresses on the network. The bottom window displays
the total activity associated with each network address. For convenience, you can
maintain an Address database that will replace network addresses with names more
suitable for people.

You can display captured data in the Station Stats window. An example, correspond-
ing to the capture session illustrated in Figure 5-42, is shown in Figure 5-43.

Figure 5-43 A display of captured data from the Station Stats window

Chapter 5: Performance Troubleshooting 521

This example begins on frame number 55, which is an SMB write command issued as
part of a file copy from the local server to a backup server on the same network seg-
ment. The packet display is divided into three segments. The top segment shows the
sequence of packets (or frames) and includes a description of the contents of each
packet that were captured. The Time field, relative to the start of the capture session,
is given in microseconds. The highest-level protocol present in the frame, which deter-
mines the packet’s ultimate destination application, is also shown. You can scroll the
top window until you find frames of interest. Double-click to zoom in the frame
sequence window, and double-click again to toggle back to the three-panel display.

Tip On a busy network with many concurrent networking sessions in progress, the
packets from each of these sessions are interleaved, presenting quite a jumble of activ-
ity on the Network Monitor capture display. Use filters to eliminate packets from the
display that are not germane to the current problem. You can define filters based on
specific protocols, protocol header fields, or other networking properties.

The middle panel decodes the packet headers associated with the frame highlighted
in the top window. At the highest level are the Frame properties. These include the
time of capture and, if configured, the time difference in microseconds from the previ-
ous frame captured in the sequence.

Important The Frame property that calculates the time delta from the previous
frame is often the Round Trip Time network latency metric that is of prime importance
in network performance and tuning. If the current frame is a reply to the previous
frame, the time delta is the Round Trip Time.

This example shows five levels of protocol headers that are all decoded, including
these three:

■ Ethernet packet header fields These show the source and destination network
MAC addresses.

■ IP header fields These include the source and destination network IP
addresses and the TTL value that is interpreted as the hop count.

■ TCP header fields These include source and destination Ports, Sequence Num-
ber, Acknowledgement Number, Flag bits, the AdvertisedWindow size, and Options.

522 Microsoft Windows Server 2003 Performance Guide

Because this packet is an SMB Write command, NBT and SMB headers are also
included in this display. The networking application protocols that the Network
Monitor can decode for you include HTTP, FTP, SMTP, DNS, ICMP, DHCP, ARP,
and MS RPC.

Click on a plus sign (+) to expand the display and see more information about indi-
vidual header fields.

The bottom panel displays the byte stream associated with each packet that was cap-
tured. It is displayed in parallel in hex and in ASCII. The portion of the packet header
decoded in the middle panel is highlighted in reverse video in the bottom panel data
display.

LAN Tuning

Because latency—the amount of time it takes to deliver and confirm the delivery of
network packets—is minimal in a LAN, the important configuration and tuning
parameters associated with TCP session control have limited impact on overall per-
formance. You can observe these session control mechanisms in operation, but
tweaking the parameters themselves is usually of little benefit on most LANs, except
in extreme cases.

The tuning parameters that can have the most influence on LAN performance are the
ones related to TCP Flow Control and Congestion Control. For LANs, these include
the TCP Advertised Window and Selective Acknowledgement (SACK).

TCP congestion control The TCP Host-to-Host layer of networking software is
responsible for session control, ensuring that all packets transmitted by one host are
received at their destination. TCP is also responsible for congestion control, which
provides adaptive transmission mechanisms that allow the host computer to detect
network congestion and adjust accordingly. TCP congestion control revolves around
detecting two congestion signals:

■ Receiver congestion A Window-full condition which forces the receiver to
shrink its advertised congestion window. The sender must slow down its rate of
data transmission to allow the receiver to catch up and process all the data the
sender has sent. In general, this mechanism is designed to keep a fast sender
from overloading a slower receiver.

■ Network congestion TCP assumes that any packet loss results from congestion
in the network—an overloaded network router or adapter on route to its destina-
tion dropped the packet. Accordingly, retransmission of an unacknowledged
segment causes the sender to back off from its current transmission rates so that
it does not contribute to further performance degradation.

Chapter 5: Performance Troubleshooting 523

A key aspect of TCP congestion control is the AdvertisedWindow parameter. The Adver-
tised Window represents the maximum number of bytes per connection a sender can
transmit at any one time without receiving a corresponding Acknowledgement reply
stating the transmission was successful. Once the Advertised Window is full, the
sender must wait. The default Advertised Window for a Windows Server 2003–based
machine that is running 100-MB Ethernet is about 17 KB. (For 1000-MB Ethernet, the
default Advertised Window on Windows Server 2003 is 64 KB.) The default TCP
Advertised Window can be changed by adding the TcpWindowSize registry key to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parame-
ters, as illustrated in Figure 5-44.

Figure 5-44 Changing the default TCP Advertised Window

In this example, TcpWindowSize is set to 65,535, the largest value that will fit in the
TCP header’s 16-bit Advertised Window field. Tcp1323Opts are also coded in this
example to enable Window scaling to support Advertised Window sizes greater than
64 KB. Using Windows scaling, Advertised Windows as large as 1 GB can be specified.

Some additional TCP tuning parameters that complement having a large Advertised
Window are also enabled in this example. Tcp1323Opts was coded here to enable the
Timestamps option. The Timestamps option offers a significantly more accurate
mechanism for TCP to use to calculate network round trip time (RTT), a key element
in TCP’s decision concerning when to retransmit an unacknowledged packet. If TCP
waits too long to retransmit an unacknowledged packet, application response time
suffers. On the other hand, if TCP is too quick to retransmit an unacknowledged
packet, this speed can further contribute to the network congestion that caused the
initial packet to be dropped. With the Timestamps option enabled, TCP uses the
round trip time of a packet and its associated acknowledgement packet to maintain a
current value for response time. The observed RTT is used to calculate a suitable

524 Microsoft Windows Server 2003 Performance Guide

retransmission time-out value per session. TCP uses a smoothing function applied to
the session’s response time history that gives greater weight to the most recent values
of response time. This allows TCP to adapt to changing network conditions quickly,
for example, when a router goes offline, and a longer path is required to deliver pack-
ets to the same destination.

The SackOpts parameter is also coded explicitly in this example, although this explicit
coding is not necessary because SACK (Selective Acknowledgement) is enabled by
default in Windows Server 2003. With larger Advertised Windows, it is important to
enable SACK so that the sender does not have to retransmit an entire window’s worth
of data simply because one packet was lost.

LAN tuning example: disk backup The example in Figure 5-45 illustrates how
these TCP congestion control mechanisms operate in the context of a disk-to-tape
backup operation that can be expected to push the limits of LAN throughput capacity.
Because the receiver has an Advertised Window of 64 KB, the sender fires back one
packet after another, beginning at Frame 55, to execute the SMB Write command.
Using Slow Start, the sender increases the number of packets it sends at a time, up to
the full size of the Advertised Window. At this point in the session, the full 64-KB
Receive Window is available, so the sender starts sending messages without bother-
ing to wait for a reply. In fact, 20 consecutive messages are transmitted before an ACK
from the first send is received at Frame 76. The first reply message received acknowl-
edges receipt of Frame 56, so the Advertised Window is still not full.

Figure 5-45 TCP congestion control mechanisms in the context of a disk-to-tape backup
operation that can be expected to push the limits of LAN throughput capacity

Chapter 5: Performance Troubleshooting 525

At Frame 88, another ACK is received, this time explicitly acknowledging receipt of
Frames 57 and 58. At this point, the sender has transmitted 27 segments that have
still not been acknowledged. But the 64-KB Advertised Window is still not full, so the
sender can continue to transmit. Frames 89–99 are then transmitted, which com-
pletes the SMB Write command. The last frame in the sequence contains only 188
bytes of data to complete the sequence of sending a 60-KB block of data over the wire.
It takes 43 Ethernet packets to transmit this block of data from one machine to
another. This helps to explain why TCP/IP LANs are so much less efficient than direct
attached Storage Area Networks at moving large blocks of data around. A single SCSI
disk command can write a 60-KB block to disk and requires servicing only a single
device interrupt. On an Ethernet LAN, the same amount of data transfer requires ser-
vicing multiple Network Interface Card interrupts. (If the NIC does not support inter-
rupt moderation, all 43 interrupts might need to be serviced.) This should also help
to explain why LANs are so hungry for bandwidth during disk backup and other
throughput-oriented operations.

Larger TCP Advertised Windows allow two TCP peers much greater latitude to send
and receive data on a LAN segment without one machine having to slow down and
wait for the other so frequently. Receivers do not have to send an ACK for every
packet. Acknowledgements are cumulative, so one ACK packet can acknowledge
receipt of many packets. With SACK, the ACK message can even indicate which spe-
cific packets in the byte sequence have not been received yet so that the entire
sequence does have to be retransmitted.

In Frame 137 (Figure 5-46), the sender finally slows down. Perhaps it was necessary
to read the local disk to get the next block of data to send. Frame 137 is transmitted
10.014 milliseconds after the previous frame. This gives the receiver an opportunity to
catch up with the sender—a sequence of ACK messages follow in Frames 138–146.

In tuning a LAN to achieve higher throughput levels, one goal is to increase the aver-
age size of packets that are transmitted. In TCP, every packet transmitted must be
acknowledged. In a poorly tuned LAN, you will observe that every third or fourth
packet is an ACK. Because ACKs are usually sent without a data payload, ACKs are
minimum-sized TCP packets, normally no bigger than 50–60 bytes, depending on
how many options are coded. A full Ethernet packet is 1514 bytes. If every third
packet is an ACK, the average packet size is (2×1514+60)/3, or 1029 bytes, substan-
tially reducing the effective capacity of the link.

526 Microsoft Windows Server 2003 Performance Guide

Figure 5-46 A sequence of ACK messages follow Frame 137

This example demonstrates how a proper setting for the Advertised Window can help
boost the effective network capacity by 10–20 percent. Returning to the overall capture
session statistics in Figure 5-42, you can see that the average of number of frames per
second is about 3400, with more than 1000 bytes per frame. The next opportunity for
tuning this disk-to-disk backup operation is to initiate a second backup stream that can
run parallel with the first. The second stream can be transmitting data during the slack
time that begins at Frame 137. Conceivably, a second parallel backup stream could
increase throughput over the link by a factor of 2 since there is ample line capacity.

WAN Performance

Whereas bandwidth considerations dominate the performance of low latency LANs,
WAN performance is dominated by latency—the time it takes to send a message to a
distant station and receive an acknowledgement in reply. The TCP flow control mech-
anism allows a sender to fill an Advertised Window with data, but then the sender
must wait for an acknowledgement message in reply. The time it takes to send a
packet and receive an ACK in reply is known as the round trip time, or RTT.

This section discusses the impact of round trip time on WAN throughput and capac-
ity. It shows how to calculate the RTT of a remote TCP session using the Network
Monitor and the Tracert utility. It also shows how to use the RTT to determine the
effective capacity of a link that will be used for long-haul transmissions. This is useful
when you need to size a link that is going to be used to transfer large amounts of data
regularly between two points on your network that are separated by a large distance.

Chapter 5: Performance Troubleshooting 527

Round Trip Time

Round trip time (RTT) is the time it takes to send a message and receive an Acknowl-
edgement packet back from the receiver in reply. Together with the Advertised Win-
dow size, RTT establishes an upper limit to the effective throughput of a TCP session.
If the RTT of the session is 100 ms for a long distance connection, then the TCP ses-
sion will be able to send a maximum of only 1/RTT windows’ worth of data per sec-
ond, in this case, just 10 windows per second. RTT effectively limits the maximum
throughput you can expect on that connection to be:

Max throughput = AdvertisedWindow RTT

RTT is a crucial factor if you are planning to provide a networking capability that
needs to move large amounts of data across relatively long distances. For planning
purposes, you can use ping, the Tracert utility, or the Network Monitor to observe the
actual RTT of a TCP connection.

Figure 5-47 shows a SYN packet being sent from a Windows Server 2003–based
machine to establish a TCP connection with a remote machine that happens to be a
Web server at http://www.msdn.microsoft.com, the Microsoft Developer Network
Web site. Note the time of the transmission for Frame 31121: 1182.710654. The
sender requests a session on Port 80, which is the HTTP socket for Web servers, and
advertises a TCP window of 64 KB.

Figure 5-47 A SYN packet sent from a Windows Server 2003–based machine to establish a
TCP connection with a remote machine

528 Microsoft Windows Server 2003 Performance Guide

Figure 5-47 shows the SYN-ACK reply from the remote location. The Web server reply
is received at 1182.800784, 90 milliseconds later. This RTT of the initial SYN, SYN-
ACK sequence is not used by TCP in any way. Subsequently, TCP samples the actual
RTT of a session once per Advertised Window, or, if the Timestamps option is enabled,
is able to measure the RTT for each ACK message returned. In this instance, RTT was
observed to be 90 ms.

It is a good idea to gather more than one sample of the RTT. Tracing a few of the sub-
sequent Send-ACK sequences in the Network Monitor capture will normally do the
trick. Returning to Figure 5-47, an HTTP GET Request to the Web server is issued at
Frame 31124. Frame 31125 is an ACK response to Frame 31124, received some 120
ms. later. Frame 31126, the beginning of an HTTP Response Message generated by the
Web server, is received 640 milliseconds following the ACK. Interestingly, this 640 ms
includes the Web server application response time.

Using Tracert to measure RTT The Tracert utility can also be used to observe and
measure the RTT between two IP addresses. With Tracert, as opposed to ping, you can
see the route details for representative packets dispatched from the sender to the des-
tination. Compared to a Network Monitor packet trace, the RTT that Tracert calculates
ignores any server application response time. In that sense, using Tracert is similar to
using the RTT of the initial SYN, SYN-ACK sequence, because no application layer
processing is involved in that exchange either.

The Web server’s IP address that Tracert is attempting to contact has an IP address of
207.46.196.115, according to a Network Monitor trace. An additional complication in
this case is that this IP address is likely to be a virtual IP address associated with a Web
server cluster, which might lead to some additional variability in the RTT values you
can observe.

The RTT for a long distance request is a function of both the distance between the
source and destination stations and the hop count. The TTL field in the IP header
for the SYN-ACK is 47. TTL is decremented by each router on the path to the final
destination. However, a TTL value can be difficult to interpret because you do not
know the starting TTL value used by the machine. The Windows Server 2003
default for a starting TTL value is 128. It seems unlikely that the Web server return-
ing the SYN-ACK is 81 hops away. A TTL starting value of 64 is more likely, suggest-
ing that a packet on the connection makes 17 hops on the way to its final
destination. You can verify the number of hops in the route using the Tracert utility,
as illustrated in Listing 5-11.

Chapter 5: Performance Troubleshooting 529

Listing 5-11 Using the Tracert Utility
C:\>tracert 207.46.196.115

Tracing route to 207.46.196.115 over a maximum of 30 hops

1 <1 ms <1 ms <1 ms 192.168.0.1

2 1 ms 1 ms 1 ms 192.168.1.1

3 51 ms 49 ms 50 ms user1.net295.fl.sprint-hsd.net [209.26.27.1]

4 65 ms 58 ms 57 ms user109.net590.fl.sprint-hsd.net [65.41.11.109]

5 60 ms 58 ms 56 ms 209.26.245.33

6 58 ms 55 ms 58 ms 209.26.245.18

7 57 ms 59 ms 57 ms sl-gw11-orl-10-2.sprintlink.net [160.81.34.73]

8 62 ms 63 ms 60 ms sl-bb20-orl-0-0.sprintlink.net [144.232.2.232]

9 80 ms 80 ms 77 ms sl-bb21-atl-10-2.sprintlink.net [144.232.19.169]

10 93 ms 88 ms 92 ms sl-bb21-chi-11-0.sprintlink.net [144.232.18.33]

11 92 ms 90 ms 89 ms sl-bb25-chi-13-0.sprintlink.net [144.232.26.90]

12 133 ms 133 ms 134 ms sl-bb21-sea-1-0.sprintlink.net [144.232.20.156]

13 133 ms 136 ms 132 ms sl-bb21-sea-15-0.sprintlink.net [144.232.6.89]

14 134 ms 146 ms 137 ms sl-microsoft-23-0.sprintlink.net [144.224.113.146]

15 137 ms 184 ms 140 ms pos0-0.core2.sea2.us.msn.net [207.46.33.185]

16 139 ms 137 ms 137 ms 207.46.33.237

17 137 ms 136 ms 139 ms 207.46.36.78

18 133 ms 134 ms 138 ms 207.46.155.21

19 * * * Request timed out.

20 * * * Request timed out.

21 ^C

Because the destination is a virtual address, Tracert will likely not succeed in finding
the complete route. At Hop 15, Tracert succeeds in locating an address on the
Microsoft core network backbone. From there it should be only one or two hops to
the final destination, although Tracert is unable to locate it, and eventually requests
start to time out. Seventeen hops to the destination Web server seems about right. The
approximately 140 ms RTT that Tracert reports for the route is also consistent with
the Network Monitor capture.

Effective capacity of a WAN link The requirement to wait for an explicit acknowl-
edgment message before sending the next block of data constrains the performance
of a TCP/IP session that is established over a Wide Area Network (WAN). The time it
takes to send a message to a remote computer and receive an acknowledgement mes-
sage, conveniently thought of as round trip time, affects the effective capacity of the
link. In WAN performance, the effective link capacity is reduced to the number of
trips/sec that the link can support. Because the number of trips per second = 1/RTT,
and a maximum of AdvertisedWindow bytes can be transmitted once per RTT, effec-
tive capacity is reduced as follows:

530 Microsoft Windows Server 2003 Performance Guide

Effective session capacity = AdvertisedWindow RTT

If, for example, the RTT of a link is 20 milliseconds, the sender can transmit only 50
Advertised Windows full of per second. Assuming an Advertised Window of 17520
Bytes—the Windows Server 2003 default, which is 16K rounded up to twelve 1460-
byte segments—the effective capacity of a WAN connection is this:

876 KB/sec = 17520 0.020

To facilitate bulk data transfers over long distances, using large Advertised Window
values and SACK might be necessary. In the previous example, a 64-KB Advertised
Window improves the effective capacity of the link to 3200 KB/sec.

Be advised that this formula is only a first-order approximation. Because of the man-
ner in which the TCP Congestion Window functions, the effective capacity of a con-
nection over a remote link is apt to be even less.

Congestion Window TCP Congestion Control establishes a Congestion Window
for each session. The Congestion Window ignores the receiver’s AdvertisedWindow at
the start of a session. It uses Slow Start instead, initially sending only two segments
and then waiting for an ACK before sending more data. As part of congestion control
function discussed briefly in Chapter 1, “Performance Monitoring Overview,” a TCP
sender paces its rate of data transmission, slowly increasing it until a congestion signal
is recognized. TCP recognizes two congestion signals for a connection:

■ Receiver congestion Recognized whenever TCP must delay transmission of the
next segment because the receiver’s Advertised Window is full

■ Network congestion Recognized whenever TCP must retransmit a segment

When a congestion signal is received, the TCP sender backs off sharply, either cutting
its current send window in half or moving back into slow start, depending on the type
of network congestion. This is known as Additive increase/Multiplicative decrease to
open and close the send window. TCP starts a session by sending two packets at a
time and waiting for an ACK. TCP slowly increases its connection send window one
packet at a time until it receives a congestion signal. When it recognizes a congestion
signal, TCP cuts the current send window in half (for the most common type of con-
gestion signal) and then resumes additive increase. Additive increase widens the con-
gestion window one packet at a time until the Congestion Window equals the
AdvertisedWindow, the AdvertisedWindow is full, or a network congestion signal is
received. The operation of these two congestion control mechanisms produces a send

Chapter 5: Performance Troubleshooting 531

window that tends to oscillate, as illustrated in Figure 5-48, reducing the effective
capacity of a TCP connection.

Figure 5-48 A send window that tends to oscillate

An approximation of the effective capacity of a WAN link that accounts for the Addi-
tive increase/Multiplicative decrease algorithm, which controls the size of the TCP
Congestion Window, is:

Effective session capacity = (AdvertisedWindow / RTT) × 1/√p

where p is the probability of the session receiving a congestion signal as a percentage
of all packets transmitted. The overall effect of the Additive increase/Multiplicative
decrease algorithm normally is to reduce the effective capacity of a WAN link by
another 25 percent.

To maximize network throughput over a WAN route, it is important to keep p, the
probability of receiving a congestion signal, low. Scanning through a large packet trace
looking for congestion signals—transmission delays caused by an Advertised Window
full condition or a TCP Retransmission following a time out—can be quite tedious,
however. The TCP\Segments Retransmitted/sec counter is very useful in this context.
Almost any nonzero values of the TCP\Segments Retransmitted/sec counter warrant
investigation, especially on machines where bulk data transmissions are occurring.

532 Microsoft Windows Server 2003 Performance Guide

Large values for the TCP Advertised Window serve to diminish the number of Advertised
Window full congestion signals that are received.

Adaptive Retransmission

The calculation of round trip time by the TCP layer is an important component of a
mechanism known as adaptive retransmission, which also looms large in WAN perfor-
mance. The measured RTT of the connection is used to calculate a Retransmission
Timeout (RTO) value that partially governs the error recovery behavior of each TCP
session.

The only means of error recovery available in TCP is for a sender to retransmit data-
grams that were not received correctly, either because of data transmission errors or
IP packet loss. The sender compares the Acknowledgement sequence number with
the sequence number of the next packet in the transmission stream. If the Acknowl-
edgement sequence number is less than the sender’s current SequenceNumber, at
least one packet is missing. The sender cannot tell what happened to the packet—only
that no Acknowledgement was received. If the sender does not perform fast retrans-
mission (discussed later), a transmission timer will fire, assuming that something
probably has gone wrong.

Here is what could have happened to the unacknowledged packet:

■ A router or NIC card detected a damaged packet being sent and dropped it.

■ A router was forced to drop a perfectly good packet on its way to its destination
because of capacity constraints.

■ The ACK packet was damaged in transit and was dropped.

■ An overloaded router dropped the ACK packet because of network congestion.

It is not possible for a sender to distinguish between these possibilities. TCP’s only
recourse is to resend the unacknowledged packet, after delaying long enough to
ensure that an ACK is not forthcoming. Because the WAN technologies in use across
the Internet have become so reliable, fewer and fewer packets are damaged during
transmission. At the time of writing, the main reason unacknowledged packets need
to be retransmitted is that an overloaded router or overloaded network adapter
somewhere along the route dropped them. However, there are exceptions to that
general rule for two types of network traffic where transmission errors are more
common. These two types of network traffic are satellite transmissions and data
sent via wireless links.

Chapter 5: Performance Troubleshooting 533

Tip The TCP\Retransmitted Segments/sec counter reports the rate of retransmis-
sions. Almost any nonzero values of the TCP\Segments Retransmitted/sec counter
warrant investigation, except when wireless or satellite transmissions are involved.

Adaptive retransmission refers to the mechanism TCP uses to determine how long
to wait before retransmitting an unacknowledged packet. If the retransmission tim-
eout is too small, TCP sessions will be sending unnecessary duplicate data transmis-
sions. In this situation, if the TCP session were able to wait a little longer for ACK
messages, these retransmissions could be avoided. Retransmitting a packet unnec-
essarily wastes network bandwidth. Suppose transmission failures result from an
overloaded Layer 3 router that is forced to drop packets. If the route is overloaded,
TCP senders need to be extra careful about retransmissions. You do not want to
have error retransmissions occurring so frequently that they further overload any
routers that are already saturated.

On the other hand, if a TCP session waits too long before retransmission, application
response time suffers. If, in fact, packets are being dropped before they can reach their
intended destination, waiting too long unnecessarily slows down the intended inter-
action with the application.

Retransmission timeout Because routes can vary so much, TCP maintains a
unique retransmission timeout (RTO) value for each active TCP connection. TCP’s
error retransmission behavior is based on the RTT of the specific session. TCP estab-
lishes the RTT of the session at the outset using the TcpInitialRTT parameter, which
governs reconnect transmissions. By default, TcpInitialRTT is set to 3 seconds. There is
an exponential backoff component to retransmissions whereby the retransmission
delay based initially on TcpInitialRTT is doubled for each retransmission attempt.
Once a SYN-ACK packet is returned and a session is established, TCP can calculate
the RTT of the actual connection from subsequent transmission acknowledgements.
TCP uses those measured values of the actual RTT over the connection to determine
a good retransmission timeout value.

During the course of a session, TCP measures the actual RTT. By default, TCP sam-
ples values of RTT once per send window, rather than doing it for every packet sent
and acknowledged. For relatively small send windows, this sampling technique is
adequate.

534 Microsoft Windows Server 2003 Performance Guide

Timestamps option For larger send windows, the rate of sampling RTT values
might be too small to adequately assess current network conditions, which can
change rapidly. Alternatively, Windows Server 2003 supports the RFC 1323 TCP
Timestamps option, which makes it easy for TCP to calculate RTT precisely for every
packet. When the Timestamps option is set, a TCP sender plugs into the header a cur-
rent 4-byte timestamp field. The receiver then echoes this timestamp value back in the
ACK packet that acknowledges receipt of the original send. The sender looks in the
ACK packet for its original timestamp, which is then subtracted from the current time
to calculate the session RTT. When the Timestamps option is specified, TCP can cal-
culate accurately the RTT associated with every send-ACK sequence in the data trans-
mission stream.

Calculating RTO TCP bases RTO on the actual RTT calculated for the session. The
actual RTO calculation uses a weighted smoothing formula as recommended in RFC
1122. This formula is based on the current RTT and the variance between the current
RTT and the mean RTT. This generates an RTO value that responds quickly to sudden
changes in network performance.

TCP will retransmit an unacknowledged packet once the current RTO timeout value is
exceeded. The TcpMaxDataRetransmissions registry parameter determines the number
of times TCP will attempt to retransmit a packet before it decides to abandon the ses-
sion altogether. The default value of TcpMaxDataRetransmissions is 5. After each unsuc-
cessful retransmission, TCP doubles the RTO timeout value used. This use of
exponential backoff parallels Ethernet’s collision avoidance mechanism; once retrans-
mission needs to occur, it is good idea for TCP to extend the delay time between
retransmissions to avoid making a congested network situation even worse.

Karn’s algorithm A problem arises in calculating RTT for a successfully retransmit-
ted packet. If Timestamps are not in use, TCP cannot tell whether the ACK received is
for the initial packet or for one or more of the retransmitted packets. Windows Server
2003 ignores RTT values for any retransmitted packets. However, if time stamps are
used, the echoed time stamp identifies unambiguously which packet transmission is
being acknowledged. The strategy of not measuring RTT on retransmitted packets, as
well as exponentially backing off the retransmission timeout on multiple retransmis-
sions, is collectively known as Karn’s algorithm.

Fast retransmit Suppose a TCP receiver receives a packet out of sequence. In other
words, the packet received contains a SequenceNumber that is higher than the
expected sequence number. The implication is that a missing packet is somewhere in
the sequence. Hopefully, this packet is on its way via a slower route and will arrive

Chapter 5: Performance Troubleshooting 535

shortly. Alternatively, perhaps the missing packet was dropped by a router in flight
somewhere along the route. (IP, of course, by design is not a reliable delivery service.)

Fast Retransmit is a mechanism for a receiver that has received a packet out of
sequence to inform the sender so that the packet can be retransmitted without wait-
ing for the retransmission timeout value to expire. This is a bit tricky, because if the
packet is on its way via a slower route, retransmitting it is a waste of network band-
width. On the other hand, forcing the receiver to wait for the RTO value to expire
might engender an unnecessarily long wait, especially as additional packets from the
same session start to pile up at the receiver’s end.

The receiver, of course, cannot acknowledge a packet it has not received. What the
receiver does upon receipt of an out-of-order packet is send an ACK showing the still
current high water mark of the contiguous byte stream it has received. In other words,
the receiver sends a duplicate ACK. This shows the sender that the connection is alive
and that packets are getting through, although it does not tell the sender precisely
which packets arrived. When these duplicate ACKs arrive back at the sender, the
sender responds by retransmitting unacknowledged packets regardless of whether
RTO triggers the event. This is known as Fast Retransmit. (If SACK is enabled, the
sender can more easily identify missing packets in the byte transmission stream and
just retransmit those. Without SACK, the sender has to start retransmitting all unac-
knowledged packets.)

A registry parameter named TcpMaxDupAcks determines how many duplicate ACK
packets a sender must receive before retransmitting unacknowledged packets. Valid
values for TcpMaxDupAcks are 1, 2, and 3. Windows Server 2003 sets TcpMaxDupAcks
to 2 by default, which is slightly more aggressive than the RFC-2581 recommendation
of 3. The Windows Server 2003 value reflects a more current sense of the reliability of
the Internet.

537

Chapter 6

Advanced Performance
Topics

In this chapter:

Processor Performance . 538

Memory Performance . 608

The System Monitor Automation Interface. 628

This chapter discusses a variety of advanced performance topics. These topics are pri-
marily important when planning for very large application servers, and they do not
lend themselves to ready characterization and easy answers. Tackling them demands
a strong technical background, some of which this chapter can supply. The discussion
here assumes you have read and understood the major concepts that were introduced
in Chapter 1, “Performance Monitoring Overview,” and reinforced in their practical
implications throughout the other chapters.

This chapter also documents the use of several advanced configuration and tuning
parameters that are available. It is highly recommended that you attempt to manipu-
late these tuning parameters only after conducting a thorough study of the current
environment, and only after you understand what can go wrong if you make a change
in any of these sensitive areas.

The first part of the chapter focuses on a variety of processor hardware performance
concerns, beginning with the pipelined superscalar architectures of the server-class
machines that run the Microsoft Windows Server 2003 operating system. This leads
to a discussion of multiprocessing architectures common to machines used as serv-
ers. Because most of these machines are classified as shared memory multiproces-
sors with uniform memory latencies, the bulk of the discussion is on the
performance, tuning, and scalability of this type of machine. Hyper-Threaded multi-
processors are also briefly considered, as well as large-scale Cache Coherent Non Uni-
form Memory Access (ccNUMA) architectures that surpass the capacity limits of
shared memory multiprocessors.

Several advanced memory performance and capacity planning topics are also dis-
cussed. One section focuses on the extended virtual addressing configuration options

538 Microsoft Windows Server 2003 Performance Guide

available for 32-bit Windows Server 2003–based machines and when to use them
when you encounter 32-bit virtual memory constraints on your servers. Note that run-
ning the 64-bit version of Windows Server 2003 and 64-bit native server applications
provides access to a massive virtual address range that renders these tuning and con-
figuration options moot. The memory section also discusses a technique to use for
memory capacity planning that is both useful and easy to apply.

Finally, a section is devoted to documenting the System Monitor ActiveX control
that allows you to script performance monitoring sessions using this graphical user
interface.

Processor Performance
This section focuses on a variety of processor hardware performance concerns. It
begins with a brief account of the dominant architectures used by server-class
machines that run the Windows Server 2003 operating system. Processor time-slic-
ing by the operating system thread Scheduler is then reconsidered; this is followed
by a discussion of the configuration parameter that is provided to control the time-
slicing values used by the Scheduler. This control usually does not have a major
impact on performance on most systems. But because it is one of the tuning knobs
within easy reach, it generates more discussion than would ordinarily be warranted
for a control that normally does so little. The examination here tries to place its
usage into perspective.

The section then returns to hardware performance issues, with a discussion of multi-
processing scalability. The most widely available form of multiprocessing, namely
shared memory multiprocessors with uniform memory latencies, is the primary focus.
Some of the obstacles to successful shared memory multiprocessor scalability are
described, as are the configuration and tuning strategies designed to overcome these
obstacles. A central concern in this section is the application-oriented tuning options
available. These are configuration and tuning options for multithreaded server appli-
cations designed to help them scale effectively on large n-way multiprocessors.

This section also introduces Windows System Resource Manager (WSRM), a new pol-
icy-based performance management tool expressly developed to help automate the
performance management of large-scale multiprocessors running the Windows
Server 2003 operating system. WSRM is a component available with both Enterprise
Edition and Datacenter Edition of Windows Server 2003.

Hyper-Threaded multiprocessers that implement simultaneous multithreading are
briefly considered. These are machines that run two separate instruction streams con-

Chapter 6: Advanced Performance Topics 539

currently on a single processor core. This architecture generates unique performance
considerations. Finally, the ccNUMA architectures used to build the very largest serv-
ers capable of running the Windows Server 2003 operating system are considered.
These machines provide nonuniform memory latency, depending on whether appli-
cation threads are addressing local locations or remote memory locations. Major
changes to the Windows Server 2003 operating system’s Scheduler and virtual mem-
ory manager functions were necessary to support these ccNUMA machines. Addi-
tional scalability issues that might apply to applications running on these ccNUMA
machines are also highlighted.

Instruction Execution Throughput

A basic understanding of processor hardware is relevant to many performance and
capacity planning issues. This background is also useful when selecting among the
wide variety of single and multiple processor hardware alternatives available. It is also
a prerequisite to using some of the advanced processor performance tuning mecha-
nisms on your Windows Server 2003–based machines. This section looks inside a
microprocessor from the standpoint of instruction execution throughput, and offers
steps you can take to improve performance on a large-scale multiprocessor.

Processor Hardware Basics

Processors are machines designed to execute the arithmetic and logical instructions
that form the heart of any computer program. Table 6-1 contains examples of com-
puter instructions used to build typical computer programs.

Table 6-1 Example Computer Instructions

Instruction Examples

Arithmetic operations Add, subtract, multiply, and divide integers

Logical operations Compare two values; test for zero or nonzero values, or positive or
negative numbers; perform logical OR and AND operations

Control operations Conditional and unconditional branch, procedure call, return, trap

Data transfers Load register, store register

String operations String move, string compare

Graphics instructions Perform byte and bit array operations associated with graphical
processing

System control
functions

Set system state, task switching, interrupt, signal processor

Floating point
operations

Add, subtract, multiply, and divide using high-precision numerical
values

540 Microsoft Windows Server 2003 Performance Guide

Instructions operate on data stored in computer memory or in fast, internal memory
locations called registers. Register locations are either named or numbered, as in
GPR0, GPR1, and GPR2, which stand for general purpose register 0–2, respectively.
Any memory location is uniquely and unambiguously identified by its physical
address, which is limited in size by the number of bits used to form the address. Thus,
32-bit registers can obviously be used to address 232 bytes, or 4 GB of RAM. This lim-
itation led to the introduction of new addressing techniques allowing 32-bit systems
to address up to 36 bits of physical addresses, or 236 bytes (64 GB of RAM). 64-bit
machines can in theory address 264 bytes, which is an extraordinarily large number
equal to 18 quintillion bytes, or 1.8 × 1019. However, current implementations of 64-
bit architectures implement fewer actual physical address bits, because as of this writ-
ing, no machine can be built with that much memory.

Note Each 1 kilobyte–segment of computer memory contains 1024 individual
bytes. This shorthand notation constantly leads to confusion. All references here to 1
MB refer to 1024 kilobytes of memory. For example, 232 bytes equal 4,294,967,296
bytes. For the sake of simplicity, this quantity is spoken of as 4 GB. Similarly, 264 bytes
equal 18,446,744,073,709,551,616, which is 18 exabytes. That might seem like an
impossibly large number, but according to a study conducted at the School of Infor-
mation Management and Systems at the University of California at Berkeley, in 1999,
human beings across the world produced about 1.5 exabytes of storable content. This
is equivalent to about 250 megabytes for every man, woman, and child on earth.
Details are available at http://www.sims.berkeley.edu/how-much-info.

A basic throughput-oriented measure of a computer’s capacity is its Instruction Exe-
cution Rate, or IER. A processor’s IER is a function of its clock speed and the number
of instructions executed each clock cycle. Instruction execution rate also depends on
the specific instruction mix and other factors. Separately, you might be able to obtain
a measure of the processor’s internal IER by using tools that are available from the
manufacturer. This internal measure of the processor’s current throughput in instruc-
tions executed per second is something far different from the counters you can access
using Performance Monitor, which reports processor utilization as a percent busy.
External measurements of processor utilization that are available using Performance
Monitor often reflect internal processor instruction execution throughput, but not
always.

Processor instruction execution throughput is a complex function of many factors,
both internal and external. The internal factors include the clock speed; the instruc-
tion set; and architectural considerations such as the processor’s pipeline and the

Chapter 6: Advanced Performance Topics 541

sizes of internal caches. Many of the external factors are workload-dependent: the
instruction mix, the degree of instruction-level parallelism, the degree of multithread-
ing, the amount of shared data (on a multiprocessor system), and so on.

Processor Performance Hardware Mechanisms

Processors contain several complex internal mechanisms designed to improve
instruction execution throughput. Most of these complex mechanisms are designed
to be transparent to the execution of typical computer programs, and it is beyond
the scope of this discussion to describe them in any depth. However, the architec-
tural features that do interact with program threads and have significant perfor-
mance considerations are the focus of this section. In the case of those processor
architecture features that have the greatest potential performance impact, specific
Windows Server 2003 operating system functions are available to boost instruction
execution throughput.

Some of the important internal features of the processor architecture that impact
instruction execution throughput include these:

■ Pipelining Pipelining breaks down the individual instructions specified in a
single execution thread into discrete steps, which are known as the pipeline
stages. Individual instructions are executed within the pipeline stage by stage
during successive processor clock cycles. Multiple instructions are then loaded
into the pipeline, and their execution is overlapped so that portions of multiple
instructions are executed in parallel, similar to a factory assembly line.

Note Pipelining is one reason that equating the performance of a processor
with its clock speed is a mistake. The processor clock speed, or the MHz rating of
the processor, is an important indicator of its performance relative to machines
with a similar architecture. Nevertheless, using MHz alone to compare the per-
formance of machines is unreliable, especially across very dissimilar instruction
execution architectures. For example, one machine running at twice the clock
speed might also have an instruction execution pipeline that has twice as many
stages. The number of clock cycles it takes to execute individual instructions also
varies because of many external factors, such as cache effectiveness. Workload-
dependent variability in processor performance also makes it very difficult to
compare the performance of two machines with different architectures by using
simple measures like clock speed. Consequently, clock speed can be a very mis-
leading indicator of processor performance. Historically, that is why the proces-
sor’s MIPS rate (MIPS stands for millions of instructions per second), is often
humorously referred to as a Misleading Indicator of Processor Speed.

542 Microsoft Windows Server 2003 Performance Guide

■ Superscalar execution Superscalar execution is the term used to describe pro-
cessors that contain two or more instruction execution pipelines that can oper-
ate in parallel. Superscalar processors can fetch, execute, and retire multiple
instruction stages in a single clock cycle.

■ Out-of-order execution Out-of-Order execution refers to the ability of a proces-
sor to execute instructions in a different sequence than was originally specified.
When one instruction stage stalls the pipeline, the pipeline might be able to
operate on an instruction that is later in the program’s sequence if that instruc-
tion can be processed successfully in that stage. Of course, if instructions are
executed out of order inside the pipeline, the processor must later ensure that
they are retired in the sequence originally specified by the program.

■ Microarchitecture A complex instruction set computer (CISC), such as one
from the Intel IA-32 line, breaks complex instructions down into simpler micro-
operations, which are similar to the simple instructions used by a reduced
instruction set computer (RISC) system. Micro-operations are designed to be
processed efficiently by the instruction execution pipeline. The microarchitec-
ture of the Intel Pentium Pro and later 32-bit processors in that line also feature
both superscalar execution and out-of-order execution.

■ Predication and speculation Predication and speculation are two techniques
designed to take advantage of the extensive processing resources available on
some processors. Currently, the Intel IA-64 instruction set that is found on 64-
bit Itanium machines supports both predication and speculation. Predication
refers to a method for executing conditional instructions. Historically, pipelined
processors relied on branch predication to load instructions that are subject to
conditional IF-THEN-ELSE–type of logic. Assuming sufficient resources are
available to operate on instructions in parallel, it can be more efficient to use
predication to execute mutually exclusive sets of conditional instructions and
later throw away any results that are not needed.

Another technique called speculation attempts to increase instruction level paral-
lelism by speculatively loading instruction operands from memory and per-
forming computations on those values before it is entirely certain what those
memory-resident values should be. The processor is then prepared to abandon
the results of those operations and redo the operations if intermediate instruc-
tions change the data values that were loaded speculatively.

Chapter 6: Advanced Performance Topics 543

■ Caches Caches are extremely fast banks of memory located on the processor
chip that are used to store recently referenced data and instructions. Processors
often contain several types of caches. To speed up the translation of virtual
addresses to physical memory addresses, for example, there is a special cache
called the Translation Lookaside Buffer (TLB). Using separate caches for data
and instructions is a common practice. The processor can access information
stored in any of these caches significantly faster than it can by accessing RAM
directly, which is why cache effectiveness is so important to instruction execu-
tion throughput. Several performance optimizations built into Windows Server
2003 are associated with the performance of internal caches on multiproces-
sors. These operating system tuning options are discussed in the “Multiproces-
sors” section of this chapter, which discusses these multiprocessing
optimizations.

■ Simultaneous multithreading Simultaneous multithreading entails running
two or more instruction execution threads in parallel on a single physical pro-
cessor core. Intel calls its processors that support simultaneous multithreading
Hyper-Threading, which is available on many of the company’s current proces-
sors. Hyper-Threading is discussed in more detail in the “Hyper-Threading” sec-
tion in this chapter.

64-Bit Architectures

It is also possible to select different architectures from among machines featuring 64-
bit addressing so that you can run those workloads that require extended addressing
capabilities. 64-bit machines can address much larger-sized RAM configurations than
32-bit processors can. 64-bit architectures can definitively alleviate any virtual mem-
ory constraints that you encounter in 32-bit server applications, such as those dis-
cussed in much greater depth later in this chapter. Under those circumstances, the
extended addressing capabilities of 64-bit platforms might be far more significant
than any other processor-related performance factor. Windows Server 2003 supports
up to 64 64-bit processors on a single machine, double the number of 32-bit proces-
sors that are supported, so for computer-bound workloads, it is also possible to con-
figure 64-bit computers that are much more powerful than the largest 32-bit server
machines.

You are currently able to select between two approaches to 64-bit computing for those
applications that demand it. The 64-bit Itanium processors from Intel use an entirely

544 Microsoft Windows Server 2003 Performance Guide

different instruction set from 32-bit Intel processors, but are still capable of running
your existing 32-bit applications in an emulation mode. Itanium processors, which
implement the Intel IA-64 architecture, use what is known as an EPIC design. (EPIC
stands for Explicitly Parallel Instruction Execution.) IA-64 processors rely upon com-
piler technology that can generate efficient code optimized for execution on these
machines. Microsoft compilers in the .NET family of languages currently support
code generation of native IA-64 programs.

Note To take advantage of 64-bit addressing and other advanced features of the Intel
IA-64 architecture, you must port your 32-bit applications to the Win64 platform and
recompile them to execute in 64-bit mode. It is a good idea for developers to use a sin-
gle, common source-code base for the 32-bit and 64-bit versions of their applications.
See the Win64 platform SDK discussion of this subject beginning with an article called
“Getting Ready for 64-bit Windows,” available at http://msdn.microsoft.com/library/
en-us/win64/win64/getting_ready_for_64_bit_windows.asp for more information.

The AMD-64 architecture is the other 64-bit computing alternative currently capable
of running the Windows Server 2003 operating system. The AMD-64 architecture pro-
vides a 64-bit addressing mode, known as long mode, while still maintaining instruc-
tion level compatibility with current 32-bit x86 programs. Support for the AMD-64
architecture is provided in Windows Server 2003 Service Pack 1. In its legacy mode, the
AMD-64 architecture executes standard x86 instructions that are limited to 32-bit
addresses. In long mode, it can still execute, at full speed, compatibility-mode pro-
grams that use 32-bit addresses. In long mode, programs also have access to twice the
number of internal registers compared to a 32-bit x86 machine.

Operating system support for 64-bit platforms The Windows Server 2003 oper-
ating system is available in 64-bit versions for both IA-64 and AMD-64 machines. This
64-bit version is a complete port of the operating system, functionally identical to the
32-bit version, including all the supporting services, administrative tools that plug
into a 64-bit version of MMC, and other applications. You even get a 64-bit version of
Microsoft Notepad!

Running 32-bit applications on 64-bit Windows-based systems The 64-bit ver-
sion of Windows Server 2003 runs 32-bit applications using the WOW64 compatibil-
ity layer. WOW, which stands for Windows On Windows, is intended to run 32-bit
personal productivity applications needed by software developers and administrators.
It is not intended to run 32-bit server applications.

WOW converts programs running in 32-bit mode that issue 32-bit Win32 function
calls to 64-bit mode so that they can be serviced, and then converts them back again.

Chapter 6: Advanced Performance Topics 545

This automatic conversion of 32-bit function calls to 64-bit is known as thunking. The
WOW64 layer performs thunking automatically. WOW64 is implemented in User
mode, as a layer between Ntdll.dll and the Kernel. It consists of the following mod-
ules. These are the only 64-bit DLLs that can be loaded into a 32-bit process.

■ Wow64.dll This DLL provides the core emulation infrastructure and the
thunks for the function calls to Ntoskrnl.exe.

■ Wow64win.dll This DLL provides the thunks for the function calls to
Win32k.sys.

■ Wow64cpu.dll This DLL performs x86 instruction emulation. It also executes
mode-switch instructions on Intel Itanium processors.

WOW allows you to run both 32-bit console and GUI applications, as well as 32-bit
services. The WOW compatibility layer handles tasks such as maintaining different
registry hives for 32-bit and 64-bit programs. A separate system directory for 32-bit
binaries is also provided. The 64-bit binaries still use the System32 directory, so when
a 32-bit application is installed on the system, the WOW layer makes sure to put the
32-bit binaries in a new directory called SysWOW64. It does this by intercepting calls
to APIs like GetSystemDirectory and returning the appropriate directory, determined
by whether the application is running under WOW.

Similar compatibility-mode situations arise with the registry. To allow 32- and 64-bit
COM applications to coexist, WOW64 presents 32-bit applications with an alternate
view of the registry. The 32-bit applications see an HKEY_LOCAL_MACHINE\Soft-
ware registry tree completely separate from the true HKEY_LOCAL_MACHINE\Soft-
ware tree. Having separate registry trees isolates HKEY_CLASSES_ROOT because the
per-machine portion of this tree resides within the HKEY_LOCAL_MACHINE\Soft-
ware tree. Because both 32-bit and 64-bit COM servers can be installed on the system
under the same class identifier (CLSID), the WOW layer must redirect calls to the reg-
istry to the appropriate 32-bit or 64-bit hives. Keep in mind that 32-bit processes can-
not load 64-bit DLLs, and 64-bit processes cannot load 32-bit DLLs. The system does
provide for interoperability between 32-bit applications and 64-bit system services
using COM interfaces. And for desktop applications, they can use the Clipboard to
move data between 32-bit and 64-bit applications.

A 32-bit application can detect whether it is running under WOW64 by calling the
IsWow64Process function. It can obtain additional information about the processor
environment by using the GetNativeSystemInfo function.

546 Microsoft Windows Server 2003 Performance Guide

Time-Slicing Revisited

As discussed in Chapter 1, “Performance Monitoring Overview,” time-slicing is a tech-
nique that keeps CPU-bound threads from executing continuously when other
threads with equal priority are waiting to be scheduled. Windows Server 2003 pro-
vides a default time slice interval (or quantum) that is based on the workload expected
for most application servers. The time slice default value is chosen with larger, multi-
ple processor configurations running server applications like Microsoft SQL Server in
mind. Executing with the Windows Server 2003 defaults, compute-bound threads are
given a healthy slice of processor time before they are subject to preemption by the
Scheduler thread.

Note The actual duration of a time slice is hardware-dependent. The default time-
slice value for Windows Server 2003 is on the order of 100–200 ms, which allows com-
pute-bound threads to execute for a relatively long time slice before being pre-
empted. By contrast, the time-slice value for a workstation running Microsoft
Windows XP is in the range of 20–40 ms. The smaller time-slice value that Windows XP
uses is suitable for most interactive workloads.

Windows Server 2003 does allow you to choose between two time-slicing default val-
ues. To bring up the Performance Options dialog box illustrated in Figure 6-1, from
Control Panel, select the System application, click the Advanced tab, and click the Per-
formance Options button. The Processor Scheduling option presents you with a
choice between Background Services, which runs the long Windows Server 2003
default time slice; or Programs, which runs with the shorter time-slice values assigned
in Windows XP by default.

Figure 6-1 The Advanced tab of the Performance Options dialog box

Chapter 6: Advanced Performance Topics 547

Most program threads have instruction streams that issue voluntary waits (either to
perform disk or network I/O, or to wait on a lock or an event) long before their time-
slice value expires. However, if memory-resident caching is effectively used to avoid
most I/Os to disk, allowing server application threads to execute for a healthy time
slice will improve the responsiveness of many applications. Although the default time
slice might not be optimal for all types of server workloads, if you lack strong evidence
that this control is inhibiting performance, you should not change it.

Exceptions to this general rule do exist, however, for some servers. The most impor-
tant exception is for Terminal Services workloads. Servers set up to manage a large
number of Terminal Services sessions need to run large numbers of processes and
threads associated with desktop applications. Most of these desktop applications run
in short bursts of activity that are not CPU-bound. However, on occasion, interactive
users perform long-running, compute-bound tasks, like recalculating a complex
spreadsheet. A long-running, compute-bound thread can then hold onto the proces-
sor for the duration of a long time slice under the default setting. This potentially
causes other interactive threads long delays waiting in the Ready Queue to be dis-
patched. Under these circumstances, the shorter time-slice interval associated with
Windows XP–based workstations is probably a better choice for a server managing a
large number of Terminal Services sessions.

Tip If interactive workloads associated with Terminal Services dominate on a server,
change the default setting to favor programs instead of background services.

You should also be aware that convincing evidence of the time-slice value being wrong
for your system workload is difficult to come by. The Scheduler is invoked hundreds
of times per second per processor, and any ETW trace data that you gather on context
switching is liable to be voluminous. The only performance counters that can shed
much light on how time-slicing might be impacting the performance of your applica-
tions are the Thread Wait State Reason codes, and gathering them is also subject to
high volume and high overhead considerations. The % Processor Time measurements
available are sampled at a relatively slow rate compared to the number of times the
Scheduler is invoked each second on a busy system. The counters that measure the
rate of Context Switches/sec would be helpful if only scheduler-initiated context
switches were counted, but that is not the case.

548 Microsoft Windows Server 2003 Performance Guide

A final consideration that should caution you about the need to change the default
time-slice setting is that time-slicing accomplishes something only when waiting
threads are running at the same dispatching priority as a CPU-bound application
whose threads are monopolizing the processor. In the absence of a lengthy processor
queue, there is no justification for setting the time-slice value one way or another.
Even in the presence of a lengthy processor queue, manipulating the time-slice param-
eter cannot always improve the situation.

There is a registry setting called Win32PrioritySeparation under HKLM\SYSTEM\Cur-
rentControlSet\Control\PriorityControl that is manipulated when you use the Perfor-
mance Options dialog box. For Windows Server 2003, Win32PrioritySeparation is set
to a binary value of 0x18 by default. The bit setting for Win32PrioritySeparation is
interpreted as three binary 2-bit fields. Working from the left, two bits at a time,
Win32PrioritySeparation encodes this information:

■ Whether a short (workstation) or long (server) time-slice interval is used.

■ Whether fixed or variable time-slice intervals are used.

■ Whether time-slice stretching is performed on behalf of the foreground applica-
tion. Time-slice stretching is something designed for the interactive workloads
found on most workstations to boost the performance of a foreground thread
slightly.

Transform the hex code into binary and you get ‘011000’b. The ‘011000’b encoding
translates into the long (server) time-slice value, fixed length intervals, and no time-
slice quantum stretching for the foreground application. Changing the parameter to
optimize performance for applications changes the Win32PrioritySeparation code to
x’02’. This translates into a short time-slice value, variable length intervals, and
stretching the quantum of the foreground application.

Multiprocessors

Whenever a workload strains the capacity of a single processor, one potential solution
is to add processors to share the load. Machines configured with multiple processors
are called multiprocessors. This section discusses several important aspects of multi-
processor scalability for servers running Windows Server 2003.

Multiprocessing technology lets you harness the power of multiple microprocessors
running a single copy of the Windows Server 2003 operating system. Enterprise-class
server models with multiple CPUs abound. When is a 2-, a 4-, an 8-, or even a 64-way

Chapter 6: Advanced Performance Topics 549

multiprocessor machine a good answer for your processing needs? How much better
should you expect the performance of a server with multiple engines to be? What
sorts of workloads lend themselves to multiprocessing? These are the difficult ques-
tions this section helps you answer.

Shared Memory Multiprocessors

The most common approach to building multiprocessors allows multiple processors
to access a single, common block of shared RAM. This is known as a shared memory
multiprocessor, as depicted in Figure 6-2.

Figure 6-2 A shared memory multiprocessor

Figure 6-2 shows a series of microprocessors connected to memory via a shared mem-
ory bus. Larger enterprise systems use multiple processor buses because of electrical
limitations. Each processor can access all the physical memory configured. The pro-
cessors share—via the operating system’s serialization mechanisms—access to other
resources as well. The keyboard, mouse, video display, disks, network adaptors, and
so on, are all shared by the available processors.

Figure 6-2 does show that each microprocessor has its own private cache or caches.
An earlier discussion of processor caches emphasized that caches play a key role in
the performance of a single processor. Caches are no less essential to the performance
of multiprocessors. Each processor element in a multiprocessor accesses and updates
memory through it own private caches. This raises memory synchronization issues
that do not arise with a single processor system. What happens, for example, when
instructions running concurrently on two separate processors need access to the

Memory Bus
Peripheral Bus

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

RAM

550 Microsoft Windows Server 2003 Performance Guide

same item in memory at the same time? More importantly, what happens when
instructions running concurrently on two separate processors need to access and
change the same item in memory? The way that memory locations that are accessed
and changed by instructions running on one processor in its private cache copy are
communicated to other processors that might need access to the same data items is
known as the cache coherence problem.

Single system image A typical multiprocessor computer presents a single system
image. This multiprocessor relies on one copy of the operating system to manage all
the available system resources and ensure that these resources are used safely by
threads running concurrently on the separate processors. Note that each processor
in a multiprocessor system is capable of executing work independently of another.
Separate, independent threads are dispatched, one per processor, and they all run in
parallel.

Only one copy of the Windows Server 2003 operating system runs, and it controls
which threads run on which processors. This is accomplished by coordinating per-
processor Ready Queues, a good example of a collective resource shared among inde-
pendent threads that are executing in parallel on separate processors. From a perfor-
mance monitoring perspective, you see multiple instances of the processor object
reported in both Task Manager (as illustrated in Figure 6-3) and System Monitor. Sep-
arate idle threads are created, one per processor, making it possible to account for pro-
cessor utilization on a per-processor basis.

Figure 6-3 Task Manager reporting multiple instances of the processor object

Chapter 6: Advanced Performance Topics 551

Symmetric multiprocessing The operating system is capable of scheduling Ready
threads on any available processor. This type of operating system support for a shared
memory multiprocessor is called symmetric multiprocessing, or SMP for short. Win-
dows Server 2003 is fundamentally an SMP operating system, but it does allow you to
configure asymmetric configurations when they are desirable. When asymmetric con-
figurations might be desirable for performance reasons is discussed in more detail in
a later section, “Multiprocessor Configuration and Tuning Strategies.”

One of the reasons the shared memory approach to multiprocessing is popular is that
most programs will run efficiently on a multiprocessor without major modifications.
To take advantage of multiple processors, however, an application program must, at a
minimum, be multithreaded. Running in isolation, a single-threaded process can exe-
cute no faster on a machine with multiple processors than it can on a single processor
machine. On the other hand, a process with two threads might be able to execute
twice as fast on a multiprocessor than it could on a single processor system. This per-
formance boost is easier to accomplish in theory than it is in practice. In practice, writ-
ing multithreaded programs that scale linearly on multiprocessors is very challenging
work.

A multithreaded process running on a multiprocessor introduces serialization and
synchronization issues. Multiple threads running inside the same process have iden-
tical addressability to the same virtual memory locations within the process address
space. Multithreaded applications must be implemented in a thread-safe manner,
which implies that some sort of synchronization be established so that threads can
access and update shared resources safely. The Windows Server 2003 operating sys-
tem supplies a set of synchronization objects and related API services for multi-
threaded application threads to utilize. These synchronization objects include critical
sections, semaphores, and mutexes. You will find corresponding performance counters
that show you the number of these synchronization objects that the operating system
has been requested to create in the Object object. For more information about the use
of these synchronization objects, see the SDK documentation at http://
msdn.microsoft.com/library/en-us/dllproc/base/synchronization_objects.asp. Other
application programming-oriented implications of multiprocessors are discussed later
in the “Thread Pooling” section.

Multiprocessing Scalability

Under ideal conditions, if you added a second processor to a single processor system,
you would expect to have a system with twice the processing power. If you added a

552 Microsoft Windows Server 2003 Performance Guide

third and a fourth processor, you would expect a system with three and four times the
processing power. Ideally, a computer system’s performance would scale linearly with
the number of processors installed. In actuality, the improvement in performance lev-
els you are likely to observe will diminish as you continue to add processors to a
shared memory multiprocessor system.

Workload parallelism One of the crucial factors affecting the scalability of server
application workloads running on shared memory multiprocessors is insufficient par-
allelism in the workload. For example, if you are considering using an 8-way multipro-
cessor to run one of your server application workloads, the first question to ask is
whether your workload generates enough parallel execution threads to take full
advantage of the processor resources available.

If an application process such as Microsoft SQL Server, for example, does not always
have eight ready Worker threads, the application is unable to take advantage of all the
parallel processing resources available. Moreover, always having at least eight Worker
threads ready with work to process on an 8-way multiprocessor would seldom be
desirable because queuing delays would inevitably develop that would slow down
application response time. Matching the parallelism in the workload to the number of
processors you need is also complicated by the fact that you need to allow for sched-
uling at least some operating systems threads to perform critical system-oriented tasks
from time to time. To configure sufficient processors to ensure that no critical process-
ing thread is ever waiting for resources is probably not cost-effective. As discussed in
Chapter 1, “Performance Monitoring Overview,” it is almost impossible to optimize
for throughput, response time, and cost at the same time.

Linear scalability of multithreaded applications is difficult to achieve for other rea-
sons. As the name implies, shared memory multiprocessors share memory and other
resources, and this resource sharing naturally leads to contention. Another of the
shared resources subject to contention that can impact multiprocessor scalability is
the front side bus, which is used to connect the processors to shared memory. Lock-
ing structures required to mediate access to shared data structures stored in memory
also inevitably slow down access to memory when there is lock contention. Caching
considerations are also very important in shared memory multiprocessors, as is dis-
cussed in more detail later in this chapter. In addition, software that is not carefully
engineered to run efficiently on multiprocessors can face other scalability problems.

Lock contention To ensure that shared data can be updated with integrity when
multithreaded applications are running concurrently on multiple processors, locking

Chapter 6: Advanced Performance Topics 553

structures are required to serialize access to these resources. Locks are software con-
structs that block one thread from accessing a shared data structure while another
thread is modifying that data. Locks can become a source of very serious contention
for all types of software running on large-scale multiprocessors, ranging from operat-
ing system services to device drivers to multithreaded User-mode applications.
Designing more granular locking structures is one technique to reduce lock conten-
tion. Another approach is to replace monolithic locks with per-processor data struc-
tures that can be accessed without blocking. The per-processor work queues that the
File Server service builds are a good example of this approach. This server application
architecture that relies on thread pooling is discussed in more detail in the section
entitled “File Server Service” later in this chapter.

Note Locks are created and managed by special instructions. The CMPXCHG
instruction is a good example of an instruction used for setting a lock on a multipro-
cessor. CMPXCHG tests and sets a memory location that is used as a lock word.
CMPXCHG compares a value stored in one 32-bit GPR to a value stored in the lock
word stored in memory. If the comparison is true, CMPXCHG updates the memory
location by storing the value from an implied second GPR. Both the testing of the
memory location and assigning a new value to it are performed in a single, atomic
instruction that runs to completion uninterrupted. Multiprocessors also ensure that
the results of atomic instructions that change memory are immediately visible to all
other processors.

One performance implication of executing instructions that test and set locks stored
in memory is that activity on one processor can stall another processor in the shared
memory multiprocessor configuration.

Note In addition to Critical Sections, Windows Server 2003 provides other User-
mode application synchronization services. These include semaphores, which provide
more flexible access to critical code sections so that multiple Readers can examine
shared data while providing exclusive access to the same data for Writers intent on
changing that data. Another synchronization service is the mutex. One important use
of mutexes, which is short for mutual exclusion, is to provide a synchronization service
that can be used by threads across multiple processes. A mutex ensures that a thread
in one process waiting on a thread in another process is notified when the thread that
the first thread is waiting for terminates unexpectedly. Without notification from the
mutex, a thread waiting on an out-of-process event would hang indefinitely when the
other process failed.

554 Microsoft Windows Server 2003 Performance Guide

Spin locks The need to serialize access from multiple, concurrently executing
threads to critical sections of code can have significant performance implications for
operating system functions as well. Operating system functions, including device driv-
ers, utilize spin locks to serialize access to shared data structures. Spin locks are tight
loops in which the waiting thread is occupied continuously testing and retesting a
lock word guarding a critical section. The waiting thread executes the spin lock code
continuously because the delayed thread can do nothing else useful until the shared
resource is released. Critical sections of code guarded by spin locks need to be care-
fully engineered to execute swiftly so that waiting threads are not delayed excessively
in unproductive spin loops. The amount of time code spends in unproductive spin
loops testing locks that are guarding heavily accessed critical sections also tends to
increase with the number of processors.

Device drivers, for example, use spin locks to synchronize access to critical sections
accessed by ISRs running at an elevated dispatching priority. Consider a server with
more than one network adapter. When interrupts from two separate adaptors occur at
roughly the same time, the driver code for the network adaptors can be executing con-
currently on multiple processors. ISRs, DPCs, and other device driver functions that
read and modify shared data structures such as queues and other linked lists must
synchronize access to these shared resources.

Similar to the synchronization services that the Windows API provides application
developers are the synchronization services for device drivers and other operating sys-
tem functions that the operation system kernel provides. The operating system pro-
vides Kernel-mode synchronization services such as KeInitializeSpinlock,
KeAcquireSpinlock, and KeReleaseSpinlock that device driver threads can utilize. For
more information about the Kernel-mode synchronization services, see the Device
Driver Development Kit documentation at http://msdn.microsoft.com/library/en-us/
kmarch/hh/kmarch/Synchro_7cd71aeb-4d52-40d0-9e61-fe0fecbaba17.xml.asp.

Note Kernel synchronization services such as KeInitializeSpinlock, KeAcquireSpin-
lock, and KeReleaseSpinlock are a great boon to portability. Device drivers and other
system functions written for Windows Server 2003 can call these kernel functions to
implement synchronization without having to know what hardware-specific synchro-
nizing instructions are available on the target platform. The operating system kernel,
of course, relies on hardware abstraction layer (HAL) functions to implement the
appropriate hardware-specific serializing instruction that makes the spin lock function
work correctly.

Chapter 6: Advanced Performance Topics 555

If critical sections are not crafted carefully, serialization delays are apt to become major
factors impacting multiprocessing scalability. The developers of Windows Server
2003 use extreme care to ensure that critical sections associated with high-volume
operating system services do not become performance bottlenecks. For example,
operating system services often use queued spin locks that operate more efficiently on
multiprocessors. Processor usage profiling tools like Kernrate, discussed in Chapter 5,
can quantify the extent of the serialization delays that system functions and device
drivers face.

More Info For more information about using queued spin locks in device drivers,
see http://msdn.microsoft.com/library/en-us/kmarch/hh/kmarch/Synchro_7cc46160-
bbcd-416f-98ea-d41bf80516eb.xml.asp.

Cache coherence Multiple threads associated with device driver code or other
functions executing inside the Windows Server 2003 kernel can attempt to access the
same memory locations simultaneously. Propagating changes to the contents of mem-
ory locations cached locally to other engines with their own private copies of the same
shared memory locations is a major issue in designing multiprocessors to operate cor-
rectly. This is known as the cache coherence problem in shared-memory multiproces-
sors. The term reflects the emphasis on propagating changes applied to memory
locations that must be made immediately visible to instructions currently being exe-
cuted in other processors.

A common scheme adopted to maintain cache coherence across multiple processors
is known as snooping. A snooping protocol requires that each processor place the
memory addresses of any shared cache lines being updated on the shared memory
bus. Each processor “listens” to the shared-memory bus for changes in the status of
cache resident memory locations that are being performed by instructions executing
on other processors. Snooping keeps every processor’s private cache memory syn-
chronized with a minimal performance impact on instruction execution. However, the
instruction execution throughput of threads is often impacted when other threads
from the same application are running concurrently on different processors. When
these threads attempt to access and change the same memory locations (for example,
the lock status words that control thread serialization), the progress of instructions
through the execution pipeline slows and throughput is impeded. The practice of
placing memory addresses being accessed on the shared memory bus also generates
contention for that shared resource. As more and more processors are added to a

556 Microsoft Windows Server 2003 Performance Guide

shared memory multiprocessor configuration, the capacity of the front side buses
(FSBs) that link processor chips to memory can become a hardware bottleneck.

Note Concern that saturation of the shared memory bus limits performance of
shared memory multiprocessors underlies approaches to building large-scale parallel
multiprocessors using building blocks usually containing four or eight processors with
associated local memory. Multiprocessor components are then interconnected using
crossbar switches or similar technology that, in effect, scale the bus capacity upwards
to match up better with CPU power. Characteristically, in this kind of multiprocessing
architecture, processors can access local memory much faster than memory resident
on another multiprocessor component. Such machines are called NUMA architec-
tures, which stands for Non-Uniform Memory Access. As discussed later in this chap-
ter, Windows Server 2003 supports cache coherent NUMA (ccNUMA) machines, which
are appropriate for parallel processing workloads like data warehousing applications
with exceptionally large processor requirements.

False sharing Another performance problem that plagues many multithreaded
applications on multiprocessors is known as false sharing. False sharing involves two
or more threads that access independent data in the same cache line. If one thread
updates data in a line of cache that is resident in another processor’s cache, the sec-
ond processor must take notice of the event and either invalidate the cache line if it is
clean or write the cache line back to memory if it is dirty (if it contains updated data
not yet reflected in main memory). This can slow down the execution of the instruc-
tion execution pipeline on the second processor, especially when the second proces-
sor subsequently tries to access the cache line and suffers a cache miss.

False sharing is illustrated in Figure 6-4 and Figure 6-5. A single cache line in memory
contains a number of data variables. In Figure 6-4, Processors 0 and 1 have recently
read variables A and B, respectively, so clean copies of the cache line can be found in
both processors’ caches. Suppose Processor 0 now needs to write to variable A, as
illustrated. To do this, it must obtain exclusive access to the line, which means send-
ing a message out over the front side bus advertising this action. Through some
means, such as snooping or directory-based protocols, the message is received by Pro-
cessor 1. Its copy of the cache line is clean, so it is invalidated. Processor 0 is then free
to update variable A.

Chapter 6: Advanced Performance Topics 557

Figure 6-4 False sharing: processor 0 writes memory location A in a shared cache line

Figure 6-5 continues the example instruction processing sequences. Now suppose
Processor 1 needs to access variable B again, either for reading or writing. It suffers a
cache miss and sends out its request over the front side bus. Processor 0 sees this
request and immediately writes out the dirty line to memory (although in some archi-
tectures the line might not be written to memory, but rather passed directly to the
requesting processor). Figure 6-5 illustrates this example for the case where Processor
1’s request is to read Variable B. If Processor 1’s request was to write the memory loca-
tion at B, Processor 0 would be forced to invalidate the entire cache line in its cache.
Processor 1 could then read the line from memory and continue its processing.

With false sharing, the cache line bounces back and forth between the two processors.
This is unnecessary, as each processor is accessing a different piece of data on the
cache line. By separating the two variables, either through careful data structure lay-
out or by compiler optimization, the pointless “cache thrashing” can be eliminated.
However, data layout considerations introduce hardware dependencies into the soft-
ware development process since the size of a line of cache and how the cache is orga-
nized can vary from machine to machine.

Processor 0

A’

B

Clean Exclusive

A’

Processor 1

A

Clean Invalid

B

A B

Write
Request
for A

Main Memory

558 Microsoft Windows Server 2003 Performance Guide

Figure 6-5 Processor 1 subsequently reading memory location B in a shared cache line

The point of this discussion is to illustrate how typical multiprocessing resource con-
flicts can impact scalability as more and more processors are added to a multiprocess-
ing configuration. These and other conflicts on multiprocessors over access to shared
resources tend to cause delays that increase in number and in duration as the number
of parallel processing threads increases. Moreover, in a complex multithreaded appli-
cation, it is often quite difficult to determine precisely where the resource bottlenecks
causing performance degradation exist.

Optimizations to Improve Multiprocessor Scalability

Several features of the Windows Server 2003 operating system are designed to
enhance the scalability of large-scale multiprocessors. This section discusses the
mechanisms built into the operating system that function automatically to optimize
performance on multiprocessors. The section that immediately follows this one dis-
cusses optional tuning strategies that you can implement to improve multiprocessor
scalability even further for your specific workloads.

Processor affinity Because cache performance is so important, the Windows Server
2003 Scheduler attempts to dispatch a thread on the same processor it was dis-
patched on last time. Given that the breed of processors available at the time of writ-
ing contains copious amounts of Level 1, 2, and sometimes Level 3 cache, when a
Ready thread is redispatched on the processor it last ran on, the likelihood is good
that some of its code and data are still resident in the caches. If the processor caches
do retain some of the data and instructions from the last execution, the thread will
experience significantly higher instruction execution throughput, consistent with a
warm start in cache. When switching to a new processor, the thread will face a cold
start in cache, reducing instruction execution throughput for some initial period until
the cache is loaded with the working set of the thread.

Processor 0

A’

B

Exclusive Shared

A’

Processor 1

A

Invalid Shared

B

A’ B

Read
Request

for B

Main Memory

B

Chapter 6: Advanced Performance Topics 559

A thread is said to have a soft processor affinity for the specific processor on which it
was dispatched last, called its ideal processor. If the thread’s ideal processor is not avail-
able, the thread can be dispatched on any other idle processor. Because the Scheduler
also implements priority-based preemptive scheduling, if a lower priority thread is
running on a Ready thread’s ideal processor, the higher priority thread will preempt
the lower priority one.

It is also possible to restrict the threads of a processor so that they are dispatched only
on a specific subset of the processors available. This is known as hard processor affinity,
a tuning strategy associated with partitioning. Both hard processor affinity and parti-
tioning are discussed later in the section entitled “Multiprocessor Configuration and
Tuning Strategies.”

Queued spin locks Kernel synchronization services that support queued spin
locks are available in both Windows Server 2003 and Windows XP. In regular spin
locks, all waiting threads test the same lock word in memory. When the lock finally
becomes available, each thread that was waiting for the lock has to refresh its value of
the lock word in its private cache. This creates a burst of memory operations on the
shared memory bus that slows down instruction execution. Queued spin locks solve
that problem because each waiting thread tests its own local per-processor lock word
variable. The operating system also ensures that each per-processor local lock word is
on a separate cache line from the other lock words associated with the lock. Addi-
tional overhead is associated with setting up and maintaining a queued spin lock, so
this approach is not always the right choice for a device driver. But almost any heavily
contested lock will perform better on a large-scale multiprocessor when queued spin
locks are used instead of conventional ones.

More Info For more information about using queued spin locks inside device driv-
ers designed for Windows Server 2003, see the Device Driver Development Kit (DDK)
documentation at http://msdn.microsoft.com/library/en-us/kmarch/hh/kmarch/
Synchro_7cc46160-bbcd-416f-98ea-d41bf80516eb.xml.asp.

Idle loop On a single processor machine, when there is no work for the processor to
do, there is no harm in executing an idle loop until an external interrupt occurs that
signals real work is available. On a multiprocessor, it is important that the code exe-
cuting inside an idle loop not generate any shared memory bus requests or produce
any other side effects that could impact scalability. The idle loop in Windows Server
2003 is engineered with multiprocessor scalability in mind. No instructions are exe-
cuted that generate memory bus requests inside the idle loop.

560 Microsoft Windows Server 2003 Performance Guide

Assessment of Multiprocessor Scalability

Adding processors to a computer system increases instruction execution throughput
capacity as a function of the number of processors. Ideally, the performance improve-
ment should increase linearly as a function of the number of processors. In practice,
shared memory multiprocessors encounter unavoidable issues that prevent their per-
formance from scaling linearly. Pipeline stalls as a result of serialization instructions
are one unavoidable problem. The snooping protocol used to maintain consistent and
coherent private processor caches is another multiprocessor effect that limits scalabil-
ity. In addition, more processor cycles get wasted during the execution of spin lock
code as the number of processors increases.

Because of delays associated with resource sharing, the same sequence of instructions
will execute slower on a multiprocessor than it will on a single processor. Figure 6-6
shows execution time measurements for a multithreading program executed on 1-, 2-,
and 4-processor systems. It shows how locking and synchronization code run rapidly
on a single processor because there is no contention. The same code takes much
longer to execute when multiple threads are active on separate processors because
there is resource contention. The code that accesses shared data runs slower, too,
because of problems like false sharing that cause contention for cache memory. Even
code that accesses nonshared data runs a bit slower in this example.

Figure 6-6 Measurements of the execution time of a multithreading program

0 205 10 15

1

2

4

Microseconds

#
 o

f
p

ro
ce

ss
or

s

Execution path elongation

Nonshared data path Shared data critical path
Locking and sync code Busy wait (spin loops)

Chapter 6: Advanced Performance Topics 561

TPC Performance Benchmarks
The Windows Server 2003 operating system has proven multiprocessing capa-
bilities designed to take full advantage of the hardware’s capabilities. Ample evi-
dence to attest for these capabilities can be found in many published
Transaction Performance Council (TPC) performance benchmarks at that orga-
nization’s Web site, http://www.tpc.org. The TPC is a not-for-profit consortium
of leading academic researchers and industry experts that takes the lead in
defining representative database benchmark workloads and supervises the pro-
cess of reporting benchmark results. Once the claims of the organization sub-
mitting the benchmark for compliance with the TPC rules are carefully audited,
the results are posted on the TPC Web site. TPC publishes summary perfor-
mance statistics that focus on the transaction throughput of the measured sys-
tem running one of its specified benchmark workloads and the cost of the
system’s hardware and software, as well as a Full Disclosure report that details
the full hardware and software configuration used to obtain them.

To assess Windows Server 2003 scalability, it is useful to review some of the results
published for multiprocessor systems for the TPC-C benchmark, which reflects a
generic transaction processing workload that utilizes a database of customer accounts
to process inquiries, orders, payments, and other similar transactions. (The TPC-C
specification is widely accepted as being a reasonably realistic representation of the
sort of accounting debit-credit transaction processing systems that many commercial
organizations employ.) TPC-C results primarily report transaction throughput metrics
and the cost of the hardware/software configuration as a function of transaction
throughput. Because published TPC-C results are scrupulously audited, they can also
be relied upon to be objective. Here they are used to shed some light on the general
issue of shared memory multiprocessor scalability.

Figure 6-7 shows the TPC-C transaction throughput reported for a series of bench-
marks run on the same hardware and software base configuration in which the only
independent variable is the number of processors installed. (The benchmarks use IA-
32 hardware, running the Windows 2000 Server operating system. Unfortunately,
published results for Windows Server 2003 clearly showing multiprocessor scalability
were not yet available when this document was written.) The series identified as Ven-
dor A reports results for identical 2, 3, 4, and 8-way configurations. This series is
graphed using a heavy dark line. The four data points are marked with a diamond and
labeled with their corresponding TPC-C measured transaction rate. A trendline is also

562 Microsoft Windows Server 2003 Performance Guide

shown that represents perfect linear scalability based on the measured throughput of
the baseline 2-way machine. This is the ideal to which all multiprocessor systems
aspire.

Figure 6-7 TPC-C transaction throughput reported for a series of benchmarks

Notice that when a third processor is added to the baseline 2-way configuration, trans-
action throughput scales linearly, improving by a factor of 50 percent. (Performance
actually improves by a factor slightly better than 50 percent, which is a minor anomaly
that is not overly surprising with a benchmark as complex as the TPC-C specifica-
tion.) But when the fourth processor is added, the results clearly fall short of the ideal
linear trend. Instead of a 33 percent improvement in transaction throughput, the 4-
way system provides less than a 25 percent boost. The result for the 8-way system
shows only a 90 percent improvement compared to the 4-way machine. Extrapolating
from the 2-way system’s transaction rate per processor, linear scaling would predict an
ideal rate in excess of 65,000 transactions per second. The 8-way multiprocessor
reported here can muster only 57,000 transactions per second. Still, this number
needs to be put into perspective. Relative to the performance of the baseline 2-way sys-
tem, the 8-way processor provides 250 percent more transaction processing through-
put capability. This compares quite favorably to a 300 percent upper limit on the
throughput that an ideal scalable multiprocessing architecture would provide. This is
an impressive result, arguing for the cost-effectiveness of both Intel hardware and the
Microsoft operating system software that is managing the multiprocessor platform.

The limitations of a simple multiprocessing architecture are apparent once the num-
ber of processors exceeds the capacity of the shared bus. When the bus shared by the
processors saturates, continuing to add processors to the configuration is no longer

0
0 81 2 3 4 5 6 7

15,000

30,000

45,000

60,000

75,000

of processors

TP
C

-C
 t

ra
ns

ac
tio

ns
/s

ec

Actual vs. Ideal multiprocessor scalability

24,925

57,015

Vendor A Ideal

30,231

16,263

Chapter 6: Advanced Performance Topics 563

cost-effective. This is why designers of large-scale parallel processing architectures
explore alternative ways to scale bus capacity by interconnecting multiprocessor
nodes. Nodes are building blocks that typically contain four or eight processors, usu-
ally configured with some amount of local memory. Scalability considerations for this
type of highly parallel processing machine are considered in the “ccNUMA Architec-
tures” section about cache coherent NUMA machines that Windows Server 2003 also
supports.

Multiprocessor Configuration and Tuning Strategies

The hardware innovations and the operating system support for multiprocessor sys-
tems discussed earlier contribute substantially to improved scalability in Windows
Server 2003, as compared to earlier versions of Intel hardware and Microsoft system
software. However, the most important considerations impacting multiprocessor scal-
ability are highly dependent on the specific characteristics of your workload. Applica-
tions that you intend to run on parallel processing hardware must be carefully crafted
to achieve cost-effective scalability. For example, the TPC-C benchmark workload
used here as a point of reference for comparing the relative effectiveness of large-scale
hardware and software solutions is designed to support parallel processing. What are
the essential characteristics that workloads like TPC-C have that enable them to scale
in such parallel processing environments?

To take full advantage of multiprocessors, server applications must be multithreaded,
that is, capable of processing many tasks in parallel. Inevitably, threads from the same
application reach synchronization points where serial processing must be performed.
To aid in multiprocessor scalability, serialization delays at synchronization points
must be minimized.

How many threads should a multithreaded application create? If too few application
threads are created, there might not be enough processing threads to expedite client
requests. However, creating too many application threads might waste resources and
increase serialization delays at application synchronization points. Because the opti-
mal number of threads depends on both the kinds of hardware on which the applica-
tion runs and the characteristics of the workload, knowing in advance how many
threads to create is not easy. Many multithreaded server applications use thread pool-
ing techniques for flexibility and to enhance scalability. Server applications that imple-
ment thread pooling are discussed in this section. Also discussed are the set of
controls provided by the applications for configuring the thread pool and the mea-
surements these applications gather, which are designed to help you set these controls
correctly.

As discussed earlier, shared memory multiprocessors cannot be expected to scale lin-
early. As the number of processors increases, serialization delays, pipeline stalls result-

564 Microsoft Windows Server 2003 Performance Guide

ing from cache conflicts, and other multiprocessor effects tend to degrade
performance. Running symmetric multiprocessors, a situation in which any applica-
tion thread can be dispatched on any processor, is not always optimal. Partitioning
strategies, in which some application threads are restricted to running only on certain
processors, can sometimes provide improved performance. Considerations for setting
up asymmetric partitioning on large-scale multiprocessors are also discussed in this
section.

Minimizing serialization delays One form of synchronization a multithreaded
application performs is designed to protect critical sections of code that must be pro-
cessed serially. As noted earlier, it is important to identify synchronization points in
any parallel processing application where independent processing threads are forced
to serialize their access to shared resources. Serialization delays at these choke points
in your application tend to grow progressively longer as additional parallel process-
ing threads are launched. Just as the Windows Server 2003 developers work hard to
identify potential serialization bottlenecks in the operating system code that must
execute in a parallel processing environment, your application developers must like-
wise mount an effort to identify and remove obstacles to multiprocessor scalability.
Processor utilization profiling tools like Kernrate, discussed in Chapter 5, “Perfor-
mance Troubleshooting,” along with profiling tools available from other vendors, are
extremely useful in this context.

Tip Never rely solely on anecdotal information from developers regarding where
parallel processing choke points exist in the applications these developers are
responsible for. Always try to acquire data on processor utilization from profiling
tools like Kernrate to confirm and support their speculations. Even the most experi-
enced programmers can focus on areas of the code in which they spent the most
time developing and debugging, not on the actual performance choke points in their
programs. Only empirical data carefully gathered by profiling tools measuring per-
formance on representative workloads can present an objective picture of what actu-
ally occurs when the code executes in a parallel processing environment.

Finding serialization points that can become bottlenecks as you increase the number
of parallel processing resources is hard enough, but designing an application whose
performance scales with the resources that you assign is an even more challenging
task. Application threads executing in parallel must be able to utilize the processor
power supplied. In addition, memory, disks, and network bandwidth must also be
able to support a similar level of parallel processing. All the resources that an appli-
cation thread needs must be available at a comparable level of parallelism. Moreover,
the application must be able to utilize all these resources effectively in parallel.

Chapter 6: Advanced Performance Topics 565

Note A formal argument known as Amdahl’s Law, originally proposed in 1967,
suggests that the speeding up of a parallel processing application is constrained by
the portion of the application that must run serially. Amdahl’s Law breaks the total
amount of time spent processing an application request into two parts; q, the part
that can be processed in parallel; and 1−q, the part that must be processed serially. By
introducing parallel processing resources, p, the time it takes to process q can be
reduced proportionally to q/p. As more and more parallel processing resources are
applied and p grows large, q/p becomes an insignificant factor. However, parallel pro-
cessing has no impact on the time it takes to perform the 1−q serial portion of the
application. No amount of parallel processing resources can reduce the amount of
time needed to process 1−q, so finding ways to minimize the amount of time pro-
cessing in serial mode is always very important. Amdahl’s formulation was originally
proposed to justify building faster processors, but it came to be regarded as a suc-
cinct, general statement describing the obstacles to speeding up application
response time using parallel processing.

Thread pooling An application process running on a multiprocessor needs to be
multithreaded to be capable of taking advantage of parallel processing resources. This
section discusses thread pooling, an approach to building multithreaded applications
that can scale on a wide range of machines. Thread pooling is a feature that many
server applications rely on to scale effectively on multiprocessors. Most of the server
applications Microsoft has developed for Windows Server 2003 use some form of
thread pooling. These include Windows Server 2003 file services, IIS, Microsoft SQL
Server, Microsoft Exchange, and portions of the operating system itself. In addition,
both COM+ and the .NET Framework package include generic thread pooling ser-
vices that software developers can readily use to ensure that their applications scale
effectively.

More Info For information about COM+ Just-In-Time activation and object pool-
ing, see the section entitled “COM+ Services” which can be found in the Platform SDK
at http://msdn.microsoft.com/library/en-us/cossdk/htm/services_toplevel_8uyb.asp.

This section discusses the key elements of a thread pooling server application archi-
tecture. It also highlights those measurements that should be provided by a thread
pooling server application to help you configure it for optimal scalability on multipro-
cessors. Examples of those measurements and how to use them are also provided.
This section further discusses how to configure and tune a thread pooling server
application, as well as settings to let you determine how many threads to create in a
thread pool.

566 Microsoft Windows Server 2003 Performance Guide

For scalability across a broad range of hardware and workloads, server applications
require a flexible method for increasing the amount of resources they can command
as the processing load increases. One method for accomplishing this is to create a
pool of Worker threads, then automatically increase or decrease the number of
threads that are active, depending on the workload demand. Often, these Worker
threads are dispatched from the pool of available threads as work requests are
received by the server application, as depicted in Figure 6-8.

Figure 6-8 Worker threads are dispatched from the pool of available threads as work
requests are received by the server application

As work requests arrive, the multithreaded server application releases processing
threads, as indicated in Figure 6-8. The flow of work requests through a thread pool-
ing server application proceeds as follows:

Thread Pool

Active Worker Thread

Active Worker Thread

Active Worker Thread

Active Worker Thread

Active Worker Thread

Worker Thread

Receiver
Thread

Incoming
Service

Requests

Work
Queue

A
va

ila
b

le
 W

or
k

It
em

s

Dispatcher/
Controller

Thread

Sender
Thread

Outgoing
Replies

To Requestor

Idle Worker Thread
Idle Worker Thread
Idle Worker Thread
Idle Worker Thread
Idle Worker Thread
Idle Worker Thread
Idle Worker Thread
Idle Worker Thread

2

3

1

4

5

6

7

Chapter 6: Advanced Performance Topics 567

1. A newly arrived request wakes up a Receiver thread.

2. The Receiver thread immediately stores the work request into a work item from
the available queue, queues the request, and signals a Dispatcher/Controller
thread that new work has arrived.

3. The Dispatcher/Controller assigns an available Worker thread from the thread
pool to the work item to begin processing the request. If no Worker threads are
available and the application is not at its Max Threads setting, the Dispatcher/
Controller creates an additional Worker thread.

4. The assigned Worker thread processes the request.

5. When a Worker thread completes its processing on behalf of some unit of work,
it places the completed work item on the queue of outgoing requests, and posts
the Sender thread to return data to the Requestor.

6. Prior to going back to sleep, the Worker thread that has just finished processing
the work request checks the work queue to see whether any pending requests
exist.

7. Finally, the completed work item is returned to the available work item queue.
To facilitate reuse of the same threads and work items, the list of available work
items and available threads are usually maintained as First In, First Out (FIFO)
queues.

Usually, control-oriented Sender and Receiver threads are simple programs that con-
centrate on managing the input and output request queues. It is the Worker threads
that perform the bulk of the actual application work request processing. Increasing
the number of Worker threads created in the pool (and the number of available work
items) is one way to ensure the application will acquire more resources on multipro-
cessors. To assist in scaling properly on multiprocessors, the initial number of threads
the server application creates is often calculated as a function of the number of proces-
sors. There should also be tunable parameters that allow you to configure the thread
pooling application properly for your workload and your hardware. Key tuning
parameters include:

■ The Worker thread dispatching priority

■ The maximum number of Worker threads that will be created

■ The number of work items allocated

568 Microsoft Windows Server 2003 Performance Guide

Key measurements that will assist you in setting these tuning parameters correctly
include:

■ The rate at which work requests arrive

■ The current number of active Worker threads

■ The current number of queued requests

■ The average request service time

■ The average request queue time

■ The current number of available (free) and occupied (busy) work queue items

■ The number of times that arriving work was delayed or deferred because of
resource shortages

In addition, it is important to know how much % Processor Time is used to process
requests on average. Normally, this can be computed by dividing the amount of pro-
cessor time reported at the process level in the Process\% Processor Time counter by
the request rate.

Microsoft SQL Server, IIS, ASP, and the network File Server service all use thread pool-
ing. COM+ server and .NET Framework applications can also take advantage of built-
in thread pooling facilities.

SQL Server SQL Server manages user connections dynamically using a pool of
Worker threads. (SQL Server also has an option that allows you to use lighter-weight
fibers instead of regular threads.) When SQL Server receives a set of SQL statements
across a connection to process, the request processing is handled by assigning a
thread from the thread pool. SQL Server allocates an initial set of worker threads
based on the number of processors and the amount of memory that it is configured to
use. As SQL requests are received, they are assigned to Worker threads from the pool.
If no Worker threads are available, SQL Server creates more Worker threads, up to the
limit specified by the max worker threads parameter. The default value for max worker
threads is 255. The option can be changed using either the Enterprise Manager (illus-
trated in Figure 6-9) or the sp-configure stored procedure.

SQL Server does not report thread pool performance statistics, but you can monitor
the Process(sqlserver)\Thread Count counter to obtain a close approximation of the
number of Worker threads allocated. Transaction-level statistics are available in the
SQL Statistics object. The rates of SQL Compilations/sec, SQL Re-Compilations/sec,
and Batch Requests/sec, among others, are available. An overall rate for Transactions/

Chapter 6: Advanced Performance Topics 569

sec is available for each Database instance in the SQL Server Databases object. The
current number of transactions being processed is also provided—the counter is called
Active Transactions, and it is also from the SQL Server Databases object. The Logins/
sec, Logouts/sec, and User Connections counters in the General Statistics object
report on overall demand at a higher level. Unfortunately, SQL Server does not mea-
sure request service or response time.

Figure 6-9 Changing the default value for max worker threads

Note The names of the SQL Server performance objects vary depending on
whether a single default instance of SQL Server is installed or one or more named
instances of SQL Server are installed. For more information about installing named or
multiple instances of SQL Server, see http://msdn.microsoft.com/library/en-us/instsql
/in_runsetup_2xmb.asp. If a single default instance is installed, the SQL Server perfor-
mance objects are prefixed with SQL Server:—for example, the SQL Server:General
Statistics\Logins/sec counter. If named or multiple instances of SQL Server are
installed, the prefix MSSQL$ followed by the instance name is concatenated in front of
the object instance name, as in MSSQL$VSDOTNET:General Statistics\Logins/sec.

SQL Server also provides an option to boost the priority of all SQL Server Worker
threads. Because this option is normally used in conjunction with another option
that allows you to also set a hard processor affinity for SQL Server threads, these
two tuning options are discussed later in this chapter in the context of application-

570 Microsoft Windows Server 2003 Performance Guide

level settings. Table 6-2 summarizes the parameters used to control SQL Server
thread pooling and the measurement data available to help with tuning this server
application.

File Server service The File Server service in Windows Server 2003 relies on thread
pooling to scale effectively. File server processing is initiated by SMB requests issued
by network client machines. The File Server service consists of a Kernel-mode compo-
nent to field those requests, plus User-mode threads organized into dedicated thread
pools per processor. SMBs usually request some file-oriented operation, which is then
satisfied by reading or writing a local disk via the file cache. The File Server Kernel-
mode component communicates with the File Server process using Context Blocks. A
measure of overall activity is available using the Server\Context Blocks Queued/sec
counter. However, it should be noted that Context Blocks Queued/sec includes both
client-originated SMB requests and notifications regarding the completion of Kernel-
mode disk I/O operations.

Table 6-2 SQL Server Thread Pooling Configuration and Tuning

Control Parameter Where Set/Usage Notes

Max Pool
Threads

max worker
threads

sp-configure stored procedure; Enterprise Manager
GUI, SQL Server Properties tab.

Default is 255 threads; optionally, lightweight fibers
can be used instead.

Measurement Object\Counter Usage Notes

Current
threads

SQL Server:Databases(instance)\Active
Transactions

Process(sqlserver#n)\Thread Count Includes all threads, not just
Worker threads.

Request rate ■ SQL Server:SQL Statistics\SQL
Compilations/sec

■ SQL Server:SQL Statistics\SQL
Re-Compilations/sec

■ SQL Server:SQL Statistics\Batch
Requests/sec

Each SQL request is allocated
to a Worker thread.

SQL Server:Databases(instance)\
Transactions/sec

Overall transaction rate.

Response time Not Available

Processor
 usage

Calculate:

Process(sqlserver#n)\% Processor Time

SQL Server:Databases(_Total)\
Transactions/sec

Chapter 6: Advanced Performance Topics 571

When network client SMB requests are received, they are assigned to an available
work item from a Server Work Queue. The File Server service features dedicated work
queues per processor to minimize the amount of time spent serializing access to these
data structures on a multiprocessor. The File Server service creates one instance of a
Server Work Queue for each processor. Each Server Work queue is accessed by its
own dedicated thread pool, with hard processor affinity set to ensure that Worker
threads are dispatched only on the specific processor associated with the Work
queue. For example, a Kernel-mode thread processing an SMB request coming off the
Network Interface stack executing on processor 2 places the request in a Context
Block that is passed to the processor 2 Work Queue. Processing for the request will
then be completed by a User-mode Worker thread that is executing on processor 2.
Serialization delays while accessing the dedicated Work Queues are minimized
because normally only Worker threads associated with a processor-specific Work
Queue change the status of the queue. The use of dedicated per-processor Work
Queues also reduces the amount of interprocessor signaling.

If one of the Work Queues is depleted before the others, available work items can be
“borrowed” temporarily to avoid work item shortages. In addition, there is a single
Blocking Queue in which work items in process are queued while waiting for disk
I/O operations to complete. Having a provision that allows Work Items to be bor-
rowed does mean that these Worker threads still must routinely lock and unlock the
Work Queue whenever they access it. When no Work Items on other Work Queues
are available to be borrowed, a Work Item shortage forces the File Server service to
reject a client SMB request.

Several useful tuning options are available, and the operation of the thread pool is
extensively instrumented. A MaxThreadsperQueue tuning parameter is available to
establish an upper limit on the maximum number of threads created per processor
Work Queue. The default number of Worker threads allocated per processor is 10. In
addition, a MaxRawWorkItems parameter can be set to increase the number of Work
Items allocated in the Nonpaged pool to avoid Work Item shortages. MaxRawWork-
Items defaults are based on the size of RAM. For example, 125 Work Items are allo-
cated by default on a machine with 512 MB.

Performance counters exist at the Server Work Queue level that report both the num-
ber of Active Threads and the number of Available Threads in the thread pool. When
the total number of Worker threads is at or near the MaxThreadsPerQueue value, and
the Server Work Queue(#n)\Queue Length counter starts to increase, you might
want to consider increasing MaxThreadsPerQueue. Work Item Shortages can be
avoided by allocating more Work Items, allocating more Worker threads, or a combi-
nation of the two. Table 6-3 lists the parameters you can use to tune File Server thread

572 Microsoft Windows Server 2003 Performance Guide

pooling and shows the performance counters that help you understand the perfor-
mance of this thread pooling server application.

Table 6-3 File Server Service Thread Pooling

Control Parameter Where Set/Usage Notes

Max Pool
Threads

MaxThreadsper-
Queue

HKLM\SYSTEM\CurrentControlSet\Services\
lanmanserver\parameters

Defaults to ten per processor

Max Work
Items

MaxRawWorkItems Depends on the amount of RAM and the number of
processors

Min Free
Work Items

MinFreeWorkItems Depends on the amount of RAM and the number of
processors

Measurement Object\Counter Usage Notes

Current
threads

Server Work Queues(instance)\Active
Threads

Total Threads = Active
Threads + Available Threads.

Server Work Queues(instance)\Available
Threads

Resource
shortages

■ Server \Work Item Shortages

■ Server Work Queues(instance)\Work
Item Shortages

■ Server Work Queues(instance)\
Available Work Items

■ Server Work Queues(instance)\
Borrowed Work Items

Overall statistics and mea-
surements broken down by
dedicated processor work
queue.

Request rate ■ Server\Context Blocks Queued/sec

■ Server Work Queues(instance)\
Context Blocks Queued/sec

The best overall indicator of
the activity rate, but not a true
transaction request rate.

Requests
Queued

Server Work Queues(instance)\Queue
Length

Work Items queued that are
not currently assigned to an
active thread.

Response
time

Not available

Processor Us-
age

Process(svchost#n)\% Processor Time Run Tasklist /svc to deter-
mine which svchost process
contains the File Server ser-
vice.

Chapter 6: Advanced Performance Topics 573

The File Server process that contains these thread pools and Work Queues is an
instance of svchost. You can determine which svchost process is hosting the File
Server service by using the Tasklist command; it helps you track down which process
has Srvsvc.dll loaded:

C:\>tasklist /svc /fi “Modules eq srvsvc.dll”

This code will return information similar to the following:

Image Name PID Services

========================= ====== ===

svchost.exe 872 Browser, CryptSvc, EventSystem, helpsvc,

lanmanserver, lanmanworkstation, Netman,

Nla, RasMan, Schedule, seclogon, SENS,

ShellHWDetection, TrkWks, W32Time, winmgmt,

Wmi, wuauserv, WZCSVC

Because the File Server service coexists with many other services inside svchost, it is
difficult to determine precisely how much % Processor Time is associated with File
Server activity. On a machine that is used as a dedicated File Server, however, assign-
ing all or most of the Process(svchost#n)\% Processor Time to this function is reason-
able. Keep in mind that Kernel-mode threads that are not associated with an svchost
process are used to perform many File Server service functions, so this method of pro-
cessor accounting will still come up short. It is difficult to determine precisely what
overall File Server processor consumption is, except, of course, if the machine is
mainly a dedicated file server.

IIS Thread Pooling Architecture Internet Information Services (IIS) is another
thread pooling application. This section introduces the IIS version 6.0 architecture. It
also discusses the thread pool used within IIS to service conventional HTTP GET and
PUT Requests. The section that follows discusses the configuration and tuning of
Web services applications written using either Active Server Pages (ASP) technology
or ASP.NET.

The IIS version 6.0 architecture is illustrated in Figure 6-10. It shows that IIS consists
of two major processing components and two cache storage components. HTTP
Method calls are passed to the IIS Kernel-mode driver, Http.sys. Http.sys maintains a
Kernel-mode cache in which it stores recently referenced HTTP Response objects. On
a kernel cache hit, an Http.sys kernel thread can respond immediately to an HTTP
GET Request, returning an HTTP Response object that already exists without a con-
text switch. If the Response object does not exist or the request is for an ISAPI Exten-

574 Microsoft Windows Server 2003 Performance Guide

sion application such as an ASP (Active Server Pages) or ASP.NET page, the Request is
passed to a worker process to be processed. A Worker thread from the worker process
is assigned to create an HTTP Response message. Multithreaded Web application
worker processes in which ASP and ASP.NET requests are processed can be config-
ured into multiprocess Web gardens for even greater flexibility and scalability.

Figure 6-10 IIS consists of two major processing components and two cache storage com-
ponents

For conventional Web server requests for HTML pages, JPEGs, GIFs, and other static
HTML objects, the IIS 6.0 Kernel-mode components provide fast and efficient servic-
ing. For processing Web service application requests using ASP.NET (or the older ASP
technology), Web gardens provide an effective management framework in which
applications can run in isolation and be controlled. Scalability options for Web appli-
cations include using both multithreading and multiple processes. If an application
processing thread in one process hangs up, for example, the remaining worker pro-
cesses in the Web garden are still available to handle incoming requests.

The Http.sys driver uses a thread pool to service incoming HTTP Requests, creating
four worker threads per processor by default. If most incoming requests are for static
HTML objects, a large number of Worker threads is normally not required, because
Response messages can be generated so quickly. However, if your Web site needs to

Kernel

w3wp.exe

HTTP.SYS

http GET Request

TCP/IP
Stack

Response
Object
Cache

Thread Pool

Web Gardens

File
System

Chapter 6: Advanced Performance Topics 575

process a large number of CGI Requests concurrently, the size of the thread pool can
be a constraint. Check the value of the Web Service\Current CGI Requests counter to
determine how many CGI Requests your site is processing concurrently. You can
increase the size of the IIS thread pool by setting MaxPoolThreads at HKLM\SYS-
TEM\CurrentControlSet\Services\InetInfo\Parameters.

IIS can create additional pool threads up to the PoolThreadLimit, which is 2 for every
MB of RAM installed. Monitor the Process(inetinfo)\Thread Count counter to deter-
mine the current number of active IIS threads. Additional counters in the Web Service
object report the rate of HTTP GET and Post Requests/sec, as well other HTTP
Method calls being processed. If Web Server throughput appears constrained, yet
ample processor capacity exists, you might want to consider increasing the size of the
IIS thread pool. Note that ISAPI Extension Requests are handled out-of-process, as
discussed in more detail in the next section. Processing of ASP, ASP.NET, and other
ISAPI Extension applications is not performed by the IIS internal thread pool. Table 6-
4 summarizes the parameters used to control IIS thread pooling and the measure-
ment data that is available to help with tuning decisions.

Table 6-4 IIS Web Service Thread Pooling

Control Parameter Where Set/Usage Notes

Max Pool
Threads

MaxPoolThreads;
PoolThreadLimit

HKLM\SYSTEM\CurrentControlSet\Services\inet-
info\parameters.

The PoolThreadLimit is 2 per MB of RAM. MaxPool-
Threads defaults to 4.

Measurement Object\Counter Usage Notes

Current
threads

Not available

Request rate ■ Web Service\Total Method
Requests/sec

■ Web Service\Get Requests/sec

■ Web Service\Post Requests/sec

■ Web Service\CGI Requests/sec

Total Method Requests/sec is
an overall activity rate. Note:
ISAPI Extension Requests are
handled out-of-process.

Response
time

Not available

Processor
usage

Not available

576 Microsoft Windows Server 2003 Performance Guide

The Web Server Kernel-mode component Http.sys is likely to perform much of the
work of processing conventional HTTP GET requests, and its processor consumption
is not broken out separately. Only HTTP GET Requests that cannot be satisfied
directly from the Kernel-mode cache are routed to a User-mode process for process-
ing. If the Kernel-mode cache is effective, most processing of static HTML requests
will be performed in Kernel mode. By comparing the rate of Web Service Cache\URL
Cache Hits/sec to the overall rate of Web Service\HTTP GET Requests, you can deter-
mine how much processing is being performed in Kernel mode relative to the User-
mode processes.

IIS as an application server Because support for generic thread pooling is such a
valuable technique for achieving server application scalability goals, it is built into the
application server run time features of IIS version 6. When IIS is used an application
server, ASP and ASP.NET applications are often performing critical business func-
tions. To ensure that ASP and ASP.NET applications scale well on multiprocessors, IIS
provides a series of advanced configuration and tuning options for this environment.

More Info For more information about IIS scalability, see the Internet Information
Services (IIS) 6.0 Resource Kit (http://www.microsoft.com/downloads/
details.aspx?FamilyID=80a1b6e6-829e-49b7-8c02-333d9c148e69&DisplayLang=en),
especially Chapters 6 and 7.

Unless you are running your Web server in worker process isolation mode, all ASP
and ASP.NET processing is performed in one or more separate application processes
known as Application pools. Each Application pool can be configured to use multiple
worker processes, which are known as Web gardens. Each worker process in a Web
garden, an instance of either the W3wp or aspnet_wp process, is a separate thread
pooling application. You assign the number of worker processes for each application
pool using the IIS Manager, as illustrated at the bottom of Figure 6-11. Within each
worker process, the AspProcessorThreadMax Metabase setting determines the maxi-
mum number of Worker threads that IIS can create. The default value of AspProces-
sorThreadMax is 25 per processor.

Note The default value of AspProcessorThreadMax under IIS 5.0 was 10 per processor.

Chapter 6: Advanced Performance Topics 577

Figure 6-11 Using the IIS Manager to assign the number of worker processes for an appli-
cation pool

The combination of run-time settings that Web gardens provides allows you to control
both the number of processes devoted to application processing and the number of
Worker threads in each process. These settings provide a flexible range of configura-
tion options to achieve your scalability goals for Web-based applications. Web gardens
also provide important run-time services that will help you meet your availability and
uptime requirements for important Web services applications. However, when you do
not configure multiple worker processes, the AspProcessorThreadMax setting can serve
as a constraint on throughput that you might have to monitor carefully. Adding the
Active Server Pages\Requests Queued and Active Server Pages\Requests Executing
counters gives you an instantaneous measure of ASP processing concurrency, which
you should compare with AspProcessorThreadMax.

If the Request Queue backs up, relieving the AspProcessorThreadMax limit on the num-
ber of processing threads is likely to improve performance, absent other resource con-
straints like processor and memory capacity. As the IIS Administrator, you face
complex configuration decisions; the Web application programs you are running
might also be quite complex. Web applications might rely on processing by COM+ or
.NET Framework components, where common business logic that the applications
use is often consolidated for ease of maintenance. (The full range of COM+ and .NET
Framework scalability features is beyond the scope of this discussion.) Web applica-
tions might also access back-end databases where a permanent store of interactive ses-

578 Microsoft Windows Server 2003 Performance Guide

sion data is maintained. COM+ server components can be configured to be accessed
locally or remotely using DCOM. Similarly, database connections can be made to
local machines or to remote ones. Understanding the impact of any of this addi-
tional out-of-process processing on ASP or ASP.NET Request execution time is a
complicated task.

Tip If the number of Requests Queued is more than 1 or 2 per processor, and
Requests Queued plus Requests Executing is at or near the value for AspProces-
sorThreadMax, consider boosting AspProcessorThreadMax, increasing the number of
worker processes, or using some combination of both. Note that if the W3wp or
aspnet_wp worker processes face virtual memory constraints, defining additional
worker processes in the Web garden is usually the best course of action.

IIS will also shut down idle worker processes in a Web garden after some number of
minutes of activity, as illustrated at the top of Figure 6-11. This means that the Pro-
cess(w3wp)\Thread Count counter is also a useful way to measure the number of
active threads.

The Active Server Pages\Requests/sec counter reports the arrival rate of requests. ASP
application processing to generate dynamic responses to HTTP GET Requests is per-
formed by scripts. Once ASP scripts are interpreted and turned into executable code,
these scripts can be cached as Script Engines and reused. In contrast, ASP.NET pro-
cessing is performed by compiled .NET Framework programs. Effective Script Engine
caching for ASP applications can have a significant impact on processor utilization
and overall execution time. Reducing execution time also means that ASP requests
occupy Worker threads for less time, which reduces the number of Worker threads
required. The maximum number of ASP requests that can be executing or queued is
governed by the AspRequestQueueMax setting, which is 3000 by default. The Active
Server Pages\Requests Rejected counter keeps track of Requests rejected when the
AspRequestQueueMax limit is reached.

ASP response time measurements Active Server Pages is one of the few server appli-
cations instrumented to report response time using System Monitor counters. How-
ever, these response time measures—Active Server Pages\Request Execution Time and
Active Server Pages\Request Wait Time—must be interpreted using extreme caution.
In essence, both report random samples of ASP Request service time and queue time
gathered once each collection interval.

Chapter 6: Advanced Performance Topics 579

Caution Active Server Pages\Request Execution Time and Active Server
Pages\Request Wait Time counters represent the Execution Time and Wait Time in
milliseconds of the last ASP request only. They are properly viewed as sampled values,
which might or might not be representative of overall application response time.

Using Little’s Law, which was discussed in Chapter 1, “Performance Monitoring Over-
view,” you can estimate the average response time of Active Server Pages using the fol-
lowing formula:

ASP Average Response Time =

(Active Server Pages\Requests Queued + Active Server Pages\Requests Executing) Acti

ve Server Pages\Requests/sec

This calculation should be viewed as an estimate of the application response time. ASP
Requests/sec is a continuously measured difference counter, whereas Requests
Queued and Requests Executing are instantaneous values. As long as the instanta-
neous measurements of Requests Queued and Requests Executing are not dramati-
cally different from the previous measurement interval, Little’s Law will hold. The
other validity requirement this calculation should meet is that at least 50–100
response time measurement events occur per data collection interval. In other words,
for a Requests/sec rate of 1 or 2, a 1-minute measurement interval will normally pro-
vide reasonable estimates. It is always useful to compare the average ASP response
time calculated in this fashion with sampled values reported for the Active Server
Pages\Request Execution Time and Active Server Pages\Request Queue Time
counters. Table 6-5 summarizes the parameters used to control Active Server Pages
thread pooling and the measurement data available to help with tuning your ASP
applications.

Note The IIS server-side response time of all HTTP Response messages is available
from the IIS log. On the Web site tab of the Web Site Properties Pages, choose W3C
Extended Log File Format logging, and configure the log file properties to report the
Time Taken field, as illustrated in Figure 6-12. The Time Taken field in the Web log is
reported in milliseconds.

580 Microsoft Windows Server 2003 Performance Guide

Table 6-5 Active Server Pages Thread Pooling

Control Parameter Where Set/Usage Notes

Max Pool
Threads

AspProcessor-
ThreadMax

IIS Metabase

The AspProcessorThreadMax is 25 per processor.

Max Queue AspRequestQueue-
Max

The AspRequestQueueMax is 3000 by default.

Measurement Object\Counter Usage Notes

Current
threads

■ Process(w3p3)\Thread Count

■ Active Server Pages\Requests
Queued

■ Active Server Pages\Requests Exe-
cuting

Instantaneous counters.

Resource
shortages

Active Server Pages\Requests Rejected

Request rate Active Server Pages\Requests/sec

Requests
queued

Active Server Pages\Requests Queued

Response
time

Calculate:

Active Server Pages\Request Execution
Time + Active Server Pages\Request Wait
Time

Time in milliseconds for the
last request completed.

Processor
usage

Calculate:

Process(w3wp)\% Processor Time Active
Server Pages\Requests/sec

Chapter 6: Advanced Performance Topics 581

Figure 6-12 Configuring Logging Properties to report the Time Taken field

ASP.NET .NET Framework applications can implement thread pooling using the
ThreadPool class. The thread pool is created automatically the first time the .NET
Framework program calls the ThreadPool.QueueUserWorkItem method. The common
language runtime (CLR) also creates a control thread automatically that monitors all
tasks that have been queued to the thread pool. The maxWorkerThreads and maxIO-
Threads attributes in the <processModel> node of the Machine.config configuration
file set an upper limit on the number of threads in the process. The default for max-
WorkerThreads is 20 per processor. If all active threads in the pool are continuously
busy, but work requests are waiting in the queue, the CLR will create another Worker
thread. However, the number of threads will never exceed the maximum value speci-
fied by the maxWorkerThreads attribute.

ASP.NET applications are configured for run time using Configuration files. The pro-
cessModel section of an ASP.NET application Configuration file generally maps to IIS
6.0 run-time settings for Web Gardens’ threading, and other performance options.
These Configuration files provide even greater flexibility in setting up thread pooling
applications than the IIS 6.0 controls.

More Info See the section entitled “Mapping ASP.NET Process Model Settings to IIS
6.0 Application Pool Settings” which is found at http://msdn.microsoft.com/library/en-
us/cpguide/html/cpconaspnetprocessmodelsettingequivalencetoapplicationpoolset-
tings.asp in the .NET Framework SDK for more information about Configuration files.

582 Microsoft Windows Server 2003 Performance Guide

For ASP.NET applications, an ASP.NET\Requests Current counter is an instantaneous
measure of how many ASP.NET requests are in execution or waiting to execute. When
ASP.NET\Requests Current exceeds the requestQueueLimit value defined in the pro-
cessModel configuration, ASP.NET Requests are rejected. The performance counters
in the .NET CLR LocksAndThreads objects provide additional statistics on applica-
tion threading during run time. These statistics include the number of physical
threads that are currently active and the rate of lock contention among threads within
the application thread pool. For example, the Contention Rate/sec counter reports
the rate at which threads in an application thread pool attempt to acquire a managed
lock unsuccessfully.

To help you deal with this extra flexibility, the .NET Framework provides application-
level counters for each ASP.NET application. By application, you can monitor
ASP.NET Application(instance)\Requests Executing and ASP.NET Applica-
tion(instance)\Requests in Application Queue, which are instantaneous measure-
ments comparable to ASP Requests Executing and Requests Queued.

There are no comparable ASP.NET Request Execution and Request Wait Time
counters that sample application response time. However, because ASP.NET Applica-
tion(instance)\Requests/sec is available, Little’s Law can again be used to estimate
application response time:

ASP.NET Average Response Time =

(ASP.NET Application(instance)\Requests in Application Queue +

ASP.NET Application(instance)\Requests Executing)

ASP.NET Application(instance)\Requests/sec

The same cautionary words made earlier about the validity of this calculation in the
context of ASP apply here. This computed value should be viewed as an estimate of
the application response time only. The ASP.NET Requests/sec is a continuously mea-
sured difference counter, whereas Requests in Application Queue and Requests Exe-
cuting are instantaneous values. As long as the instantaneous measurements of
Requests in Application Queue and Requests Executing are not dramatically different
from the previous measurement interval, Little’s Law will hold. Another validity
requirement that you should be careful to satisfy is making sure there are at least 50–
100 requests in the interval. In other words, for a Requests/sec rate of 1 or 2, a 1-
minute measurement interval will normally provide reasonable response time esti-
mates. Unlike ASP, ASP.NET does not report sampled values for request service and
queue time. Again, the Time Taken field in the log provides a measure of Web applica-
tion response time you can validate against. Table 6-6 summarizes the parameters

Chapter 6: Advanced Performance Topics 583

used to control ASP.NET application thread pooling and the measurement data avail-
able to help with tuning your ASP.NET applications.

Guidelines for configuring thread pooling server applications Because so many
server applications benefit from a thread pooling architecture, it is useful to articulate
a general approach to configuring and tuning these applications on multiprocessors.
Thread pooling provides the flexibility that high-performance server applications
require to scale across a wide range of multiprocessing machines. Rather than use
some static number of Worker threads to process client requests, thread pooling
applications begin with a relatively small number of threads, and then ramp up the
number of Worker threads when work requests arrive and no Worker threads are
available to process them.

Table 6-6 ASP.NET Thread Pooling

Control Parameter Where Set/Usage Notes

Max Pool
Threads

maxWorker-
Threads; maxIO-
Threads

The processModel section of Machine.config.

The maxWorkerThreads and maxIOThreads parame-
ters both default to 20 threads per processor.

Max Queue requestQueueLimit The requestQueueLimit is 5000 by default.

Measurement Object\Counter Usage Notes

Current
threads

■ ASP.NET Application(instance)\
Requests Executing

■ ASP.NET Application(instance)\
Requests in Application Queue

Instantaneous counters.

Request rate ASP.NET Application(instance)\Requests/sec

Requests
queued

ASP.NET Application(instance)\Requests in
Application Queue

Response
time

Estimate:

(ASP.NET Application(instance)\Requests in
Application Queue + ASP.NET Applica-
tion(instance)\Requests Executing)
ASP.NET Application(instance)\Requests/
sec

From Little’s Law.

Processor
Usage

Calculate:

Process(w3wp)\% Processor Time ASP.NET
\Requests/sec

Overall application processor
usage only, but see provision
for CPU Monitoring.

584 Microsoft Windows Server 2003 Performance Guide

Ideally, the number of available Worker threads that are allocated will eventually sta-
bilize when enough threads exist to process all client requests in a timely manner.
However, you need to watch out for out-of-capacity conditions in which the applica-
tion can never reach that equilibrium state. If a resource bottleneck is constraining the
scalability of the thread pooling application, you need to identify that bottleneck and
remove it. The second situation to watch out for is one in which the upper limit on the
size of the thread pool serves as an artificial constraint on application throughput.

When there is a resource shortage, employ the bottleneck detection methods and pro-
cedures discussed earlier in this book. See Chapter 5, “Performance Troubleshoot-
ing,” for identifying and relieving processor, memory, disk, and networking resource
bottlenecks on servers that are experiencing performance problems. If a thread pool-
ing application is running on a machine that is resource-constrained, application
throughput will stabilize, even as the number of Worker threads increases and the
pool of work items, in which pending queued requests are parked, is depleted. The
measurements of utilization and queuing at the bottlenecked resource should show
signs of both resource saturation and queuing delays.

Lock collisions On multiprocessors, thread pooling applications can encounter
another type of resource constraint that can limit scalability. The necessity to lock crit-
ical sections of shared code and data areas to preserve their integrity on a multiproces-
sor can lead to an excessive number of lock collisions as the number of Worker threads
increases. As the number of concurrently running threads increases, so does conten-
tion for critical sections and locks. Sometimes this excessive rate of lock collisions will
appear as code path elongation, as illustrated in Figure 6-6 previously. (This code path
elongation will show up clearly when you run the server application under a con-
trolled load and monitor it using a profiling tool like Kernrate, which was described in
Chapter 5, “Performance Troubleshooting.”) For server applications that implement
spin locks, an increase in lock collisions will increase the average CPU consumption
per request. In other words, processor utilization will increase, while application
throughput will remain the same or might even degrade.

As noted earlier, the rate of lock collisions for .NET Framework applications can be
monitored directly. For SQL Server database applications, you can also monitor the
counters in the SQL Server: Locks objects, including Lock Wait Time (ms), Lock
Timeouts/sec, and Number of Deadlocks/sec, which are available for each database
instance.

Chapter 6: Advanced Performance Topics 585

If lock collisions are constraining application throughput, boosting the number of
Worker threads is likely to make the condition even worse.

Max threads There is an upper limit to the number of Worker threads the applica-
tion will create. This limit is designed to prevent the thread pool from growing out of
control when some resource bottleneck is constraining application throughput and
client requests continue to arrive. Without this upper limit, the size of the thread pool
would grow infinitely large whenever the request queue started to back up.

In the absence of any other manifest resource bottleneck, the application’s max
threads parameter can constrain performance. The default settings for the server
applications previously discussed are all quite generous, so this situation is relatively
rare. Still, it does happen in certain circumstances. Fortunately, you can learn to rec-
ognize this situation, and rectify it by setting the appropriate tuning parameter to
increase the maximum number of Worker threads that can be created in the pool.

The server thread pool max threads parameter can be a constraint when the following
conditions hold:

■ The application is running at or near its current max threads limit.

■ The number of items waiting in the work queue is greater than one per proces-
sor.

■ The processors are less than 60 percent utilized.

Under these circumstances, increasing the number of Worker threads might result in
improved performance and scalability. If the maximum threads limit is a constraint,
increasing the maximum threads limit will result in additional Worker threads being
created to handle peak loads. Application throughput should also increase when addi-
tional Worker threads are dispatched. To guard against instances in which lock colli-
sions increase when the concurrency level increases, you should also calculate the
average processor time per client request. If the processor time per request increases
while throughput rates remain stable, you will want to reduce lock collisions by revert-
ing to the earlier maximum threads setting.

If the bottleneck in the application is elsewhere—in the disks, in the database, in the
network, and so on—raising the maximum threads limit should have little or no appar-
ent effect on throughput.

586 Microsoft Windows Server 2003 Performance Guide

When the machine is not otherwise constrained, increasing the number of threads
might increase the amount of useful work that gets done, assuming there is also suffi-
cient unused processor capacity. If, as a result of increasing the number of available
Worker threads, the application’s throughput increases, you are on the right track. It
might seem counterintuitive, but you can then continue to increase the number of
threads until the processor starts to saturate. What can happen at that point, though,
is that other workloads on the same system can suffer because the processors are over-
loaded. That consideration forces you to throttle back the thread pooling application
so that it does not overwhelm all other work on the system.

Increasing the size of the thread pool can also backfire, especially when the number of
concurrently executing Worker threads is not acting as a constraint on application
throughput. In a typical scenario, Worker threads run for only a short time before
entering a voluntary Wait state, during which they are waiting for some event, lock, or
other resource. In that case, adding more threads can increase CPU utilization with-
out getting more useful work done. That is because more threads accessing the same
data causes more lock collisions to occur. Even if there are no more collisions, having
lots of threads increases the likelihood that the cached state of a running thread that
is interrupted will be pushed out of processor cache by the other Worker threads
before that thread ever gets to run again.

You can also have too many excess threads defined. Idle threads are not using the pro-
cessor, but they still occupy resources like memory that could be in short supply. To
save on the overhead of thread creation, an existing thread can be used instead if it is
available. Normally, threads created during a period of heavy demand are retained for
some period of time afterwards, even though they are idle. Keeping a few additional
idle Worker threads alive is more efficient than having your application constantly cre-
ate and destroy threads.

Concurrency levels As a capacity planner, you are faced with a bewildering set of
choices when you set about configuring a multiprocessor to process your transaction
workload. You might have to select both the number and the speed of the processors
that you are planning to buy. You might have to choose between simple, shared mem-
ory multiprocessors and more complex, large-scale parallel ccNUMA machines. You
will also have to buy enough memory and install enough disks and network band-
width to ensure the entire configuration scales, not just the processors.

Assuming care has been taken to minimize the amount of time server applications
spend in serial mode processing, the requests of individual transactions can be pro-

Chapter 6: Advanced Performance Topics 587

cessed independently of each other in a highly parallel manner. Because parallel
requests can be processed concurrently on parallel processing resources, a parallel
processing solution is likely to be effective. Understanding the level of concurrency of
your application will help you figure out what kinds of parallel processing resources
to apply to it.

An analytic approach views the application as an M/M/n queuing system, as dis-
cussed in Chapter 1, “Performance Monitoring Overview.” The optimal number of
processing threads depends on the rate at which work arrives, the average amount of
time a Worker thread spends processing a request, and the capacity of the machine to
perform the work involved. (In this section, we are concerned only with CPU
resources, but all the required memory, disk, and networking resources need to be
considered.) Consider that Little’s Law, which was also discussed in Chapter 1, pro-
vides a way to estimate the concurrency level of your application when you are not
able to measure it directly:

Q = λ × RT

Little’s Law states that the average number of requests in the system is the product of
the arrival rate of requests and the average response time of those requests. The aver-
age number of requests, either in service or queued for service, is a useful measure-
ment of concurrency. This measurement also reveals the potential for parallel
processing to speed up your workload. Assuming a processing thread is required for
every incoming transaction request for the duration of the processing of that request,
then, on average, Q processing threads are required. If the average number of requests
in the system, either in service or queued for service, is two, for example, having eight
processors available to process those requests probably means you have excess capac-
ity and underutilized resources.

Of course, because the arrival rate distribution for requests is likely to be bursty, not
uniform, there are bound to be times when having more than Q processing threads
available is a good idea. How many additional threads are desirable? Unfortunately,
Little’s Law can tell you only about averages. Another complication is that your appli-
cation might need to process a mix of compact transactions, which take only a few
resources to process, and long running transactions, which occupy resources for
much longer periods of time. Variability in the service time distribution can further
complicate the problem of matching application processing threads to the available
resources.

588 Microsoft Windows Server 2003 Performance Guide

The Utilization Law, also discussed in Chapter 1, “Performance Monitoring Over-
view,” offers another useful perspective on your application’s level of concurrency.
The Utilization Law states that the utilization of a resource is the product of the arrival
rate of requests and the average service time of those requests:

U = λ × ST

Consider a transaction request that requires 200 milliseconds of processor time (or
20 percent processor time) to complete. If five such transactions are executed per sec-
ond, the processor will be 5 × 20 percent or 100 percent utilized. The Utilization Law
implies an upper limit on the number of application-processing requests necessary to
saturate the resource:

threads = # of processors ÷ average transaction processor utilization

Defining more threads than that would purely be for the purpose of queuing requests
internally, because the saturated processors would not be capable of processing any
more work. Again, you should expect that the arrival rate and service time distribu-
tions are bursty. You need to be flexible when using this calculation to set an upper
limit on the number of threads that you allow the application to create.

Asymmetric partitioning Another important tuning option for system administra-
tors is partitioning large-scale multiprocessors, a task that might help these multipro-
cessors better handle heterogeneous workloads. As discussed earlier, shared-memory
multiprocessors face serious scalability hurdles. As more processing engines are
added to the system, the efficiency of the overall system diminishes because of the
overhead of maintaining cache coherence, lock contention, and other factors. Asym-
metric partitioning of the processor means restricting threads from some applications
so that these threads can run only on a subset of the available processors. Partitioning
the machine can reduce lock contention and the overhead of maintaining cache
coherence.

Partitioning can be a useful technique for machines with four, eight, or more proces-
sors, especially when you want to consolidate multiple workloads on a single-large
machine. For both ease of administration and performance, for example, it is advanta-
geous to consolidate Active Directory and domain controllers with machines perform-
ing file and print services so that each new redirected file system request does not
require authentication from a remote Active Directory machine. Running a messaging
application like Microsoft Exchange on fewer large-scale machines might result in

Chapter 6: Advanced Performance Topics 589

reduced administration costs and less complex replication processing to manage. Par-
titioning potentially makes these mixed workloads more manageable.

Caution Many advocates of server consolidation argue that administering fewer
servers lowers the cost of server administration. Hopefully, you will lower many of your
administrative costs using Windows Server 2003 by reducing the number of servers
that you run. There would be, for example, fewer machines requiring your attention
for both performance monitoring and capacity planning.

Nevertheless, you should be aware that in the crucial matter of performance monitor-
ing and capacity planning, when you operate fewer, larger-scale consolidated
machines, each machine might require more work to configure and tune, lending
greater importance to implementing the performance monitoring procedures dis-
cussed in Chapter 4, “Performance Monitoring Procedures.” Running larger machines
with a mixture of workloads, you must ensure that adequate service is provided to
each of those workloads. Tools like the Windows System Resource Manager (WSRM),
discussed in this section, make managing large heterogeneous workloads much easier.

Partitioning offers a way to carve up large-scale multiprocessors into two or more log-
ical machines that can be managed more efficiently than an undifferentiated n-way
server machine. Processor partitioning is accomplished by assigning threads from
specific processes to specific processors using hard processor affinity. Hard processor
affinity is implemented using the SetProcessAffinityMask Windows API call or Set-
ThreadAffinityMask to operate on individual threads. The SetProcessAffinityMask Win-
dows API call establishes a set of processors that a thread is eligible to run on. When
hard processor affinity is set, a Ready thread will be scheduled to run only on an avail-
able processor from its processor affinity set. If all the processors in the affinity set are
busy servicing higher priority work, the Ready thread remains in the Ready Queue,
even if other idle processors are available.

Note Whereas a 64-bit Windows®–based system supports a maximum of 64 pro-
cessors, a 32-bit Windows–based system supports a maximum of 32 processors.
Therefore, functions such as GetProcessAffinityMask simulate a computer with 32 pro-
cessors when called under WOW64. The affinity mask is obtained by performing a bit-
wise OR operation of the top 32 bits of the mask with the low 32 bits. Therefore, if a
thread has affinity for processors 0, 1, and 32, WOW64 reports the affinity as 0 and 1,
because processor 32 maps to processor 0. Functions that set processor affinity, such
as SetThreadAffinityMask, restrict processors to the first 32 processors under WOW64.

590 Microsoft Windows Server 2003 Performance Guide

The reason for restricting a process’s threads to some specific set of processors is the
performance improvement that can result when a thread is dispatched on a processor
in which its code and data are intact in the processor caches from the last time the
thread executed. Once the thread has established its working set in the processor
caches, the instruction execution throughput can be expected to be several times
faster. The instruction execution throughput rate for a thread subject to a cache cold
start is potentially much slower than the throughput rate that can be expected when
the same thread benefits from a warm start in cache. (The specific benefit of a cache
warm start to an application thread is, of course, highly workload-dependent.)

Hard processor affinity is a particularly attractive option on 4-way or larger multipro-
cessors that are running mixed workloads. It is used to counteract some of the multi-
processor effects that normally limit multiprocessor scalability. Restricting the threads
of a process to a subset of the available processors increases the likelihood that the
threads are dispatched on a processor that retains cached data from that process
address space. Concentrating threads on a subset of the available processors tends to
improve the instruction execution rate through better cache utilization. It can also
reduce serialization delays that are caused by interference from threads running con-
currently on other processors.

Note The performance improvements you can achieve in theory by using proces-
sor partitioning are difficult to demonstrate in practice when you can’t measure pro-
cessor instruction execution throughput directly. For example, assume a process that
consumed a total of 80 percent busy across all eight available processors (or an aver-
age of 10 percent busy per processor) needed only 40 percent of one processor when
its threads are all concentrated on that processor. Partitioning boosts the instruction
execution throughput, and the application runs twice as fast.

But, unless you are running a workload that is repeatable, this improvement is nor-
mally difficult to measure precisely. Using a repeatable benchmark workload, you
should be able to observe that % Processor Time is reduced at a comparable through-
put level. Alternatively, the average % Processor Time consumed per transaction
should be reduced. However, repeatable workloads, like the ones associated with stan-
dard benchmarks, are usually not the kind of heterogeneous workloads that asymmet-
ric partitioning helps the most with.

Some server applications permit you to establish hard processor affinity settings that
govern their dispatching. Examples include Microsoft SQL Server, IIS, and ASP.NET.
In the absence of these application-level settings, the primary tool for implementing

Chapter 6: Advanced Performance Topics 591

processor partitioning at the application level is the Windows System Resource Man-
ager (WSRM). The primary tool for implementing processor partitioning at the device
driver level is the Interrupt Affinity tool from the Windows Server 2003 Resource Kit.

Important The policy for setting hard processor affinity is considerably more
restrictive than the policy for setting soft processor affinity scheduling, which the Win-
dows Server 2003 operating system implements automatically. Hard processor affinity
will not do much good unless you are able to achieve a relatively high concentration
of processing from the selected application threads on the processors they are
restricted to running on. Hard processor affinity can do considerable harm if you
restrict threads from a critical workload to too few processors.

Guidelines for setting hard processor affinity Improving the instruction execution
throughput of specific process threads on a multiprocessor is the rationale behind
processor partitioning. Partitioning is used to counteract some of the multiprocessor
scalability effects described earlier. It is an important technique for improving the
cost-effectiveness of large n-way shared-memory multiprocessors, especially those
running heterogeneous workloads.

Implementing a hard processor affinity policy to partition workloads on the machine
has the goal of concentrating the designated CPU workload on a subset of the avail-
able processors. For this strategy to be successful, you need to understand the proces-
sor requirements of your application during both normal and peak loads. It is
important that you do not restrict the application to too few processors, because that
will lead to excessive queuing for the processors that the application is eligible to run
on. Most importantly, partitioning requires an ongoing commitment to monitor the
system to detect and respond to any changes in the workload consumption pattern.

You can gain an understanding of the processor requirements of any specific applica-
tion in a straightforward manner by monitoring its associated per Process\% Proces-
sor Time counters. You should acquire some knowledge of longer-term processor
usage patterns and trends by monitoring the application under consideration over
several weeks at regular intervals. If processor utilization peaks at predictable hours,
monitor those periods more closely to understand the characteristics of those peak
periods. Consider monitoring peak periods in even greater detail, for instance, at one-
minute intervals instead of five. You need to be able to configure the system so that
enough processor resources are available to it for both normal and peak loads.

592 Microsoft Windows Server 2003 Performance Guide

Deriving a peak:average ratio, as discussed in Chapter 1, “Performance Monitoring
Overview,” is a useful metric for understanding the application’s processing require-
ments, where the peak period is the busiest one- or five-minute interval over a typical
processing shift, compared to the average measured during the shift. The greater the
variability in processor requirements, of course, the higher the peak:average ratio.
Workloads with a peak:average ratio in excess of 2 or 3 are very inconsistent and need
to be watched extremely carefully.

You also need to factor in some additional system overhead requirements beyond
what is specifically consumed at the process level. No doubt, the application in ques-
tion is going to need some additional system resources performed on its behalf. With
server applications like SQL Server that attempt to bypass most Windows Server 2003
operating system services once they are initialized, the amount of additional system
overhead they require is only another additional 10–20 percent, usually. Other server
applications that rely more on various system services might require allotting an addi-
tional 20–40 percent more processor capacity.

Once you understand the processor requirements for a given workload, you can estab-
lish a partitioning scheme. To ensure the system remains very responsive to the desig-
nated workload, configure enough processors so that the projected application
average load, including system overhead, would put the configured processors in the
range of 20–60 percent processor busy. The rationale behind this configuration guide-
line is as follows. Below 20 percent utilization, the processors dedicated to this work-
load are underutilized and might be more effectively deployed elsewhere. Above 60
percent utilization, there might not be sufficient processor resources to handle peak
loads (assuming a peak:average ratio of 1.5:1 to 2:1, for example) adequately without
excessive queuing. Of course, also monitor the System\Processor Queue Length
counter, and periodically check to ensure that threads from the application you are
concerned with are not delayed waiting in the Ready Queue (denoted by Pro-
cess(n)\Thread State = 1).

Finally, you need a commitment to continue monitoring that application and others
running on the machine to ensure that the workload is stable and the partitioning
scheme you formulated remains optimal. Whenever workload changes become appar-
ent, you need to revisit the partitioning scheme according to the guidelines discussed
earlier.

Chapter 6: Advanced Performance Topics 593

Tip Implementing partitioning by restricting the processing resources that low-pri-
ority, discretionary workloads have access to often requires less analysis than setting
controls that constrict critical workloads. Putting restrictions on discretionary work-
loads to ensure they do not draw excessive resources away from critical workloads is
almost always an easier thing to do.

Application-level settings Some server applications allow you to specify hard proces-
sor affinity settings that govern their dispatching. Examples include SQL Server, ASP,
and ASP.NET applications running inside IIS; and other .NET Framework applica-
tions. The hard processor affinity settings you specify at the application level are used
in a SetProcessAffinityMask API call to specify a processor affinity mask for the threads
of those applications. Each bit position in the processor affinity mask corresponds to
a physical processor, with bit 0 representing processor 0, bit 1 representing processor
1, and so on. If the threads of the process can be scheduled to run on the specific pro-
cessor, the corresponding bit in the processor affinity mask is set to 1. If threads are to
be restricted from running on that processor, the corresponding bit in the processor
affinity mask is set to 0. For example, the hexadecimal value of a processor affinity
mask set to 0x0d (or a decimal value of 13) represents the bit pattern 1101. On a com-
puter with four processors, this indicates that process threads can be scheduled on
processors 0, 2, and 3, but not on processor 1. Table 6-7 lists the applications that pro-
vide a hard processor affinity tuning parameter.

Table 6-7 Hard Processor Affinity Settings

Application Parameter Where to Set It

.NET
Framework

cpuMask <processModel> element coded in the
Machine.config file

■ Process.ProcessorAffinity property

■ ProcessThread.ProcessorAffinity property

■ ProcessThread.IdealProcessor property

SQL Server ■ affinity mask

■ affinity64 mask

Enterprise Manager GUI or sp_configure stored
procedure

ASP and ASPX ■ SMPAffinitized

■ SMPProcessorAffinity-
Mask

IIS Metabase:

■ /LM/W3SVC/AppPools

■ /LM/W3SVC/AppPools/DefaultAppPool

■ /LM/W3SVC/AppPools/DefaultApp-
Pool/application_pool_name

594 Microsoft Windows Server 2003 Performance Guide

The processor affinity mask settings available to applications that are built to run with
the .NET Framework are the most extensive and most flexible. Applications running
the .NET Framework can set a process’s processor affinity mask using the Process.Pro-
cessorAffinity property. Or a processor affinity mask can be set for an individual thread
using the ProcessThread.ProcessorAffinity property. At the thread level, a .NET Frame-
work application can even set the ProcessThread.IdealProcessor property to instruct the
operating system to try to confine the thread to being scheduled on a specific subset
of the available processors. Setting the ProcessThread.IdealProcessor property is similar
to using a thread’s built-in soft processor affinity because it allows the thread to run
on an available idle processor if all its ideal processors are busy. Applications using the
.NET Framework that need to scale on large-scale, parallel NUMA architecture
machines have additional considerations, as discussed in the section entitled
“ccNUMA Architectures.”

SQL Server supports a processor affinity mask in both 32-bit and 64-bit addressing
modes. In 32-bit mode, the processor affinity mask can reference only the first 32 pro-
cessors on a 64-way multiprocessor. To set a processor affinity mask for a 64-proces-
sor configuration, you must use the 64-bit flavor of the setting. The processor affinity
mask in SQL Server is designed to be used in conjunction with its priority boost
option on machines dedicated to running the SQL Server application. The priority
boost option sets the base priority of all SQL Server threads to run in the real-time
range. With the priority boost option set, SQL Server threads are dispatched at a
higher priority than almost any other Ready thread on the machine. This might suit
the needs of SQL Server, but it can be very damaging (in terms of throughput) to the
threads of any other application process that might need to run on that machine. By
setting a processor affinity mask that confines SQL Server threads to a subset of the
available processors, you can make sure that at least one processor is available to run
threads from other applications.

IIS version 6 supports an SMPProcessorAffinityMask setting for Web garden applica-
tion pools. For the maximum degree of flexibility, you can code processor affinity
mask settings for each separate application pool or use a global setting that governs all
application pools. The SMPProcessorAffinityMask settings are activated only when the
SMPAffinitized property is set to true.

These application-level settings can be used in a variety of ways to configure large-
scale, n-way multiprocessors effectively:

Chapter 6: Advanced Performance Topics 595

■ You can run multiple instances of SQL Server on the same machine and, for
each instance of the SQL Server process, set processor affinity masks that effec-
tively isolate the threads from each SQL Server instance to mutually exclusive
sets of eligible processors.

■ You can isolate the executing Worker threads from separate application pools in
IIS Web gardens to mutually exclusive sets of eligible processors.

■ You can run the SQL Server database application on the same machine as your
front-end IIS ASP and ASP.NET applications, and use processor affinity masks to
minimize processor contention among these disparate workloads.

■ You can isolate potentially long-running application processes in a Web server
environment to a limited subset of the available processors to ensure that these
applications don’t hog processor resources to the detriment of other more
response-oriented Web applications.

Partitioning using WSRM The Windows System Resource Manager (WSRM) is a
management component that supports policy-based automated performance manage-
ment. It is available with Windows Server 2003 Enterprise Edition and Datacenter
Edition. WSRM can be used to establish and maintain an effective processor partition-
ing scheme for server applications that do not provide a processor affinity mask tun-
ing option. For more information, see the Microsoft Windows Server 2003 Deployment
Kit.

In WSRM, you build two kinds of constructs to implement policy-based automated
performance management. First, you construct a managed workload definition and
assign one or more processes to the workload definition you want to manage. Then
you construct a resource allocation policy that will be used to control resource con-
sumption by the designated workload. For controlling processor consumption,
WSRM supports two modes of control. The first provides limits on the amount of pro-
cessor capacity (or bandwidth) that managed workloads can consume, but only
applies these limits when the system is under stress and the managed workload is
consuming more than its designated share of the processor. The second processor
control sets hard processor affinity to restrict designated workloads to a specific sub-
set of the available processors.

An example will illustrate how these two WSRM constructs work together to imple-
ment and enforce automated resource management policies. Figure 6-13 shows the
WSRM administration console for a 2-way multiprocessor machine for which WSRM
policies govern the consumption of processor resources by designated workloads. In

596 Microsoft Windows Server 2003 Performance Guide

this example, a simple policy was designed to prevent specific, known processes from
monopolizing the processors to the detriment of other more critical server applica-
tions.

Figure 6-13 The WSRM administration console for a 2-way multiprocessor machine

In Figure 6-13, in the Process Matching Criteria folder, a workload designated CPU-
Hogs is defined. This workload identifies the Internet Explorer application, iex-
plore.exe, as a process to be managed. The WSRM Administrator allows you to iden-
tify any service or application process and associate it with a workload definition.

Figure 6-13 also shows a WSRM resource allocation policy called ManageCPUand-
MemoryHogs, which is intended to be used to manage the processes associated with
the CPU-Hogs workload. Figure 6-14 shows the Add Or Edit Resource Allocation pol-
icy properties pages that are used to associate a managed workload with its resource
allocation policy.

Figure 6-14 Using a properties page to associate a managed workload with its resource
allocation policy

Chapter 6: Advanced Performance Topics 597

The General tab in Figure 6-14 also shows the WSRM control that assigns a target
value for the amount of processor bandwidth that the designated workload will be
allowed to consume. Notice that WSRM calculates a value called Remaining CPU Per-
centage Given To Default Allocation based on this target value. If the processor is sat-
urated and the system is unable to provide this CPU percentage target to the
remaining workloads, WSRM initiates corrective actions. It adjusts downward the dis-
patching priority of the threads of the processes it is assigned to manage, as it tries to
force the actual processor consumption of the workload closer to the target value. At
the same time, WSRM boosts the base priority of processes in the remaining default
workload.

With this approach to control, the processor usage target you set for a managed work-
load is not a hard upper limit on how much processor bandwidth a managed work-
load can consume. As long as processor resources are available, WSRM will not limit
the resource consumption of managed processes. WSRM intervention occurs only
when there is a shortage of processor capacity and resource consumption by the man-
aged workloads exceeds its target.

Tip Using the wsrmc command-line interface, you can automate the entire process
of setting up, implementing, and modifying WSRM resource allocation policies. You
can build WSRM procedures that are easy to migrate from one machine to the next in
an application server cluster.

WSRM also supplies performance counters to help you monitor how the policies you
have established are working and also evaluate the effectiveness of those policies.
These performance counters are illustrated in Figure 6-15. Processor and memory
consumption by any managed processes is conveniently grouped by process, by the
workloads defined by process criteria rules, and by policy. By tracking overall proces-
sor utilization, as illustrated, you can easily determine whether the policies you have
defined and implemented are having the desired effect.

598 Microsoft Windows Server 2003 Performance Guide

Figure 6-15 WSRM performance counters

Processor partitioning using hard processor affinity with WSRM provides both a more
restrictive and a more deterministic way to regulate how much processor time a man-
aged workload consumes as compared with the manipulation of its dispatching prior-
ity. Using WSRM controls, you can assign a processor affinity mask to any service or
application process that does not provide its own facilities for assigning hard proces-
sor affinity. This facility is illustrated in Figure 6-16.

Figure 6-16 Using WSRM controls to assign a processor affinity mask

Chapter 6: Advanced Performance Topics 599

Instead of specifying the processor affinity mask as a bitmap, as required elsewhere,
the WSRM provides a convenient control that lets you designate the eligible proces-
sors by processor ID. For example, a specification of 0, 4–7 means that threads of
the managed processes are eligible to run on processor 0, as well as processors 4
through 7.

Caution WSRM is not intended to manage any server applications that dynami-
cally modify their own process scheduling priority, memory limits, or processor affin-
ity. If you configure any of these application-tuning parameters, add them to the
WSRM process exclusion list. For more information, see the section “Best Practices” in
the WSRM Help.

Interrupt Affinity Filter By using the Interrupt Affinity Filter in the Windows Server
2003 Resource Kit tools, you can configure your machines to confine interrupt process-
ing for selected devices to a subset of the available processors. The Interrupt-Affinity
Filter tool allows you to assign a processor affinity mask to any of the Interrupt Service
Routines (ISRs) that service the devices connected to your machine. Note that the
DPC routine scheduled by the ISR to complete the work of interrupt processing, as
discussed in Chapter 1, “Performance Monitoring Overview,” is by default dispatched
on the same processor where the ISR ran. The Interrupt Affinity Filter tool ensures
that processing by both the ISR and (by default) its associated DPC routine is con-
fined to specific processors on a multiprocessor.

Like any other segments of code, ISRs will execute faster when they are able to benefit
from warm starts in processor cache. Confining selected ISRs so that they are pro-
cessed only on a subset of the available processors increases the chances that when
they do execute, their code and data areas are still resident in processor cache from
the last time they executed. Setting processor affinity for ISRs is an effective optimiza-
tion for almost any device that sustains a high volume of interrupts. High-speed inter-
faces like gigabit Ethernet cards and Fibre Channel adaptors, which sustain a high
volume of interrupts, will usually benefit most. For devices that are incapable of gen-
erating hundreds or thousands of interrupts per second—excluding those implement-
ing aggressive interrupt combining, coalescing, and polling—establishing processor
affinity is usually not worth the bother.

Caution One risk of a very unbalanced, asymmetric configuration is less responsive
servicing of device interrupts. Because ISRs execute at an elevated priority, you need
to be very careful to avoid overloading any processor in a critical application’s hard
affinity set by giving it too many interrupts to process.

600 Microsoft Windows Server 2003 Performance Guide

Establishing hard processor affinity for interrupts has comparable considerations to
the ones just discussed with regard to User-mode processes. If the device interrupt
processing is not concentrated sufficiently to significantly improve the chances of a
cache warm start, such processing is not worth the effort. Still, even though the
improvement in interrupt processing speeds might be slight, setting an affinity mask
for the ISR associated with a device that could be a potential bottleneck will usually
yield some improvement in performance and could be a good preventative measure
for the future.

For example, assume the processor you intend to assign to device interrupt process-
ing is running near saturation at, say, 80 percent or more busy. If, for a very active
device interface, the Processor(n)\% Interrupt Time plus Processor(n)\% DPC
Time—where you have attempted to concentrate interrupt processing—totals less than
3–5 percent busy for that processor, any improvement you can expect to see is likely
to be marginal unless the processor cache is very large (for example, is multiple mega-
bytes). That is because the other threads dispatched on the processor will tend to
absorb most of the processor cache.

But beware of concentrating too many interrupts from different devices on a single
processor. Device interrupts from an interface must be handled one at a time, making
them very sensitive to minor delays in processing. Pending interrupts on an interface
must wait until the ISR has cleared the previous interrupt and reset the device. Con-
fining interrupt processing for heavily used interfaces to too few processors can create
delays in device interrupt processing for the devices you are trying to help. Suppose
you have a processor in which you have attempted to concentrate interrupt process-
ing for a very active device interface. If you then observe that Processor(n)\% Inter-
rupt Time combined with Processor(n)\% DPC Time is over 30–40 percent, you are
likely to see a reduced benefit (assuming the processor is also running application
code). Any improvement in ISR code execution time will likely be offset by increased
interrupt pending delays.

Warning Be careful to avoid a very unbalanced, asymmetric configuration. If the
sum of Processor(n)\% Interrupt Time and Processor(n)\% DPC Time is over 40 percent
for a processor in an asymmetric configuration, you are likely to see a reduction in
overall interrupt processing responsiveness instead of an improvement, because inter-
rupt processing is confined to too few processors.

Confining interrupts to a subset of the available processors on a large-scale multipro-
cessor has one more potential benefit. If you direct interrupt processing away from
processors where you have concentrated specific server applications—either to server

Chapter 6: Advanced Performance Topics 601

applications that have processor affinity mask settings or by using WSRM—User-mode
processes that are isolated from interrupt processing will benefit, because they are
subject to fewer interruptions from ISRs dispatched at an elevated priority. By setting
Interrupt Affinity Filters to limit the number of interrupts on specific processors that
you have partitioned to accept critical application threads, you improve the CPU ser-
vice time of those threads.

Tip Another problem caused by setting interrupt affinity addresses is that higher
priority ISRs/DPCs running on the same processors as application threads can interfere
with application throughput. In a database environment, for example, it is sometimes
worthwhile to concentrate all device interrupts on only one or two processors and
exclude those processors entirely from running application code. In this case, even if
the processors handling interrupts run at greater than 80 percent utilization, there is
still a clear performance benefit resulting from the clean partitioning of work.

Figure 6-17 illustrates the use of the Interrupt Affinity Filter tool. It shows a processor
affinity mask that was coded for a disk drive interface. Because the processor affinity
mask that is coded is 0x’1’, the ISR responsible for processing disk interrupts will be
dispatched only on processor 0. If that processor happens to be busy servicing a
higher priority interrupt, the disk interrupt will remain pending until the previous
interrupt is cleared, even if other processors are available to handle the interrupt. But
more importantly, application code running on processor 0 will be interrupted for
some unknown length of time until no disk interrupts are pending.

Figure 6-17 Using the Interrupt Affinity Filter tool

602 Microsoft Windows Server 2003 Performance Guide

Hyper-Threading Hyper-Threading is the brand name Intel uses for technology that
provides the ability to load and process instructions from two separate instruction
streams on a single processor core. With Hyper-Threading, a single processor engine
appears to the operating system as two processors. Because the operating system
treats a Hyper-Threaded processor as a multiprocessor, it will dispatch two Ready
threads at a time. Hyper-Threaded processors can execute instructions from both
threads simultaneously. Assuming there are two Ready threads that can be scheduled
to execute in parallel, Hyper-Threading can theoretically yield performance at nearly
double the instruction execution rate of a conventional single-threaded processor.
Typically, however, if you see an average improvement of 30 percent or better instruc-
tion throughput, you probably should consider yourself fortunate.

Intel Hyper-Threaded processors implement simultaneous multithreading atop a super-
scalar processor core that runs the Intel IA-32 microarchitecture. As discussed earlier,
superscalar machines attempt to process instructions from a single execution stream
in parallel. For instruction streams that do not have a large enough degree of parallel-
ism to take full advantage of the parallel processing resources available in a supersca-
lar pipeline, machines resort to speculative techniques like branch prediction, out-of-
order execution, and predication. Simultaneous multithreading takes a different
approach by exploiting the parallelism inherent in multiple independent threads.

Note Hyper-Threading is Intel’s proprietary implementation of simultaneous multi-
threading (SMT), a relatively recent addition to commercial processor architectures.
Much of the research impetus for SMT was initiated at the University of Washington.
For an overview of this recent research, see the Computer Sciences department Web
site at the University of Washington at http://www.cs.washington.edu/research/smt/.

Dual logical processors The reason Hyper-Threading is often effective, according to
the Intel engineers, is that the parallel processing core of the instruction execution
pipeline is often idle because of pipeline stalls. The processor core is often underuti-
lized when a single instruction stream is being executed. With simultaneous multi-
threading technology, when the instruction stream from one thread stalls the
instruction execution pipeline, instead of idling, a Hyper-Threaded machine contin-
ues to execute instructions from the other instruction stream, boosting overall perfor-
mance. The ability to execute dual instruction streams simultaneously is
accomplished by supplying a second set of external interfaces to make each processor
core look like a 2-way multiprocessor.

Chapter 6: Advanced Performance Topics 603

To schedule and control a second parallel instruction stream, the processor must pro-
vide an extra set of general purpose registers and control registers. Instructions from
both processing threads proceed through the same instruction execution pipeline,
which is largely identical to the single-threaded version of the IA-32 microarchitecture.
Proponents consider this to be one of the great advantages of the simultaneous mul-
tithreading approach. It provides a significant potential for speed-up without requir-
ing a major overhaul of the existing superscalar instruction execution pipeline. But
Hyper-Threading performs better only under specific circumstances. Hyper-Thread-
ing is still an unproven technology on large-scale multiprocessors, where it appears as
likely to do harm as it is to foster improvement.

A Hyper-Threaded processor core must keep track of two simultaneously executing
instruction streams. This requires duplicating the circuitry that implements the exter-
nal resources the operating system sees. These include the processor register set, pro-
cessor status registers, and other architectural features used to establish the thread
context. Meanwhile, internal processor resources associated with the instruction exe-
cution pipeline that are not visible to the operating system can be shared. Some inter-
nal resources are actually partitioned into two halves, but this is primarily a result of
fairness considerations in scheduling simultaneous threads. The instruction execu-
tion pipeline proceeds to make forward progress on the two instruction streams in a
fair, round-robin manner. But if one of the instruction streams stalls, instructions from
the other instruction stream are used to fill the otherwise idle cycles.

Performance considerations Hyper-Threading does introduce into thread dispatch-
ing some slightly different performance considerations, compared to conventional
multiprocessors. Sharing the same processor core resources among two instruction
streams executing in parallel can lead to resource contention between these threads.
As in conventional shared memory multiprocessors, threads executing in parallel con-
tend for the shared memory bus. But, in a Hyper-Threaded processor, there is also
bound to be internal contention for the processor caches, as well as other internal
resources of the instruction pipeline, like the Register Allocation Table and the func-
tional units that execute different types of instructions. In addition, the logical proces-
sors might face problems because of false sharing of the cache, as discussed in the
technical note entitled “Avoiding False Sharing on Intel Hyper-Threading Technology
Enabled Processors” posted on the Intel Web site: http://www.intel.com/cd/ids
/developer/asmo-na/eng/downloads/19980.htm. If there is too much internal con-
tention among simultaneous threads trying to access shared resources, a Hyper-
Threaded processor will run those threads slower than if those threads were able to

604 Microsoft Windows Server 2003 Performance Guide

execute in a serial mode on a conventional superscalar. Synthetic instruction streams
constructed to measure the performance of a processor are often prone to this condi-
tion. If they replicate a single instruction stream that is then scheduled to run simul-
taneously on the two logical processors, internal resource conflicts of the sort that will
dampen instruction execution throughput can result.

A second performance consideration is the fairness of this scheduling scheme when
one instruction stream stalls. Within the instruction execution pipeline, the round-
robin scheduling scheme executes microinstructions, bouncing back and forth from
one thread to another. If one instruction stream is stalled for a relatively long time, the
other instruction stream can wind up monopolizing the resources of the shared
instruction execution pipeline. On a Hyper-Threaded machine, the Idle loop acceler-
ates the call to the processr.sys power management routine to transition an idle logical
processor to a low power mode more quickly than it would on a conventional multi-
processor. The effect is to shut down the idle logical processor quickly to free up pro-
cessor core resources, which can then be dedicated to the other processor that is
running an active thread’s instruction stream.

On a multiprocessor constructed from two or more Hyper-Threaded processor
cores, there is one additional thread scheduling consideration. The Windows Server
2003 thread Scheduler is aware of which logical processors are associated with a
physical processor core. The Scheduler favors dispatching a Ready thread on one of
the logical processors on an idle processor core over dispatching one on an idle log-
ical processor on a processor core that already has an active thread. The Scheduler
attempts to dispatch one Ready thread per processor core before it starts doubling
up and giving a Hyper-Threaded core two instruction streams to process in parallel.
Soft processor affinity is also modified. Scheduling a thread on the processor core
where it was last dispatched is preferred so that the two logical processors become
the ideal processors.

Note To determine whether the machine is a Hyper-Threaded multiprocessor or a
conventional multiprocessor, User-mode applications can make a GetLogicalProces-
sorInformation API call. This API call returns an array of
SYSTEM_LOGICAL_PROCESSOR_INFORMATION structures that show the relationship
of logical processors to physical processor cores.

ccNUMA architectures The Windows Server 2003 operating system provides sup-
port for NUMA architecture machines. NUMA stands for Non-Uniform Memory Access.

Chapter 6: Advanced Performance Topics 605

It is a popular approach to building very large multiprocessors that overcomes the tra-
ditional scalability problems associated with shared memory multiprocessors, as illus-
trated in Figure 6-7 previously. These scalability limitations have a variety of sources.
For example, heat dissipation can be a significant factor in how many processors are
packaged onto a single board. Electrical considerations are another significant factor.
Bus capacity for access to shared memory might be another limitation. NUMA
machines attack these scalability problems directly by providing multiple processor
boards that are interconnected using additional memory buses. Almost all the larger
machines that you can buy that utilize more than 8 processor chips employ the
NUMA approach.

NUMA machines are constructed from nodes that usually contain either 4 or 8 pro-
cessor chips, along with their dedicated caches, plus some amount of local memory
and local memory bus or buses. Limiting the size of a node to just 4–8 processors
makes it unlikely that the local memory bus or buses shared by the processors in a
node will saturate under load. Nodes are modular building blocks that can be strung
together using a system interconnection of some kind that provides for remote mem-
ory accesses. Because multiple nodes are interconnected, threads executing on one
node can access remote memory on another node. The modular nature of NUMA
machines also lends itself to a policy of upgrading a system incrementally as more and
more processing resources are needed.

As a consequence of having multiple buses, memory access in NUMA machines
becomes more complicated. A key feature of this architecture is that remote memory
accesses take longer because they must traverse the system interconnect. The dispar-
ity in the time it takes to access remote vs. local memory is what leads to the name—
memory latency is not uniform, or constant, depending on what specific memory loca-
tion an instruction accesses. Subsets of processors each have a local memory bus used
to access a fast, shared local memory unit. Remote memory access is slower—perhaps
several times slower depending on the specific manufacturer. If executing threads can
maintain a high rate of local memory accesses, NUMA architectures can scale cost-
effectively beyond eight processors. This makes them capable of supplying consider-
able amounts of parallel processing resources for large computing problems. Some-
times applications have to be designed with NUMA in mind, however, to achieve the
desired level of scalability. On the NUMA machines supported by Windows Server
2003, threads perform remote memory accesses that are mediated by some form of a
memory controller that guarantees cache coherence between the nodes. These
machines are known as cache coherent NUMA, or ccNUMA architectures for short. Fig-

606 Microsoft Windows Server 2003 Performance Guide

ure 6-18 illustrates this particular approach for a 16-way multiprocessor. Because such
machines maintain coherent local processor caches, the content of global memory
presents a single, consistent image to executing programs. This means that thread-safe
programs running correctly on a conventional multiprocessor will also execute cor-
rectly on a ccNUMA machine without modification.

Figure 6-18 The ccNUMA architecture for a 16-way multiprocessor

The Windows Server 2003 operating system also plays a crucial role in enhancing the
performance of ccNUMA machines by ensuring that the threads of a process are
scheduled to run on the same nodes in which their memory is allocated. Just as
threads in a symmetric multiprocessor have an affinity for an ideal processor, threads
on a NUMA machine have an affinity for an ideal node. If a processor is idle at the

CPU 0

Cache

Node 0

C
ro

ss
b

ar
Sw

itc
h

Node 2

Node 1 Node 3

Remote
Memory

Controller

CPU 1

Cache

CPU 3

Cache

CPU 2

Cache

CPU 0

Cache

CPU 1

Cache

CPU 3

Cache

CPU 2

Cache

CPU 0

Cache

CPU 1

Cache

CPU 3

Cache

CPU 2

Cache

CPU 0

Cache

CPU 1

Cache

CPU 3

Cache

CPU 2

Cache

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

Chapter 6: Advanced Performance Topics 607

thread’s ideal node, the Scheduler will execute the thread there. In addition, when a
running thread encounters a page fault, the virtual memory manager tries to allocate
an available frame from local memory to resolve the page fault whenever possible.
This is accomplished by having the operating system maintain separate memory man-
agement data structures for each node. This includes separate Paged and Nonpaged
pools per node for system memory allocations.

To take full advantage of all the parallel processing resources available on a ccNUMA
machine, a workload must first exhibit a high degree of parallelism. However, that is
not the only important performance consideration. The fact that memory access
latency is not uniform means executing threads run faster when they restrict the num-
ber of times they require access to remote memory. If all the threads of a process can
execute concurrently within the same node by using just local memory, the highest
levels of performance can be achieved.

Ideally, a multithreaded process running on a NUMA machine runs no more threads
concurrently than there are processors available on a node, unless you want or need
to harness the additional processing power at the other nodes. If additional process-
ing capability is needed, depending on the application, you might be able to launch
multiple processes that can have hard processor affinity set to run on different proces-
sor nodes. Of course, if these are .NET Framework applications, COM+ components,
or ASP and ASP.NET programs operating in Web gardens, you have the flexibility to
control the degree of both multithreading and multiple processes. You can set the
thread pooling attributes of these applications to limit them to having no more Ready
threads than there are processors in a node.

But consider a multithreaded process with more concurrent threads running than
there are processors in a node. In this case, some ready threads will be scheduled to
run on one or more other nodes. If these threads need to perform a good deal of
remote memory access, they will run slower than the threads that have a higher con-
centration of local memory accesses.

These thread scheduling considerations suggest that some programs need to be sen-
sitive to the longer latency associated with remote memory access if performance on
NUMA machines is to scale effectively. Several Windows API functions are provided
that programs can call to determine whether they are executing on a NUMA machine
and what the topology of the machine is. For example, the GetNumaProcessorNode
function returns the NUMA node number for a specified processor. These APIs make
it possible for an application to establish what amounts to hard node affinity. They can

608 Microsoft Windows Server 2003 Performance Guide

determine the NUMA topology and then set a processor affinity mask to ensure that
specific threads can execute only on the processors associated with a single node or
subset of nodes. Using another function, GetNumaAvailableMemoryNode, a thread can
also determine how much memory is available at the local node.

Memory Performance
This section considers several advanced memory performance topics. The first con-
cerns a set of extended virtual addressing options that are available in 32-bit versions
of Windows Server 2003. This set of extended options relieves 32-bit virtual memory
address constraints that can arise on systems with 2 GB or more of RAM installed. By
using the hardware’s Physical Address Extension (PAE), for example, you can take
advantage of 36-bit physical memory addressing available on most Intel server
machines. For your applications to address additional memory outside the 2-GB limit
on the size of User-mode virtual addresses, you might need to implement applications
that support Address Windowing Extensions (AWE). Or you might consider using a
boot option that allows you to extend the 2-GB private area available for User-mode
process addresses. This means sacrificing addresses in the system range, which is not
necessarily an effective trade-off. None of these interim solutions are needed once you
are able to move to 64-bit systems and applications.

This section also discusses how to calculate a memory contention index that can be
used to predict the onset of virtual memory shortages that lead Windows Server 2003
machines to page excessively. This memory contention index is easy to calculate and
often has excellent predictive value.

Extended Virtual Addressing in 32-Bit Machines

Some server workloads can exhaust the 32-bit virtual address space associated with
current versions of Windows Server 2003. Machines with 2 GB or more of RAM
installed appear to be particularly vulnerable to these virtual memory constraints.
When Windows Server 2003 workloads exhaust their 32-bit virtual address space, the
consequences are usually catastrophic. This section discusses the signs and symp-
toms that indicate there is a serious virtual memory constraint.

This section also discusses the features and options that system administrators can
employ to forestall running short of virtual memory. The Windows Server 2003 oper-
ating system offers many forms of relief for virtual memory constraints on 32-bit
machines. These include:

Chapter 6: Advanced Performance Topics 609

■ Options to change the way in which 32-bit process virtual address spaces are
partitioned into private addresses and shared system addresses

■ Settings that govern the size of key system memory pools

■ Hardware options that permit 36-bit addressing

By selecting the right combination of options, system administrators can avoid many
situations in which virtual memory constraints impact system availability and perfor-
mance. Nevertheless, these virtual memory addressing constraints inevitably cause
more concern as the size of RAM on these servers grows. The most effective way to
deal with these constraints in the long run is to move to processors that can access 64-
bit virtual addresses and run the 64-bit version Windows Server 2003.

Performance and capacity problems associated with virtual memory architectural con-
straints arise from a hardware limitation, namely, the number of bits associated with a
virtual memory address. In the case of the 32-bit Intel-compatible processors that run
Windows Server 2003, address registers are 32 bits wide, allowing for addressability
of 0–4,294,967,295 bytes, which is conventionally denoted as a 4-GB range. This 4-GB
range can be an architectural constraint, especially with workloads that need 2 GB or
more of RAM to perform well.

Virtual memory constraints tend to appear during periods of transition from one pro-
cessor architecture to another. Over the course of Intel’s processor evolution, there
was a period of transition from 16-bit addressing, which was a feature of the original
8086 and 8088 processors that launched the PC revolution, to the 24-bit segmented
addressing mode of the 80286, to the current 32-bit flat addressing model imple-
mented across all Intel IA-32 processors. As of this writing, the IA-32 architecture is in
a state of transition. As 64-bit machines start to become more commonplace, they will
definitively relieve the virtual memory constraints apparent on the 32-bit platform.

Virtual Memory Addressing Constraints

The 32-bit addresses that can be used on IA-32-compatible Intel servers are a serious
architectural constraint. There are several ways in which this architectural constraint
can manifest itself. One problem occurs when a User process exhausts the 2-GB
range of private addresses that are available for its exclusive use. The processes most
susceptible to running out of addressable private area are applications that rely on
memory-resident caches to reduce the quantity of I/O operations they perform (that
is, databases). Windows Server 2003 supports a boot option that allows you to spec-
ify how a 4-GB virtual address space is divided between User private area virtual

610 Microsoft Windows Server 2003 Performance Guide

addresses and shared system virtual addresses. The /3GB boot option extends the
User private area up to the 3-GB level and reduces the system range of virtual mem-
ory addresses down to as little as 1 GB.

If you specify a User private area address range that is larger than 2 GB, you must also
shrink the range of system virtual addresses available by a corresponding amount.
This can easily lead to a second type of virtual memory limitation, which occurs
when the range of system virtual addresses available is exhausted. Because the sys-
tem range of addresses is subdivided into several different pools, it is also possible to
run out of virtual addresses in one of these pools long before the full range of system
virtual addresses is exhausted.

In both circumstances just described, running out of virtual addresses often happens
suddenly, frequently as a result of a program with a memory leak. Memory leaks are
program bugs in which a process allocates virtual memory repeatedly, but then
neglects to free it when finished using it. Program bugs where a process leaks mem-
ory in large quantities over a short period of time are usually pretty easy to spot. The
more sinister problems arise when a program leaks memory slowly, or only under
certain circumstances, so that the problem manifests itself only at erratic intervals or
only after a long period of continuous execution time.

However, not all virtual memory constraints are the result of specific program flaws.
Virtual memory creep because of slow, but inexorable, workload growth can also
exhaust the virtual memory address range available. Virtual memory creep can be
detected by continuous performance monitoring procedures. Such procedures allow
you to intervene in advance to avoid otherwise catastrophic application and system
failures. Fortunately, the same virtual memory performance monitoring tools and
procedures you use to detect memory leaks, which were recommended in Chapter 3,
“Measuring Server Performance,” Chapter 4, “Performance Monitoring Procedures,”
and Chapter 5, “Performance Troubleshooting,”are also effective in diagnosing vir-
tual memory creep.

Three counters at the process level describe how each process is allocating virtual
memory. These are Process(n)\Virtual Bytes, Process(n)\Private Bytes, and Pro-
cess(n)\Pool Paged Bytes. Process(n)\Virtual Bytes shows the full extent of each pro-
cess’s virtual address space, including shared memory segments used to mapped
files and shareable image file DLLs. Any process with Private Bytes at or above 1.6 GB
(without specifying /3GB) is running up against its virtual memory constraints.

Note Because of virtual memory fragmentation, it is quite difficult for a process to
increase the size of its 2-GB private area to its full size. Virtual memory allocation
requests will typically fail before the private area reaches its full 2-GB limit because
the remaining free blocks of the unallocated User private address space are fre-
quently too small and fragmented to satisfy requests.

Chapter 6: Advanced Performance Topics 611

Without at least 2 GB of RAM installed, a User-mode process has difficulty exhaust-
ing its 2-GB virtual address range because virtual memory growth is constrained by
the system’s Commit Limit. Or, if large enough paging files are provided so that the
Commit Limit is not a constraint, performance of the system is poor because of
excessive paging to disk. In these circumstances, adding more RAM to the system is
usually more of a priority than worrying about the potential for virtual memory to
become exhausted. However, in 32-bit machines with large amounts of RAM
installed, User processes running out of virtual memory are apt to be the much more
serious problem. When workload growth causes critical server processes to exhaust
their allotment of virtual memory, it might be possible to obtain relief using some
form of extended virtual addressing. Configuration and tuning options that provide
extended virtual addressing under 32-bit Windows Server 2003 are discussed in the
next section.

Extended Virtual Addressing Options

The Windows Server 2003 operating system supports a number of extended virtual
addressing options suitable for large machines configured with 4 GB or more of RAM.
These include:

■ /3GB boot switch Allows the definition of process address spaces larger than
2 GB, up to a maximum of 3 GB.

■ Physical Address Extension (PAE) Provides support for 36-bit physical addresses
on Intel Xeon 32-bit processors. With PAE support enabled, Intel Xeon proces-
sors can be configured to address as much as 64 GB of RAM.

■ Address Windowing Extensions (AWE) Permits 32-bit process address spaces
access to physical addresses above their 4-GB virtual address limitations. AWE is
used most frequently in conjunction with PAE.

Any combination of these extended addressing options can be deployed, depending
on the circumstances. Under the right set of circumstances, one or more of these
extended addressing functions can significantly enhance performance of 32-bit appli-
cations, which are still limited to using 32-bit virtual addresses. These extended
addressing options relieve the pressure of the 32-bit limit on addressability in various
ways discussed in more detail later in this section. But, these extended options are
also subject to the addressing limitations posed by 32-bit virtual addresses. Ulti-
mately, the 32-bit virtual addressing limit remains a barrier to performance and scal-
ability.

Extended process private virtual addresses The /3GB boot switch extends the
per-process private address range from 2 GB to 3 GB. Windows Server 2003 permits
a different partitioning of user and system addressable storage locations using the
/3GB boot switch. This extends the private User address range to 3 GB and shrinks

612 Microsoft Windows Server 2003 Performance Guide

the system area to 1 GB, as illustrated in Figure 6-19. The /3GB switch supports an
additional subparameter /userva=SizeInMB, where SizeinMB can be any value between
2048 and 3072.

Figure 6-19 The /userva boot switch used to increase the size of the User virtual address
range

Only applications compiled and linked with the
IMAGE_FILE_LARGE_ADDRESS_AWARE switch enabled can allocate a private
address space larger than 2 GB. Applications that are Large Address Aware include
SQL Server, Exchange, Oracle, and SAS.

/userva

System

User

0

x’c000 0000’16

x’ffff 0000’16

System Code

Device Driver Code

Nonpaged Pool

Paged Pool

PTEs

File Cache

Chapter 6: Advanced Performance Topics 613

Caution Shrinking the size of the system virtual address range using the /3GB
switch can have serious drawbacks. Even though the /3GB option allows an applica-
tion to increase its private virtual addressing range, it forces the operating system to
squeeze into a smaller range of addresses, as illustrated in Figure 6-19. In certain cir-
cumstances, this narrower range of system virtual addresses might not be adequate,
and critical system functions can easily be constrained by their own virtual addressing
limits. These concerns are discussed in more detail in the section entitled “System Vir-
tual Memory Shortages.”

PAE The Physical Address Extension (PAE) enables applications to address more
than 4 GB of physical memory. It is supported by most current Intel processors run-
ning Windows Server 2003 Enterprise Edition or Datacenter Edition. Instead of 32-
bit addressing, PAE extends physical addresses so that Windows-based systems can
use 36-bit addresses, allowing machines to be configured with as much as 64 GB of
RAM.

When PAE is enabled, the operating system builds an additional virtual memory
translation layer that is used to map 32-bit virtual addresses into this 64-GB physical
address range. The extra level of virtual address translation Page Tables provides
access to physical memory in blocks of 4 GB, up to a maximum of 64 GB of RAM. In
standard addressing mode, a 32-bit virtual address is split into three separate fields for
indexing into the Page Tables used to translate virtual addresses into physical ones. In
PAE mode, virtual addresses are split into four separate fields:

■ A 2-bit field that directs access to four 1-GB sets of virtual address blocks

■ Two 9-bit fields that refer to the Page Table Directory and the page table entry
(PTE)

■ A 12-bit field that corresponds to the offset within the physical page

Extended addressing is then provided by manipulating the four entries that are
pointed to by the first 2-bit field so that they point to different 1-GB regions. This
allows access to multiple sets of 4-GB virtual address ranges at the same time.

Server application processes running on machines with PAE enabled are still limited
to using 32-bit virtual addresses. However, 32-bit server applications facing virtual
memory addressing constraints can exploit PAE in two basic ways:

614 Microsoft Windows Server 2003 Performance Guide

■ They can expand sideways by deploying multiple application server processes.
Both Microsoft SQL Server 2000 and IIS 6.0 support sideways scalability with
the ability to define and run multiple application processes. Similarly, a Termi-
nal Server machine with PAE enabled can potentially support the creation of
more process address spaces than a machine limited to 4-GB physical addresses.

■ They can indirectly access physical memory addresses beyond their 4-GB limit
using the Address Windowing Extensions (AWE) API calls. Using AWE calls,
server applications like SQL Server and Oracle can allocate database buffers in
physical memory locations outside their 4-GB process virtual memory limit and
manipulate them.

The PAE support provided by the operating system maps 32-bit process virtual
addresses into the 36-bit physical addresses that the processor hardware uses. An
application process, still limited to 32-bit virtual addresses, need not be aware that
PAE is even active. When PAE is enabled, operating system functions can use only
those addresses up to 16 GB. Only applications using AWE can access physical
addresses above 16 GB to the 64-GB maximum. Large Memory Enabled (LME) device
drivers can also directly address buffers above 4 GB using 64-bit pointers. Direct I/O
for the full physical address space up to 64 GB is supported if both the devices and
drivers support 64-bit addressing. For devices and drivers limited to handling 32-bit
addresses, the operating system is responsible for copying buffers located in physical
addresses greater than 4 GB to buffers in RAM below the 4-GB line that can be directly
addressed using 32-bits.

Although expanding sideways by defining more process address spaces is a straight-
forward solution to virtual memory addressing constraints in selected circumstances,
it is not a general-purpose solution to the problem. Not every processing task can be
partitioned into subtasks that can be parceled out to multiple processes, for example.
PAE brings extended physical addressing, but it adds no additional hardware-sup-
ported functions to extend interprocess communication (IPC). IPC functions in Win-
dows-based systems rely on shared memory in the system range, which is still
constrained by 32-bit addressing.

Important Most machines with PAE enabled run better without the /3GB option
because condensing the system virtual memory range all too frequently creates a crit-
ical shortage in system virtual addresses.

Chapter 6: Advanced Performance Topics 615

PAE is required to support machines with cache coherent Non-Uniform Memory
Architecture (known as ccNUMA or sometimes NUMA, for short), but it is not
enabled automatically. On AMD64-based systems running in long mode however,
PAE is required, is enabled automatically, and cannot be disabled.

AWE The Address Windowing Extension (AWE) is an API that allows programs to
address more physical memory locations than their 4-GB virtual addressing range
would normally allow. AWE is used by applications in conjunction with PAE to extend
the application’s addressing range beyond 32 bits. Because process virtual addresses
remain limited to 32 bits, AWE is a marginal solution with many pitfalls, limitations,
and potential drawbacks.

The AWE API calls maneuver around the 32-bit address restriction by placing respon-
sibility for virtual address translation into the hands of an application process. AWE
works by defining an in-process buffering area, called the AWE region, that is used
dynamically to map allocated physical pages to 32-bit virtual addresses. The AWE
region is allocated as nonpaged physical memory within the process address space
using the AllocateUserPhysicalPages AWE API call. AllocateUserPhysicalPages locks
down the pages in the AWE region and returns a Page Frame array structure that is the
normal mechanism the operating system uses to keep track of which physical mem-
ory pages are mapped to which process virtual address pages. (An application must
have the Lock Pages in Memory user right to use this function.)

Initially, of course, no virtual addresses are mapped to the AWE region. Then, the
AWE application reserves physical memory (which might or might not be in the range
above 4 GB) using a call to VirtualAlloc, specifying the MEM_PHYSICAL and
MEM_RESERVE flags. Because physical memory is being reserved, the operating sys-
tem does not build page table entries (PTEs) to address these data areas. (A User-
mode thread cannot directly access and use physical memory addresses. But autho-
rized kernel threads can.) The process then requests that the physical memory
acquired be mapped to the AWE region using the MapUserPhysicalPages function.
Once physical pages are mapped to the AWE region, virtual addresses are available for
User-mode threads to address. The idea in using AWE is that multiple sets of memory
regions with physical memory addresses extending to 64 GB can be mapped dynam-
ically, one at a time, into the AWE region. The application, of course, must keep track
of which set of physical memory buffers is currently mapped to the AWE region and
what set is required to handle the current request, and also perform virtual address
unmapping and mapping as necessary to ensure addressability to the right physical

616 Microsoft Windows Server 2003 Performance Guide

memory locations. Figure 6-20 illustrates this process, which is analogous to manag-
ing overlay structures.

Figure 6-20 Dynamically mapping virtual memory regions into the AWE region

In the example of an AWE implementation shown in Figure 6-20, the User process
allocates four large blocks of physical memory that are literally outside the address
space, and then uses the AWE call to MapUserPhysicalPages to map one physical
address memory block at a time to the AWE region. In the example, the AWE region
and the reserved physical memory blocks that are mapped to the AWE region are the
same size, but this is not required. Applications can map multiple reserved physical
memory blocks to the same AWE region, provided the AWE region address ranges
they are mapped to are distinct and do not overlap.

In the example in Figure 6-20, the User process private address space extends to 3 GB.
It is desirable for processes using AWE to acquire an extended private area so that
they can create a large enough AWE mapping region to manage physical memory
overlays effectively. Obviously, frequent unmapping and remapping of physical

0
x’10000’16

x’c000 0000’16

x’8000 0000’16

x’ffff 0000’16

System Code

No Access

Device Driver Code

Nonpaged Pool

Paged Pool

File Cache

System

User

PTEs

AWE Region
(Nonpaged memory)

MapUserPhysicalPage

Physical Address Range
(Reserved)

Physical Address Range
(Reserved)

Physical Address Range
(Reserved)

Physical Address Range
(Reserved)

Chapter 6: Advanced Performance Topics 617

blocks slows down memory access considerably, mainly because of the need to broad-
cast Translation Lookaside Buffer (TLB) updates to other processors in a multiproces-
sor configuration. The AWE mapping and unmapping functions, which involve
binding physical addresses to a process address space’s PTEs, must be synchronized
across multiple threads executing on multiprocessors. Even with all this additional
overhead, AWE-enabled access to memory-resident buffers is still considerably faster
than I/O to disk.

AWE limitations Besides forcing User processes to develop their own dynamic
memory management routines, AWE has other limitations. For example, AWE regions
and their associated reserved physical memory blocks must be allocated in pages. An
AWE application can determine the page size using a call to GetSystemInfo. Physical
memory can be mapped into only one process at a time. (Processes can still share data
in non-AWE region virtual addresses.) Nor can a physical page be mapped into more
than one AWE region at a time inside the same process address space. These limita-
tions result from system virtual addressing constraints, which are significantly more
serious when the /3GB switch is in effect. Executable code (.exe files, .dll files, and so
on) can be stored in an AWE region, but not executed from there. Similarly, AWE
regions cannot be used as data buffers for graphics device output. Each AWE memory
allocation must be also be freed as an atomic unit. It is not possible to free only part of
an AWE region.

The physical pages allocated for an AWE region and associated reserved physical
memory blocks are never paged out—they are locked in RAM until the application
explicitly frees the entire AWE region (or exits, in which case the operating system will
clean up automatically). Applications that use AWE must be careful not to acquire so
much physical memory that other applications run out of memory to allocate. If too
many pages in memory are locked down by AWE regions and the blocks of physical
memory reserved for the AWE region overlays, contention for the RAM that remains
can lead to excessive paging, or it can prevent creation of new processes or threads
because of lack of resources in the system area’s Nonpaged pool.

Application Support

Database applications like SQL Server, Oracle, and Exchange, which rely on memory-
resident caches to reduce the amount of I/O operations they perform, are susceptible
to running out of addressable private area in 32-bit Windows-based systems. These
server applications all take advantage of the /3GB boot switch for extending the pro-
cess private area. Support for PAE is transparent to these server processes, allowing

618 Microsoft Windows Server 2003 Performance Guide

both SQL Server 2000 and IIS 6.0 to scale sideways. Both SQL Server and Oracle can
also use AWE to gain access to additional RAM beyond their 4-GB limit on virtual
addresses.

Scaling sideways SQL Server 2000 can scale sideways, allowing you to run multiple
named instances of the Sqlserver process. A white paper entitled “Microsoft SQL
Server 2000 Scalability Project—Server Consolidation,” available at http://
msdn.microsoft.com/library/en-us/dnsql2k/html/sql_asphosting.asp, documents
the use of SQL Server and PAE to support multiple instances of the database process
address, Sqlservr.exe, on a machine configured with 32 GB of RAM. Booting with PAE,
this server consolidation project defined and ran 16 separate instances of Microsoft
SQL Server. With multiple database instances defined, it was no longer necessary to
use the /3GB switch to extend the addressing capability of a single SQL Server
address space.

Similarly, IIS 6.0 supports a new feature called application processing pools, also known
as Web gardens. ASP and ASP.NET transactions can be assigned to run in separate
application pools managed by separate copies of the W3wp.exe and aspnet_wp con-
tainer processes.

Exchange Both Exchange 2000 and 2003 can take advantage of the /userva and
/3GB switches in Boot.ini to allocate up to 3 GB of virtual memory for Exchange appli-
cation use and 1 GB for the operating system. This is primarily to benefit the Store.exe
process in Exchange; Store.exe is a database application that maintains the Exchange
messaging data store. However, in Exchange 2000, Store.exe will not allocate much
more than 1GB of RAM unless you change registry settings, because the database
cache will allocate only 900 MB by default. Using the ADSI Edit tool, you can increase
this limit by setting higher values for the msExchESEParamCacheSizeMin and msExch-
ESEParamCacheSizeMax run-time parameters.

Exchange 2000 and 2003 will both run on PAE-enabled machines. However, these
versions of Exchange do not make any calls to the AWE APIs to utilize virtual memory
beyond its 4-GB address space.

Microsoft SQL Server Using SQL Server 2000 with AWE creates a set of special
considerations. You must specifically enable the use of AWE memory by an instance
of SQL Server 2000 Enterprise Edition by setting the Awe Enabled option using the
sp_configure stored procedure. When an instance of SQL Server 2000 Enterprise Edi-
tion is run with Awe Enabled set to 1, the instance does not dynamically manage the
working set of the address space. Instead, the database instance acquires nonpageable

Chapter 6: Advanced Performance Topics 619

memory and holds all virtual memory acquired at startup until the SQL Server pro-
cess address space is shut down.

Because the virtual memory acquired by the SQL Server process when the process is
configured to use AWE is held in RAM for the entire time the process is active, the max
server memory configuration setting should also be used to control how much mem-
ory is used by that instance of SQL Server.

Oracle You can enable AWE support in Oracle by setting the
AWE_WINDOW_MEMORY registry parameter. Oracle recommends that AWE be used
along with the /3GB extended User area addressing boot switch. The
AWE_WINDOW_MEMORY parameter controls how much of the 3-GB address space
to reserve for the AWE region used to map database buffers. This parameter is speci-
fied in bytes and has a default value of 1 GB for the size of the AWE region inside the
Oracle process address space.

If AWE_WINDOW_MEMORY is set too high, there might not be enough virtual mem-
ory left for other Oracle database processing functions—including storage for buffer
headers for the database buffers, the rest of the SGA, PGAs, and stacks for all the exe-
cuting program threads. As the Process(Oracle)\Virtual Bytes counter approaches
3 GB, out-of-memory errors can occur, and the Oracle process can fail. If this happens,
you need to reduce db_block_buffers and the size of AWE_WINDOW_MEMORY.

Oracle recommends using the /3GB option on machines with only 4 GB of RAM
installed. With Oracle allocating 3 GB of private area virtual memory, the Windows
operating system and any other applications on the system are squeezed into the
remaining 1 GB. However, according to Oracle, the operating system normally does
not need 1 GB of physical RAM on a dedicated Oracle machine, so there are typically
several hundred MB of RAM available on the server. Enabling AWE support allows
Oracle to access that unused RAM, perhaps grabbing as much as an extra 500 MB of
buffers. On a machine with 4 GB of RAM, bumping up db_block_buffers and turning
on the AWE_WINDOW_MEMORY setting, Oracle private virtual memory allocation
might reach 3.5 GB.

SAS SAS support for PAE includes an option to place the Work library in extended
memory to reduce the number of physical disk I/O requests. SAS is also enabled to
take advantage of the /3GB boot switch and use the extra private area addresses for
SORT work areas.

620 Microsoft Windows Server 2003 Performance Guide

System Virtual Memory Shortages

Operating system functions also consume RAM. The system has a working set that
needs to be controlled and managed like any other process. The upper half of the 32-
bit 4-GB virtual address range is earmarked for system virtual memory addresses.
Using the /3GB boot option, the system range can be limited to as little as 1 GB. On a
32-bit machine with a large amount of RAM, running out of virtual memory in the sys-
tem address range is not uncommon. A multitude of important system functions—ker-
nel threads, TCP session data, the file cache, and many other required system
functions—allocate virtual memory in the system address range.

Critical system functions might be impacted when there is a shortage of 32-bit virtual
addresses in the system range. For example, when the number of free System PTEs
reaches zero, no function can allocate virtual memory in the system range. Unfortu-
nately, you can sometimes run out of virtual addressing space in the Paged or Non-
paged pools before all the System PTEs are used up. The /3GB boot option, which
shrinks the range of system virtual addresses to 1 GB, sharply increases the risk of
exhausting the system range of virtual addresses.

System Pools

The system virtual memory range, which is 2-GB wide, is divided into three major
pools: the Nonpaged pool, the Paged pool, and the File Cache, as discussed in more
detail in Chapter 5, “Performance Troubleshooting.” The size of the three main system
area virtual memory pools is determined initially based on the amount of RAM. There
are pre-determined maximum sizes for the Nonpaged and Paged pools. However,
there is no guarantee that they will reach their predetermined limits before the system
runs out of virtual addresses. A substantial chunk of system virtual memory remains
in reserve to be allocated on demand. How these areas held in reserve are allocated
depends on which memory allocation functions overflow their original allocation tar-
gets and requisition the areas held in reserve first.

Nonpaged and Paged pool maximum extents are defined at system startup, based on
the amount of installed RAM. The operating system’s initial pool sizing decisions can
also be influenced by a series of settings in the HKLM\SYSTEM\CurrentCon-
trolSet\Control\Session Manager\Memory Management key. (These settings are
listed in Table 6-8.) Both NonpagedPoolSize and PagedPoolSize can be specified explic-
itly in the registry. Rather than force you to partition the system area exactly, the oper-
ating system allows you to set either the NonpagedPoolSize or PagedPoolSize to 0xffffffff

Chapter 6: Advanced Performance Topics 621

for 32-bit and 0xffffffffffffffff for 64-bit Windows-based systems. (This is equivalent to
setting a −1 value.) This setting instructs the operating system to allow the designated
pool to grow as large as possible. Note that the Registry Editor does not allow you to
assign a negative number, so you must instead set 0xffffffff on 32-bit systems and
0xffffffffffffffff on 64-bit systems. Detailed procedures for monitoring the size and
composition of these pools are provided in Chapter 5, “Performance Troubleshoot-
ing.”

Using the /3GB or /userva boot options, which shrink the system virtual address
range in favor of a larger process private address range, substantially increases the risk
of running out of system virtual memory. For example, the /3GB boot option reduces
the system virtual memory range to 1 GB and cuts the default size of the Nonpaged
and Paged pools in one half for a given size RAM.

64-Bit Virtual Memory

All the capacity problems associated with virtual memory shortages discussed in this
book disappear for programs running in 64-bit mode on 64-bit machines. The 64-bit
architectures allow massive amounts of virtual memory to be allocated. Windows
Server 2003 supports a 16-TB virtual address space for User-mode processes running
in 64-bit mode. As in 32-bit mode, this 16-TB address space is divided in half, with
User-mode private memory locations occupying the lower 8 TB, and the operating

Table 6-8 Settings for the HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management Key

Parameter Default Usage

NonpagedPoolSize Defaults based on the size of
RAM

Can be set explicitly.

−1 extends NonpagedPoolSize to its
maximum.

PagedPoolSize Defaults based on the size of
RAM

Can be set explicitly.

−1 extends PagedPoolSize to its max-
imum.

LargeSystemCache Defaults to 1, which favors
the system working set over
other process address space
working sets

Can be set to 0 when server applica-
tions do not require the system file
cache. Setting LargeSystemCache to
1 will tune Windows memory man-
agement for serving files, and setting
it to 0 will tune for an application
server.

622 Microsoft Windows Server 2003 Performance Guide

system occupying the upper 8 TB. Table 6-9 compares the virtual memory addressing
provided in 64-bit Windows-based systems to 32-bit machines in their default config-
uration.

Running 64-bit systems can even help relieve the virtual memory constraints on 32-bit
server applications. On 64-bit systems, all operating system functions are provided in
native 64-bit code. Processes running 32-bit code use the WOW64 interface layer to
communicate to operating system services. 32-bit User-mode applications that are
compiled and linked with the IMAGE_FILE_LARGE_ADDRESS_AWARE switch
enabled can allocate a private address space larger than 2 GB when running on 64-bit
Windows-based systems. The /3GB boot switch is not supported in 64-bit Windows-
based systems. The larger potential 32-bit User process address space is possible
because operating system functions no longer need to occupy the upper half of the
total 4-GB process address space.

More Info See the Windows platform SDK documentation for details about con-
verting your application code to run in native 64-bit mode. For advice on porting
applications to 64-bit mode, see “Introduction to Developing Applications for the 64-
bit Version of Windows” which is found at http://msdn.microsoft.com/library/en-us
/dnnetserv/html/ws03-64-bitwindevover.asp in the SDK documentation.

Forecasting Memory Requirements

Considering the way Windows Server 2003 virtual memory management works, it
should be apparent that physical memory utilization cannot be measured in the
same way that processor, disk, or network line utilization, for example, is measured.

Table 6-9 Virtual Memory Addressing in 64-Bit and 32-Bit Machines

Component 64-Bit 32-Bit

Process virtual address space 16 TB 4 GB

User address space 8 TB 2 GB

System Paged pool 128 GB 470 MB*

System Nonpaged pool 128 GB 256 MB*

System cache 1 TB 1 GB

System PTEs 128 GB 660 MB

Hyperspace 8 GB 4 MB

Paging file size 512 TB 4 GB

* These are not hard limits on the size of the Paged and Nonpaged pools in Windows Serv-
er 2003, as discussed earlier in the section entitled “System Pools.”

Chapter 6: Advanced Performance Topics 623

For instance, physical memory capacity is not consumed in quite the same way that
processor capacity is. Physical memory is allocated on demand and occupied contin-
uously until it is either abandoned by its original user or replaced by a more recent
consumer. That means that at any time, some memory locations might be allocated
but not actively used. For example, often, infrequently accessed resident pages of a
process working set occupy physical memory even as these pages go unreferenced
for some period of time. The fact that infrequently accessed virtual memory pages
can often be trimmed and replaced by current working set pages with very little
impact on performance is vivid evidence that these memory locations are not being
actively utilized.

Memory allocation statistics might show that physical memory is full, but such indi-
cators of a physical memory constraint are not foolproof. Worse, the goal of virtual
memory management is to utilize all available physical memory. Consequently, virtual
memory systems often report (close to) 100 percent memory occupancy on a contin-
uous basis. Some of these physical memory locations typically are occupied by rela-
tively infrequently referenced virtual pages, whereas others contain pages that are
effectively in continuous use.

Over and above the fact that physical memory might be 100 percent allocated, the per-
formance of virtual memory systems becomes a concern only when physical memory
is over-committed and high paging rates result. Conceptually, this situation results
when the size of active process working sets overflows the amount of physical RAM
installed. Because physical memory is allocated on demand and 100 percent memory
occupation is the rule rather than the exception, you need additional measures that
capture this dynamic aspect of virtual memory management.

The root cause of a system that is paging excessively is too little physical memory to
support the range of virtual addresses that active processes are routinely accessing.
Instead of memory allocation statistics, we need measures of memory contention
that can reveal the extent of physical memory demand generated by active virtual
memory address spaces. Windows Server 2003 does not directly report on memory
utilization in this sense. Instead, the available measurements merely report how
much of the physical memory is currently allocated, and which processes or parts of
the system working set are occupying physical memory at a particular moment. Nev-
ertheless, you can easily derive two measures of physical memory contention that can
be quite useful in predicting the onset of a serious paging problem or other physical
memory constraint.

624 Microsoft Windows Server 2003 Performance Guide

V:R Ratio

In addition to monitoring virtual memory allocation statistics, physical memory occu-
pancy, and paging activity, developing predictive measures is also useful. One useful
calculation is to derive a memory contention index that will correlate with the level of
paging activity observed.

As noted in Chapter 5, “Performance Troubleshooting,” the Available Bytes counter
correlates with hard paging activity reasonably well. But monitoring Available Bytes
alone cannot reliably predict the rate of hard paging activity to disk that might occur.
From a capacity planning standpoint, the correlation between Available Bytes and
paging rates to disk breaks down once physical memory is full.

As discussed in Chapter 1, “Performance Monitoring Overview,” page trimming by the
virtual memory manager is triggered by a drop in the number of Available Bytes. Page
trimming attempts to replenish the pool of Available Bytes by identifying virtual mem-
ory pages that have not been referenced for a relatively long time. When page trim-
ming is effective, older pages that are trimmed from process working sets are not
needed again soon. These older pages are replaced by more active, recent pages.
Trimmed pages are marked in transition and remain in RAM for an extra period of
time, so very little paging to disk needs to occur.

However, if there is a critical, long-term shortage of RAM, page trimming loses effec-
tiveness. This condition is marked by more paging operations to disk. There is little
room for pages marked in transition to remain in RAM, so when recently trimmed
pages are re-referenced, they often must be accessed from disk instead. In this sce-
nario, the number of Available Bytes oscillates between the low and high threshold val-
ues that trigger page trimming. This was illustrated in several examples in Chapter 5,
“Performance Troubleshooting.”

Consider that the threshold-driven page trimming process works to fill up memory
with recently referenced pages. Comparing a system in which the supply of RAM is
ample to one in which RAM is scarce, you might observe that the average number of
Available Bytes is strikingly similar, even though each system’s paging rate to disk is
quite dissimilar. In this type of situation, obtaining additional measures is desirable so
that you have greater ability to predict the onset of a paging performance problem.

A useful working hypothesis for developing a memory contention index is that
demand paging activity, in general, is caused by virtual memory address spaces con-
tending for limited physical memory resources. Consider a memory contention index

Chapter 6: Advanced Performance Topics 625

computed as the ratio of virtual memory allocated to the amount of physical memory
installed, or V:R. This V:R ratio is easily computed in Windows-based systems by
dividing Committed Bytes by the amount of installed RAM:

V:R = Committed Bytes ÷ sizeof(installed RAM)

One virtue of this memory contention index is that it is easily computed and has a
straightforward interpretation. It measures the full range of virtual addresses created
dynamically by process address spaces and compares it to the static amount of RAM
configured on the system. (Note that virtual addresses of different processes that can
correspond to the same physical addresses (for example, those holding .dll code
pages) are not considered by this metric.)

Consider the case when V:R is 1 or less. This means that for every Committed Byte of
virtual memory that processes have allocated, there is a byte on a corresponding 4-KB
page somewhere in RAM. Under these circumstances, it makes sense that very little
demand paging activity would occur. When V:R is near 1, Windows Server 2003 hard
paging rates are usually minimal. The demand paging activity that occurs is usually
confined to processes creating (and later destroying) new pages, reflected in the rate
of Demand zero pages/sec that you are able to observe. Because RAM has room for
just about every virtual memory page that processes allocate, you would expect to see
very little hard page fault processing. There is very little contention for physical mem-
ory. Of course, even when there is little or no physical memory contention, you might
still see large amounts of transition (soft) faults resulting from memory management,
cache faults (depending on the type of application file processing that is occurring),
and demand zero page faults (depending on the applications that are running).

Installing enough RAM to enable every process virtual memory page to remain resi-
dent in physical memory is not necessary. Some virtual memory addresses are usually
inactive at any given time, so there is no need to keep infrequently accessed virtual
memory pages in physical memory all the time. Some amount of hard page fault activ-
ity is certainly acceptable in most environments. However, when processes begin to
allocate more virtual memory pages than can fit comfortably in RAM, the page
replacement algorithms of Windows Server 2003 are forced to start to juggle the con-
tents of RAM more—trimming inactive pages from these applications and not allowing
those process working sets to grow. At this point, the number of Committed Bytes has
grown larger than the amount of RAM, which is why Windows Server 2003 memory
management routines need to work harder. When the number of virtual memory
pages allocated by currently executing processes exceeds the amount of RAM

626 Microsoft Windows Server 2003 Performance Guide

installed, the likelihood that executing processes will access pages that are not cur-
rently resident in physical memory, causing hard pages faults to occur, increases. Nat-
urally, when the number of hard page faults processed becomes excessive, it is time to
add more RAM to the system.

Even the simple V:R ratio described here, computed as Committed Bytes/Installed
RAM, can have surprising predictive value. Moreover, it is relatively easy to trend the
V:R ratio as process virtual memory loads increase, allowing you to anticipate the need
for a memory upgrade. For Windows servers with limited I/O bandwidth, it is recom-
mended that you confine the amount of paging activity performed on physical disks
shared with application data files to 20–40 percent or less of the I/O processing band-
width, as discussed in Chapter 3, “Measuring Server Performance.” On systems in
which you maintain a V:R ratio of 1.5:1 or less, you will normally observe paging activ-
ity that is usually well within these configuration guidelines. It is recommended that
you monitor the V:R ratio on a regular basis and intervene (where possible) to add
RAM once the memory contention index passes 1.5:1 and before it reaches a value of
2:1. By doing so, you can ensure that paging activity to disk remains at acceptably low
levels.

Unfortunately, trending V:R is not a foolproof technique for predicting paging activity.
One problem is that applications like SQL Server protect their working sets from Win-
dows Server 2003 memory management and perform their own equivalent virtual
memory management. Another problem you might encounter when applying this
technique is that applications performing predominantly static virtual memory alloca-
tions often allocate overly large blocks of virtual memory at initialization, instead of
allocating only what they need on demand. In these cases, Committed Bytes remains
static, failing to reflect the dynamic aspect of virtual memory accesses accurately. But
the technique works well enough in the general case to keep you out of major trouble
on most of the servers you are responsible for.

Paged Pool Contention

Another memory contention index exists that can be readily calculated. In addition to
being computable from existing memory counters, this memory contention index is
more likely to reflect the dynamic aspects of virtual memory demand than the simple
Committed Bytes:installed RAM ratio discussed earlier. Calculate:

Paged Pool contention = Memory\Pool Paged Bytes /Memory\Pool Paged Resident Bytes

Chapter 6: Advanced Performance Topics 627

The system’s pageable pool is the source for all allocations that operating system ser-
vices make for virtual memory that does not need to reside permanently in RAM. Pool
Paged Bytes reports the current amount of virtual memory allocated within the sys-
tem’s pool of pageable virtual memory. Pool Paged Resident Bytes reports the current
number of pages within that pool that are resident in RAM. Note that this metric does
not consider that pageable data can be shared by multiple processes (for example,
shared data pages).

The Pool Paged Bytes:Pool Paged Resident Bytes ratio reports the amount of Commit-
ted pageable virtual memory allocated by operating system services, compared to the
amount of physical memory those pages currently occupy. Pool Paged Bytes over and
above the number of Pool Paged Resident Bytes represent committed operating sys-
tem virtual memory pages currently stored on the paging file (or files). As this ratio
increases, operating system services are likely to encounter increased contention for
physical memory, with higher paging rates being the likely result.

One advantage of this specific memory contention index is that operating system ser-
vices tend to be well-behaved users of virtual memory, which they allocate only on
demand. Thus, the Pool Paged Bytes:Pool Paged Resident Bytes ratio is likely to be a
good indicator of current memory contention, albeit limited to privileged operating
system services. Because working storage for shared DLL library routines is also often
allocated from the system’s pageable pool, the index also reflects some degree of per-
process virtual memory demand.

An example will illustrate how this memory contention index behaves, especially with
regard to its ability to predict demand paging rates. In Figure 6-21, the Pool Paged
Bytes:Pool Paged Resident Bytes memory contention index was calculated for a
machine showing sharp spikes in hard paging activity. Figure 6-21 shows that this
memory contention index is well correlated to the actual demand paging activity
observed. The exponential trendline that is also plotted is quite representative of the
performance of virtual memory systems.

628 Microsoft Windows Server 2003 Performance Guide

Figure 6-21 Pool Paged Bytes:Pool Paged Resident Bytes memory contention index calcu-
lator for a machine showing sharp spikes in hard paging activity

Figure 6-21 illustrates three distinct operating regions for this workload. When the
Pool Paged Bytes:Pool Paged Resident Bytes ratio is approximately 1.5, the great
majority of virtual memory pages allocated in this pool fit readily into available RAM.
This corresponds to intervals in which very few hard pages faults are occurring. When
the Pool Paged Bytes:Pool Paged Resident Bytes ratio rises to 3.0–3.5, greater memory
contention and substantially higher paging rates are observed, clustered around 200
hard page faults processed/sec. Finally, at even higher Pool Paged Bytes:Pool Paged
Resident Bytes ratios, the amount of paging varies drastically, reaching a maximum
observed value above 1000 hard page faults/sec. This is highly suggestive of virtual
memory management struggling to keep up with the demand for physical memory.

A memory utilization curve relating memory contention to paging activity can have
predictive value, especially when the trendline is well correlated with the underlying
data, as in the example plotted in Figure 6-21. For example, the trendline drawn in
Figure 6-21 can be used to justify a memory upgrade for machines running similar
workloads as the contention index begins to approach 3. Because this memory con-
tention index is easy to trend, you can use it to forecast future virtual memory
demand. For instance, if you were to project that a growing system workload will
likely reach an undesirable level of paging sometime in the next 3 months, you can
schedule a memory upgrade in anticipation of that event.

The System Monitor Automation Interface
Of the tools available to troubleshoot performance problems or support capacity
planning, the graphical approach used in System Monitor is probably the one you will

0

200

0 51 2 3 4

400

600

800

1000

1200

Contention index

H
ar

d
 p

ag
e

fa
ul

ts
/s

ec

Memory contention vs. paging

Chapter 6: Advanced Performance Topics 629

rely on more frequently than any other. You can take advantage of System Monitor’s
graphical capabilities while retaining the ability to script custom performance moni-
tors. This is because System Monitor is not an executable program; instead, it is an
ActiveX control embedded within the management console. This control, whose
properties and methods are collectively known as the System Monitor Automation
Interface, is fully scriptable; you can add the control to any application capable of
hosting ActiveX objects, and then use the System Monitor properties and methods to
fully configure a custom monitoring session.

Among other tasks, the System Monitor Automation Interface enables you to:

■ Print performance graphs. The Performance console does not include a print
function. If you need to print a performance graph, you must press ALT+PRINT
SCREEN to take a snapshot of the graph, open Microsoft Paint, paste in the snap-
shot, and then print the graph from Paint. If the System Monitor ActiveX control
is embedded in a Web page, however, you can print the graph by using the Print
command in your browser.

■ Create custom Performance Monitors that, upon startup, immediately begin
monitoring a specified set of performance counters.

■ Create custom performance monitors with enhanced functionality. For exam-
ple, your performance monitor could include a script that sends e-mail to a tech-
nical support specialist. Users noticing anomalies in performance could click a
button, and an e-mail message that lists the computer and user name, along with
the performance counters and their values, could be sent to technical support.

This section is intended to highlight the major features of the System Monitor Auto-
mation Interface so that you can easily accomplish tasks like these.

More Info A complete reference to the System Monitor Automation Interface is
available at http://msdn.microsoft.com/library/en-us/perfmon/base
/system_monitor_automation_interface.asp. The complete reference manual describes
the full System Monitor Automation Interface and the properties it supports, and pro-
vides the complete set of interface events.

Adding the System Monitor ActiveX Control to a Web Page

The System Monitor ActiveX control can be added to any application capable of host-
ing ActiveX controls. In many respects, the most logical approach is to place the con-
trol within a Web page. This enables you to use a Web browser to access your custom
monitors from anywhere on the network; it also seems more intuitive to do perfor-

630 Microsoft Windows Server 2003 Performance Guide

mance monitoring from a Web interface rather than from within, say, a Microsoft
Word document. Because of that, this discussion will focus on using the System Mon-
itor ActiveX control within a Web page.

Important You cannot create a standalone script, such as a Microsoft Visual Basic
Script (VBScript) file, that is able to retrieve performance data with the System Monitor
methods and properties. The ActiveX control must be present in the document or
application. To monitor performance from a standalone script, use the WMI perfor-
mance counters. You can place the System Monitor ActiveX control inside a Microsoft
Office Word document, for example, but Word documents can display only static
data. For real-time displays of performance data that can be updated continuously,
use a Web page.

To add the System Monitor ActiveX control to a Web page, include the code shown in
Listing 6-1 within the page’s <BODY> tag.

Listing 6-1 Adding the System Monitor ActiveX Control to a Web Page
<OBJECT

CLASSID="clsid:C4D2D8E0-D1DD-11CE-940F-008029004347" ID="MyMonitor">

</OBJECT>

Note In Listing 6-1, the control has been assigned an ID of MyMonitor. Throughout
this discussion, this ID is used in the code samples. You can assign a different ID to the
control when you create your own performance monitors. If you copy and use any of
the code from this section, however, be sure to change all references to MyMonitor to
the ID you assign to the control.

After the control has been added to a Web page, you can use the properties and meth-
ods of the System Monitor Automation Interface to customize both the look and feel
of your new performance monitor.

Customizing the System Monitor ActiveX Control

Performance can be monitored with the Performance console, without additional
scripting or coding. But the real value of the System Monitor ActiveX control is that it
allows you to create a customized performance monitor. When you create a custom-
ized performance monitor, you can perform such tasks as:

■ Distribute the monitor to other users, enabling them to monitor performance
without having to understand how to set up and configure System Monitor

■ Predefine the performance counters to be measured

Chapter 6: Advanced Performance Topics 631

■ Provide a clean and simple user interface

■ Prevent users from making changes to the monitor, which helps ensure accurate
and consistent performance measurement

To help you customize your performance monitors, the System Monitor Automation
Interface allows you to specify such attributes as:

■ How users will view the data

■ What values will be displayed to the users

■ How often values will be measured

■ What the System Monitor user interface will look like

An example of the HTML code for a Web page that includes a fully configured System
Monitor control is shown in Listing 6-3. Within the code, you will see lines similar to
those shown in Listing 6-2.

Listing 6-2 Sample Commands for Configuring the System Monitor Control
Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available Bytes"

MyMonitor.ReadOnly = True

MyMonitor.UpdateInterval = “5"

End Sub

The lines of code shown in Listing 6-2 (which must be included within a <SCRIPT>
tag when embedding the control within a Web page) are used to configure the System
Monitor control. In this section, all the code samples are presented under the assump-
tion that you will be using them within a <SCRIPT> tag on a Web page. Although the
code for configuring System Monitor can be placed in any function or procedure on
your Web page, it is common to include this code as part of the Window_onLoad() pro-
cedure. The code included in this procedure is automatically executed each time the
Web page is loaded. By placing your System Monitor code in this procedure, you can
be assured that users will have a fully functioning and configured System Monitor
each time they load the page.

Listing 6-3 Complete HTML Code for a Custom System Monitor
<BODY>

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available Bytes"

MyMonitor.ReadOnly = True

MyMonitor.UpdateInterval = "5"

MyMonitor.BackColor = vbBlack

MyMonitor.ForeColor = vbWhite

End Sub

632 Microsoft Windows Server 2003 Performance Guide

-->

</SCRIPT>

<OBJECT CLASSID="clsid:C4D2D8E0-D1DD-11CE-940F-008029004347"

ID="MyMonitor” WIDTH="100%” height="100%">

</OBJECT>

</BODY>

Configuring the System Monitor ActiveX Control Display Type

Like System Monitor, the ActiveX control can display data using three different views:

Graph Charts performance over time. This allows you to see how performance has
fluctuated over a given time interval. The Graph view is less useful, however, for
counters that aggregate performance over time. For example, many of the server
performance counters measure total errors (Errors Logon, Errors Granted
Access, Errors Access Permissions). These cumulative statistics will never
decrease; as a result, you might be more interested in seeing the current value
rather than a steadily increasing array of values.

Unless otherwise specified, data is displayed as a line graph.

Histogram Displays a single value for each counter in bar chart format. The Histo-
gram view allows you to quickly determine the current value for any counter,
but does not allow you to see how those values have fluctuated over time.

Report Shows the current value for each counter being monitored. In Report view,
numerical values are displayed without any accompanying graphics.

You can configure the display type for your System Monitor control as part of your
script. For example, to display data in report form, use this command:

MyMonitor.DisplayType = 3

Valid System Monitor display values are shown in Table 6-10.

Note Switching between display types will not result in a loss of data. For example,
if you are viewing data as a line graph, you will see multiple data points for each
counter. If you switch to Report view, you will see only the latest data point for each
counter. Upon switching back to the line graph view, however, all your previously mea-
sured counter values will again be visible.

Table 6-10 System Monitor Display Values

DisplayType Description

1 Displays data as a histogram

2 Displays data as a line graph

3 Displays data in report form

Chapter 6: Advanced Performance Topics 633

When you choose the Histogram or the Report display types (the views that display a
single value for each counter), you can also choose whether the value displayed is the
current value, the average value, the minimum value, or the maximum value. You can
do this by setting the ReportValueType property to one of the valid ReportValueTypes or
one of the VBScript constants shown in Table 6-11. For example, either of the follow-
ing commands can be used to display only the minimum value for a counter:

MyMonitor.ReportValueTypeType = SysmonMinimum

MyMonitor.ReportValueTypeType = 3

Note that the System Monitor ReportValueType constants apply to both Report and
Histogram displays.

Table 6-11 System Monitor Report Value Types

ReportValue-
Type

VBScript Con-
stant Description

0 SysmonDefault-
Value

The value displayed depends on the data source be-
ing used. If you are monitoring real-time performance
data, the current value for the counter will be dis-
played. If you are displaying data from an existing
performance log, the average (mean) value for the
counter will be displayed.

1 Sysmon-
CurrentValue

Reports the last measured value for a counter. If you
are retrieving information from a performance log,
this will display the value for the last data bucket in
the log file.

2 SysmonAverage Average (mean) value for the counter for the display
interval is calculated and displayed.

3 SysmonMinimum The smallest measured value for the counter for the
display interval is displayed. This is useful when mon-
itoring an item such as available bytes of memory. In
a case like that, you might be less interested in moni-
toring normal fluctuations in memory use than you
are in ensuring that available memory does not fall
below a certain level.

4 SysmonMaximum The largest-measured value for the counter for the
display interval is displayed. This is useful when mon-
itoring an item such as the amount of time a disk drive
is in use. In a case like that, you might be less interest-
ed in monitoring normal fluctuations in disk use than
you are in ensuring that disk usage does not exceed a
certain level.

634 Microsoft Windows Server 2003 Performance Guide

Configuring the System Monitor ActiveX Control Sampling Rate

When setting the display type and the report value type for your custom performance
monitor, you might also want to configure the sampling rate. By default, the System
Monitor ActiveX control collects a new performance sample every 15 seconds. To
specify the number of seconds between samples, set the UpdateInterval property to an
integer that specifies the number of seconds between data collection intervals. For
example, this command sets the sampling rate to once every 60 seconds:

MyMonitor.UpdateInterval = 60

Manually Retrieving Performance Data

The sampling rate determines how often the System Monitor control automatically
collects a new set of performance data. By changing the sampling rate, you can control
when System Monitor will automatically collect the next set of measurement data.

In addition to changing the sampling rate, however, you can set the ManualUpdate
property and then use the CollectSample method to retrieve performance data manu-
ally every time you click a button. First, create a button on your Web page. Then, in the
button’s Event handler, call the CollectSample method each time the button is pressed.
Listing 6-4 shows an example of a procedure that might be called when an Update
Now button is pressed.

Listing 6-4 Calling the CollectSample Method
Sub Window_onLoad()

…

MyMonitor.ManualUpdate = True

End Sub

.

.

.

Sub UpdateSamples()

MyMonitor.CollectSample

End Sub

Note that when the ManualUpdate property is True, the value specified in the
UpdateInterval property is ignored.

Of course, if the System Monitor control can automatically collect data, you might
wonder why you would want to manually collect data. There are two primary reasons:

■ Within some applications, the automated data collection process is not fully reli-
able. For example, it is recommended that you use manual data collection if you
embed the System Monitor control in a Microsoft Office document.

■ When you manually collect data, you can take advantage of the OnSampleCol-
lected method.

Chapter 6: Advanced Performance Topics 635

The OnSampleCollected method (if present) is automatically called each time data is
collected using the CollectSamples method. Note that your OnSampleCollected routine
is not called when samples are gathered automatically. After the data has been col-
lected, you can include OnSampleCollected code to examine the data that was
retrieved, and then take some sort of action. For example, the code shown in Listing
6-5 checks the value of MyMonitor.Counters(1), and alerts the user when the value is
less than 4 MB. (The ability to reference individual performance counters is discussed
later in the “Configuring System Monitor ActiveX Control Performance Counters” sec-
tion.)

Listing 6-5 Using the Collect Sample Method
Sub MyMonitor_OnSampleCollected()

If MyMonitor.Counters(1).Value < 4000000 Then

Wscript.Echo "Available memory is less than four megabytes."

End If

End Sub

Note The OnSampleCollected method is invoked only for manual data collection
using the CollectSamples method.

Other event methods available in the System Monitor Automation Interface are listed
in Table 6-12. By using these event methods, you can create scripts that do such things
as perform an action each time a user selects one of the counters in the graph legend,
or each time a user adds or deletes a counter.

Table 6-12 System Monitor Event Methods

Event Method Description

OnSampleCollected Occurs whenever samples are collected using the CollectSamples
method.

OnCounterAdded Occurs whenever a new counter is added to the System Monitor
control.

OnCounterDeleted Occurs whenever an existing counter is deleted from the System
Monitor control.

OnCounterSelected Occurs whenever a counter is selected in the System Monitor control.
Counters are selected by clicking the counter name in the legend.

OnDblClick Occurs whenever a counter is double-clicked in Graph, Histogram,
or Report view.

636 Microsoft Windows Server 2003 Performance Guide

For example, the script shown in Listing 6-6 displays a message box each time a
counter has been deleted.

Listing 6-6 Using the OnCounterDeleted Method
Sub MyMonitor_OnCounterDeleted()

Wscript.Echo "A counter has been deleted."

End Sub

The OnCounterAdded, OnCounterDeleted, and OnCounterSelected methods all return
the index value that identifies the affected counter from the Counters collection of
CounterItems. (For more information about CounterItems and the Counters.Add
method, see “Adding Performance Counters to the System Monitor ActiveX Control”
later in this chapter.)

Configuring the System Monitor ActiveX Control’s Appearance

When you create a custom performance monitor using the System Monitor ActiveX
control, you can decide in advance which portions of the user interface will be avail-
able to your users. For example, you can configure any of the user interface items
shown in Table 6-13.

Table 6-13 System Monitor User Interface Properties

Property Value Description

ShowLegend True/False On-screen legend that matches the lines in the
graph with the name of the associated perfor-
mance counters. For example, the legend might tell
you that the red line represents \Memory\Available
Bytes.

ShowHorizontalGrid True/False Displays horizontal gridlines in the Histogram and
line Graph views.

ShowVerticalGrid True/False Displays vertical gridlines in the Histogram and line
Graph views.

YAxisLabel Character
string

Retrieves or sets the label of the vertical y-axis of
the Histogram and line Graph views.

ShowToolBar True/False Displays buttons that allow the user to add and de-
lete counters, change the display type, and so on.
Hiding the toolbar will not prevent users from mak-
ing these changes; users can still right-click the
graph and make these changes by using the con-
text menu.

Chapter 6: Advanced Performance Topics 637

For example, the lines of code shown in Listing 6-7 configure System Monitor to dis-
play the legend, hide the toolbar, hide the value bar, and set the name of the graph to
“Disk Drive Performance Monitor.”

Listing 6-7 Configuring the System Monitor User Interface
Sub Window_OnLoad()

MyMonitor.ShowLegend = True

MyMonitor.ShowToolbar = False

MyMonitor.ShowValueBar = False

MyMonitor.GraphTitle = "Disk Drive Performance Monitor"

End Sub

Configuring the System Monitor ActiveX Control Color Schemes

You can also specify the colors used when performance data is displayed. The color
properties you can configure are described in Table 6-14.

ShowValueBar True/False Displays the last, minimum, maximum, and average
values for the currently selected counter. Counters
are selected whenever a user clicks the counter
name in the legend or double-clicks the counter in
the Chart, Histogram, or Report view.

GraphTitle Any valid char-
acter string

Title displayed for the histogram, or the line graph.

Table 6-13 System Monitor User Interface Properties

Property Value Description

Table 6-14 System Monitor Color Properties

Property Description

BackColor Color of the graph, chart, or report background (the area where
data is displayed). If not specified, BackColor color defaults to
the background color of the container.

BackColorCtl Color of the area surrounding the graph, chart, or report (the
area where the value labels, axis labels, and so on are dis-
played). If not specified, BackColorCtl defaults to the system
button face color.

ForeColor Color of the font used throughout the display. If not specified,
ForeColor defaults to the system color defined for button text.

GridColor Color of the gridlines (if shown) used in Graph or Chart view. If
not specified, GridColor is dark gray.

TimeBarColor Color of the vertical bar that moves across the display, indicat-
ing the passage of time. If not specified, TimeBarColor is red.

638 Microsoft Windows Server 2003 Performance Guide

To set the color for a System Monitor component, you can use the Visual Basic color
code, the RGB color code, or the hexadecimal color code. For example, Listing 6-8
shows three ways to set the font color to blue.

Listing 6-8 Three Options for Setting the System Monitor Font Color
MyMonitor.ForeColor = vbBlue

MyMonitor.ForeColor = RGB(0,0,255)

MyMonitor.ForeColor = &hFF0000

Color codes for some of the more commonly used colors are shown Table 6-15.

Note You can determine RGB values by using Microsoft Paint. In Paint, double-click
any color in the color palette. In the Edit Colors dialog box, click Define Custom Colors.
When you click any color in the dialog box, the RGB values are displayed in the boxes
labeled Red, Green, and Blue.

You can also reference any of the standard Visual Basic color constants like vbBack-
groundWindow or vbWindowsText, or their .NET Framework equivalents.

Configuring the System Monitor ActiveX Control Font Styles

You can control font size, font style, font color, and many other font properties when
you create a custom performance monitor. The only limitation is that all the fonts in
your System Monitor ActiveX control must have the same characteristics; for example,
you cannot use Arial for the data labels and Times Roman for the graph labels. (Both
the System Monitor control and the System Monitor in the Performance console have
the same limitation.)

Table 6-15 System Monitor Color Codes

Color VB Color Code RGB Value Hexadecimal Value

Black vbBlack 0,0,0 &h00

Blue vbBlue 0,0,255 &hFF0000

Cyan vbCyan 0,255,255 &hFFFF00

Green vbGreen 0,255,0 &hFF00

Magenta vbMagenta 255,0,255 &hFF00FF

Red vbRed 255,0,0 &hFF

White vbWhite 255,255,255 &hFFFFFF

Yellow vbYellow 255,255,0 &hFFFF

Chapter 6: Advanced Performance Topics 639

Table 6-16 lists some of the font properties that you can configure for your System
Monitor control. (For a complete list, refer to the FontObject property in Visual Basic
Help.) When configuring fonts, remember that the System Monitor font color is con-
figured using the ForeColor property rather than the Font property.

For example, the code shown in Listing 6-9 sets the font for your System Monitor con-
trol to 12-point red Trebuchet bold.

Listing 6-9 Setting System Monitor Font Properties
Sub Window_onLoad()

MyMonitor.Font.Size = 12

MyMonitor.Forecolor = vbRed

MyMonitor.Font = "Trebuchet"

MyMonitor.Font.Bold = True

End Sub

If you do not set the font properties, the default font for the application hosting the
System Monitor control is used.

Adding Performance Counters to the System Monitor ActiveX Control

Of course, even the most aesthetically pleasing System Monitor control is of little
value unless it actually monitors performance. Before you can monitor performance
with your custom control, you must use the Counters.Add method to specify the per-
formance counters to be gathered.

The Counters.Add method can be called from anywhere at any time. For example, you
could have a button on your page that, when clicked, causes counters to be added to
the System Monitor control. Monitoring would then start as soon as a counter is
added to the control.

In many cases, however, you will want to begin monitoring performance immediately,
without user intervention. To do that, include the Counters.Add method within a
Window_onLoad script. (As noted earlier, the Window_onLoad script, if present, is auto-

Table 6-16 System Monitor Font Properties

Property Value

Font Set to the desired font name

Bold True or False

Italic True or False

Size Set to the desired point size (from 1 through 2048)

640 Microsoft Windows Server 2003 Performance Guide

matically run each time a Web page is loaded.) For example, the script shown in List-
ing 6-10 adds several Memory counters as part of the Window_onLoad script. As a
result, each time this Web page is loaded, System Monitor immediately begins moni-
toring these Memory counters.

Listing 6-10 Adding Multiple Performance Counters
Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available Bytes"

MyMonitor.Counters.Add "\Memory\Pages/sec"

MyMonitor.Counters.Add "\Memory\Cache Bytes"

End Sub

Configuring System Monitor ActiveX Control Performance Counters

You can use the Counters collection to track each counter added to your performance
monitor. Counters are assigned an index number based on the order in which they
are added to the control. For example, suppose you add three performance counters
by using the lines of code shown in Listing 6-16.

Listing 6-11 Adding New Performance Counters
Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available Bytes"

MyMonitor.Counters.Add "\Memory\Pages/sec"

MyMonitor.Counters.Add "\Memory\Cache Bytes"

End Sub

In this example, note the following:

■ The \Memory\Available Bytes counter—the first counter added to the graph—is
designated MyMonitor.Counters(1).

■ The \Memory\Pages/sec counter is designated MyMonitor.Counters(2).

■ The \Memory\Cache Bytes is designated MyMonitor.Counters(3).

With these index numbers assigned, you can use the Counters collection to obtain
information about a specific counter, and to set the properties for a specific counter.
For example, this command displays the value for the \Memory\Available Bytes
counter in a message box:

Wscript.Echo MyMonitor.Counters(1).Value

To display the fully qualified path name for the second counter in the Counters collec-
tion, use this command:

Wscript.Echo MyMonitor.Counters(2).Path

Chapter 6: Advanced Performance Topics 641

The individual counter properties available to you are shown in Table 6-17.

The lines of code shown in Listing 6-12 display the first counter in the collection as a
red dotted line, with a thickness of 2 pixels.

Listing 6-12 Configuring Performance Counter Properties
Sub Window_onLoad()

MyMonitor.Counters(1).Color = vbRed

MyMonitor.Counters(1).LineStyle = 2

MyMonitor.Counters(1).Width = 2

End Sub

The Counters.Add method also returns a reference to the CounterItem that was just
added. You can, if you choose, save this CounterItem in a local variable.

Removing Performance Counters from the System Monitor ActiveX
Control

Performance counters can be removed from the System Monitor control by calling the
Counters.Remove method and referencing the item number within the Counters collec-
tion. This can be done by including a button on your Web page that, when clicked,
deletes a particular counter. For example, the script shown in Listing 6-13 removes the
\Memory\Pages/sec counter from MyMonitor.

Table 6-17 System Monitor Performance Counter Properties

Property Description

Color Sets the color used when displaying the counter in either line Graph
or Histogram view.

LineStyle Sets the style of the line used when displaying the counter in either
line Graph or Histogram view. Valid line styles include:

0—Solid line

1—Dashed line

2—Dotted line

3—Dotted line with alternating short and long segments

4—Dotted line with alternating dashes and double dots

Path Retrieves the path name of the counter.

ScaleFactor Sets or retrieves the scale factor used when graphing the counter values.

Value Retrieves the current value of a counter.

Width Sets the width of the line used in the line Graph and Histogram views.
Widths can range from 1 pixel through 9 pixels.

642 Microsoft Windows Server 2003 Performance Guide

Listing 6-13 Removing a Performance Counter Using the Counter Index
Sub RemovePagesPerSec()

MyMonitor.Counters.Remove(2)

End Sub

To remove all the counters in a single operation, use the Reset method, as shown in
Listing 6-14.

Listing 6-14 Removing All Performance Counters Using the Reset Method
Sub RemoveAllCounters()

MyMonitor.Reset

End Sub

Using Counter Paths to Track Individual Performance Counters

When you remove performance counters, the Counters collection index number for
the remaining counters might change as well. For example, suppose you add three
counters to the performance monitor in this example, as shown in Listing 6-15.

Listing 6-15 Adding New Performance Counters
Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available Bytes"

MyMonitor.Counters.Add "\Memory\Pages/sec"

MyMonitor.Counters.Add "\Memory\Cache Bytes"

End Sub

Referencing individual counters by their counter numbers (as shown earlier in this
chapter in “Configuring System Monitor ActiveX Control Performance Counters”)
works well, provided counters are neither added nor deleted during a monitoring ses-
sion. However, if you delete a counter, the index numbers will be decremented
(because there are now only two counters to be assigned numbers), and individual
counters might be reassigned new index numbers. For example, suppose you remove
the first counter. In that case:

■ \Memory\Pages/sec will be reassigned index number 1.

■ \Memory\Cache Bytes will be reassigned to index number 2.

■ There will no longer be a counter assigned to index number 3.

As a result, any code you have that explicitly refers to MyMonitor.Counters(3) will fail.

One way to work around this problem is to cycle through all the counters in the cur-
rent collection, and see whether any match the appropriate counter path. For exam-

Chapter 6: Advanced Performance Topics 643

ple, the code shown in Listing 6-16 cycles through the counters, looking for one with
a path of \Memory\Available Bytes. If the counter is found, a message box is dis-
played.

Note MyMonitor.Counters.Count retrieves the total number of counters currently
assigned to the System Monitor control.

Listing 6-16 Identifying Performance Counters by Path
Sub CheckForAvailableBytes()

For i = 1 to MyMonitor.Counters.Count

If MyMonitor.Counters(i).Path = "\Memory\Available Bytes" then

Wscript.Echo "\Memory\Available Bytes is in the current collection."

End if

Next

End Sub

Creating a Web Page for Monitoring Performance

Figure 6-22 shows an example of a Web page hosting the System Monitor control.
This custom performance monitor has the following properties:

■ The only performance counter being monitored is \Memory\Available MBytes
(MyMonitor.Counters.Add “\Memory\Available MBytes”).

■ The control has been designed to fill the entire display (height equals 100% and
width equals 100%).

■ The color of the data display area (BackColor) has been set to white (vbWhite).

■ The font color (ForeColor) has been set to black (vbBlack).

■ The sampling rate (UpdateInterval) has been set to 5 seconds.

■ The y-axis maximum has been set to 800.

■ The default width of the line graph has been set to 4 pixels.

■ Horizontal and vertical gridlines have been enabled.

■ A title has been added to the graph.

■ The control’s properties cannot be changed interactively (MyMonitor.ReadOnly =
True).

644 Microsoft Windows Server 2003 Performance Guide

Figure 6-22 A Web page hosting the System Monitor control

To create the example performance monitor page, copy the code shown in Listing
6-17 into Notepad, and save it as a Web page using the .htm file extension.

Listing 6-17 Complete HTML Code for a Custom System Monitor
<BODY>

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available MBytes"

MyMonitor.GraphTitle = "Available RAM (in MB)"

MyMonitor.Counters(1).Width = 4

MyMonitor.ReadOnly = True

MyMonitor.UpdateInterval = "5"

MyMonitor.BackColor = vbWhite

MyMonitor.ForeColor = vbBlack

MyMonitor.MaximumScale = 800

MyMonitor.ShowHorizontalGrid = True

MyMonitor.ShowVerticalGrid = True

End Sub

-->

</SCRIPT>

<OBJECT CLASSID="clsid:C4D2D8E0-D1DD-11CE-940F-008029004347" ID="MyMonitor"

WIDTH="100%" height="100%">

</OBJECT>

</BODY>

Chapter 6: Advanced Performance Topics 645

Even though this is a simple example, the code can easily be modified to create a more
extensive and more sophisticated monitoring tool. For example, you can:

■ Modify the properties of the System Monitor control To do this, change any of
the lines listed as part of the Window_onLoad script. For example, to give users
the right to modify the properties of the control, set the ReadOnly property to
False, like this:

MyMonitor.ReadOnly = False

To configure properties not specified in our example, add those items to the
Window_onLoad script. For example, this command sets the font for the graph
to Arial:

MyMonitor.Font = "Arial"

■ Add additional counters To add more counters, add additional instances of the
Counters.Add method. For example, this line can be inserted to add the \Mem-
ory\Committed Bytes counter to the control:

MyMonitor.Counters.Add "\Memory\Committed Bytes"

Drag-and-Drop Support

Scripting the System Monitor control provides an easy way to develop and use prefor-
matted performance reports. Once you have created one or more HTML script files to
invoke the System Monitor control with a full range of settings, you can use drag-and-
drop support to deploy these performance monitoring reports quickly and easily.

For example, Listing 6-18 shows a System Monitor control HTML script file that cre-
ates a Memory Allocation report. This Memory Allocation report not only includes the
main performance counters that characterize virtual and physical memory allocation,
it also formats them to scale on a single Chart view.

Listing 6-18 HTML Code for a System Monitor Memory Allocation Report
<BODY>

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Window_onLoad()

MyMonitor.Counters.Add "\Memory\Available MBytes"

MyMonitor.Counters.Add "\Memory\Committed Bytes"

MyMonitor.Counters.Add "\Memory\Commit Limit"

MyMonitor.Counters.Add "\Memory\Pool Paged Bytes"

646 Microsoft Windows Server 2003 Performance Guide

MyMonitor.Counters.Add "\Process(_Total)\Private Bytes"

MyMonitor.GraphTitle = "Memory Allocation (MB)"

MyMonitor.MaximumScale = 1500

MyMonitor.Counters(2).ScaleFactor = -6

MyMonitor.Counters(3).ScaleFactor = -6

MyMonitor.Counters(4).ScaleFactor = -6

MyMonitor.Counters(5).ScaleFactor = -6

MyMonitor.Counters(1).Width = 2

MyMonitor.Counters(2).Width = 2

MyMonitor.Counters(3).Width = 4

MyMonitor.Counters(4).Width = 2

MyMonitor.Counters(5).Width = 2

MyMonitor.ReadOnly = False

MyMonitor.UpdateInterval = "5"

MyMonitor.BackColor = vbWhite

MyMonitor.ForeColor = vbBlack

MyMonitor.ShowHorizontalGrid = True

MyMonitor.ShowVerticalGrid = True

End Sub

-->

</SCRIPT>

<OBJECT CLASSID="clsid:C4D2D8E0-D1DD-11CE-940F-008029004347" ID="MyMonitor"

WIDTH="100%" height="100%">

</OBJECT>

</BODY>

In this example, Committed Bytes, Available Mbytes, Pool Paged Bytes, and Process
(_Total)\Private Bytes are charted alongside the Commit Limit. All the memory allo-
cation metrics are charted against a y-axis scale that is set to 1500 MB. The memory
allocation counters that are reported in bytes have ScaleFactor settings to divide the
bytes counts by 1,000,000. Note that the ScaleFactor settings correspond to powers of
10. The actual counter value is multiplied by this scaling factor to calculate the value
to be displayed. The valid range of the ScaleFactor parameter corresponds to
PDH_MIN_SCALE (−7) and PDH_MAX_SCALE (+7) in the PDH.library calls. A value
of zero will set the scale to 1 so that the actual value is returned.

In this example, MyMonitor.Counters(2).ScaleFactor = -6 sets the scale factor for
Committed Bytes to 10-6, which results in dividing the actual value of the Committed
Bytes counter by 1,000,000 prior to displaying it.

Figure 6-23 illustrates the display that results when you drag this HTML file from
Explorer to an Internet Explorer Web page.

Chapter 6: Advanced Performance Topics 647

Figure 6-23 Display of an HTML file on an Internet Explorer Web page

You can also drag your preformatted System Monitor report onto the System Monitor
control hosted within the Microsoft Management Console.

649

Glossary

A

access control entry (ACE). An entry in an
object's discretionary access control list
(DACL) that grants permissions to a
user or group. An ACE is also an entry
in an object's system access control list
(SACL) that specifies the security
events to be audited for a user or group.
See also access control list (ACL); dis-
cretionary access control list (DACL);
object; security descriptor; system
access control list (SACL).

access control list (ACL). A list of security pro-
tections that apply to an entire object, a
set of the object's properties, or an indi-
vidual property of an object. There are
two types of access control lists: discre-
tionary and system. See also access con-
trol entry (ACE); discretionary access
control list (DACL); object; security
descriptor; system access control list
(SACL).

ACE. See definition for access control entry
(ACE).

ACL. See definition for access control list
(ACL).

Active Directory. The Windows-based direc-
tory service. Active Directory stores
information about objects on a network
and makes this information available to
users and network administrators.
Active Directory gives network users
access to permitted resources anywhere
on the network by using a single logon
process. It provides network adminis-
trators with an intuitive, hierarchical

view of the network and a single point
of administration for all network
objects. See also directory service;
object.

Active Directory Users and Computers. An
administrative tool used by an adminis-
trator to perform day-to-day Active
Directory administration tasks. The
tasks that can be performed with this
tool include creating, deleting, modify-
ing, moving, and setting permissions
on objects stored in the directory.
Examples of objects in Active Directory
are organizational units, users, con-
tacts, groups, computers, printers, and
shared file objects. See also Active
Directory; object.

active volume. The volume from which the
computer starts up. The active volume
must be a simple volume on a dynamic
disk. You cannot mark an existing
dynamic volume as the active volume,
but you can upgrade a basic disk con-
taining the active partition to a dynamic
disk. After the disk is upgraded to
dynamic, the partition becomes a sim-
ple volume that is active. See also basic
disk; dynamic disk; dynamic volume;
simple volume.

ActiveX. A set of technologies that allows soft-
ware components to interact with one
another in a networked environment,
regardless of the language in which the
components were created. See also
ActiveX component.

650 Microsoft Windows Server 2003 Performance Guide

ActiveX component. A reusable software com-
ponent that can be used to incorporate
ActiveX technology. See also ActiveX.

address (A) resource record. A resource record
(RR) used to map a DNS domain name
to a host Internet Protocol version 4
(IPv4) address on the network. See also
IP address; resource record (RR).

ADSL. See definition for Asymmetric Digital
Subscriber Line (ADSL).

affinity mask. A value that contains bits for
each processor on the system, defining
which processors a process or thread
can use.

allocate. To mark media for use by an applica-
tion. Media in the available state can be
allocated.

allocated state. A state that indicates media
are in use and assigned to application
media pools.

allocation unit. The smallest amount of disk
space that can be allocated to hold a
file. All file systems used by Windows
organize hard disks based on allocation
units. The smaller the allocation unit
size, the more efficiently a disk stores
information. If you do not specify an
allocation unit size when formatting
the disk, Windows picks default sizes
based on the size of the volume. These
default sizes are selected to reduce the
amount of space that is lost and the
amount of fragmentation on the vol-
ume. Also called a cluster. See also file
system; volume.

AppleTalk. See definition for AppleTalk
Protocol.

AppleTalk Protocol. The set of network proto-
cols on which AppleTalk network archi-
tecture is based. The AppleTalk

Protocol is installed with Services for
Macintosh to help users access
resources on a network. See also
resource.

application media pool. In Removable Stor-
age, one of two classes of media pools:
system and application. The applica-
tion media pool is a data repository
that determines which media can be
accessed by which applications and
that sets the policies for that media.
Applications create application media
pools. See also Removable Storage.

application programming interface (API). A set
of routines that an application uses to
request and carry out lower-level ser-
vices performed by a computer's oper-
ating system. These routines usually
carry out maintenance tasks such as
managing files and displaying informa-
tion.

Asymmetric Digital Subscriber Line (ADSL). A
high-bandwidth digital transmission
technology that uses existing phone
lines and also allows voice transmis-
sions over the same lines. Most of the
traffic is transmitted downstream to the
user, generally at rates of 512 Kbps to
about 6 Mbps.

attribute. For files, information that indicates
whether a file is read-only, hidden,
ready for archiving (backing up), com-
pressed, or encrypted, and whether the
file contents should be indexed for fast
file searching.

In Active Directory, a property of an
object. For each object class, the
schema defines which attributes an
instance of the class must have and
which additional attributes it might
have. See also Active Directory; object.

Glossary 651

authoritative. Describes a DNS server that
hosts a primary or secondary copy of a
DNS zone. See also DNS server;
resource record (RR).

available state. A state in which media can be
allocated for use by applications.

averaging counter. A type of counter that
measures a value over time and dis-
plays the average of the last two mea-
surements over some other factor (for
example, PhysicalDisk\Avg. Disk
Bytes/Transfer).

B

bad block A disk sector that can no longer
be used for data storage, usually
because of media damage or imperfec-
tions. Also known as bad sector.

bad sector A disk sector that can no longer
be used for data storage, usually
because of media damage or imperfec-
tions. Also known as bad block.

bar code A machine-readable label that
identifies objects, such as physical
media.

baseline A range of measurements derived
from performance monitoring that rep-
resents acceptable performance under
typical operating conditions.

basic disk A physical disk that can be
accessed by MS-DOS and all Windows-
based operating systems. Basic disks
can contain up to four primary parti-
tions, or three primary partitions and
an extended partition with multiple
logical drives. If you want to create par-
titions that span multiple disks, you
must first convert the basic disk to a

dynamic disk by using Disk Manage-
ment or the Diskpart.exe command-
line tool. See also dynamic disk.

basic input/output system (BIOS) On x86-
based computers, the set of essential
software routines that test hardware at
startup, starts the operating system,
and supports the transfer of data
among hardware devices. The BIOS is
stored in read-only memory (ROM) so
that it can be executed when you turn
on the computer. Although critical to
performance, the BIOS is usually invisi-
ble to computer users.

bindery A database in Novell NetWare 3.x
that contains organizational and secu-
rity information about users and
groups.

BIOS See definition for basic input/output
system (BIOS).

BIOS parameter block (BPB) A series of fields
containing data on disk size, geometry
variables, and the physical parameters
of the volume. The BPB is located
within the boot sector.

boot partition The partition that contains
the Windows operating system and its
support files. The boot partition can be,
but does not have to be, the same as the
system partition. See also partition.

boot sector A critical disk structure for start-
ing your computer, located at sector 1
of each volume or floppy disk. It con-
tains executable code and data that is
required by the code, including infor-
mation used by the file system to access
the volume. The boot sector is created
when you format the volume.

652 Microsoft Windows Server 2003 Performance Guide

bottleneck A condition, usually involving a
hardware resource, that causes a com-
puter to perform poorly.

bound trap In programming, a problem in
which a set of conditions exceeds a per-
mitted range of values, causing the
microprocessor to stop what it is doing
and handle the situation in a separate
routine.

C

C2 level of security U.S. government secu-
rity level that designates a system that
has controls capable of enforcing access
limitations on an individual basis. In a
C2 system, the owner of a system
resource has the right to decide who
can access it, and the operating system
can detect when data is accessed and
by whom.

cache A special memory subsystem in
which frequently used data values are
duplicated for quick access. See also
cache file.

cache file A file used by DNS servers and cli-
ents to store responses to DNS queries.
For Windows DNS servers, the cache
file is named Cache.dns by default. See
also authoritative; cache; DNS server.

caching The process of temporarily storing
recently accessed information in a spe-
cial memory subsystem for quicker
access. See also cache; caching resolver.

caching resolver A program that extracts
information from DNS servers in
response to client requests. See also
cache; cache file; caching; DNS server.

capture buffer The maximum size of the
capture file. When the capture file
reaches the maximum size, the oldest

frames are removed to make room for
newer frames (FIFO queue).

change journal A feature that tracks changes
to NTFS volumes, including additions,
deletions, and modifications. The
change journal exists on the volume as
a sparse file. See also NTFS file system;
volume.

changer The robotic element of an online
library unit.

checkpoint In a server cluster node's regis-
try, a snapshot of the Cluster subkey or
an application subkey. The checkpoint
is written to the quorum disk when cer-
tain events take place, such as a node
failure.

child object An object that resides in
another object. A child object implies
relation. For example, a file is a child
object that resides in a folder, which is
the parent object. See also object; par-
ent object.

client request A service request from a client
computer to a server computer or a
cluster of server computers.

Client Service for NetWare A service that
allows clients to make direct connec-
tions to resources on computers run-
ning NetWare 2.x, 3.x, 4.x, or 5.x server
software by using the Internetwork
Packet Exchange (IPX) protocol only.
This service is included with Windows
XP Professional and the Microsoft Win-
dows Server 2003 family. See also Inter-
network Packet Exchange (IPX).

cluster database A database containing con-
figuration data for all cluster objects.
The cluster database is synchronized
across all cluster nodes. See also node.

Glossary 653

Cluster service The essential software com-
ponent that controls all aspects of
server cluster operation and manages
the cluster database. Each node in a
server cluster runs one instance of the
Cluster service. See also node; server
cluster.

COM See definition for Component Object
Model (COM).

complementary metal-oxide semiconductor

(CMOS) The battery-packed memory
that stores information, such as disk
types and amount of memory, used to
start the computer.

completed state A state that indicates that
media can no longer be used for write
operations.

Component Object Model (COM) An object-
based programming model designed to
promote software interoperability; it
allows two or more applications or
components to easily cooperate with
one another, even if they were written
by different vendors, at different times,
in different programming languages, or
if they are running on different comput-
ers running different operating sys-
tems. OLE technology and ActiveX are
both built on top of COM. See also
ActiveX.

console tree The left pane in Microsoft Man-
agement Console (MMC) that displays
the items contained in the console. The
items in the console tree and their hier-
archical organization determine the
capabilities of a console. See also
Microsoft Management Console
(MMC).

container object An object that can logically
contain other objects. For example, a

folder is a container object. See also
Active Directory; noncontainer object;
object.

context switch An event that occurs when
the kernel switches the processor from
one thread to another, for example,
when an I/O operation causes a thread
to be blocked and the operating system
selects another thread to run on the
processor.

convergence The process of stabilizing a
system after changes occur in the net-
work. For dynamic routing, if a route
becomes unavailable, routers send
update messages throughout the net-
work, reestablishing information about
preferred routes.

For Network Load Balancing, a process
by which hosts exchange messages to
determine a new, consistent state of the
cluster and to elect the default host.
During convergence, a new load distri-
bution is determined for hosts that
share the handling of network traffic
for specific Transmission Control Pro-
tocol (TCP) or User Datagram Protocol
(UDP) ports. See also Network Load
Balancing.

cyclic redundancy check (CRC) A procedure
used in checking for errors in data
transmission. CRC error checking uses
a complex calculation to generate a
number based on the data transmitted.
The sending device performs the calcu-
lation before transmission and sends its
result to the receiving device. The
receiving device repeats the same calcu-
lation after transmission. If both
devices obtain the same result, it is
assumed that the transmission was
error-free. The procedure is known as a

654 Microsoft Windows Server 2003 Performance Guide

redundancy check because each trans-
mission includes not only data but
extra (redundant) error-checking val-
ues. Communications protocols such
as XMODEM and Kermit use cyclical
redundancy checking.

D

deallocate To return media to the available
state after they have been used by an
application.

decommissioned state A state indicating
that media have reached their alloca-
tion maximum.

deferred procedure call (DPC) A kernel-
defined control object type that repre-
sents a procedure that is to be called
later. A DPC runs at DISPATCH_LEVEL
IRQL. A DPC can be used when a timer
event occurs or when an ISR needs to
perform more work but should do so at
a lower interrupt request level than the
one at which an ISR executes. In an
SMP environment, a DPC might run
immediately on a processor other than
the current one, or might run after
another interrupt has run on the cur-
rent processor.

desired free space An amount of free space
specified in Remote Storage that should
be maintained on a volume at all times
during normal use. See also Remote
Storage; volume.

device fonts See definition for printer fonts.

DFS See definition for Distributed File Sys-
tem (DFS).

DHCP See definition for Dynamic Host Con-
figuration Protocol (DHCP).

differential data Saved copies of changed
data that can be applied to an original

volume to generate a volume shadow
copy. See also volume; volume shadow
copy.

digital video disc (DVD) A type of optical
disc storage technology. A digital video
disc (DVD) looks like a CD-ROM disc,
but it can store greater amounts of data.
DVDs are often used to store full-length
movies and other multimedia content
that requires large amounts of storage
space. See also DVD decoder; DVD
drive.

direct memory access (DMA) Memory
access that does not involve the micro-
processor. DMA is frequently used for
data transfer directly between memory
and a peripheral device such as a disk
drive.

directory An information source that con-
tains information about users, com-
puter files, or other objects. In a file
system, a directory stores information
about files. In a distributed computing
environment (such as a Windows
domain), the directory stores informa-
tion about objects such as printers, fax
servers, applications, databases, and
other users. See also object.

directory service Both the directory informa-
tion source and the service that makes
the information available and usable. A
directory service enables the user to
find an object when given any one of its
attributes. See also Active Directory;
attribute; directory; object.

disconnected placeholder A placeholder
whose file contents have been removed
from Remote Storage. A disconnected
placeholder could have been restored
from backup after the space in Remote
Storage was reclaimed, or the data

Glossary 655

within Remote Storage is physically
unavailable (for example, because of a
media failure). See also Remote Storage.

discretionary access control list (DACL) The
part of an object's security descriptor
that grants or denies specific users and
groups permission to access the object.
Only the owner of an object can change
permissions granted or denied in a
DACL; thus, access to the object is at
the owner's discretion. See also access
control entry (ACE); object; security
descriptor; system access control list
(SACL).

disk bottleneck A condition that occurs
when disk performance is reduced to
the extent that overall system perfor-
mance is affected.

disk quota The maximum amount of disk
space available to a user.

Distributed File System (DFS) A service that
allows system administrators to orga-
nize distributed network shares into a
logical namespace, enabling users to
access files without specifying their
physical location and providing load
sharing across network shares.

DNS server A server that maintains informa-
tion about a portion of the DNS data-
base, and that responds to and resolves
DNS queries.

domain controller In an Active Directory for-
est, a server that contains a writable
copy of the Active Directory database,
participates in Active Directory replica-
tion, and controls access to network
resources. Administrators can manage
user accounts, network access, shared
resources, site topology, and other
directory objects from any domain con-

troller in the forest. See also Active
Directory; directory.

domain local group A security or distribu-
tion group that can contain universal
groups, global groups, other domain
local groups from its own domain, and
accounts from any domain in the forest.
Domain local security groups can be
granted rights and permissions on
resources that reside only in the same
domain where the domain local group
is located. See also global group.

dots per inch (DPI) The standard used to
measure screen and printer resolution,
expressed as the number of dots that a
device can display or print per linear
inch. The greater the number of dots
per inch, the better the resolution.

downloadable fonts A set of characters
stored on disk and sent (downloaded)
to a printer's memory when needed for
printing a document. Downloadable
fonts are most commonly used with
laser printers and other page printers,
although many dot-matrix printers can
accept some of them. Also called soft
fonts. See also font; font cartridge.

DVD decoder A hardware or software com-
ponent that allows a digital video disc
(DVD) drive to display movies on your
computer screen. See also digital video
disc (DVD); DVD drive; hardware
decoder.

DVD drive A disk storage device that uses
digital video disc (DVD) technology. A
DVD drive reads both CD-ROM and
DVDs; however, you must have a DVD
decoder to display DVD movies on
your computer screen. See also digital
video disc (DVD); DVD decoder.

656 Microsoft Windows Server 2003 Performance Guide

dynamic disk A physical disk that provides
features that basic disks do not, such as
support for volumes that span multiple
disks. Dynamic disks use a hidden
database to track information about
dynamic volumes on the disk and other
dynamic disks in the computer. You
convert basic disks to dynamic by using
the Disk Management snap-in or the
DiskPart command-line tool. When you
convert a basic disk to dynamic, all
existing basic volumes become
dynamic volumes. See also active vol-
ume; basic disk; dynamic volume; parti-
tion; volume.

Dynamic Host Configuration Protocol (DHCP)

A TCP/IP service protocol that offers
dynamic leased configuration of host IP
addresses and distributes other config-
uration parameters to eligible network
clients. DHCP provides safe, reliable,
and simple TCP/IP network configura-
tion, prevents address conflicts, and
helps conserve the use of client IP
addresses on the network.

DHCP uses a client/server model
where the DHCP server maintains cen-
tralized management of IP addresses
that are used on the network. DHCP-
supporting clients can then request
and obtain lease of an IP address from a
DHCP server as part of their network
boot process.

See also IP address; Transmission Con-
trol Protocol/Internet Protocol (TCP/
IP).

dynamic priority The priority value to which
a thread's base priority is adjusted to
optimize scheduling.

dynamic volume A volume that resides on a
dynamic disk. Windows supports five
types of dynamic volumes: simple,
spanned, striped, mirrored, and RAID-
5. A dynamic volume is formatted by
using a file system, such as file alloca-
tion table (FAT) or NTFS, and has a
drive letter assigned to it. See also basic
disk; dynamic disk; mirrored volume;
RAID-5 volume; simple volume;
spanned volume; striped volume; vol-
ume.

dynamic-link library (DLL) An operating sys-
tem feature that allows executable rou-
tines (generally serving a specific
function or set of functions) to be
stored separately as files with .dll exten-
sions. These routines are loaded only
when needed by the program that calls
them.

E

EFS See definition for Encrypting File Sys-
tem (EFS).

EIDE See definition for enhanced integrated
device electronics (EIDE).

(EISA) See definition for Extended Industry
Standard Architecture (EISA).

Encrypting File System (EFS) A feature in this
version of Windows that enables users
to encrypt files and folders on an NTFS
volume disk to keep them safe from
access by intruders. See also NTFS file
system.

enhanced integrated device electronics (EIDE)

An extension of the IDE standard,
EIDE is a hardware interface standard
for disk drive designs that houses con-
trol circuits in the drives themselves. It

Glossary 657

allows for standardized interfaces to
the system bus, while providing for
advanced features, such as burst data
transfers and direct data access.

event logging The process of recording an
audit entry in the audit trail whenever
certain events occur, such as services
starting and stopping, or users logging
on and off and accessing resources.

expire interval For DNS, the number of sec-
onds that DNS servers operating as sec-
ondary masters for a zone will use to
determine whether zone data should
be expired when the zone is not
refreshed and renewed. See also DNS
server.

Extended Industry Standard Architecture

(EISA) A 32-bit bus standard intro-
duced in 1988 by a consortium of nine
computer-industry companies. EISA
maintains compatibility with the earlier
Industry Standard Architecture (ISA)
but provides additional features.

F

failback The process of moving resources,
either individually or in a group, back
to their preferred node after the node
has failed and come back online. See
also failback policy; node; resource.

failback policy Parameters that an adminis-
trator can set using Cluster Administra-
tor that affect failback operations. See
also failback.

failover In server clusters, the process of
taking resource groups offline on one
node and bringing them online on
another node. When failover occurs, all
resources within a resource group fail
over in a predefined order; resources

that depend on other resources are
taken offline before, and are brought
back online after, the resources on
which they depend. See also failover
policy; node; possible owner; server
cluster.

failover policy Parameters that an adminis-
trator can set using Cluster Administra-
tor that affect failover operations. See
also failover.

fault tolerance The ability of computer hard-
ware or software to ensure data integ-
rity when hardware failures occur.
Fault-tolerant features appear in many
server operating systems and include
mirrored volumes, RAID-5 volumes,
and server clusters. See also mirrored
volume; RAID-5 volume.

FIFO First in, first out.

file allocation table (FAT) A file system used
by MS-DOS and other Windows operat-
ing systems to organize and manage
files. The file allocation table is a data
structure that Windows creates when
you format a volume by using FAT or
FAT32 file systems. Windows stores
information about each file in the file
allocation table so that it can retrieve
the file later. See also file system; NTFS
file system.

File Share resource A file share accessible by
a network path that is supported as a
cluster resource by a Resource DLL.

file system In an operating system, the over-
all structure in which files are named,
stored, and organized. NTFS, FAT, and
FAT32 are types of file systems. See also
NTFS file system.

File Transfer Protocol (FTP) A member of the
TCP/IP suite of protocols, used to copy

658 Microsoft Windows Server 2003 Performance Guide

files between two computers on the
Internet. Both computers must support
their respective FTP roles: one must be
an FTP client and the other an FTP
server. See also Transmission Control
Protocol/Internet Protocol (TCP/IP).

font A graphic design applied to a collec-
tion of numbers, symbols, and charac-
ters. A font describes a certain typeface,
along with other qualities such as size,
spacing, and pitch.

font cartridge A plug-in unit available for
some printers that contains fonts in
several styles and sizes. As with down-
loadable fonts, printers using font car-
tridges can produce characters in sizes
and styles other than those created by
the fonts built into it. See also down-
loadable fonts; font.

foreground boost A mechanism that
increases the priority of a foreground
application.

FTP See definition for File Transfer Protocol
(FTP).

G

global group A security or distribution
group that can contain users, groups,
and computers from its own domain as
members. Global security groups can
be granted rights and permissions for
resources in any domain in the forest.
See also group; local group.

globally unique identifier (GUID) A 16-byte
value generated from the unique identi-
fier on a device, the current date and
time, and a sequence number. A GUID
is used to identify a particular device or
component.

graphical user interface (GUI) A display for-
mat, like that of Windows, that repre-
sents a program's functions with
graphic images such as buttons and
icons. GUIs enable a user to perform
operations and make choices by point-
ing and clicking with a mouse.

group A collection of users, computers, con-
tacts, and other groups. Groups can be
used as security or as e-mail distribu-
tion collections. Distribution groups
are used only for e-mail. Security
groups are used both to grant access to
resources and as e-mail distribution
lists. See also global group; local group.

Group Policy The infrastructure within
Active Directory directory service that
enables directory-based change and
configuration management of user and
computer settings, including security
and user data. You use Group Policy to
define configurations for groups of
users and computers. With Group Pol-
icy, you can specify policy settings for
registry-based policies, security, soft-
ware installation, scripts, folder redirec-
tion, remote installation services, and
Internet Explorer maintenance. The
Group Policy settings that you create
are contained in a Group Policy object
(GPO). By associating a GPO with
selected Active Directory system con-
tainers—sites, domains, and organiza-
tional units—you can apply the GPO's
policy settings to the users and comput-
ers in those Active Directory contain-
ers. To create an individual GPO, use
the Group Policy Object Editor. To
manage Group Policy objects across an
enterprise, you can use the Group Pol-
icy Management console. See also
Active Directory.

Glossary 659

H

HAL See definition for hardware abstraction
layer (HAL).

hard affinity A mechanism by which a
thread can run only on a set of proces-
sors.

hardware abstraction layer (HAL) A thin layer
of software provided by the hardware
manufacturer that hides, or abstracts,
hardware differences from higher layers
of the operating system. By means of
the filter provided by the HAL, different
types of hardware look alike to the rest
of the operating system. This enables
the operating system to be portable
from one hardware platform to another.
The HAL also provides routines that
enable a single device driver to support
the same device on all platforms.

Hardware Compatibility List (HCL) A hard-
ware list that Microsoft compiled for
specific products, including Microsoft
Windows 2000 and earlier versions of
Windows. The list for a specific prod-
uct, such as Windows 2000, includes
the hardware devices and computer
systems that are compatible with that
version of the product. For products in
the Windows Server 2003 family, you
can find the equivalent information on
the Windows Catalog Web site.

hardware decoder A type of digital video
disc (DVD) decoder that allows a DVD
drive to display movies on your com-
puter screen. A hardware decoder uses
both software and hardware to display
movies. See also DVD decoder; DVD
drive.

hardware malfunction message A character-
based, full-screen error message dis-
played on a blue background. It indi-
cates that the microprocessor detected
a hardware error condition from which
the system cannot recover.

HCL See definition for Hardware Compati-
bility List (HCL).

heartbeat A message that is sent at regular
intervals by one computer on a Net-
work Load Balancing cluster or server
cluster to another computer within the
cluster to detect communication fail-
ures. See also Network Load Balancing;
server cluster.

heartbeat thread A thread initiated by the
Microsoft Windows NT Virtual DOS
Machine (NTVDM) process that inter-
rupts every 55 milliseconds to simulate
a timer interrupt.

high performance file system (HPFS) The file
system designed for the OS/2 version
1.2 operating system.

HTML See definition for Hypertext Markup
Language (HTML).

HTTP See definition for Hypertext Transfer
Protocol (HTTP).

Hypertext Markup Language (HTML) A sim-
ple markup language used to create
hypertext documents that are portable
from one platform to another. HTML
files are simple ASCII text files with
codes embedded (indicated by markup
tags) to denote formatting and hyper-
text links.

Hypertext Transfer Protocol (HTTP) The pro-
tocol used to transfer information on
the World Wide Web. An HTTP
address, which is one kind of Uniform

660 Microsoft Windows Server 2003 Performance Guide

Resource Locator (URL), takes the fol-
lowing form: http://www.microsoft.com.
See also Uniform Resource Locator
(URL).

I

ideal processor A processor associated with
a thread containing a default value
assigned by the system, or specified by
the program developer in the applica-
tion code. The scheduler favors run-
ning a thread on the ideal processor
that is assigned to the thread as part of
the soft affinity algorithm.

IIS Server Instance resource A server-
instance designation used with
Microsoft Internet Information Services
(IIS) that supports the WWW and FTP
services. IIS server instances are sup-
ported as cluster resources by a
Resource DLL. IIS Server Instance
resources can have dependencies on IP
Address resources, Network Name
resources, and Physical Disk resources.
Access information for server instances
does not fail over. See also failover;
Internet Information Services (IIS).

import media pool A logical collection of
data-storage media that has not been
cataloged by Removable Storage. Media
in an import media pool is cataloged as
soon as possible so that they can be
used by an application. See also Remov-
able Storage.

imported state A state that indicates media
whose label types are recognized by
Removable Storage, but whose label
IDs are not cataloged by Removable
Storage. See also media states; Remov-
able Storage.

inaccessible state A state that indicates that
a side of a multicartridge drive is in a
drive, but is not in the accessible state.
See also media states.

incompatible state A state that indicates that
media are not compatible with the
library in which they were classified.
This media should be immediately
ejected from the library. See also
library; media states.

independent software vendors (ISVs) A third-
party software developer; an individual
or an organization that independently
creates computer software.

initialize In Disk Management, the process
of detecting a disk or volume and
assigning it a status (for example,
healthy) and a type (for example,
dynamic). See also basic disk; dynamic
disk; dynamic volume.

input/output (I/O) port A channel through
which data is transferred between a
device and the microprocessor. The
port appears to the microprocessor as
one or more memory addresses that it
can use to send or receive data. See also
memory address; port.

instantaneous counter A type of counter that
displays the most recent measurement
taken by the Performance console.

Internet Information Services (IIS) Software
services that support Web site creation,
configuration, and management, along
with other Internet functions. Internet
Information Services includes Network
News Transfer Protocol (NNTP), File
Transfer Protocol (FTP), and Simple
Mail Transfer Protocol (SMTP). See also
File Transfer Protocol (FTP); Network
News Transfer Protocol (NNTP); Sim-
ple Mail Transfer Protocol (SMTP).

Glossary 661

Internetwork Packet Exchange (IPX) A net-
work protocol native to NetWare that
controls addressing and routing of
packets within and between local area
networks (LANs). IPX does not guaran-
tee that a message will be complete (no
lost packets). See also Internetwork
Packet Exchange/Sequenced Packet
Exchange (IPX/SPX); local area net-
work (LAN).

Internetwork Packet Exchange/Sequenced

Packet Exchange (IPX/SPX) Transport
protocols used in Novell NetWare net-
works, which together correspond to
the combination of TCP and IP in the
TCP/IP protocol suite. Windows imple-
ments IPX through NWLink. See also
Internetwork Packet Exchange (IPX);
NWLink IPX/SPX/NetBIOS Compati-
ble Transport Protocol (NWLink);
Transmission Control Protocol/Inter-
net Protocol (TCP/IP).

interprocess interrupt A high IRQ level inter-
rupt that can send an interrupt from
one processor to another, allowing pro-
cessors to communicate. See also inter-
rupt request (IRQ).

interrupt avoidance A feature of device
adapters that allows a processor to con-
tinue processing interrupts without
new interrupts being queued until all
pending interrupts are complete.

interrupt moderation A feature of device
adapters that allows a processor to pro-
cess interrupts more efficiently by
grouping several interrupts to a single
hardware interrupt.

interrupt request (IRQ) A signal sent by a
device to get the attention of the proces-
sor when the device is ready to accept
or send information. Each device sends

its interrupt requests over a specific
hardware line. Each device must be
assigned a unique IRQ number.

IP address For Internet Protocol version 4
(IPv4), a 32-bit address used to identify
an interface on a node on an IPv4 inter-
network. Each interface on the IP inter-
network must be assigned a unique
IPv4 address, which is made up of the
network ID, plus a unique host ID. This
address is typically represented with
the decimal value of each octet sepa-
rated by a period (for example,
192.168.7.27). You can configure the IP
address statically or dynamically by
using Dynamic Host Configuration
Protocol (DHCP).

For Internet Protocol version 6 (IPv6),
an identifier that is assigned at the IPv6
layer to an interface or set of interfaces
and that can be used as the source or
destination of IPv6 packets.

See also Dynamic Host Configuration
Protocol (DHCP); node.

IPX/SPX See definition for Internetwork
Packet Exchange/Sequenced Packet
Exchange (IPX/SPX).

J

job object A system-level structure that
allows processes to be grouped
together and managed as a single unit.

jukebox See definition for library.

K

kernel The core of layered architecture that
manages the most basic operations of
the operating system and the com-
puter's processor. The kernel schedules
for the processor different blocks of

662 Microsoft Windows Server 2003 Performance Guide

executing code, called threads, to keep
the processor as busy as possible, and
coordinates multiple processors to
optimize performance. The kernel also
synchronizes activities among Execu-
tive-level subcomponents, such as I/O
Manager and Process Manager, and
handles hardware exceptions and other
hardware-dependent functions. The
kernel works closely with the hardware
abstraction layer.

L

LAN manager replication The default file
replication service in Windows NT.

library A data-storage system, usually man-
aged by Removable Storage. A library
consists of removable media (such as
tapes or discs) and a hardware device
that can read from or write to the
media. There are two major types of
libraries: robotic libraries (automated
multiple-media, multidrive devices)
and stand-alone drive libraries (manu-
ally operated, single-drive devices). A
robotic library is also called a jukebox or
changer. See also Removable Storage.

library request A request for a library or
stand-alone drive to perform a task.
This request can be issued by an appli-
cation or by Removable Storage. See
also library; Removable Storage.

Line Printer Daemon (LPD) A service on a
print server that receives print jobs
from Line Printer Remote (LPR) tools
that are running on client computers.
See also Line Printer Remote (LPR);
print job; print server.

Line Printer Remote (LPR) A connectivity
tool that runs on client computers and
that is used to print files to a computer

running a Line Printer Daemon (LPD)
server. See also Line Printer Daemon
(LPD).

load balancing A technique used by Win-
dows Clustering to scale the perfor-
mance of a server-based program (such
as a Web server) by distributing its cli-
ent requests across multiple servers
within the cluster. Each host can spec-
ify the load percentage that it will han-
dle, or the load can be equally
distributed across all the hosts. If a host
fails, Windows Clustering dynamically
redistributes the load among the
remaining hosts.

local area network (LAN) A communica-
tions network connecting a group of
computers, printers, and other devices
located within a relatively limited area
(for example, a building). A LAN
enables any connected device to inter-
act with any other on the network. See
also NetBIOS Extended User Interface
(NetBEUI); virtual local area network
(VLAN).

local group A security group that can be
granted rights and permissions only on
resources that are on the computer the
group was created on. Local groups can
have any user accounts that are local to
the computer as members, as well as
users, groups, and computers from a
domain to which the computer
belongs. See also global group.

local printer A printer that is directly con-
nected to one of the ports on a com-
puter. See also port.

local storage For the Windows Server 2003
family, NTFS file system disk volumes
used as primary data storage. Such disk
volumes can be managed by Remote

Glossary 663

Storage by copying infrequently
accessed files to remote (secondary)
storage. See also NTFS file system;
Remote Storage; volume.

LocalTalk The Apple networking hardware
built into every Macintosh computer.
LocalTalk includes the cables and con-
nector boxes that connect components
and network devices that are part of the
AppleTalk network system. Formerly
known as AppleTalk Personal Network.

logical printer The software interface
between the operating system and the
printer in Windows. Whereas a printer
is the device that does the actual print-
ing, a logical printer is its software inter-
face on the print server. This software
interface determines how a print job is
processed and how it is routed to its
destination (to a local or network port,
to a file, or to a remote print share).
When you print a document, it is
spooled (or stored) on the logical
printer before it is sent to the printer
itself. See also spooling.

M

master boot record (MBR) The first sector
on a hard disk, which begins the pro-
cess of starting the computer. The MBR
contains the partition table for the disk
and a small amount of executable code
called the master boot code.

master file table (MFT) An NTFS system file
on NTFS-formatted volumes that con-
tains information about each file and
folder on the volume. The MFT is the
first file on an NTFS volume. See also
file allocation table (FAT); NTFS file
system; volume.

MBR See definition for master boot record
(MBR).

media access control (MAC) A sublayer of
the IEEE 802 specifications that
defines network access methods and
framing.

media label library A dynamic-link library
(DLL) that can interpret the format of a
media label written by a Removable
Storage application. See also dynamic-
link library (DLL); Removable Storage.

media states A status designation for media
managed by Removable Storage. Media
states include Idle, In Use, Mounted,
Loaded, and Unloaded. See also
Removable Storage.

memory address A portion of computer
memory that can be allocated to a
device or used by a program or the
operating system. Devices are usually
allocated a range of memory addresses.

memory leak A condition that occurs when
an application allocates memory for
use but does not free allocated memory
when finished.

metadata Data about data. For example, the
title, subject, author, and size of a file
constitute the file's metadata.

Microsoft Management Console (MMC) A
framework for hosting administrative
tools called snap-ins. A console might
contain tools, folders, or other contain-
ers; World Wide Web pages; and other
administrative items. These items are
displayed in the left pane of the con-
sole, called a console tree. A console has
one or more windows that can provide
views of the console tree. The main
MMC window provides commands and
tools for authoring consoles. The

664 Microsoft Windows Server 2003 Performance Guide

authoring features of MMC and the
console tree itself might be hidden
when a console is in User mode. See
also console tree; snap-in.

migrate In file management, to move files or
programs from an older file format or
protocol to a more current format or
protocol. For example, WINS database
entries can be migrated from static
WINS database entries to dynamically
registered DHCP entries.

In Active Directory, to move Active
Directory accounts, resources, and
their associated security objects from
one domain to another.

In Windows NT, to change the domain
controller operating system from Win-
dows NT to an operating system with
Active Directory, such as Windows
2000 or Windows Server 2003. A
migration from Windows NT can
include in-place domain upgrades,
domain restructuring, or both.

In Remote Storage, to copy an object
from local storage to remote storage.

See also Active Directory; Dynamic
Host Configuration Protocol (DHCP);
Remote Storage.

migration See definition for migrate.

minimum TTL In DNS, a default Time to
Live (TTL) value that is set in seconds
and used with all resource records in a
zone. This value is set in the start of
authority (SOA) resource record for
each zone. By default, the DNS server
includes this value in query responses.
It is used to inform recipients about
how long they can store and use
resource records, which are provided in

the query answer, before they must
expire the stored records data. When
TTL values are set for individual
resource records, those values override
the minimum TTL. See also DNS
server; resource record (RR); Time to
Live (TTL).

mirror One of the two volumes that make
up a mirrored volume. Each mirror of a
mirrored volume resides on a different
disk. If one mirror becomes unavailable
(because of a disk failure, for example),
Windows can use the remaining mirror
to gain access to the volume's data. See
also fault tolerance; mirrored volume;
volume.

mirror set A fault-tolerant partition created
with Windows NT 4.0 or earlier that
duplicates data on two physical disks.
Microsoft Windows XP and the Win-
dows Server 2003 family do not sup-
port mirror sets. In the Windows Server
2003 family, you must create mirrored
volumes on dynamic disks. See also
dynamic disk; mirrored volume.

mirrored volume A fault-tolerant volume
that duplicates data on two physical
disks. A mirrored volume provides data
redundancy by using two identical vol-
umes, which are called mirrors, to dupli-
cate the information contained on the
volume. A mirror is always located on a
different disk. If one of the physical
disks fails, the data on the failed disk
becomes unavailable, but the system
continues to operate in the mirror on
the remaining disk. You can create mir-
rored volumes only on dynamic disks
on computers running the Windows
2000 Server or Windows Server 2003

Glossary 665

families of operating systems. You can-
not extend mirrored volumes. See also
dynamic disk; dynamic volume; fault
tolerance; RAID-5 volume; volume.

MMC See definition for Microsoft Manage-
ment Console (MMC).

mounted drive A drive attached to an empty
folder on an NTFS volume. Mounted
drives function the same as any other
drive, but are assigned a label or name
instead of a drive letter. The mounted
drive's name is resolved to a full file sys-
tem path instead of just a drive letter.
Members of the Administrators group
can use Disk Management to create
mounted drives or reassign drive let-
ters. See also NTFS file system; volume.

N

name resolution service A service, such as
that provided by WINS or DNS, that
allows friendly names to be resolved to
an address, or to other specially
defined resource data used to locate
network resources of various types and
purposes.

NetBEUI See definition for NetBIOS
Extended User Interface (NetBEUI).

NetBIOS Extended User Interface (NetBEUI)

A network protocol native to Microsoft
Networking. It is usually used in small,
department-size local area networks
(LANs) of 1 to 200 clients. NetBEUI
can use Token Ring source routing as
its only method of routing. NetBEUI is
the Microsoft implementation of the
NetBIOS standard. See also local area
network (LAN); Token Ring.

NetBIOS over TCP/IP (NetBT) A feature that
provides the NetBIOS programming
interface over the TCP/IP protocol. It is

used for monitoring routed servers that
use NetBIOS name resolution.

NetWare Core Protocol The file-sharing pro-
tocol that governs communications
about resources (such as the disk and
printer), bindery, and Novell Directory
Services (NDS) operations between
server and client computers on a Novell
NetWare network. See also bindery;
Internetwork Packet Exchange (IPX).

network administrator A person responsible
for planning, configuring, and manag-
ing the day-to-day operation of the net-
work. Also called a system
administrator.

network data stream The total amount of
data transferred over a network at any
given time.

Network Load Balancing A Windows net-
work component that uses a distrib-
uted algorithm to load-balance Internet
Protocol (IP) traffic across a number of
hosts, helping to enhance the scalabil-
ity and availability of mission-critical,
IP-based services, such as Terminal Ser-
vices, Web services, virtual private net-
working, and streaming media. It also
provides high availability by detecting
host failures and automatically redis-
tributing traffic to the surviving hosts.

Network News Transfer Protocol (NNTP) A
member of the TCP/IP suite of proto-
cols used to distribute network news
messages to NNTP servers and clients
(newsreaders) on the Internet. NNTP is
designed so that news articles are
stored on a server in a central database,
thus enabling a user to select specific
items to read. See also Transmission
Control Protocol/Internet Protocol
(TCP/IP).

666 Microsoft Windows Server 2003 Performance Guide

NNTP See definition for Network News
Transfer Protocol (NNTP).

node For tree structures, a location on the
tree that can have links to one or more
items below it. For local area networks
(LANs), a device that is connected to
the network and is capable of commu-
nicating with other network devices.
For server clusters, a computer system
that is an active or inactive member of a
cluster. See also local area network
(LAN); server cluster.

noncontainer object An object that cannot
logically contain other objects. For
example, a file is a noncontainer object.
See also container object; object.

NTFS file system An advanced file system
that provides performance, security,
reliability, and advanced features that
are not found in any version of file allo-
cation table (FAT). For example, NTFS
guarantees volume consistency by
using standard transaction logging and
recovery techniques. If a system fails,
NTFS uses its log file and checkpoint
information to restore the consistency
of the file system. NTFS also provides
advanced features, such as file and
folder permissions, encryption, disk
quotas, and compression. See also file
allocation table (FAT); file system.

NWLink See definition for NWLink IPX/
SPX/NetBIOS Compatible Transport
Protocol (NWLink).

NWLink IPX/SPX/NetBIOS Compatible Trans-

port Protocol (NWLink) The Microsoft
implementation of the Internetwork
Packet Exchange/Sequenced Packet
Exchange (IPX/SPX) protocol used on
NetWare networks. NWLink allows

connectivity between Windows-based
computers and NetWare networks run-
ning IPX/SPX. NWLink also provides
network basic input/output system
(NetBIOS) functionality and the Rout-
ing Information Protocol (RIP). See also
Internetwork Packet Exchange/
Sequenced Packet Exchange (IPX/SPX).

O

object An entity, such as a file, a folder, a
shared folder, a printer, or an Active
Directory object, that is described by a
distinct, named set of attributes. For
example, the attributes of a File object
include its name, location, and size; the
attributes of an Active Directory User
object might include the user's first
name, last name, and e-mail address.

For OLE and ActiveX, an object can
also be any piece of information that
can be linked to, or embedded into,
another object.

See also Active Directory; attribute;
child object; parent object.

object linking and embedding (OLE) A
method for sharing information among
applications. Linking an object, such as
a graphic, from one document to
another inserts a reference to the object
into the second document. Any
changes you make in the object in the
first document will also be made in the
second document. Embedding an
object inserts a copy of an object from
one document into another document.
Changes you make in the object in the
first document will not be updated in
the second unless the embedded object
is explicitly updated.

Glossary 667

offline media Media, such as a tape or opti-
cal disc, that are not currently accessi-
ble by a computer and that must be
inserted into a drive to be accessed.

offset When defining a pattern match
within a filter using Network Monitor,
the number of bytes from the begin-
ning of the frame where the pattern
occurs in a frame.

on-media identifier (OMID) A label that is
electronically recorded on each
medium in a Removable Storage sys-
tem. Removable Storage uses on-media
identifiers to track media in the Remov-
able Storage database. See also Remov-
able Storage.

online library See definition for library.

operator request A message that asks a user
to perform a specific task. Operator
requests can be issued by Removable
Storage or by a program that is aware of
Removable Storage, such as Backup.
See also Removable Storage.

option types Client configuration parame-
ters that a DHCP server can assign
when offering an IP address lease to a
client. Typically, these option types are
enabled and configured for each scope.
Most options are predefined through
RFC 2132, but DHCP Manager can be
used to define and add custom option
types if needed.

original equipment manufacturer (OEM) A
company that typically purchases com-
puter components from other manufac-
turers, uses the components to build a
personal computer, preinstalls Win-
dows onto that computer, and then
sells the computer to the public.

orphan A member of a mirrored volume or a
RAID-5 volume that has failed because
of a severe cause, such as a loss of
power or a complete hard-disk head
failure. When this happens, the fault-
tolerant driver determines that it can
no longer use the orphaned member
and directs all new reads and writes to
the remaining members of the fault-tol-
erant volume. See also fault tolerance;
mirrored volume; RAID-5 volume.

overclocking Setting a microprocessor to run
at speeds above the rated specification.

P

page-description language (PDL) A com-
puter language that describes the
arrangement of text and graphics on a
printed page. See also PostScript;
Printer Control Language (PCL);
Printer Job Language (PJL).

paper source The location (such as Upper
Paper Tray or Envelope Feeder) of the
paper at the printer.

parent object An object in which another
object resides. For example, a folder is a
parent object in which a file, or child
object, resides. An object can be both a
parent and a child object. For example,
a subfolder that contains files is both
the child of the parent folder and the
parent folder of the files. See also child
object; object.

parity A calculated value that is used to
reconstruct data after a failure. RAID-5
volumes stripe data and parity intermit-
tently across a set of disks. When a disk
fails, some server operating systems use
the parity information together with the

668 Microsoft Windows Server 2003 Performance Guide

data on good disks to recreate the data
on the failed disk. See also fault toler-
ance; RAID-5 volume; striped volume.

parity bit In asynchronous communica-
tions, an extra bit used to check for
errors in groups of data bits transferred
within or between computer systems.
In modem-to-modem communications,
a parity bit is often used to check the
accuracy with which each character is
transmitted. See also parity.

partition A portion of a physical disk that
functions as though it were a physically
separate disk. After you create a partition,
you must format it and assign it a drive
letter before you can store data on it.

On basic disks, partitions are known as
basic volumes, which include primary
partitions and logical drives. On
dynamic disks, partitions are known as
dynamic volumes, which include simple,
striped, spanned, mirrored, and RAID-
5 volumes.

See also basic disk; dynamic volume.

pattern match In Network Monitor, specific
pattern of ASCII or hexadecimal data. A
pattern match can be used in setting a
filter or capture trigger.

paused A state that applies to a node in a
cluster. The node is a fully active mem-
ber in the cluster but cannot accept
new resource groups. (For example, a
resource group cannot fail over or fail
back to a paused node.) You can admin-
ister and maintain a paused node. See
also failback; failover; node.

performance counter In System Monitor, a
data item that is associated with a per-
formance object. For each counter

selected, System Monitor presents a
value corresponding to a particular
aspect of the performance that is
defined for the performance object. See
also performance object.

Performance Monitor A Windows NT
administrative tool that monitors per-
formance on local or remote comput-
ers. Performance Monitor was replaced
by the Performance console in
Windows 2000.

performance object In System Monitor, a
logical collection of counters that is
associated with a resource or service
that can be monitored. See also perfor-
mance counter.

peripheral component interconnect (PCI) A
specification introduced by Intel Cor-
poration that defines a local bus system
that allows up to 10 PCI-compliant
expansion cards to be installed in the
computer.

physical media A storage object that data
can be written to, such as a disk or mag-
netic tape. A physical medium is refer-
enced by its physical media ID (PMID).

placeholder A Remote Storage identifier for
an NTFS volume.

Plug and Play A set of specifications devel-
oped by Intel Corporation that enables
a computer to detect and configure a
device automatically and install the
appropriate device drivers. See also uni-
versal serial bus (USB).

port A connection point on your computer
where you can connect devices that
pass data into and out of a computer.
For example, a printer is typically con-
nected to a parallel port (also called an

Glossary 669

LPT port), and a modem is typically
connected to a serial port (also called a
COM port). See also universal serial
bus (USB).

port monitor A device that controls the
computer port that provides connectiv-
ity to a local or remote print device.

Portable Operating System Interface for UNIX

(POSIX) An Institute of Electrical and
Electronics Engineers (IEEE) standard
that defines a set of operating-system
services. Programs that adhere to the
POSIX standard can be easily ported
from one system to another. POSIX was
based on UNIX system services, but it
was created in a way that allows it to be
implemented by other operating sys-
tems.

POSIX See definition for Portable Operating
System Interface for UNIX (POSIX).

possible owner A node in a cluster that can
run a specific resource. By default, all
nodes appear as possible owners, so
the resource can run on any node. In
most cases, it is appropriate to use this
default setting. If you want the resource
to be able to fail over, at least two nodes
must be designated as possible owners.
See also failover; node; resource.

POST See definition for power-on self test
(POST).

PostScript A page-description language
(PDL), developed by Adobe Systems,
for printing on laser printers. PostScript
offers flexible font capability and high-
quality graphics. It is the standard for
desktop publishing because it is sup-
ported by imagesetters, the high-resolu-
tion printers used by printing services
for commercial typesetting. See also

page-description language (PDL); Post-
Script printer; Printer Control Lan-
guage (PCL); Printer Job Language
(PJL).

PostScript printer A printer that uses the
PostScript page-description language
(PDL) to create text and graphics on
the output medium, such as paper or
overhead transparency. Examples of
PostScript printers include the Apple
LaserWriter, the NEC LC-890, and the
QMS PS-810. See also page-description
language (PDL); PostScript; virtual
printer memory.

power-on self test (POST) A set of routines
stored in read-only memory (ROM)
that tests various system components
such as RAM, the disk drives, and the
keyboard, to see whether they are prop-
erly connected and operating. If prob-
lems are found, these routines alert the
user with a series of beeps or a message,
often accompanied by a diagnostic
numeric value. If the POST is success-
ful, it passes control to the bootstrap
loader.

premigrated file A file that has been copied
to Remote Storage in preparation for
truncation but remains on the man-
aged volume. When it is truncated, it
becomes a placeholder for the file. See
also Remote Storage.

print device A hardware device used for
printing, commonly called a printer.

print job The source code that contains
both the data to be printed and the
commands for print. Print jobs are clas-
sified into data types based on what
modifications, if any, the spooler must
make to the job for it to print correctly.
See also print spooler.

670 Microsoft Windows Server 2003 Performance Guide

print processor The component that, work-
ing in conjunction with the printer
driver, receives and alters print jobs, as
necessary, according to their data type
to ensure that the jobs print correctly.
See also print job; printer driver.

print server A computer that is dedicated to
managing the printers on a network.
The print server can be any computer
on the network.

Print Server for Macintosh A service that
enables Macintosh clients to send and
spool documents to printers attached
to a computer running Windows NT
Server; Windows 2000 Server; or an
operating system in the Windows
Server 2003 family, excluding 64-bit
editions; and that enables clients to
send documents to printers anywhere
on an AppleTalk network. Also known
as MacPrint.

print server service A service that receives
print jobs from remote print clients.
Different services are provided for dif-
ferent clients.

Print Services for UNIX A print server service
for UNIX clients.

print spooler Software that accepts a docu-
ment sent to a printer and then stores it
on disk or in memory until the printer
is ready for it. See also spooling.

Printer Control Language (PCL) The page-
description language (PDL) developed
by Hewlett-Packard for their laser and
inkjet printers. Because of the wide-
spread use of laser printers, this com-
mand language has become a standard
in many printers. See also page-descrip-
tion language (PDL); PostScript; Printer
Job Language (PJL).

printer driver A program designed to allow
other programs to work with a particu-
lar printer without concerning them-
selves with the specifics of the printer's
hardware and internal language. By
using printer drivers that handle the
subtleties of each printer, programs can
communicate properly with a variety of
printers.

printer fonts Fonts residing in or intended
for a printer. A printer font, usually
located in the printer's read-only mem-
ory (ROM), can be internal, down-
loaded, or on a font cartridge. See also
device fonts; downloadable fonts; font;
font cartridge.

Printer Job Language (PJL) The printer com-
mand language developed by Hewlett
Packard that provides printer control at
the print-job level. Using PJL com-
mands, you can change default printer
settings such as number of copies to
print. PJL commands also permit
switching printer languages between
print jobs without action by the user. If
bi-directional communication is sup-
ported, a PJL-compatible printer can
send information such as printer model
and job status to the print server. See
also page-description language (PDL);
PostScript; Printer Control Language
(PCL).

printer permissions Permissions that spec-
ify the type of access that a user or
group has to a printer. The printer per-
missions are Print, Manage Printers,
and Manage Documents.

printers folder The folder in Control Panel
that contains the Add Printer Wizard
and icons for all the printers installed
on your computer.

Glossary 671

priority inversion The mechanism that
allows low-priority threads to run and
complete execution rather than being
preempted and locking up a resource
such as an I/O device.

pruning A process that removes unavailable
printers from Active Directory. A pro-
gram running on the domain controller
periodically checks for orphaned print-
ers (printers that are offline or powered
down) and deletes the printer objects
of the printers it cannot find. See also
Active Directory; domain controller.

pull partner A WINS component that
requests replication of updated WINS
database entries from its push partner.
See also push partner.

push partner A WINS component that noti-
fies its pull partner when updated
WINS database entries are available for
replication. See also pull partner.

Q

quantum Also known as a time slice, the
maximum amount of time a thread can
run before the system checks for
another ready thread of the same prior-
ity to run.

queue A list of programs or tasks waiting
for execution. In Windows printing ter-
minology, a queue refers to a group of
documents waiting to be printed. In
NetWare and OS/2 environments,
queues are the primary software inter-
face between the application and print
device; users submit documents to a
queue. With Windows, however, the
printer is that interface; the document
is sent to a printer, not a queue. See also
transactional message.

R

RAID See definition for Redundant Array of
Independent Disks (RAID).

RAID-5 volume A fault-tolerant volume with
data and parity striped intermittently
across three or more physical disks.
Parity is a calculated value that is used
to reconstruct data after a failure. If a
portion of a physical disk fails, Win-
dows recreates the data that was on the
failed portion from the remaining data
and parity. You can create RAID-5 vol-
umes only on dynamic disks on com-
puters running the Windows 2000
Server or Windows Server 2003 fami-
lies of operating systems. You cannot
mirror or extend RAID-5 volumes. In
Windows NT 4.0, a RAID-5 volume was
known as a striped set with parity. See
also dynamic disk; dynamic volume;
fault tolerance; parity; volume.

RAM See definition for random access
memory (RAM).

random access memory (RAM) Memory that
can be read from or written to by a com-
puter or other devices. Information
stored in RAM is lost when the com-
puter is turned off. See also virtual
memory.

recall An operation that retrieves the
removed, unnamed data attribute from
remote storage and places it on the
managed volume. The placeholder is
replaced on the managed volume with
a copy of the file from remote storage.
Upon completion of the recall, the file
becomes a premigrated file.

672 Microsoft Windows Server 2003 Performance Guide

Redundant Array of Independent Disks (RAID)

A method used to standardize and categorize
fault-tolerant disk systems. RAID levels
provide various mixes of performance,
reliability, and cost. Some servers pro-
vide three of the RAID levels: Level 0
(striping), Level 1 (mirroring), and
Level 5 (RAID-5). See also fault toler-
ance; RAID-5 volume.

registry A database repository for informa-
tion about a computer's configuration.
The registry contains information that
Windows continually references during
operation, such as:

■ Profiles for each user

■ The programs installed on the com-
puter and the types of documents
that each can create

■ Property settings for folders and
program icons

■ What hardware exists on the system

■ Which ports are being used

■ The registry is organized hierarchi-
cally as a tree, and it is made up of
keys and their subkeys, hives, and
entries.

registry key An identifier for a record or
group of records in the registry. See
also registry.

remote procedure call (RPC) A message-pass-
ing facility that allows a distributed
application to call services that are
available on various computers on a
network. Used during remote adminis-
tration of computers.

Remote Storage A data management service
used to migrate infrequently accessed
files from local storage to remote stor-

age. Migrated files are recalled transpar-
ently when the user opens the file. See
also local storage; validation.

Removable Storage A service used for man-
aging removable media (such as tapes
and discs) and storage devices (librar-
ies). Removable Storage allows applica-
tions to access and share the same
media resources. See also library.

reparse points NTFS file system objects that
have a definable attribute containing
user-controlled data and that are used
to extend functionality in the input/
output (I/O) subsystem. See also
attribute; NTFS file system; object.

Request for Comments (RFC) An official doc-
ument of the Internet Engineering Task
Force (IETF) that specifies the details
for protocols included in the TCP/IP
family. See also Transmission Control
Protocol/Internet Protocol (TCP/IP).

reserved state A state that indicates that the
second side of a two-sided medium is
available only to the application that
has already allocated the first side.

resolver DNS client programs used to look
up DNS name information. Resolvers
can be either a small stub (a limited set
of programming routines that provide
basic query functionality) or larger pro-
grams that provide additional lookup
DNS client functions, such as caching.
See also caching; caching resolver.

resource Generally, any part of a computer
system or network, such as a disk drive,
a printer, or memory, that can be allot-
ted to a running program or a process.

For Device Manager, any of four system
components that control how the
devices on a computer work. These

Glossary 673

four system resources are interrupt
request (IRQ) lines, direct memory
access (DMA) channels, input/output
(I/O) ports, and memory addresses.

For server clusters, a physical or logical
entity that is capable of being managed
by a cluster, brought online and taken
offline, and moved between nodes. A
resource can be owned by only a single
node at any point in time.

See also direct memory access (DMA);
input/output (I/O) port; memory
address; node; server cluster.

resource group In a server cluster, a defined
collection of resources. Resources that
are dependent on each other are typi-
cally placed within the same resource
group. See also node; resource; server
cluster.

resource record (RR) A standard DNS data-
base structure containing information
used to process DNS queries. For exam-
ple, an address (A) resource record con-
tains an IP address corresponding to a
host name. Most of the basic resource
record types are defined in RFC 1035,
but additional RR types have been
defined in other RFCs and approved for
use with DNS. See also Request for
Comments (RFC).

response time The amount of time required
to do work from start to finish. In a cli-
ent/server environment, this is typically
measured on the client side.

RFC See definition for Request for Com-
ments (RFC).

robotic library A library consisting of media,
a robotic media changer, and a drive
that accesses media for read and write
operations. See also library.

S

scaling The process of adding processors to
a system to achieve higher throughput.

sector A 512-byte unit of physical storage on
a hard disk. Windows file systems allo-
cate storage in clusters, where a cluster
is one or more contiguous sectors. See
also file system.

security descriptor A data structure that con-
tains security information associated
with a protected object. Security
descriptors include information about
who owns the object, who can access it
and in what way, and what types of
access are audited. See also discretion-
ary access control list (DACL); group;
object; system access control list
(SACL).

security ID (SID) A data structure of variable
length that identifies user, group, and
computer accounts. Every account on a
network is issued a unique SID when
the account is first created. Internal
processes in Windows refer to an
account's SID rather than the account's
user or group name.

server cluster A group of computers, known
as nodes, working together as a single
system to ensure that mission-critical
applications and resources remain
available to clients. A server cluster pre-
sents the appearance of a single server
to a client. See also node.

Server Message Block (SMB) A file-sharing
protocol designed to allow networked
computers to transparently access files
that reside on remote systems over a
variety of networks. The SMB protocol
defines a series of commands that pass
information between computers. SMB

674 Microsoft Windows Server 2003 Performance Guide

uses four message types: session con-
trol, file, printer, and message.

shared printer A printer that receives input
from more than one computer. For
example, a printer attached to another
computer on the network can be
shared so that it is available for you to
use. Also called a network printer.

Simple Mail Transfer Protocol (SMTP) A
member of the TCP/IP suite of proto-
cols that governs the exchange of elec-
tronic mail between message transfer
agents. See also Transmission Control
Protocol/Internet Protocol (TCP/IP).

Simple Network Management Protocol

(SNMP) A network protocol used to
manage TCP/IP networks. In Windows,
the SNMP service is used to provide sta-
tus information about a host on a TCP/
IP network. See also Transmission Con-
trol Protocol/Internet Protocol (TCP/
IP).

simple volume A dynamic volume made up
of disk space from a single dynamic
disk. A simple volume can consist of a
single region on a disk or multiple
regions of the same disk that are linked
together. If the simple volume is not a
system volume or boot volume, you can
extend it within the same disk or onto
additional disks. If you extend a simple
volume across multiple disks, it
becomes a spanned volume. You can
create simple volumes only on dynamic
disks. Simple volumes are not fault toler-
ant, but you can mirror them to create
mirrored volumes on computers run-
ning the Windows 2000 Server or Win-
dows Server 2003 families of operating
systems. See also dynamic disk;

dynamic volume; fault tolerance; mir-
rored volume; spanned volume; volume.

small computer system interface (SCSI) A
standard high-speed parallel interface
defined by the American National Stan-
dards Institute (ANSI). A SCSI interface
is used for connecting microcomputers
to peripheral devices, such as hard
disks and printers, and to other com-
puters and local area networks (LANs).
See also local area network (LAN).

SMTP See definition for Simple Mail Trans-
fer Protocol (SMTP).

snap-in A type of tool that you can add to a
console supported by Microsoft Man-
agement Console (MMC). A stand-
alone snap-in can be added by itself; an
extension snap-in can be added only to
extend the function of another snap-in.
See also Microsoft Management Con-
sole (MMC).

SNMP See definition for Simple Network
Management Protocol (SNMP).

soft affinity A mechanism designed to opti-
mize performance in a multiprocessor
environment. Soft affinity favors sched-
uling threads on the processor in which
they recently ran or on the ideal proces-
sor for the thread. With soft affinity, the
efficiency of the processor cache is
higher, because threads often run on
the processor on which they previously
ran. Soft affinity does not restrict a
thread to run on a given processor.

software trap In programming, an event
that occurs when a microprocessor
detects a problem with executing an
instruction, which causes it to stop.

Glossary 675

spanned volume A dynamic volume consist-
ing of disk space on more than one
physical disk. You can increase the size
of a spanned volume by extending it
onto additional dynamic disks. You can
create spanned volumes only on
dynamic disks. Spanned volumes are
not fault tolerant and cannot be mir-
rored. See also dynamic disk; dynamic
volume; fault tolerance; mirrored vol-
ume; simple volume; volume.

spooling A process on a server in which
print documents are stored on a disk
until a printer is ready to process them.
A spooler accepts each document from
each client, stores it, and then sends it
to a printer when the printer is ready.
See also print spooler.

Standard TCP/IP Port Monitor A port moni-
tor that connects a print server running
Windows 2000, Windows XP, or Win-
dows Server 2003 to network printers
that use the TCP/IP protocol. It
replaces LPRMON for TCP/IP printers
connected directly to the network
through a network adapter. See also
port monitor; print server; Transmis-
sion Control Protocol/Internet Proto-
col (TCP/IP).

Stop error A serious error that affects the
operating system and that could place
data at risk. The operating system gen-
erates an obvious message, a screen
with the Stop error, rather than con-
tinuing on and possibly corrupting
data. Also called a fatal system error.

Stop message A character-based, full-screen
error message displayed on a blue back-
ground. A Stop message indicates that
the Windows kernel detected a condi-
tion from which it cannot recover. Each

message is uniquely identified by a
Stop error code (a hexadecimal num-
ber) and a string indicating the error’s
symbolic name. Stop messages are usu-
ally followed by up to four additional
hexadecimal numbers, enclosed in
parentheses, which identify developer-
defined error parameters. A driver or
device might be identified as the cause
of the error. A series of troubleshooting
tips are also displayed, along with an
indication that, if the system was con-
figured to do so, a memory dump file
was saved for later use by a kernel
debugger. See also Stop error.

storage pool A unit of storage administered
by Removable Storage and composed
of homogenous storage media. A stor-
age pool is a self-contained storage area
with homogenous characteristics (for
example, random access, sequential
access, read/write, and write-once).

stream A sequence of bits, bytes, or other
small structurally uniform units.

striped volume A dynamic volume that
stores data in stripes on two or more
physical disks. Data in a striped volume
is allocated alternately and evenly (in
stripes) across the disks. Striped vol-
umes offer the best performance of all
the volumes that are available in Win-
dows, but they do not provide fault tol-
erance. If a disk in a striped volume
fails, the data in the entire volume is
lost. You can create striped volumes
only on dynamic disks. Striped vol-
umes cannot be mirrored or extended.
See also dynamic disk; dynamic vol-
ume; fault tolerance; mirrored volume;
volume.

676 Microsoft Windows Server 2003 Performance Guide

subnet mask A 32-bit value that enables the
recipient of Internet Protocol version 4
(IPv4) packets to distinguish the net-
work ID and host ID portions of the
IPv4 address. Typically, subnet masks
use the format 255.x.x.x. IPv6 uses net-
work prefix notations rather than sub-
net masks. See also IP address.

symmetric interrupt distribution A mecha-
nism for distributing interrupts across
available processors.

system access control list (SACL) The part of
an object's security descriptor that
specifies which events are to be audited
per user or group. Examples of auditing
events are file access, logon attempts,
and system shutdowns. See also discre-
tionary access control list (DACL);
object; security descriptor.

System Monitor A tool that supports
detailed monitoring of the use of oper-
ating system resources. System Monitor
is hosted, along with Performance Logs
and Alerts, in the Performance console.
The functionality of System Monitor is
based on Windows NT Performance
Monitor, not Windows 98 System
Monitor.

systemroot The path and folder name
where the Windows system files are
located. Typically, this is C:\Windows,
although you can designate a different
drive or folder when you install Win-
dows. You can use the value %system-
root% to replace the actual location of
the folder that contains the Windows
system files. To identify your system-
root folder, click Start, click Run, type
%systemroot%, and then click OK.

T

T1 A communication line with a data trans-
mission rate of 1.544 megabits per sec-
ond (Mbps). A T1 line is also known as
a DS-1 line.

TCP/IP See definition for Transmission Con-
trol Protocol/Internet Protocol (TCP/IP).

thread A type of object within a process that
runs program instructions. Using mul-
tiple threads allows concurrent opera-
tions within a process and enables one
process to run different parts of its pro-
gram on different processors simulta-
neously. A thread has its own set of
registers, its own kernel stack, a thread
environment block, and a user stack in
the address space of its process. See
also kernel.

thread state A numeric value indicating the
execution state of the thread. Num-
bered 0 through 5, the states seen most
often are 1 for ready, 2 for running, and
5 for waiting. See also thread.

Time to Live (TTL) For Internet Protocol
(IP), a field in the IP header of an IP
packet that indicates the maximum
number of links over which the packet
can travel before being discarded by a
router.

For DNS, TTL values are used in
resource records within a zone to deter-
mine how long requesting clients
should cache and use this information
when it appears in a query response
answered by a DNS server for the zone.

See also DNS server; resource record
(RR); Transmission Control Protocol/
Internet Protocol (TCP/IP).

Glossary 677

Token Ring The Institute of Electrical and
Electronics Engineers (IEEE) 802.5
standard that uses a token-passing
technique for media access control
(MAC). Token Ring supports media of
both shielded and unshielded twisted
pair wiring for data rates of 4 megabits
per second (Mbps) and 16 megabits
per second. See also media access con-
trol (MAC).

total instance A unique instance that con-
tains the performance counters that
represent the sum of all active instances
of an object. See also object; perfor-
mance counter.

track A thin concentric band that stores
data on a hard disk. A hard disk con-
tains multiple platters, and each platter
contains many tracks. Each track is
divided into units of storage called sec-
tors. Track numbers start at 0 and
progress in order, with track 0 at the
outer track of a hard disk. See also sec-
tor.

transactional message For Message Queu-
ing, a message that can be sent and
received only from within a transaction.
This type of message returns to its prior
state when a transaction is terminated
abruptly. A transactional message is
removed from a queue only when the
transaction is committed; otherwise, it
remains in the queue and can be subse-
quently read during another transac-
tion. See also queue.

Transmission Control Protocol/Internet Proto-

col (TCP/IP) A set of networking proto-
cols widely used on the Internet that
provides communications across inter-
connected networks of computers with
diverse hardware architectures and var-

ious operating systems. TCP/IP
includes standards for how computers
communicate and conventions for con-
necting networks and routing traffic.

TrueType fonts Fonts that are scalable and
sometimes generated as bitmaps or soft
fonts, depending on the capabilities of
your printer. TrueType fonts are device-
independent fonts that are stored as
outlines. They can be sized to any
height, and they can be printed exactly
as they appear on the screen. See also
font.

truncate To remove a premigrated file in
Remote Storage and replace it with a
Remote Storage identifier or place-
holder, thus reclaiming space on the
local volume. See also premigrated file;
Remote Storage.

TTL See definition for Time to Live (TTL).

U

UCS See definition for Universal Character
Set (UCS).

UNC See definition for Universal Naming
Convention (UNC).

Unicode A character encoding standard
developed by the Unicode Consortium
that represents almost all the written
languages of the world. The Unicode
character repertoire has multiple repre-
sentation forms, including UTF-8,
UTF-16, and UTF-32. Most Windows
interfaces use the UTF-16 form. See
also Universal Character Set (UCS).

Uniform Resource Locator (URL) An address
that uniquely identifies a location on
the Internet. A URL for a World Wide
Web site is preceded by http://, as in
the fictitious URL http://www.example

678 Microsoft Windows Server 2003 Performance Guide

.microsoft.com. A URL can contain more
detail, such as the name of a page of
hypertext, usually identified by the
file name extension .html or .htm.

uninterruptible power supply (UPS) A device
that connects a computer and a power
source to ensure that electrical flow is
not interrupted. UPS devices use bat-
teries to keep the computer running
for a period of time after a power fail-
ure. UPS devices usually provide pro-
tection against power surges and
brownouts as well.

Universal Character Set (UCS) An interna-
tional standard character set reference
that is part of the Unicode standard.
The most widely held existing version
of the UCS standard is UCS-2, which
specifies 16-bit character values cur-
rently accepted and recognized for use
to encode most of the world's lan-
guages. See also Unicode.

Universal Naming Convention (UNC) A con-
vention for naming files and other
resources beginning with two back-
slashes (\), indicating that the resource
exists on a network computer. UNC
names conform to the \\servername\
sharename syntax, where servername is
the server's name and sharename is the
name of the shared resource. The UNC
name of a directory or file can also
include the directory path after the
share name, by using the following syn-
tax: \\servername\sharename\directory\
filename.

universal serial bus (USB) An external bus
that supports Plug and Play installa-
tion. Using USB, you can connect and
disconnect devices without shutting
down or restarting your computer. You

can use a single USB port to connect up
to 127 peripheral devices, including
speakers, telephones, CD-ROM drives,
joysticks, tape drives, keyboards, scan-
ners, and cameras. A USB port is usu-
ally located on the back of your
computer near the serial port or paral-
lel port. See also Plug and Play; port.

unnamed data attribute The default data
stream of an NTFS file, sometimes
referred to as $DATA.

unprepared state In Removable Storage, a
state that indicates a side of a medium
is not claimed, used, or available for use
by any application. The side is available
for use after Removable Storage writes a
free label on the medium. See also
Removable Storage.

unrecognized media pool A repository of
blank media and media that are not rec-
ognized by Removable Storage.

unrecognized state A state that indicates
that the label types and label IDs of a
medium are not recognized by Remov-
able Storage.

UPS See definition for uninterruptible
power supply (UPS).

USB See definition for universal serial bus
(USB).

V

validation The process of comparing files on
local volumes with their associated data
in secondary storage by Remote Storage.
Volumes that are validated ensure that
the correct data is recalled from remote
storage when a user attempts to open
the file from a local volume. See also
Remote Storage; volume.

Glossary 679

value bar The area of the System Monitor
graph or histogram display that shows
last, average, minimum, and maximum
statistics for the selected counter.

virtual local area network (VLAN) A logical
grouping of hosts on one or more local
area networks (LANs) that allows com-
munication to occur between hosts as if
they were on the same physical LAN.
See also local area network (LAN).

virtual memory Temporary storage used by
a computer to run programs that need
more memory than the computer has.
For example, programs could have
access to 4 gigabytes (GB) of virtual
memory on a computer's hard drive,
even if the computer has only 32 mega-
bytes (MB) of random access memory
(RAM). The program data that does not
currently fit in the computer's memory
is saved into paging files. See also ran-
dom access memory (RAM); Virtual
Memory Size; virtual printer memory.

Virtual Memory Size In Task Manager, the
amount of virtual memory, or address
space, committed to a process. See also
virtual memory.

virtual printer memory In a PostScript
printer, a part of memory that stores
font information. The memory in Post-
Script printers is divided into two areas:
banded memory and virtual memory.
The banded memory contains graphics
and page-layout information needed to
print your documents. The virtual
memory contains any font information
that is sent to your printer either when
you print a document or when you
download fonts. See also PostScript
printer; virtual memory.

VoIP (Voice over Internet Protocol) A
method for sending voice over a local
area network (LAN), a wide area net-
work (WAN), or the Internet using
TCP/IP packets. See also local area net-
work (LAN); Transmission Control
Protocol/Internet Protocol (TCP/IP);
wide area network (WAN).

volume An area of storage on a hard disk. A
volume is formatted by using a file sys-
tem, such as file allocation table (FAT)
or NTFS, and has a drive letter assigned
to it. You can view the contents of a vol-
ume by clicking its icon in Windows
Explorer or in My Computer. A single
hard disk can have multiple volumes,
and volumes can also span multiple
disks. See also file allocation table
(FAT); NTFS file system; simple vol-
ume; spanned volume.

volume decommission A process that occurs
when a managed volume is no longer
accessible. The data in remote storage is
no longer associated with a placeholder
or a premigrated file. This space is avail-
able for space reclamation.

volume set A volume that consists of disk
space on one or more physical disks. A
volume set is created by using basic
disks and is supported only in Win-
dows NT 4.0 or earlier. Volume sets
were replaced by spanned volumes,
which use dynamic disks. See also basic
disk; dynamic disk; partition; spanned
volume; volume.

volume shadow copy A volume that repre-
sents a duplicate of the original volume
taken at the time the copy began. See
also differential data; volume.

680 Microsoft Windows Server 2003 Performance Guide

W

WAN See definition for wide area network
(WAN).

wide area network (WAN) A communica-
tions network that connects geographi-
cally separated locations and uses long-
distance links of third-party telecom-
munications vendors. See also local
area network (LAN).

WINS database The database used to regis-
ter and resolve computer names to IP
addresses on Windows-based net-
works. The contents of this database
are replicated at regular intervals
throughout the network.

working set For a process, the amount of
physical memory assigned to the pro-
cess by the operating system.

681

Index

Symbols and Numerics
% Disk Time counter, 288
% Idle Time counter, 282
% Interrupt Time counter, 253
% Privileged Time counter, 254
% Processor Time counter, 244, 248
/3GB boot switch, 611
32-bit extended virtual addressing

/3GB boot switch, 611
Address Window Extension

(AWE), 611, 615–617
application support, 617–619
Exchange, 618
extended process private virtual

addresses, 611–613
options, 611–617
Oracle, 619
overview, 608
Physical Address Extension

(PAE), 611, 613
SAS, 619
SQL Server, 618
system pools, 620
system virtual memory shortages,

620
virtual memory addressing

constraints, 609
32-bit virtual memory addressing

limits
investigating pool usage, 461–464
overview, 456
system pools, 458–461
system virtual memory, 457

64-bit architecture, 543–545
64-bit virtual memory, 621

A
absolute exceptions, 238
access rights, 394
Active Directory, trace providers,

221
Active Server Pages (ASP), 578–579
Active Server Pages\Request

Execution Time counter, 305
Active Server Pages\Request Queue

Time counter, 306
Active Server Pages\Requests

Executing counter, 307

Active Server Pages\Requests
Queued counter, 308

ActiveX control
adding performance counters,

639
adding to Web pages, 629
CollectSample method, 634
configuring, sample commands,

631
configuring appearance, 636
configuring color schemes, 637
configuring display types, 632
configuring font styles, 638
configuring performance

counters, 640
configuring sampling rates, 634
configuring user interface, 637
creating Web pages for

monitoring performance, 643
customizing, 630
drag-and-drop support, 645
event methods, 635
manually retrieving performance

data, 634
Memory Allocation report, 645
OnCounterDeleted method, 636
OnSampleCollected method, 635
removing performance counters,

641
tracking performance counters

using counter paths, 642
adaptive retransmission

fast retransmit, 534
Karn’s algorithm, 534
overview, 532
retransmission timeout (RTO),

533, 534
timestamps option, 534

Address Window Extension (AWE)
extended virtual addressing, 611,

615–617
limitations, 617
memory-resident disk caches, 277

Adlb.exe, 132
administrative controls, 128
advanced performance topics

memory performance. See
memory and paging

overview, 537

processor performance. See
processors

System Monitor Automation
Interface. See System Monitor
Automation Interface

affinity
asymmetric partitioning, 591
hard processor, 591
processors, 60, 558

alerts
applications, 337
automated counter log

processing, 362
configuring, 226–229
configuring notifications,

229–233
daily server monitoring

procedures, 330–337
effective use, 330–337
logging events to application logs,

229
overview, 225
procedures, 335
running programs, 231
scheduling, 226–227
sending network messages, 230
starting performance data logs,

230
thresholds, 228
triggering counter logs

automatically, 332–335
anticipatory paging, 73
application logs, 229
application servers, 576–578
applications

Active Server Pages\Request
Execution Time counter, 305

Active Server Pages\Request
Queue Time counter, 306

Active Server Pages\Requests
Executing counter, 307

Active Server Pages\Requests
Queued counter, 308

alerts, 337
ASP.NET\Request Execution

Time counter, 305
ASP.NET\Request Queue Time

counter, 306

682

applications, continued
ASP.NET\Requests Executing

counter, 307
ASP.NET\Requests Queued

counter, 308
Available Threads counter, 301
Elapsed Time counter, 242
File Server service, 299
ideal vs. actual scalability, 9
maintaining server applications,

297
monitoring using Task Manager,

156
Process(n)\Elapsed Time

counter, 242
Queue Length counter, 302
Server Work Queues(n)\Available

Threads counter, 301
Server Work Queues(n)\Queue

Length counter, 302
Server\Work Item Shortages

counter, 299
symmetric partitioning, 595
symmetric portioning, 593
thread pooling, 298, 583
troubleshooting performance

problems, 6
Web-based applications, 303–309
Work Item Shortages counter,

299
architecture

64-bit, 543–545
ccNUMA, 604–607
disks, 92–95
IIS thread pooling, 573–576
Internet, 100
microarchitecture, 542
performance monitoring,

207–211
system. See system architecture

arrival rate distribution, 30
ASP (Active Server Pages), 578–579
ASP.NET

Little’s Law, 309
ProcessorThreadMax property,

307
thread pooling, 581–583

ASP.NET\Request Execution Time
counter, 305

ASP.NET\Request Queue Time
counter, 306

ASP.NET\Requests Executing
counter, 307

ASP.NET\Requests Queued
counter, 308

asymmetric multiprocessing, 250
asymmetric partitioning

affinity, 591
application-level settings,

593–595
hard processor affinity, 591
Interrupt-Affinity Filter

(Intfiltr.exe), 599–601
overview, 588–591
Windows System Resource

Manager (WSRM), 595–599
automated counter log processing

alert-generated counter log
management, 362

archiving reports, 362
backup file cleanup, 360
daily counter log management,

360
defining log configurations for

multiple servers, 364
monthly reports and archiving,

362–364
overview, 354
reports, 362
sample post-processing script,

355–358
scheduled monthly reports and

archiving, 362–364
script initialization, 358
summarized counter log creation,

360
automated performance monitoring

counter logs, 169–177
overview, 168
Performance Logs and Alerts. See

Performance Logs and Alerts
Available Bytes counter, 260–262
Available Bytes pool

Least Recently Used (LRU) page
replacement policy, 81–82

page fault resolution, 66
Available Threads counter, 301
Avg. Disk Queue Length counter,

286
Avg. Disk secs/transfer counter, 281
AWE. See Address Window

Extension (AWE)

B
back-off and retry algorithm, 109
balanced systems, 22
bandwidth, 16, 103
base priorities, 57
baseline data, troubleshooting, 402
baseline measurements, 321

bottlenecks
analysis, 25–27, 402–404
balanced systems, 22
current performance levels, 403
decomposition, 404
fair scheduling, 24
identifying, 237
Little's Law, 35
managing queues for optimal

performance, 23
memory bottleneck primary

indicators, 436
overview, 22
preventing, 35
priority queuing with preemptive

scheduling, 24
processors, 246
queue length, 403, 407–409
resource utilization, 403,

407–409
scalability, 10–12
serving shorter requests first, 25
starvation, 24
troubleshooting baseline data,

402
troubleshooting overview, 402
troubleshooting processors, 246
unfair scheduling, 24

byte sequence numbers, 120
Bytes Total/sec counter, 293

C
Cache Bytes counter, 263
cache coherence, 555
cache coherent NUMA (ccNUMA)

architectures, 604–607
cache memory, 485–487, 543
cache miss, 277
caching controllers, 485–487
capacity planning

forecasting techniques, 383–388
historical data for, 346–354
networks, 515–516
organizing data, 380–383
overview, 316, 379

ccNUMA (cache coherent NUMA)
architectures, 604–607

central processing unit (CPU). See
processors

Checkrepl.vbs, 132
Clearmem.exe, 132
clocks, 47
clustered paging I/O, 73
collection queries, 182
CollectSample method, 634

architecture

683

collisions, 108
Commit Limit

overview, 69
virtual memory shortages, 452

Committed Bytes counter, 269
committed pages

anticipatory paging, 73
clustered paging I/O, 73
Commit Limit, 69
multiple paging files, 72
overview, 69
paging file extensions, 70–72
prefetching, 73

concurrency levels, 586
congestion windows, 123, 530–531
connections, 120
Connections Established counter,

295
Consume.exe, 132
context switches

counters, 250
overview, 44

Context Switches/sec counter, 251
counter logs

access rights, 394
accessing files in SQL Server,

375–377
analyzing, 176
automated processing. See

automated counter log
processing

background performance
monitoring, 314

capacity planning, 316
capacity planning databases, 348
configuring, 172
creating performance logs using

Logman, 178
daily. See daily counter logs
database schemas, 369–373
disabled performance counters,

398
file formats, 170
file management, 171
identifying runaway processes,

416–430
local logging with local log files,

390
local logging with remote log files,

391
logging local counters, 388–392
management reporting, 315
merging using Relog.exe, 193
missing performance counters,

396–399

monitoring remote servers in real
time, 392–395

overview, 169, 314
Perflib error messages, 396–398
Performance console for remote

performance analysis, 394
permissions, 394
properties, 175
remote logging with local log files,

391
remote logging with remote log

files, 392
restoring corrupt performance

counters, 400
rights, 394
scenarios, 388–395
scheduling collection periods, 171
settings files, 348
summarizing daily counter logs,

338–342
summarizing log files using

Relog.exe, 196–198
System Monitor, 176
triggering automatically, 332–335
troubleshooting collection

problems, 395–400
working with, 171
writing Typeperf.exe output, 205

counter settings files
adding application-specific

counters, 323
daily management reporting,

340–342
File and Print Server, 328–330
gathering error indicators,

328–330
listing, 322
sample files, 324–327
using, 322–330

CounterData table
overview, 370
retrieving counter log

measurement data, 377–379
CounterDetails table, 370–371
counters

Active Server Pages\Request
Execution Time, 305

Active Server Pages\Request
Queue Time, 306

Active Server Pages\Requests
Executing, 307

Active Server Pages\Requests
Queued, 308

adding to System Monitor ActiveX
control, 639

ASP.NET\Request Execution
Time, 305

ASP.NET\Request Queue Time,
306

ASP.NET\Requests Executing,
307

ASP.NET\Requests Queued, 308
Available Bytes, 260–262
Available Threads, 301
Avg. Disk Queue Length, 286
Avg. Disk secs/transfer, 281
Bytes Total/sec, 293
Cache Bytes, 263
Committed Bytes, 269
configuring System Monitor

ActiveX control, 640
Connections Established, 295
context switches, 250
Context Switches/sec, 251
Current Disk Queue Length, 284
Datagrams/sec, 294
disabling, 210
disk performance

troubleshooting, 464
disk response time

decomposition, 490
% Disk Time, 288
Disk Transfers/sec, 283
disk workload, 489
effective use, 237
Elapsed Time, 242
Free Megabytes, 291
Free System Page Table Entries,

274
% Idle Time, 282
% Interrupt Time, 253
IPvn\Datagrams/sec, 294
Logical Disk(n)\Free Megabytes,

291
memory and paging overview,

256
memory and paging

troubleshooting, 431–433
Memory\Available Bytes,

260–262
Memory\Cache Bytes, 263
Memory\Committed Bytes, 269
Memory\Free System Page Table

Entries, 274
Memory\Nonpaged Pool Bytes,

273
Memory\Page Faults/sec, 267
Memory\Paged Pool Bytes, 273
Memory\Pages/sec, 258

counters

684

counters, continued
Memory\Pool Nonpaged Bytes,

264
Memory\System Cache Resident

Bytes, 277
Memory\Transition Faults/sec,

266
monitoring multiple using

Typeperf, 204
Network Interface(n)\Bytes

Total/sec, 293
network troubleshooting,

509–514
Nonpaged Pool Bytes, 273
obtaining lists of, using Typeperf

queries, 201
overview, 140, 235
Page Faults/sec, 267
Paged Pool Bytes, 273
Paged Pool Failures, 275
Pages/sec, 258
paths, 140–143
Physical Disk(n)\% Disk Time,

288
Physical Disk(n)\% Idle Time,

282
Physical Disk(n)\Avg. Disk

Queue Length, 286
Physical Disk(n)\Avg. Disk

secs/transfer, 281
Physical Disk(n)\Current Disk

Queue Length, 284
Physical Disk(n)\Disk

Transfers/sec, 283
Physical Disk(n)\Split IO/sec, 290
Pool Nonpaged Bytes, 264
primary indicators, 235
Private Bytes, 271
% Privileged Time, 254
Process(instancename)\%

Processor Time, 248
Process(n)\Elapsed Time, 242
Process(n)\Private Bytes, 271
Process(*)\Working Set, 262
process-level CPU consumption,

248
Processor Queue Length, 246
% Processor Time, 244, 248
processor utilization by processor,

250
Processor(_Total)\% Interrupt

Time, 253
Processor(_Total)\% Privileged

Time, 254
Processor(_Total)\% Processor

Time, 244

processors, measuring utilization,
243

processors, normalizing
utilization measures, 245

processors, utilization overview,
242

Queue Length, 302
remote monitoring, 210
removing from System Monitor

ActiveX control, 641
Requests Executing, 307
Requests Queued, 308
retrieving from remote

computers, 203
secondary indicators, 235
Segments Received/sec, 295
selection logic, 420–423
Server Work Queues(n)\Available

Threads, 301
Server Work Queues(n)\Queue

Length, 302
Server\Paged Pool Failures, 275
Server\Work Item Shortages, 299
settings files. See counter settings

files
Split IO/sec, 290
System Cache Resident Bytes, 277
System Up Time, 241
System\Context Switches/sec,

251
System\Processor Queue Length,

246
System\System Up Time, 241
TCPvn\Connections Established,

295
TCPvn\Segments Received/sec,

295
Terminal services\Total sessions,

310
text string files, 208
Total sessions, 310
tracking using paths, 642
Transition Faults/sec, 266
troubleshooting processor

bottlenecks, 246
types, 143–144
Work Item Shortages, 299
Working Set, 262

CPU (central processing unit). See
processors

crisis mode interventions, 8
Current Disk Queue Length

counter, 284
Custreasonedit.exe, 132

D
daily counter logs

automated counter log
processing, 360

baseline measurements, 321
constructing file names, 321
counter settings files, 322–330
establishing daily performance

logging, 317
executing Log Manager

(Logman.exe), 321
identifying source machines, 321
logging local counters to local

disks, 319
logging local counters to network

shares, 320
overview, 317
starting logging data, 319
Windows Time Service, 320

daily management reporting
consolidating performance data

from multiple servers, 339–342
counter settings files, 340–342
overview, 338
sample management reports,

342–345
summarizing daily counter logs,

338–342
Daily Processor Utilization report,

342
daily server monitoring procedures

alerts, 330–337
automated counter log

processing. See automated
counter log processing

baseline measurements, 321
consolidating performance data

from multiple servers, 339–342
constructing file names, 321
counter settings files, 322–330
daily counter logs overview, 317
daily management reporting,

338–345
establishing daily performance

logging, 317
executing Log Manager

(Logman.exe), 321
historical data for, 346–354
identifying source machines, 321
logging local counters to local

disks, 319
logging local counters to network

shares, 320
overview, 316
sample management reports,

342–345

CPU (central processing unit)

685

starting logging data, 319
summarizing daily counter logs,

338–342
triggering counter logs

automatically, 332–335
Windows Time Service, 320

Datagrams/sec counter, 294
decomposition

bottleneck analysis, 404
processor troubleshooting,

409–413
deferred procedure call (DPC), 56
definitions

bandwidth, 16
performance monitoring, 13–22
queue time, 20
queuing system, 14–16
response time, 20
service time, 19
throughput, 16
utilization, 17–19

Depends.exe, 131
derived disk measurements

overview, 286
Physical Disk(n)\% Disk Time

counter, 288
Physical Disk(n)\Avg. Disk

Queue Length counter, 286
Devcon.exe, 131
DH.exe, 132
diagnosing. See troubleshooting
diagnostic tools. See tools
Diruse.exe, 131
Disk Defragmenter

analysis reports, 501–503
analyzing volumes before

defragmenting them, 501
disk performance improvements,

504
overview, 499
using effectively, 500

Disk Free Space report, 344
disk mirroring, 480
disk striping, 480
% Disk Time counter, 288
Disk Transfers/sec counter, 283
disk troubleshooting

caching controllers, 485–487
configuration strategies, 495–499
counters for decomposing disk

response time, 490
counters for disk workload, 489
diagnosing performance

problems, 489–494
Disk Defragmenter, 499–504

disk I/O workload characteristics,
472

establishing disk drive
performance baseline, 473–477

file-level access patterns, 505–509
files causing most disk I/Os, 505
formulas for calculating disk

measurements, 465
formulas for calculating disk

service time, 490
overview, 464
performance counters to log, 464
performance expectations, 466
performance-oriented disk

configuration options,
496–497

RAID, 479–487
storage controllers, 477–479
tuning strategies, 495–499
virtual disks, 477–479, 487

disks
architecture, 92–95
Avg. Disk Queue Length counter,

286
Avg. Disk secs/transfer counter,

281
Current Disk Queue Length

counter, 284
derived measurements, 286–289
Disk Free Space report, 344
% Disk Time counter, 288
Disk Transfers/sec counter, 283
excessive paging, 435
Free Megabytes counter, 291
% Idle Time counter, 282
Logical Disk(n)\Free Megabytes

counter, 291
logical disks, 280
monitoring operations overview,

279
performance expectations, 91,

466
performance measurements,

95–97
performance reporting, 344
Physical Disk(n)\% Disk Time

counter, 288
Physical Disk(n)\% Idle Time

counter, 282
Physical Disk(n)\Avg. Disk

Queue Length counter, 286
Physical Disk(n)\Avg. Disk

secs/transfer counter, 281
Physical Disk(n)\Current Disk

Queue Length counter, 284

Physical Disk(n)\Disk
Transfers/sec counter, 283

Physical Disk(n)\Split IO/sec
counter, 290

physical disks, 280
RAID, 479–487
space usage measurements,

291–292
split I/Os, 290
Split IO/sec counter, 290
troubleshooting. See disk

troubleshooting
virtual disks, 477–479, 487

dispatching priorities
dynamic priority adjustments,

58–60
overview, 56–58

DisplayToID table, 372–373
DPC (deferred procedure call), 56
DPC mode, 411
dual logical processors, 602
dynamic priority adjustments,

58–60
dynamic range (1–15), 57
dynamic volumes, 484

E
Elapsed Time counter, 242
Empty.exe, 132
Ethernet

back-off and retry, 109
collision detection, 108
exponential back-off and retry,

109
maximum transmission unit

(MTU), 108
overview, 106
performance monitoring,

110–111
ETW. See Event Tracing for

Windows (ETW)
event methods, 635
event traces

event time stamps, 224
overview, 127, 212
Performance Logs and Alerts, 213

Event Tracing for Windows (ETW)
overview, 127, 212
page faults per process, 445
Performance Logs and Alerts, 213

events, 229
exception-reporting thresholds, 239

exception-reporting thresholds

686

excessive paging
available memory, 439–440
disk contention, 435
memory allocation, 441–442
memory bottleneck primary

indicators, 435
memory reporting tools, 443–448
overview, 435
page faults, 435
page faults per process, 445–448

Exchange Server 2000, 618
Exctrlst.exe. See Extensible Counter

List (Exctrlst.exe)
Executive

I/O Manager, 89–91, 95–97
overview, 40, 41

exponential back-off and retry
algorithm, 109

extended process private virtual
addresses, 611–613

extended virtual addressing in
32-bit machines

/3GB boot switch, 611
Address Window Extension

(AWE), 611, 615–617
application support, 617–619
Exchange, 618
extended process private virtual

addresses, 611–613
options, 611–617
Oracle, 619
overview, 608
Physical Address Extension

(PAE), 611, 613
SAS, 619
SQL Server, 618
system pools, 620
system virtual memory shortages,

620
virtual memory addressing

constraints, 609
Extensible Counter List

(Exctrlst.exe)
overview, 131
Performance Data Helper (PDH)

processing, 209

F
fair scheduling

bottlenecks, 24
round robin, 24, 58

false sharing, 556–558
fast retransmit, 534

File and Print Server
counter log settings files, 348
counter settings files, 328–330

File I/O report, 505
File Server service

overview, 299
Server Work Queues(n)\Available

Threads counter, 301
Server Work Queues(n)\Queue

Length counter, 302
Server\Work Item Shortages

counter, 299
thread pooling, 570–573

file-level access patterns, 505–509
forecasting techniques

latent demand, 387
linear regression, 384–385
nonlinear regression, 385–387
overview, 383

Free Megabytes counter, 291
Free System Page Table Entries

counter, 274
Freedisk.exe, 129

H
HAL (hardware abstraction layer),

41
hard affinity, 61
hard disks. See disks
hardware

disks. See disks
processors. See processors
troubleshooting performance

problems, 6
hardware abstraction layer (HAL),

41
Health_chk.cmd, 131
historical data for capacity planning

accumulating historical data, 349
capacity planning databases, 348
counter log settings files, 348
creating historical summary logs,

347–349
creating SQL Server PDB,

350–353
editing daily counter logs, 347
overview, 346
populating repositories, 353–354
SQL Server, reasons to use, 347
summarizing daily counter logs,

347
historical summary logs, 347–349
Hyper-Threading, 602–604

I
ICMP (Internet Control Message

Protocol), 117
ideal processors, 61
idle loops, 559
Idle thread, 51
% Idle Time counter, 282
instruction execution throughput

64-bit architecture, 543–545
caches, 543
microarchitecture, 542
Out-of-Order execution, 542
overview, 539
pipelining, 541
predication, 542
processor hardware basics,

539–540
processor performance hardware

mechanisms, 541–543
simultaneous multithreading

(SMT), 543
speculation, 542
superscalar execution, 542

Internet, architecture, 100
Internet Control Message Protocol

(ICMP), 117
Internet Information Services (IIS)

application servers, 576–578
critical measurements, 303
thread pooling, 573–578
trace providers, 221
Web-based applications, 303

% Interrupt Time counter, 253
Interrupt-Affinity Filter (Intfiltr.exe)

asymmetric partitioning, 599–601
multiprocessors, 599–601
overview, 132

interrupts
priority, 55
processing, 48

Intfiltr.exe. See Interrupt-Affinity
Filter (Intfiltr.exe)

invalid PTEs
overview, 80–81
paging file number (PFN), 80

involuntary waits, 49
I/O Manager

disk performance measurements,
95–97

monitoring disk operations
overview, 279

overview, 89–91

excessive paging

687

IP routing
Internet Control Message

Protocol (ICMP), 117
overview, 111
packet headers, 117
router performance, 115
routing, 112
routing tables, 113

IPvn\Datagrams/sec counter, 294

K
Karn’s algorithm, 534
Kernel Debugger

investigating pool usage, 462
memory allocation, 444–445
system pools, 459

Kernel mode, 39
Kernrate.exe

example report on processor
usage, 424–430

identifying processor use,
423–430

overview, 132, 417
parameters, 424

L
LAN. See local area network (LAN)
latency, 105–106
latent demand, 387
lazy writes, 277
Least Recently Used (LRU), 81–84
linear regression, 384–385
Little’s Law

ASP.NET counters, 309
bottleneck prevention, 35
overview, 33
performance measurements, 35
response time revisited, 34

load-testing tools. See tools
local area network (LAN)

network capacity planning,
515–516

Network Monitor packet traces,
518–522

performance overview, 514
SPA system network diagnosis,

516–517
TCP congestion control, 522–524
tuning, 522–526

local logging
local log files, 390
remote log files, 391

lock collisions, 584
lock contention, 552

Lodctr.exe, 129
Log Manager (Logman.exe)

Active Directory, 221
adding versioning information to

log file names, 185
automating data logging, 317
command parameters, 318
command syntax, 179, 218
configuring output files, 184
configuring sampling intervals,

188
creating collection queries, 182
creating new log files

automatically, 187
creating performance logs, 178
deleting data collections, 189
establishing daily performance

logging, 317
event time stamps, 224
executing, 321
file size limit checking, 187, 224
formatting output files, 186
interactive sessions, 218
Internet Information Services

(IIS), 221
logging local counters to local

disks, 319
logging local counters to network

shares, 320
managing data collections using

Windows Script Host (WSH),
190

monitoring remote computers,
183

overview, 129, 179
parameters for event tracing, 222
parsing command parameters,

318
scheduling data collections, 188
settings files, 182
specifying maximum sizes for

output files, 186
starting data collections, 189
starting logging data, 319
stopping data collections, 189
trace logs, 217–224
trace providers, 219–223
updating data collections, 189
Windows Time Service, 320

Logical Disk(n)\Free Megabytes
counter, 291

logical disks
derived disk measurements,

286–289
Free Megabytes counter, 291

overview, 280
performance expectations, 466
space usage measurements,

291–292
Logman.exe. See Log Manager

(Logman.exe)
logs

adding versioning information to
log file names, 185

application, 229
counter. See counter logs
creating performance, using

Logman, 178
data formats of Typeperf.exe logs,

206
file formats, 420–423
filtering log files using Relog.exe,

194
historical summary, 347–349
managing performance, 191
starting performance data, 230
summarizing log files using

Relog.exe, 196–200
trace. See trace logs

LRU (Least Recently Used), 81–84

M
management by exception, 238
management reporting, daily. See

daily management reporting
maximum transmission unit

(MTU), 108
measuring performance. See

counters; performance
monitoring

Memory Allocation report, 645
memory and paging. See also

physical memory; virtual
memory

cache memory, 485–487
clustered paging I/O, 73
committed pages, 69–74
extended virtual addressing in

32-bit machines. See extended
virtual addressing in 32-bit
machines

forecasting memory
requirements, 622–628

Memory Allocation report, 645
memory leaks, 256
memory status bits, 79
monitoring rates overview, 256
overview, 61
page fault resolution, 65–69
page replacement, 81–85

memory and paging

688

memory and paging, continued
Page Table entries (PTEs), 78–81
Page Tables, 63–65
paging files, 70–72
performance, advanced topics

overview, 608
process virtual address spaces,

74–77
process working set management,

85–89
real memory. See physical

memory
troubleshooting. See memory and

paging troubleshooting
virtual addressing, 62

memory and paging
troubleshooting

32-bit virtual memory addressing
limits, 456–464

counters to evaluate when
troubleshooting performance,
431–433

evaluating specific problems, 434
excessive paging. See excessive

paging
memory bottleneck primary

indicators, 435
memory reporting tools, 443–448
overview, 430
virtual memory shortages,

448–456
memory contention index, 624–626
memory leaks

overview, 256
virtual memory leaks, 451

Memory Manager
available bytes, 260
transition faults, 266

Memory Pool Monitor
(Poolmon.exe)

investigating pool usage, 463
overview, 131

Memory\Available Bytes counter,
260–262

Memory\Cache Bytes counter, 263
Memory\Committed Bytes counter,

269
Memory\Free System Page Table

Entries counter, 274
Memory\Nonpaged Pool Bytes

counter, 273
Memory\Page Faults/sec counter,

267
Memory\Paged Pool Bytes counter,

273

Memory\Pages/sec counter, 258
Memory\Pool Nonpaged Bytes

counter, 264
memory-resident disk caches,

276–279
Memory\System Cache Resident

Bytes counter, 277
Memory\Transition Faults/sec

counter, 266
Memsnap.exe, 131
Memtriage.exe, 132
microarchitecture, 542
Microsoft Event Tracing for

Windows. See Event Tracing for
Windows (ETW)

Microsoft SQL Server. See SQL
Server

Microsoft Visual Basic Scripting
Edition. See VBScript

monitoring performance. See
performance monitoring

monitoring tools. See tools
Msinfo32.exe, 130
MTU (maximum transmission

unit), 108
multipathing, 472
multiprocessing, 250
multiprocessors

asymmetric partitioning. See
asymmetric partitioning

cache coherence, 555
ccNUMA architectures, 604–607
configuration strategies overview,

563
false sharing, 556–558
Hyper-Threading, 602–604
idle loop, 559
Interrupt-Affinity Filter

(Intfiltr.exe), 599–601
lock contention, 552
minimizing serialization delays,

564
nonuniform memory access

(NUMA), 604–607
optimizing, 558–559
overview, 548
partitioning using WSRM,

595–599
queued spin locks, 559
scalability, 551–562
shared memory multiprocessors,

549–551
single system images, 550
snooping, 555
spin locks, 554

symmetric multiprocessing, 551
thread pooling. See thread

pooling
TPC performance benchmarks,

561
tuning strategies overview, 563
workload parallelism, 552

multithreading
overview, 45
simultaneous multithreading

(SMT), 543, 602

N
Netcap.exe, 131
Network Interface Traffic report,

345
Network Interface(n)\Bytes

Total/sec counter, 293
network interfaces

bandwidth, 103
Bytes Total/sec counter, 293
Ethernet, 106–111
IP routing, 111–118
latency, 105–106
measurements, 293
Network Interface(n)\Bytes

Total/sec counter, 293
overview, 98
packets, 98
protocol stacks, 100–103
Transmission Control Protocol

(TCP), 118–123
Network Monitor

overview, 130, 233
packet traces, 518–522

network troubleshooting
adaptive retransmission, 532–535
congestion windows, 530–531
counters to evaluate, 511–514
counters to log, 509–511
effective capacity of WAN links,

529
LAN performance overview, 514
LAN tuning, 522–526
network capacity planning,

515–516
Network Monitor packet traces,

518–522
overview, 509
round trip time (RTT), 527–531
SPA system network diagnosis,

516–517
TCP congestion control, 522–524
WAN performance overview, 526

memory and paging troubleshooting

689

networks
capacity planning, 515–516
capturing network packets,

519–522
error conditions, 297
managing traffic, 292–297
monitoring using Task Manager,

163–167
Network Interface Traffic report,

345
troubleshooting. See network

troubleshooting
nonlinear regression, 385–387
Nonpaged Pool Bytes counter, 273
Nonpaged pools, 272
nonuniform memory access

(NUMA), 604–607
normalizing processor utilization

measures, 245
NUMA (nonuniform memory

access), 604–607

O
objects

multiple instances, 134–135
overview, 134
types, 135–140

OnCounterDeleted method, 636
OnSampleCollected method, 635
operating systems

64-bit platform support, 544
clocks, 47
components, 40–42
Executive, 41
functions, 42
hardware abstraction layer (HAL),

41
Kernel mode, 39
performance-related tools, 129
Privileged state, 39
Processr.sys, 41
system architecture, 38–42
User state, 39
Win32k.sys, 42

Oracle, 619
Out-of-Order execution, 542

P
packets

capturing network packets,
519–522

example packet trace, 102
headers, 117

Network Monitor packet traces,
518–522

overview, 98
payloads, 99
processing, 101–102

PAE. See Physical Address Extension
(PAE)

Page Fault Monitor (Pfmon.exe)
overview, 132
page faults per process, 445–448

page faults
Available Bytes pool, 66
excessive paging, 435
memory allocation, 445–448
performance considerations, 67
resolving, 65–69
thrashing, 68

Page Faults/sec counter, 267
Page Frame Number (PFN), 87
page replacement, 81–84
Page Table entries (PTEs)

Free System Page Table Entries
counter, 274

invalid, 80–81
memory status bits, 79
overview, 78

Page Tables
committed pages, 69
overview, 63–65

Paged Pool Bytes counter, 273
Paged Pool Failures counter, 275
Paged pools

contention, 626–628
virtual memory in system range,

272
Pages/sec counter, 258
paging. See memory and paging
paging file number (PFN), 80
paging files, 70–72
partitioning, asymmetric. See

asymmetric partitioning
PDB. See performance database

(PDB)
PDH. See Performance Data Helper

(PDH)
Peak Hour Processor Utilization

report, 343
Perflib. See Performance Library

(Perflib) DLLs
perfmon. See Performance Monitor
Performance console, 394
Performance Data Helper (PDH)

counter selection logic, 421
Extensible Counter List

(Exctrlst.exe), 209
processing, 208–210

performance database (PDB)
creating, 350–353
populating repositories, 353–354
querying, 373–379

Performance Library (Perflib) DLLs
counter selection logic, 421
error messages, 396–398
overview, 207–208

Performance Logs and Alerts. See
also alerts; logs

counter logs. See counter logs
counter selection logic, 420–423
creating performance logs using

Logman, 178
event traces, 213
Event Tracing for Windows

(ETW), 213
overview, 130, 168
starting, 171
System Monitor overhead, 418
trace event providers, 215
working with, 178

Performance Monitor
overview, 133
Performance Logs and Alerts,

starting, 171
using, 37
viewing charts in real time, 145

performance monitoring
absolute exceptions, 238
advanced performance topics,

537
architecture, 207–211
arrival rate distribution, 30
automated. See automated

performance monitoring
background counter log sessions,

314
bandwidth, 16
bottlenecks, 22–27
concept overview, 12
concept summary, 36
counter text string files, 208
counters. See counters
creating Web pages for, 643
crisis mode interventions, 8
definitions, 13–22
diagnosing performance

problems overview, 5–8
Ethernet, 110–111
exception-reporting thresholds,

239
fair scheduling, 24
introducing, 2–12

performance monitoring

690

performance monitoring, continued
learning about, 3
Little’s Law, 33–35
management by exception, 238
managing performance logs, 191
managing queues for optimal

performance, 23
objects, 134–140
overhead considerations, 7
overview, 1–12, 235
page fault resolution, 67
perfmon. See Performance

Monitor
Performance Data Helper (PDH),

208–210
Performance Library (Perflib)

DLLs, 207–208
Performance Monitor. See

Performance Monitor
priority queuing with preemptive

scheduling, 24
proactive, 4–5
procedures. See procedures
queue depth limits, 32
queue time, 20, 29–33
queuing system, 14–16
relative exceptions, 239
response time, 20
scalability, 8–12
service time, 19
service time distribution, 30–31
serving shorter requests first, 25
statistics overview, 126, 133
summary, 123
system architecture. See system

architecture
System Monitor. See System

Monitor
Task Manager. See Task Manager
throughput, 16
tools. See tools
triage, 240
troubleshooting. See

troubleshooting
Typeperf.exe. See Typeperf.exe
unfair scheduling, 24
utilization, 17–19, 29–33
Utilization Law, 28

permissions, 394
Pfmon.exe. See Page Fault Monitor

(Pfmon.exe)
PFN (Page Frame Number), 87
PFN (paging file number), 80

Physical Address Extension (PAE)
extended virtual addressing, 611,

613
memory-resident disk caches, 277

Physical Disk(n)\% Disk Time
counter, 288

Physical Disk(n)\% Idle Time
counter, 282

Physical Disk(n)\Avg. Disk Queue
Length counter, 286

Physical Disk(n)\Avg. Disk
secs/transfer counter, 281

Physical Disk(n)\Current Disk
Queue Length counter, 284

Physical Disk(n)\Disk Transfers/sec
counter, 283

Physical Disk(n)\Split IO/sec
counter, 290

physical disks
Avg. Disk Queue Length counter,

286
Avg. Disk secs/transfer counter,

281
caching controllers, 485–487
Current Disk Queue Length

counter, 284
derived disk measurements,

286–289
disk I/O workload characteristics,

472
% Disk Time counter, 288
Disk Transfers/sec counter, 283
establishing disk drive

performance baseline, 473–477
% Idle Time counter, 282
multipathing, 472
overview, 280
performance expectations,

467–472
RAID, 479–487
split I/Os, 290
Split IO/sec counter, 290
storage controllers, 477–479
virtual disks, 477–479, 487

physical memory. See also memory
and paging

overview, 62
page fault resolution, 66
Page Tables, 63–65
usage, 260

pipelining, 541
Pmon.exe, 132
Pool Nonpaged Bytes counter, 264
Poolmon.exe. See Memory Pool

Monitor (Poolmon.exe)

pools
Available Bytes pool, 66, 81–82
investigating usage, 461–464
Nonpaged pools, 272
Paged pools, 272
system pools, 458–461
thread pooling. See thread

pooling
predication, 542
preemptive scheduling

priority queuing, 24
threads, 46

prefetching, 73
primary indicators

overview, 235
processor utilization, 244

print servers, 303
priority queuing

deferred procedure call (DPC), 56
dynamic priority adjustments,

58–60
interrupt priority, 55
overview, 55
preemptive scheduling, 24
thread dispatching priorities,

56–58
Private Bytes counter, 271
privileged mode, 410
Privileged state, 39
% Privileged Time counter, 254
procedures

analysis procedures, 404–406
background performance

monitoring, 314
capacity planning, 316, 379
counter log scenarios, 388–395
daily server monitoring

procedures. See daily server
monitoring procedures

management reporting, 315
overview, 313
SQL Server repositories, using,

365
trending, 379
troubleshooting counter

collection problems, 395–400
process virtual address spaces

extended user virtual addressing,
77

overview, 74–75
shared system addresses, 76

process working set, 85–86
process working set bytes, 262

permissions

691

process working set management
accounting for process memory

usage, 87
shared DLLs, 87
system working sets, 88

Process(instancename)\%
Processor Time counter, 248

Process(n)\Elapsed Time counter,
242

Process(n)\Private Bytes counter,
271

Process(*)\Working Set counter,
262

processes
monitoring using Task Manager,

157–161
virtual memory allocations,

454–456
Processor Queue Length counter,

246
% Processor Time counter, 244, 248
Processor(_Total)\% Interrupt

Time counter, 253
Processor(_Total)\% Privileged

Time counter, 254
Processor(_Total)\% Processor

Time counter, 244
processors

64-bit architecture, 543–545
accounting for processor usage,

51–54
affinity, 60, 558
asymmetric multiprocessing, 250
base priorities, 57
bottlenecks, 246, 407–409
caches, 543
context switches, 250
Context Switches/sec counter,

251
counter selection logic, 420–423
decomposition, 409–413
deferred procedure call (DPC), 56
DPC mode, 411
dynamic priority adjustments,

58–60
dynamic range (1–15), 57
hard affinity, 61
hardware basics, 539–540
identifying runaway processes by

using counter logs, 416–430
identifying runaway processes by

using Task Manager, 413–415
identifying use by module and

function, 423–430
Idle thread, 51

instruction execution throughput,
539–545

interrupt priority, 55
interrupt processing, 48
% Interrupt Time counter, 253
involuntary waits, 49
Kernrate report on usage,

424–430
log file formats, 420–423
measuring utilization, 243
microarchitecture, 542
multiprocessing, asymmetric, 250
multiprocessing, symmetric, 250
multiprocessors. See

multiprocessors
normalizing CPU time, 54
normalizing utilization measures,

245
Out-of-Order execution, 542
overview, 43
performance, advanced topics

overview, 538
pipelining, 541
predication, 542
priority queuing, 55–60
privileged mode, 410
% Privileged Time counter, 254
Process(instancename)\%

Processor Time counter, 248
process-level CPU consumption,

248
processor performance hardware

mechanisms, 541–543
Processor Queue Length counter,

246
% Processor Time counter, 244,

248
Processor(_Total)\% Interrupt

Time counter, 253
Processor(_Total)\% Privileged

Time counter, 254
Processor(_Total)\% Processor

Time counter, 244
Ready queue, 54
real-time range (16–31), 57
simultaneous multithreading

(SMT), 543
soft affinity, 61
speculation, 542
superscalar execution, 542
symmetric multiprocessing, 250
System Monitor overhead,

417–419
System\Context Switches/sec

counter, 251

System\Processor Queue Length
counter, 246

thread dispatching priorities,
56–58

threads, 43–48
time-slicing, 50, 546–548
transient threads and processes,

53
troubleshooting bottlenecks, 246
troubleshooting overview, 406
use by module and function, 417
use by process, 413
use by state, 410–412
user mode, 411–412
utilization by processor, 250, 409
utilization by processor and

thread, 410
utilization by processor execution

state, 252–256
utilization by processor rate, 409
utilization management reports,

342–344
utilization overview, 242
voluntary waits, 49

ProcessorThreadMax property, 307
Processr.sys, 41
protocol stacks

overview, 100–101
packet processing, 101–102
processing HTTP GET requests,

102
PTE. See Page Table entries (PTEs)
Pviewer.exe, 131

Q
queue depth limits, 32
queue length

bottleneck analysis, 403
processors, 407–409

Queue Length counter, 302
queue time

arrival rate distribution, 30
overview, 20
queue depth limits, 32
service time distribution, 30–31
utilization, 29–33

queued spin locks, 559
queuing systems, 14–16

R
RAID. See Redundant array of

independent disks (RAID)
RAID 0, 480
RAID 0/1, 481

RAID 0/1

692

RAID 1, 480
RAID 5, 481
RAM. See physical memory
Ready queue, 54
ready threads, 44
real memory. See physical memory
real-time range (16–31), 57
Redundant array of independent

disks (RAID)
comparing levels, 482–484
disk mirroring, 480
disk striping, 480
dynamic volumes, 484
overview, 479–487
RAID 0, 480
RAID 0/1, 481
RAID 1, 480
RAID 5, 481
rotated parity sectors, 481

relative exceptions, 239
Relog.exe

capacity planning databases, 348
command syntax, 192
consolidating performance data

from multiple servers, 339–342
counter log settings files, 348
counter settings files, 340–342
editing daily counter logs, 347
filtering log files, 194
formatting output files, 194
logging local counters to local

disks, 320
managing performance logs, 191
merging counter logs, 193
overview, 130
populating repositories, 353–354
settings files, 195
summarizing daily counter logs,

347
summarizing log files, 196–200
using, 192

remote logging
local log files, 391
remote log files, 392

Replmon.exe, 131
reports

automated counter log
processing, 362

Daily Processor Utilization report,
342

Disk Free Space report, 344
event trace reports, 224
File I/O report, 505
Kernrate report on processor

usage, 424–430

Memory Allocation report, 645
Network Interface Traffic report,

345
Peak Hour Processor Utilization

report, 343
sample management reports,

342–345
repositories

accessing counter log files,
375–377

counter log database schemas,
369–373

CounterData table, 370, 377–379
CounterDetails table, 370–371
DisplayToID table, 372–373
populating, 353–354
querying SQL performance

databases (PDB), 373–379
System Monitor, 366–369
using, 365

resident pages, 263–266
resource utilization

bottleneck analysis, 403
processors, 407–409

response time
Active Server Pages (ASP),

578–579
Little’s Law, 33–35
overview, 20
utilization, 33–35

retransmission timeout (RTO)
calculating, 534
Karn’s algorithm, 534
overview, 533

rights, 394
rotated parity sectors, 481
round robin

overview, 24
thread dispatching priority, 58

round trip time (RTT)
congestion windows, 530–531
effective capacity of WAN links,

529
measuring using Tracert,

528–529
overview, 527–528

router performance, 115
routing, 112
routing tables, 113
RTO. See retransmission timeout

(RTO)
RTT. See round trip time (RTT)
running threads, 44

S
SAS, 619
scalability

bottlenecks, 10–12
ideal vs. actual application

scalability, 9
multiprocessing, 551–562
overview, 8
Utilization Law, 10

Scheduled Tasks service, 362
secondary indicators, 235
security, 128–133
Segments Received/sec counter, 295
server applications. See applications
Server Performance Advisor (SPA),

516–517
Server Work Queues(n)\Available

Threads counter, 301
Server Work Queues(n)\Queue

Length counter, 302
Server\Paged Pool Failures counter,

275
Server\Work Item Shortages

counter, 299
service time, 19
service time distribution, 30–32
sessions, 120
settings files

capacity planning databases, 348
counter logs, 348
counters. See counter settings files
Log Manager, 182
Relog.exe, 195

shared memory multiprocessors
overview, 549
single system images, 550
symmetric multiprocessing, 551

Showperf.exe, 133
simultaneous multithreading

(SMT), 543, 602
single system images

overview, 550
symmetric multiprocessing, 551

sliding windows, 121
Smlogsvc.exe. See Performance Logs

and Alerts
SMT (simultaneous

multithreading), 543, 602
snooping, 555
soft affinity, 61
SPA (Server Performance Advisor),

516–517
speculation, 542

RAID 1

693

spin locks
overview, 554
queued spin locks, 559

Splinfo.exe, 133
split I/Os, 290
Split IO/sec counter, 290
Spoolsv.exe, 303
SQL Server

32-bit extended virtual
addressing, 618

accessing counter log files,
375–377

extended virtual addressing in
32-bit machines, 618

historical data for capacity
planning, 347

performance database (PDB),
350–353, 373–379

repositories. See repositories
scaling sideways, 618
thread pooling, 568–570

Srvinfo.exe, 133
starvation, 24
statistical tools. See tools
storage controllers

disk troubleshooting, 477–479
RAID, 479–487

superscalar execution, 542
symmetric multiprocessing, 250,

551
system architecture

disk architecture, 92–95
disk performance expectations,

91
disk performance measurements,

95–97
Executive, 41
hardware abstraction layer (HAL),

41
I/O subsystems, 89–97
memory. See memory and paging
network interfaces. See network

interfaces
operating systems, 38–42
overview, 37
paging. See memory and paging
Performance Monitor, 37
processors. See processors
Processr.sys, 41
Win32k.sys, 42

System Cache Resident Bytes
counter, 277

system file cache, 272
System Monitor

ActiveX control. See ActiveX
control

automation interface. See System
Monitor Automation Interface

chart viewing in real time,
145–146

Chart Views, 151
compared to Task Manager, 158,

162–167
counter logs, 176
custom monitoring configuration

creation, 147
data view customization, 149–151
Legend sorting, 153
overhead, 417–419
overview, 130, 144
performance, advanced topics

overview, 628
printing displays, 153
properties, 150
real-time data, saving, 148
sampling intervals, changing, 146
shortcut menu commands, 149
SQL Server repositories, 366–369
tips for working with, 151–154
toolbar buttons, 148
y-axis scaling, 152

System Monitor Automation
Interface

ActiveX control CollectSample
method, 634

ActiveX control event methods,
635

ActiveX control
OnCounterDeleted method,
636

ActiveX control
OnSampleCollected method,
635

adding ActiveX control to Web
pages, 629

adding performance counters to
ActiveX control, 639

configuring ActiveX control
appearance, 636

configuring ActiveX control color
schemes, 637

configuring ActiveX control
display types, 632

configuring ActiveX control font
styles, 638

configuring ActiveX control
performance counters, 640

configuring ActiveX control
sampling rates, 634

configuring System Monitor user
interface, 637

creating Web pages for
monitoring performance, 643

customizing ActiveX control, 630
drag-and-drop support, 645
manually retrieving performance

data, 634
Memory Allocation report, 645
overview, 628
removing performance counters

from ActiveX control, 641
sample commands for

configuring ActiveX control,
631

tracking performance counters
using counter paths, 642

system pools
32-bit virtual memory addressing

limits, 458–461
extended virtual addressing in

32-bit machines, 620
System Up Time counter, 241
system virtual memory

32-bit virtual memory addressing
limits, 457

shortages, 620
system working sets, 88
System\Context Switches/sec

counter, 251
Systeminfo.exe, 130
System\Processor Queue Length

counter, 246
System\System Up Time counter,

241

T
Task Manager

compared to System Monitor,
158, 162–167

identifying runaway processes,
413–415

monitoring applications, 156
monitoring networks, 163–167
monitoring performance,

161–163
monitoring processes, 157–161
monitoring users, 167
overview, 130, 154
performance monitoring,

161–163
starting, 155
working with, 155–156

Taskkill.exe, 130
Tasklist.exe, 130

Tasklist.exe

694

TCP. See Transmission Control
Protocol (TCP)

TCP/IP, 294–296
TCPvn\Connections Established

counter, 295
TCPvn\Segments Received/sec

counter, 295
Terminal Services, 310
Terminal services\Total sessions

counter, 310
thrashing, 68
thread pooling

ASP response time measurements,
578–579

ASP.NET, 581–583
concurrency levels, 586
File Server service, 570–573
Internet Information Services

(IIS), 573–578
lock collisions, 584
max threads, 585
overview, 565–568
server applications, 583
SQL Server, 568–570

threads
base priorities, 57
context switches, 44, 250
dispatching priorities, 56–58
dynamic priority adjustments,

58–60
dynamic range (1–15), 57
hard affinity, 61
ideal processors, 61
Idle thread, 51
interrupt processing, 48
involuntary waits, 49
maximum number of, 585
multithreading, 45
normalizing CPU time, 54
overview, 43
pooling. See thread pooling
preemptive scheduling, 46
processor Ready queue, 54
ready threads, 44
real-time range (16–31), 57
running threads, 44
soft affinity, 61
thread states, 46
time-slicing, 50
transient threads and processes,

53
upper limit, 585
voluntary waits, 49
waiting threads, 44

throughput
overview, 16
scalability, 9

thunking, 545
time-slicing, 50, 546–548
tools

Adlb.exe, 132
administrative controls, 128
Checkrepl.vbs, 132
Clearmem.exe, 132
Consume.exe, 132
counter logs. See counter logs
Custreasonedit.exe, 132
Depends.exe, 131
Devcon.exe, 131
DH.exe, 132
Diruse.exe, 131
Disk Defragmenter, 499–504
Empty.exe, 132
event traces. See event traces
Event Tracing for Windows

(ETW). See Event Tracing for
Windows (ETW)

Extensible Counter List
(Exctrlst.exe). See Extensible
Counter List (Exctrlst.exe)

Freedisk.exe, 129
Health_chk.cmd, 131
Interrupt-Affinity Filter

(Intfiltr.exe). See
Interrupt-Affinity Filter
(Intfiltr.exe)

Kernrate.exe. See Kernrate.exe
load generating and testing, 128
Lodctr.exe, 129
Log Manager (Logman.exe). See

Log Manager (Logman.exe)
Memory Pool Monitor

(Poolmon.exe). See Memory
Pool Monitor (Poolmon.exe)

memory reporting tools, 443–448
Memsnap.exe, 131
Memtriage.exe, 132
Msinfo32.exe, 130
Netcap.exe, 131
Network Monitor. See Network

Monitor
operating system

performance-related tools, 129
overview, 125
Page Fault Monitor (Pfmon.exe).

See Page Fault Monitor
(Pfmon.exe)

Performance Logs and Alerts. See
Performance Logs and Alerts

performance statistics overview,
126

performance-related support
tools, 131

Pfmon.exe. See Page Fault Monitor
(Pfmon.exe)

Pmon.exe, 132
Poolmon.exe. See Memory Pool

Monitor (Poolmon.exe)
Pviewer.exe, 131
Relog.exe. See Relog.exe
Replmon.exe, 131
security required for usage,

128–133
SPA system network diagnosis,

516–517
Showperf.exe, 133
Smlogsvc.exe. See Performance

Logs and Alerts
Splinfo.exe, 133
Srvinfo.exe, 133
summary of, 126–133
System Monitor. See System

Monitor
Systeminfo.exe, 130
Task Manager. See Task Manager
Taskkill.exe, 130
Tasklist.exe, 130
Trace Report (Tracerpt.exe). See

Trace Report (Tracerpt.exe)
Tracert, 528–529
TSSCalling.exe, 133
Typeperf.exe. See Typeperf.exe
Unlodctr.exe, 130
Vadump, 133
Volperf.dll, 133
Windows Resource Kit

performance–related tools, 132
Total sessions counter, 310
TPC (Transaction Performance

Council) performance
benchmarks, 561

trace logs
Active Directory, 221
configuring, 214–217
event trace reports, 224
Internet Information Services

(IIS), 221
Log Manager (Logman.exe),

217–224
properties, 216
trace event providers, 215
trace providers, 219–223

TCP

695

Trace Report (Tracerpt.exe)
event trace reports, 224
file-level access patterns, 505
overview, 130

Tracert, 528–529
Transaction Performance Council

(TPC) performance
benchmarks, 561

transition faults, 266, 267
Transition Faults/sec counter, 266
Transmission Control Protocol

(TCP)
byte sequence numbers, 120
congestion control, 522–524
congestion windows, 123
overview, 118
session connections, 120
sliding windows, 121

trending, 379
triage, 240
troubleshooting

analysis procedures, 404–406
baseline data, 402
bottleneck analysis, 402–404
counter collection problems,

395–400
current performance levels, 403
decomposition, 404, 409–413
disabled performance counters,

398
disks. See disk troubleshooting
identifying runaway processes by

using counter logs, 416–430
identifying runaway processes by

using Task Manager, 413–415
memory. See memory and paging

troubleshooting
missing performance counters,

396–399
networking error conditions, 297
networks. See network

troubleshooting
overview, 401
paging. See memory and paging

troubleshooting
Perflib error messages, 396–398
performance problems, 5–8
processor bottlenecks, 246,

407–409
processors overview, 406
queue length, 403, 407–409
resource utilization, 403,

407–409
restoring corrupt performance

counters, 400

TSSCalling.exe, 133
Typeperf.exe

automating usage, 204–206
command syntax, 200
data formats of performance logs,

206
monitoring multiple counters,

204
monitoring performance from the

command line, 203
monitoring performance of

remote computers, 204
obtaining lists of performance

counters, 201
overview, 130, 200
retrieving counters from remote

computers, 203
sample output, 203
sampling intervals, 205
sampling rates, 205
writing output to counter logs,

205

U
unfair scheduling, 24
Unlodctr.exe, 130
user mode, 411–412
User state, 39
users, monitoring using Task

Manager, 167
utilities. See tools
utilization

arrival rate distribution, 30
forecasting linear growth, 17
Little’s Law, 33–35
overview, 17–19
queue depth limits, 32
queue time, 29–33
response time, 33–35
service time distribution, 30–31

Utilization Law
overview, 28
scalability, 10

V
VADs (Virtual Address Descriptors),

87
Vadump, 133
VBScript

automated counter log
processing, 355–358

constructing file names, 321
daily file management and

cleanup, 319

executing Log Manager
(Logman.exe), 321

identifying source machines, 321
Virtual Address Descriptors (VADs),

87
virtual addressing

extended in 32-bit machines. See
extended virtual addressing in
32-bit machines

extended user, 77
overview, 62
Page Table entries (PTEs), 78
process virtual address spaces,

74–77
shared system addresses, 76

virtual disks, 477–479, 487
virtual memory. See also memory

and paging
32-bit addressing limits, 456–464
64-bit virtual memory, 621
Address Window Extension

(AWE), 277
addressing constraints, 609
Available Bytes counter, 260–262
Cache Bytes counter, 263
cache miss, 277
Commit Limit, 452
Committed Bytes counter, 269
forecasting memory

requirements, 622–628
Free System Page Table Entries

counter, 274
lazy writes, 277
leaks, 451
memory contention index,

624–626
Memory\Available Bytes counter,

260–262
Memory\Cache Bytes counter,

263
Memory\Committed Bytes

counter, 269
Memory\Free System Page Table

Entries counter, 274
Memory\Nonpaged Pool Bytes

counter, 273
Memory\Page Faults/sec counter,

267
Memory\Paged Pool Bytes

counter, 273
Memory\Pages/sec counter, 258
Memory\Pool Nonpaged Bytes

counter, 264
memory-resident disk caches,

276–279

virtual memory

696

virtual memory, continued
Memory\System Cache Resident

Bytes counter, 277
Memory\Transition Faults/sec

counter, 266
Nonpaged Pool Bytes counter,

273
Nonpaged pools, 272
overview, 62, 256
page fault resolution, 65–69
Page Faults/sec counter, 267
Page Tables, 63–65
Paged Pool Bytes counter, 273
Paged pool contention, 626–628
Paged Pool Failures counter, 275
Paged pools, 272
Pages/sec counter, 258
Physical Address Extension

(PAE), 277
physical memory usage, 260
Pool Nonpaged Bytes counter,

264
Private Bytes counter, 271
process allocations, 454–456
process working set bytes, 262
Process(*)\Working Set counter,

262
Process(n)\Private Bytes counter,

271
resident pages in system range,

263–266
Server\Paged Pool Failures

counter, 275
shortages, 448–456
System Cache Resident Bytes

counter, 277
system file cache, 272
system range, 272

transition faults, 266
Transition Faults/sec counter, 266
usage, 269
virtual addressing, 62
V:R ratio, 624–626
Working Set counter, 262

Visual Basic, Scripting Edition. See
VBScript

Volperf.dll, 133
voluntary waits, 49
V:R ratio, 624–626

W
waiting threads, 44
WAN. See wide area network (WAN)
Web-based applications

Active Server Pages\Request
Execution Time counter, 305

Active Server Pages\Request
Queue Time counter, 306

Active Server Pages\Requests
Executing counter, 307

Active Server Pages\Requests
Queued counter, 308

ASP.NET\Request Execution
Time counter, 305

ASP.NET\Request Queue Time
counter, 306

ASP.NET\Requests Executing
counter, 307

ASP.NET\Requests Queued
counter, 308

IIS critical measurements, 303
overview, 303

wide area network (WAN)
adaptive retransmission, 532–535
congestion windows, 530–531

effective capacity of WAN links,
529

performance overview, 526
round trip time (RTT), 527–531

Win32k.sys, 42
Windows On Windows (WOW),

544
Windows Script Host (WSH)

automated counter log
processing, 355–358

constructing file names, 321
daily file management and

cleanup, 319
executing Log Manager

(Logman.exe), 321
identifying source machines, 321
managing Log Manager data

collections, 190
Windows System Resource Manager

(WSRM)
asymmetric partitioning,

595–599
overview, 233

Windows Task Manager. See Task
Manager

Windows Time Service, 320
Work Item Shortages counter, 299
Working Set counter, 262
working sets, 262
workload parallelism, 552
WOW (Windows On Windows),

544
WSH. See Windows Script Host

(WSH)
WSRM. See Windows System

Resource Manager (WSRM)

Visual Basic, Scripting Edition

	Cover
	Copyright

	Contents at a Glance
	Contents
	About the Author
	Acknowledgements
	Introduction
	Document Conventions
	Resource Kit Companion CD

	Chapter 1 Performance Monitoring Overview
	Introducing Performance Monitoring
	Learning About Performance Monitoring
	Proactive Performance Monitoring
	Diagnosing Performance Problems
	Scalability

	Performance Monitoring Concepts
	Definitions
	Bottlenecks
	Utilization Law
	Queue Time and Utilization
	Little’s Law
	Conclusions

	System Architecture
	Using the Performance Monitor
	Operating Systems
	Processors
	Memory and Paging
	The I/O Subsystem
	Network Interfaces

	Summary

	Chapter 2 Performance Monitoring Tools
	Summary of Monitoring Tools
	Performance Statistics
	Event Traces
	Load Generating and Testing
	Administrative Controls
	Required Security for Tool Usage

	Performance Monitoring Statistics
	Performance Objects
	Performance Counters

	System Monitor
	Viewing a Chart in Real Time
	Changing the Sampling Interval
	Creating a Custom Monitoring Configuration
	Saving Real-Time Data
	Customizing How Data Is Viewed
	Tips for Working with System Monitor

	Task Manager
	Working with Task Manager
	Monitoring Applications
	Monitoring Processes
	Monitoring Performance
	Monitoring the Network
	Monitoring Users

	Automated Performance Monitoring
	Performance Logs and Alerts
	Counter Logs
	Tips for Working with Performance Logs and Alerts
	Creating Performance Logs Using Logman

	Managing Performance Logs
	Using the Relog Tool
	Using Typeperf Queries

	Windows Performance Monitoring Architecture
	Performance Library DLLs
	Performance Counter Text String Files
	Performance Data Helper Processing
	Disable Performance Counters
	Remote Monitoring

	Event Tracing for Windows
	Event Tracing Overview
	Using Log Manager to Create Trace Logs
	Event Trace Reports

	Alerts
	Configuring Alerts
	Configuring Alert Notification

	Windows System Resource Manager
	Network Monitor

	Chapter 3 Measuring Server Performance
	Using Performance Measurements Effectively
	Identifying Bottlenecks
	Management by Exception

	Key Performance Indicators
	System and Application Availability
	Processor Utilization
	Monitoring Memory and Paging Rates
	Monitoring Disk Operations
	Managing Network Traffic
	Maintaining Server Applications
	Terminal Services

	Chapter 4 Performance Monitoring Procedures
	Understanding Which Counters to Log
	Background Performance Monitoring
	Management Reporting
	Capacity Planning

	Daily Server Monitoring Procedures
	Daily Counter Logs
	Using Alerts Effectively
	Daily Management Reporting
	Historical Data for Capacity Planning
	Automated Counter Log Processing

	Using a SQL Server Repository
	Using the System Monitor Console with SQL Server
	How to Configure System Monitor to Log to SQL Server
	Counter Log Database Schema
	Querying the SQL Performance Database

	Capacity Planning and Trending
	Organizing Data for Capacity Planning
	Forecasting Techniques

	Counter Log Scenarios
	Logging Local Counters
	Monitoring Remote Servers in Real Time

	Troubleshooting Counter Collection Problems
	Missing Performance Counters
	Restoring Corrupt Performance Counters

	Chapter 5 Performance Troubleshooting
	Bottleneck Analysis
	Baseline Data
	Current Performance Levels
	Resource Utilization and Queue Length
	Decomposition

	Analysis Procedures
	Understanding the Problem
	Analyzing the Logged Performance Data
	Analyzing Performance Data Interactively
	Fine-Grained Analysis Tools
	What to Check Next in the Enterprise

	Processor Troubleshooting
	Resource Utilization and Queue Length
	Decomposition
	Identifying a Runaway Process by Using Task Manager
	Identifying a Runaway Process by Using a Counter Log

	Memory Troubleshooting
	Counters to Evaluate When Troubleshooting Memory Performance
	What to Check Next When Troubleshooting Memory Performance
	Excessive Paging
	Virtual Memory Shortages
	32-Bit Virtual Memory Addressing Limits

	Disk Troubleshooting
	Disk Performance Expectations
	Diagnosing Disk Performance Problems

	Network Troubleshooting
	Counters to Log When Troubleshooting Network Performance
	Counters to Evaluate When Troubleshooting Network Performance
	LAN Performance
	WAN Performance

	Chapter 6 Advanced Performance Topics
	Processor Performance
	Instruction Execution Throughput
	Time-Slicing Revisited
	Multiprocessors

	Memory Performance
	Extended Virtual Addressing in 32-Bit Machines
	64-Bit Virtual Memory
	Forecasting Memory Requirements

	The System Monitor Automation Interface
	Adding the System Monitor ActiveX Control to a Web Page
	Customizing the System Monitor ActiveX Control
	Configuring the System Monitor ActiveX Control Display Type
	Configuring the System Monitor ActiveX Control Sampling Rate
	Manually Retrieving Performance Data
	Configuring the System Monitor ActiveX Control’s Appearance
	Configuring the System Monitor ActiveX Control Color Schemes
	Configuring the System Monitor ActiveX Control Font Styles
	Adding Performance Counters to the System Monitor ActiveX Control
	Configuring System Monitor ActiveX Control Performance Counters
	Removing Performance Counters from the System Monitor ActiveX Control
	Using Counter Paths to Track Individual Performance Counters
	Creating a Web Page for Monitoring Performance
	Drag-and-Drop Support

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index
	Symbols and Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

