Performance throughout the Development Life Cycle

Performance Engineering: Theory & Practice

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

- Why aren’t performance concerns better integrated into the
prevailing software development methodologies (SDMs)?
- Waterfall (e.g., Grady Brooch (see video), Rational Unified Process)
- TDD
= Agile
= etc.

- One clue is that Performance is classified as a “non-functional”
requirement
- Functional requirements specify the “behavior” of the software

- Other non-functional requirements include Maintainability, Accessibility,
Reliability, etc.

https://event.on24.com/eventRegistration/console/EventConsoleApollo.jsp?&eventid=1651201&sessionid=1&username=&partnerref=&format=fhaudio&mobile=false&flashsupportedmobiledevice=false&helpcenter=false&key=BE1C355B206142AAAC9B03156E64F6E9&text_language_id=en&playerwidth=1000&playerheight=650&overwritelobby=y&eventuserid=200142761&contenttype=A&mediametricsessionid=168870825&mediametricid=2360214&usercd=200142761&mode=launch

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle
- Software Development
methodologies distinguish

i distinct phases:
- = Requirements
i = Design
= Coding/unit test
= Integration testing
-

ii - What performance-related activities

are associated with each phase?

- Maintenance/Operations

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

 Performance-related activities associated with each --'

software development phase: ﬁ ﬁ
.
ﬁﬁ

Requirements Understand/Establish performance requirements;
Establish a performance budget for each scenario

Design Design reviews that ensure proposed designs meet
performance requirements; Modeling; Prototyping

Coding Instrumentation; Build and run Timing tests; Performance
Quality gates

Integration End-to-end performance testing
QA Load testing; stress testing

DevOps Performance monitoring

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

_ The Waterfall Method |
Design of

v Software Development

+ Isolates teams

Code # Inhibits clear communication
\ * Creates silos

e Causes turf wars

Test # Increases costs unnecessari

N

Release

-N
q

E 1)
g@m ay what you will

(about Waterfall. But, at least
R Y

we had a place to hide.
The “benefits” of Waterfall, according to advocates of Agile & DevOps

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

« Organizational Immaturity:

= Performance testing is often relegated to
later stage heroics, aka, “fire-fighting” by

senior developers
- = Performance stress testing serves as a
final obstacle that must be hurdled prior to

release

QA/ StreSs

« Prevailing Trends challenge this status quo:
= Continuous integration
Integratioy, . Aglle

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

- Why aren’t performance concerns better integrated into the
software development methodologies?
- not recognized in “Design Patterns” either

- with the exception of Loosley & Douglas:
- Workload
- Efficiency
- Locality
- Sharing
* Parallelism
- Trade-off

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

- Loosley & Douglas, High Performance Client/Server, 1998.
- proposed Design Patterns for performance

Workload Minimize the total processing load
Efﬁciency Maximize the ratio of useful work to overhead
I_ocality Group-related components based on their usage
Sharing Share resources without creating bottlenecks
Parallelism Use parallelism when the gains outweigh the overhead/costs
Trade-off Reduce delays by substituting faster resources

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

- Smith & Williams, “More New Software Performance Antipatterns:
Even More Ways to Shoot Yourself in the Foot”, 1998.

- some of the proposed anti-Patterns that reduce performance

Empty Semi-Trucks When an excessive number of requests is required to perform a task
Roundtripping Maximize the ratio of useful work to overhead

The Ramp Occurs when processing time increases as the system is used.

One-Lane Bridge Processes are delayed while they wait for their turn at a single-use bottleneck

Traffic Jam Occurs when one problem causes a processing backlog that persists long after the
initial cause
More is Less when a system “thrashes” rather than accomplishing real work because there are too

many processes relative to available Resources

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

« Concern about “premature optimization” that defers tuning efforts
until the code base is stable is valid — up to a point

- Senior technical staff are heroes that parachute in to investigate &
fix performance problems in the latter stages of a project

- But if there is a fundamental design flaw that was baked in early...
- More expensive to fix it in the later stages
- 3 serious enough “flaw” can delay (or even torpedo) the release

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

« Here are some things that have been tried:

= Performance “anti-patterns” approach

- single-lane bridge

- long path

- resource bottlenecks

- e.g., Resource R is a candidate bottleneck if:

it is used by the majority of scenarios,
many scenarios that use it are too slow,
it is near saturation (>80% of its units are busy),

resources that are acquired earlier and released later are also near
saturation

- layered software bottlenecks

i

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

e Other attempts:

- Generate 3 model from the specification
- Markov models of sequence, to queueing models
- annotated UML = Queueing model

- Issues:
- Validation

- Using static analysis to parameterize a model rather than wait for actual
run-time measurements

SPE: Dev Life cycle 10/31/201

Performance throughout the Development Life Cycle

- Day of Reckoning when a major
release misses its performance
objectives by a wide margin

» Proactive performance management

- Continuous improvement model

= Monitor and report on progress/risk
against performance objectives throughout
the life cycle

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Continuous improvement model

= Set achievable Performance goals

initially based on requirements
* Hardware limitations
Design - Scalability limitations

- costs of Parallelism

= 8o they can inform design decisions
iﬁ (and early stage scouting)

SPE: Dev Life cycle 10/31/201

Performance Requirements/Goals
- Establishing Performance requirements
- New features

- scalability goals
- response time goals (focus on the User Experience)

= Improving existing features where performance is currently a dissatisfier
- Is this a competitive issue?

> Requirements = Performance budget

SPE: Dev Life cycle 10/31/201

Performance Requirements/Goals

« Introduction to Scalability Testing

1. Identify the scalability factors that impact the
performance of your feature

2. Develop a performance budget for the feature based on
the costs associated with these scalability factors

3. Built a set of tests that measure the performance of the
feature across the key scalability factors (coverage)

4. Run the tests and ensure the performance of the feature
remains within the allotted budget

https://addyosmani.com/blog/performance-budgets/

Performance budgets

- If my web page response
time requirement is 2
seconds over a 3G cell
phone link, then calculate
my performance budget:

SPE: Dev Life cycle 10/31/201

Performance BudgetCe X | 4+ = (] X
z

<« - O @ @ www.performancebudget.io/ e = 4 =

PERFORMANCE BUDGET CALCULATOR

Calculate A Performance Budget For Your Site.

Your performance budget is 400KB

HTML CSS JavaScript
10 400 13 400 O 66 400
Images Video Fonts
0 252 400 0 39 400 20 400

Total: 400KB

© Jonathan Fielding @jonthanfielding

http://www.performancebudget.io/

SPE: Dev Life cycle 10/31/201

Scalability Testing

« Scalability factors that you believe impact the
performance of your feature

= Meost of us have an implicit mental model for how the
application performs at scale

= It is only a theory until you prove it, so test this Hypothesis!

= e.g., consider a Compiler:
- number of lines of source code in a file,
- number of files in a Project
- number of local variables in a procedure,
- number of external variables
- number of Projects
- etc.

SPE: Dev Life cycle 10/31/201

Scalability Testing

« Scalability factors that you believe impact the
performance of your feature
It is a theory until you prove it, so test your Hypothesis!

= More than one scalability factor?
- Number of controls on a web or native application form (C)

- Number of elements in a list of tree control (E)
- What test coverage do you need?

Is the full test matrix C x E ?

SPE: Dev Life cycle 10/31/201

Scalability Testing

- Identifying the Scalability factors associated with

your feature?
= e.g. consider the performance of .NET Collection classes

Dictionary

List

SortedList
SortedDictionary
Queue

Stack

etc.

SPE: Dev Life cycle 10/31/201

Scalability Testing

- Identifying the Scalability factors associated with

your feature?
e.g. consider the performance of .NET Collection classes

scaling Factors:
of elements in the collection (i.e., cardinality)

Access pattern:
inserts
deletes
searches
enumerate elements

SPE: Dev Life cycle 10/31/201

Scalability Testing

- What are the Scalability factors associated with
your feature?
Hypothesis that requires validation/testing

- scalability Models®
- uniform or constant
- linear
- exponential
- combinatorial
- log linear

- log,,

* Algorithms and Complexity

i
o
()]
S~
i
o
S~
o
[| 0

h —
(&)
>
(&)
=
N N O T S S R S S A
>
Q
(]
.E.
Q.
(V] P S A N i S B B S Ay Rt Hlier Bt Bty Bty
.....
°
* 2.
e,
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ &g IS U SO AU UL S SO SR
®e
°
°
°
ooo
®
°
°
°
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ _ L L]
°
°
°
°
°
°
°
)
o €
°
°
°
°
°
°
““““““““““ [P S “““““‘.““‘\.
[:
£ £ .
® nnv oo
..& (o) °
c (< O S S S [I T . S o |
o X °
o Q °
_ : .
° °
° °
°
SRS SRS RS U AU GUNO FUNPU SOUI SRS IO SN S-SV ST S S-S SR ® — ———
®
Y
°
°
°
°
o (=] o
o o o
(2] N -
(E »)

- 0O u Q O C »w o

10/31/201

ol N
@ ./.
““““““““ ./.
WWWWWWWWWWWWWWWWWWWWW N T
./b

©
ﬂ
=
(]
c
]
Q
X
o
°
°
°

200
IUVU
200
LUV
100

(E)

- OO »w Q 0 € »w o - - & o

10/31/201

SPE: Dev Life cycle

-
[
®

-
(1]
c
(=]

ﬁ_v

300 -
200
100

(E @)

- O » O 0 € v o - .- £ o

SPE: Dev Life cycle 10/31/201

Scalability Testing

« Scalability Models
- uniform/constant/deterministic : Table look-up using hash codes
- linear : search an unordered list or array
- log,, : binary search of an ordered list/tree
- log linear: sorting
- exponential : NP-completeness | ==
- combinatorial : NP-completeness = £e

SPE: Dev Life cycle 10/31/201

Scalability Testing

+ ldentify the Scalability factors
= e.g. consider the performance of .NET Collection classes

ICollection<T>Interface
Add ()
Remove()
Clear()
Contains(); ContainsKey() - equivalent to Search()
GetEnumerator();

Current
MoveNext ()

SPE: Dev Life cycle 10/31/201

Scalability Testing

- Scalability factors associated different .NET Collection classes

Init Add Delete Contains Enumerate
100
1000 v v v v
10,000
100,000 N N N N
1,000,000

10,000,000 v N \ \ \

Scalability of
the Collection
classes...

Seconds

SPE: Dev Life cycle 10/31/201

HashTable vs. Dictionary

(1,000,000 rows)

= HashTable

» Dictionary

® GenericDictionary

Remove

SPE: Dev Life cycle

Scalability of 1000

| |

the co“ectlon HashTable.Contains() .
classes... 100 -=-Dictionary.Contains|() — 7
g S
(/)
g 10 —
e
i 7
* 7~
o v~
Note: 1
Plotted against a 0.01 -
Log/Log scale 100 1,000 10,000 100,000 1,000,000

Cardinality

SPE: Dev Life cycle 10/31/201

Scalability .°f SortedList vs. Generic SortedList <T>
the Collection 100,000 rows)

classes...

u Sorted List d s &©
Generic Sorted List

SPE: Dev Life cycle 10/31/201

Scalability Testing

e Discussion:

1. How much of the actual response time do the
factors from the scalability Model explain?

2. Are more factors required for a better model?
= Note: 3 factors makes the full test matrix C x D x E ?

3. Why not just use curve-fitting?

SPE: Dev Life cycle 10/31/201

Response Time (UX)

- Application response time is an important aspect
of the User Experience

- often highly correlated with User Satisfaction,
Fulfillment rates and Abandonment rates

 Given a new UX scenario, how can | set an
achievable Response Time goal?

* Are there industry Standards and Best Practices,
derived from Human Factors research, that can
inform this decision?

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception

- Application response time is an important aspect of the User
Experience

 Given a new UX scenario, how can | set an achievable
Response Time goal?

* Are there industry Standards and Best Practices, derived
from Human Factors research, that can inform this decision?

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception

- Ben Schneiderman, “Response time and display " W
rate in human performance with computers,” ACM I]ESIU"II]U

Computing Surveys, Sept. 1984. INRRT
omputing Surveys, Sep and Engineering

>Time

The Psychology of Time Perception in Software

 Barber & Lucas, “System Response Time Operator
Productivity, and Job Satisfaction”, CACM, 1983.

- Steve Seow, Designing and Engineering Time, |
2008. i

Downloading plesse wat

Steven C. Seow, Ph.D.

Available at https://www.amazon.com/Designing-Engineering-Time-Psychology-Perception/dp/0321509188

https://www.amazon.com/Designing-Engineering-Time-Psychology-Perception/dp/0321509188

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception ey

and Engineering
 While Wait Time duration can be measured objectively, 2 5 Time

waiting is experienced subjectively.

]

[i

Downloading . . plesse wat

- Time perception has physiological components, but time
perception is based mainly on expectations.

Steven C. Seow, Ph.D.

- Seow argues that the Weber-Fechner Law of a sensory
Just Noticeable Difference (JND) also applies to time
perception

Duration JND ~ 20%

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception esiting

and Engineering
) a@yTime
 Other Human Factors research shows Users experience 3 e v

higher state of “anxiety” when response times are poor or
erratic.

= Error rates increase in the face of unexpected variability

= for additional insight, see : Kahneman, 7hinking, Fast and Slow

» Consider some long running scenario:
1. Can we speed it up?
2. Can we make it appear faster?

3. Can we get customers to tolerate better the current level
of performance?

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception .

and Engineering
a5 Time

The Psychology of Time Perception in Software

- Seow sugg.ests four categories of interactive —
response time:

Category Range
in Seconds

Applies when you are simulating a physical operation; e.g., a key down event

Instantaneous 0.1-0.2 or a button push; all animations, any real-time, interactive gaming application
] Seamless because it is similar to human-human interactions
Immediate 0.5-1
) Tolerable because it is still within the limits of normal human-human
Continuous 2—5

interaction

. Slow, but still within an acceptable range. However, response time > 10
Captive 7-10 seconds cause loss of attention and users start to drift away

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception ..

and Engineering
ay1ime

lllllllllllllllllllllllllllllllllllllll

- Seow’s four (actually 5) categories are consistent
with “industry standard” guidelines

 Department of Defense Design Criteria Standard: Human Engineering. MIL-STD 1472F.
Available at http:/ /hfetag.dtic.mil/docs-hfs/mil-std-1472f.pdf.)

 Department of Defense Technical Architecture Framework for Information
Management (TAFIM). Volume 8: DoD Human Computer Interface Style Guide.

« Smith, S. L and J. N. Mosier (1986). Guidelines for Designing User Interface Software:
ESD-TR-86-278. Bedford, MA: The MITRE Corporation.

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception ..

and Engineering
a@yTime

lllllllllllllllllllllllllllllllllllllll

- Performance is relative to expectations
- “Captive” category:
- Instead of being held in captivity, Users need to be able to
escape out of interactions experiencing long delays

« > 10 seconds Response Time

- Seow recommends trying to rein in User dissatisfaction at
this point:
- use of a Progress bar
- send other feedback

SPE: Dev Life cycle 10/31/201

Psychology of Human Time Perception

« What if the customer is captive to your app?
X
- using an online banking application to pay a bill
- purchase something on Amazon using an Amazon app

= Customers are often captive to your application!

= 8o, if you cannot improve it, you can at least try to make the waiting experience
(relatively) more pleasant
- Even if it takes more than 10 seconds to process the Request!

= Best Practice is to assume an intelligent, adaptive customer...
- Someone just like you ©

= Remember, familiarity with the application creates a set of expectations with regard to
its performance

» Corollary: Instrument your application!

Designing
and Engineering
ay1ime

Downlondng .. plsse wet

Steven C. Seow, Ph.D.

SPE: Dev Life cycle

Response Time (UX) requirements

 For new UX scenarios,

= Break into separate Request:Response sequences
= For each Request:Response sequence,
- prepare a resource budget (Ul, CPU, 10, Network)

- if the budget exceeds 1-2 seconds, then decompose the
scenario further

= Also, prepare an “expert” interface where the experienced
User can execute the scenario with fewer, but more time-
consuming interactions

10/31/201

SPE: Dev Life cycle

Response Time (UX)

- For an existing scenario,
= Gather timings for the current system: these establish a
baseline, setting current customer expectations

- Any performance improvement must be noticeable (Weber’s
Law);

- i.e., the new performance baseline must be at least 20%
faster than before

» Weber’s Law cuts both ways!

- Performance regressions that are < 20% are also not
perceptible

10/31/201

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle
- Continuous improvement model

= Performance tests performed early
and often so progress against goals
can be monitored

- Automated performance testing

- Instrument early and test often
- Every unit test can also be a Timing test!

= Performance Quality gates to detect
problems prior to integration

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Two types of performance tests

= Timing tests
- shows current performance levels,
compared to the performance objectives
- every unit test can also be a timing test

= Performance Quality gates to detect
problems prior to integration

- Understand how any new code impacts
current performance levels

- Block integration of new code into Main
branch that impairs performance

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Instrument the application
- Minimally intrusive!

= Easily understood semantics
= Simple, intuitive interface

- Embedded timing code should be standardized
- enables tool development (e.g., service level reporting)

= Needs to work in the lab, but being available to work in production
(dynamically) is a major benefit

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Instrument the application
s Lightweight, but accurate CPU & Execution time
= Event-oriented:
- Scenario.Start() :Scenario.End()
= Minimally intrusive

- Test early and test often

* Goal:
- Make every unit test a timing test!

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

« Instrument the application

= Examples:

- ARM (HP and IBM joint initiative)

- Custom Instruments in MacOS (link)
- HTTP timing interface: RUM

- Visual Studio MeasurementBlock

- Scenario class library (.NET)

- Event-oriented
Scenario.Start() :Scenario.End()

- hierarchical (i.e., parent : child)
- dynamic (leveraging ETW)

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/CreatingCustomInstruments.html#//apple_ref/doc/uid/TP40004652-CH15-SW1

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

« Hardware clocks
X
e rdtsc
= mnemonic for read timestamp counter instruction

= |Introduced with the Pentium Il

= |atency < 100 cycles (much faster on AMD and current Intel hardware)
- pipeline effects make it unsuitable as a reliable timer for very small numbers of instructions

= originally implemented as a Cycle Count, incremented each processor cycle:
uint64

= see my blog for details
e 0S Timers
 .NET base classes

http://computerperformancebydesign.com/high-resolution-clocks-and-timers-for-performance-measurement-in-windows/

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

« Hardware clocks
= Intel rdtsc instruction

« Windows OS Timer services
= standardized 100 nanosecond clock counters

- GetTickCount()

+ the number of milliseconds that have elapsed since the system was started
- (ticks actually occur every 15.6 ms.)

- multimedia timer
- QueryPerformanceCounter() & QueryPerformanceFrequency()

- QueryThreadCycleTime(#7#read,CycleTime)
- instrumented thread Dispatcher: rdtsc issued at every context switch

« .NET base classes

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

« Hardware clocks
> Intel rdtsc instruction
- OS Timers
- QueryPerformanceCounter()

 .NET base classes
- Stopwatch()

- Use case: embed object in your application; remove prior to shipping
- Stopwatch.StartNew, Start, and Stop Methods
- Stopwatch.Elapsed Property (TimeSpan object)

- thin wrapper around QueryPerformanceCounter() and
QueryPerformanceFrequency()

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

« .NET base classes
- Stopwatch()

- Use case: from Vance Morrison's blog

CodeTimer timer = new CodeTimer(1000);
string myString = "aString";
string outString;

timer.Measure("Measurement Name", delegate {
outString = myString + myString; // measuring concatenation.
K

https://blogs.msdn.microsoft.com/vancem/2006/09/21/measuring-managed-code-quickly-and-easiliy-codetimers/

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

 .NET base classes
MeasurementBlock mb

= Problem: no provision in - new MeasurementBlock();
Stopwatch() class to log
measurement data external to
the program

mb.Begin();

wrapper class around
Stopwatch() to fire an ETW event
containing the timing data ETW Listener

- Solution: MeasurementBlock() mb.End() 1

SPE: Dev Life cycle 10/31/201

Tools for instrumenting your application

« MeasurementBlock() wrapper fires an ETW
event containing the timing data

- Less test noise!

MeasurementBlock mb
= new MeasurementBlock();

mb.Begin();
this.stopwatch.Start

- Writing an event to ETW when there is
an active Listener functions as an .. [execute test scenario]
asynchronous RPC
mb.End()

this.stopwatch.Stop
ETW.write()

ETW Listener -

SPE: Dev Life cycle 10/31/201

Timing Test “Noise”

- Test automation infrastructure executes each timing test multiple
times

= Tests that provide persistent, repeatable results are the most

valuable ones
- across time, across multiple machines, etc.

* Noisy tests = test scenarios with excessive variability in the CPU
and/or execution time of performance timing tests
- Difficult to interpret the results
= Difficult to use the test results to drive optimization efforts

SPE: Dev Life cycle 10/31/201

Timing Test “Noise”

- Noisy tests = excessive variability in the CPU and/or execution time
of performance timing tests

- Strategies for minimizing noise during timing tests
= Isolate test machines from the rest of the network
= Clear all caches prior to executing the test scenario
= QOften a good practice to throw away results from the first test iteration

o etc.

- These strategies for dealing with noise may also make the timing test

results less realistic!
= investigating the sources of “noise” for a particular test often proves valuable!

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Continuous improvement model

- Full scale load/stress testing

- Evaluate the cost of embedded
instrumentation

SPE: Dev Life cycle 10/31/201

Performance and the Development Life Cycle

- Continuous improvement model
= Service level reporting

- Management by Exception
- Statistical Quality Control techniques

- Embedded instrumentation

= Diagnostic tools to drill into problems on
demand

SPE: Dev Life cycle 10/31/201

Questions

SPE: Dev Life cycle 10/31/201

References

- Woodside, et.al., “The Future of Software Performance Engineering,”
Proceedings Future of Software Engineering, \EEE, 2007,

