Concurrency

Performance Engineering: Theory & Practice

SPE: Concurrency 11/13/201

Concurrency

: Defil;litilon: Speeding up processing by using multiple tasks executing in
paralle
= Motivation: overcome inherent limitations of serial processing:

- Hardware: CPU clock speed, Instruction Execution rate, 10 service time, Network
latency, etc.
* .8,
- Symmetric Multi-processing (SMP)
- Superscalar; Vector instructions
- Massively Parallel Processors (MPP)
- Simultaneous Multi-Threading (SMT): Intel Hyper-Threading (HT)

- Software: HPC, Hadoop, MapReduce

- Wetware: most humans are much more comfortable thinking serially

SPE: Concurrency 11/13/201

Concurrency

* Parallel Computation

- Huge topic in CS, encompassing Hardware, Software, compilers,
algorithms, etc.

» How can parallelism be applied to different workloads?
= inherent parallelism (e.g., vector operations, transaction processing)
= parallel algorithms (e.g., “Divide & Conquer”, SIMD)

= serial algorithms that (so far) resist parallelism

- What are some of the key performance limitations parallel
computing encounters?

SPE: Concurrency 11/13/201

SIMD

« Vector graphics hardware
- modern GPUs (e.g., nVidia GeForce, CUDA)

» Explicit parallelism
= Fork : Join
- “Divide and Conquer” pattern

= e.8., parallel Search
- Danny Hillis’s Connection Machine demonstration
- Massively Parallel Processors (MPPs)

= MapReduce (see Hadoop)

https://www.nvidia.com/en-us/titan/titan-xp/
https://developer.nvidia.com/cuda-zone
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

SPE: Concurrency

11/13/201

General purpose CPU hardware evolution

- Symmetric Multiprocessors
- Multi-Core designs

* Pipelining

- Superscalar

« SMT

 RISC vs CISC

Local
RAM

Memory Controller

= 7 [[

L2 L2 L2 L2
FEjiskmssss] ([Eesiieneey ([EEssddanses [EEEmEss]
CPU 3 CPU 2 CPU 1 CPUO

2100-NINWY

» CISC Intel CPUs transform complex instructions into simple, RISC

machine instructions (pops)

SPE: Concurrency 11/13/201

® Io ®
Pl e Illlll . Instruction Decode Execute .
p g Instruction Fetch Register Fetch Address Calc. Memory Access Write Back
|F 1D EX MEM WB
Next PC
— - = 4
Next SEQ PC Next SEQ PC
RS1
iy
RS2 Branch
i H.Eglster B _.tEkZEI'I -
__ o file
[=
j E E L - E —
o HET = = =
ulic - “1LIE 3 5 EI_
Sign | !mm
I& 1 Extend| | = u
=
a W l I

Intel Architecture (1A) e a

EE—S——_ T —
[] [] []
Pipelining

- Pipeline stages (Intel) F [1D [EX [MEM

I IF | D | EX
t IF | ID
IF

WB
MEM WB
EX MEM WEB

D | EX MEM WBE

1. Instruction Fetch

2. Instruction Decode - In theory, execute one pipeline

3. Execute stage per clock

4. Memory access « if successful, complete execution of
) . an instruction each clock!

5. Write-back

IER = 1/clock

e SPE Concurency a0]
Pipelining
« In theory, IER = 1/clock
- exploits Instruction-level parallelism
« In practice,

- pipeline stalls

- pipeline hazards: a subsequent instruction that relies on a value
written/updated by a current instruction

- mis-predicted branches

ADD Sr0, Srl, 5r2 IF D EX | MEM | WB

SUB Srd, S0, Sr3 IF : o X D EX | MEM| WB

AND 5r5, $rD, 5r6 IF x % % D EX |MEM| WB

OR 5¢7, 510, 518 IF = = - D EX [MEM| WB

XOR 5r9, Srl, Srl0 IF - - - 1D EX | MEM | WB

SPE: Concurrency 11/13/201 H

Pipelining + Parallelism = Superscalar architecture

RAM

I 1l

Execution

Instruction
Fetch u-op
& translation

Decode -w __}; Execution ;}

Execution

Execution Writeback

SPE: Concurrency 11/13/201

Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte,

Uncore
128-entry TLB-4K, 7 TLB-2/4M per thread

- 128 T < —
5 Quick Path =
Branch Inter-
Prefetch Buffer (16 B
© uffer (16 Bytes) Prediction connect o
1 globalfbimodal, > —
Predecode & loop, indirect T 4% 20 Bit —-—
Instruction Length Decoder | | jmp 6.4 GTis
111111 |
Instruction Queue - I e I n I n a ra e Ism
18 x86 Instructions Lk [g p p +
. Memuw |
Alignment Controller [>
MacroOp Fusion 3% 64 Bit
E 3 133GTls
Complex Simple Simple Simple .
Decoder Decoder Decoder| Decoder| o [o
MO I T 1 ceno « Multiple instructions can
Loop Y L3-Cache
Stream ~|Decc|ded Instruction Queue (28 pOP entries) |<— Micro 8 MByte

Decoder J. lv l l Instruction _ co m Iete ea c h c I oc k
| MicroOp Fusion | Sequencer

= 4§ 1 1 1

R;“f?ml:"t 2 x Register Allocation Table (RAT)
egister | i B
o | Reorder Buffer (128-eniry) lused
-------------- 4 Y T e—" 1 : 256 KByte
Reservation Station (128-entry) fused | 8-way, c oc
Port5)| 64Byte
] "|Cacheline,
— private
nteger/ |}
we] L2-Cache
2xAGU |
®
512-entry
 Out-of-Order execution

128

Result Bus

 In-order retirement
R S| - internal pseudo-registers

64-entry TLB-4K, 32-entry TLB-2/4M =

GT/s: gigatransfers per second

SPE: Concurrency 11/13/201

Simultaneous Multithreading

- Overcome the limits of Thread-level parallelism using Two (or more) logical
CPUs per physical CPU

= Multiple instruction execution pipelines per core

- shared cache, instruction Execution units, etc.
« Looked promising in the Lab:

- see Susan Eggers, “SMT: Maximizing On-Chip Parallelism,” 1995.
- Adopted by Digital and then absorbed into Intel

- aka, Hyper-Threading (HT)

- Helps many single-user workloads, but contention for shared resources
can impact others

https://dl.acm.org/citation.cfm?id=224449

SPE: Concurrency 11/13/201

Simultaneous Multithreading
= see https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-

intensive.html

= 4 physical CPUs
= 8 logical CPUs

1600000000

1400000000

1200000000

1000000000

200000000

Concurrent Threads

[[l

——Scenario.elapsedCPU

—+-Scenario.elapsedtime

//

)z
| e

0 4 8 12 16

20

24

https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html

SPE: Concurrency 11/13/201

Simultaneous Multithreading s
Bt —+Scenario.elapsedtime
« Helps many single-user workloads, but po— //
contention for shared resources can sonacon el
impact others e e /:/ .
2 see X /
https://performancebydesign.blogspot.com/

2012/04/mystery-of-scalability-of-cpu-
intensive.html

> Unproductive “Hyper-threading: Off
or On” decisions/discussions

https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html

SPE: Concurrency 11/13/201 H

10,000,000

Multi-core

o Intel CPU Tren({s

(sources: Intel, Wikipedia, K. Olukotun)

see Herb Sutter, “The Free Lunch Is
Over,” 2004

100,000

10,000

Multi-core designs reflect:

- 3 dearth of good ideas at Intel
about what to do with
advances in semi-conductor
fabrication that increase

1,000

100

10 capacity
€ ”
- memory performance “wall
1 | Transistors (000)
L o * plus,
@ Perf/Clock (ILP)

0 I | [

1970 1975 1980 1985 1990 1995 2000 2005 2010 powe[a — CIOCk speed

http://www.gotw.ca/publications/concurrency-ddj.htm

SPE: Concurrency 11/13/201 H

10,000,000

- Intel CPU Tren#s

(sources: Intel, Wikipedia, K. Olukotun)

Multi-core

100,000

see Herb Sutter, “The Free Lunch Is
Over,” 2004

10,000

Call to Arms:

« CPU clock speed no longer
increasing at historical rates

- Instead, more processors per

1,000

100

10 chip
- To speed up processing, figure
1 | Transistors (000)
7 e . B out how to leverage those
® 00 A Power (W) . o
ererck o) additional processors

o 1 I 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.gotw.ca/publications/concurrency-ddj.htm

SPE: Concurrency 11/13/201 H

10,000,000

1,000,000 U3 S MUItI-core
Intel CPU Tren#s
snoon | IS, WP | Ol see Herb Sutter, “The Free Lunch Is
Over,” 2004
still,

1,000

- workloads on single-user devices
(phones, tablets, portables) do
not warrant having massively
parallel processors

- no revolutionary breakthrough
FeE— in concurrent programming
ooo s technology/support

o 1 I 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

100

10

http://www.gotw.ca/publications/concurrency-ddj.htm

SPE: Concurrency 11/13/201 H

Design Patterns for Concurrent programming

 Parallel.For

- Fork/Join

 Partitioners

 MapReduce (Dean & Ghemawat, see link)
« ProducerConsumer

« Work Queue : Thread Pool

= e.g., Windows File Server, SQL Server Thread Pool, IIS Worker process
= NET Framework ThreadPool

- see Stephen Toub, Patterns of Parallel Programming

https://dl.acm.org/citation.cfm?id=1327492
https://www.microsoft.com/download/details.aspx?id=19222

SPE: Concurrency 11/13/201 H

Design Patterns for Concurrent programming

* Parallel.For
= SIMD -
- Single Instruction
- Multiple Data
= “embarrassingly parallel”

= see https://docs.microsoft.com/en-
us/dotnet/standard/parallel-
programming/how-to-write-a-simple-
parallel-foreach-loop

s runtime library determines how many
concurrent tasks to release

< Preamble >

’

Fork()

v v v v v

Worker Worker Worker Worker Worker
Thread Thread Thread Thread Thread

:

Join()
(Post—processing)

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/how-to-write-a-simple-parallel-foreach-loop

SPE: Concurrency 11/13/201 H

Concurrent programming

* Parallel.For
= SIMD -
- Single Instruction
- Multiple Data
= “embarrassingly parallel”

+ “Shared Nothing”
partitioning/decomposition

- Performance anti-pattern
= Unbalanced partitioning

< Preamble >

!

Fork()

v

v

A 4

v

v

Worker
Thread

(Blocked)

Worker
Thread

(Blocked)

Worker
Thread

(Blocked)

Worker
Thread

(Blocked)

Worker
Thread

|

Join()

WaitForMultipleEvents()

(Post—processing)

Work Queue: Thread pool
Design Pattern

reusable Worker threads,
= gctivated on demand
reusable Work items

Any Worker thread can b
assigned to any Work item

Pattern used in multi-user
server applications
= Windows File Server
SQL Server
N | 1

Thread Pool

Active

e
Worker thread
Worker thread
Worker thread
Worker thread

| Workerthread Workiter

Outgoing
Responses

|

Work
Queue

Work Item
Work ltem
Work ltem

L

Available
Work
Items

Work Item

Work Item |

Work Item \

Work Item \

Work Item \
Work Item \
Work Item \
Work Item
Work Item \

Work Item

Incoming
Requests

-1l |

T — DR

Work Queue: Thread pool
Design Pattern

 Tuning parameters:
- Max threads
- Max Work Items

 Instrumentation:
= Active threads

Work Items queue length

Work Item shortages

m}

[u]

u]

Completion rate
Service Time
Response Time

u]

u]

Thread Pool
Active

e Worker thread
Worker thread
Worker thread
Worker thread
Worker thread
 Workerthread Workiter

Outgoing
Responses

Work
Queue
Work ltem
Work Item
Work Item

L

Available
Work
Items

Work Item

Work Item

Work Item

Work Item

Work Item

Work Item

Work Item

Work Item

Work Item

Work Item

. \
Incoming \
Requests

Working with the .NET Framework ThreadPool Object

« ThreadPool.QueueUserWorkitem() Method
= ex: ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc), taskInfo);

* Requires:
1. aclass that wraps the Work Item parameter list
2. adelegate that executes in the Worker Thread
3. a Scheduler/Dispatcher
4. an Event handler that runs when each Worker Thread completes:

if Queue<WorkItem>.IsEmpty()
else
Dispatcher.DispatchNext()

SPE: Concurrency 11/13/201

The Limits of Parallel Programming < >
Preamble
'
* No reliable method exists to generate a paralle/ Fork()

program from its serial solution [T 1 T 1
= Divide and Conquer pattern Ted | | Theas || Twoas || Twesd || Trvesd
- SIMD

> MIMD

* non-determinative execution
= difficult to reproduce the exact sequence of , : : , :

processing events that resulted in an error !
= race conditions, etc. Join()
« A little parallelism may help, but expect }
diminishing returns from adding more parallel (Post—processing)

threads

SPE: Concurrency 11/13/201

The Limits of Parallel Programming < Preamblo >

« Amdahl’s Law

= pis the proportion of the program that can
be parallelized

= leaving (7-p), the proportion that
runs serially

= Amdahl’s Law observes that,
regardless of the degree of
parallelism, this program cannot
execute faster than

s=71-p

'

Fork()

v

v v v

v

Worker
Thread

Worker Worker Worker
Thread Thread Thread

Worker
Thread

}

Join()

(Post-processing)

D
1-p
)4
p
)4
1-p
) 4

SPE: Concurrency

11/13/201

The Limits of Parallel Programming < Preamblo >

- Gustafson’s counter-argument

'

Fork()

= More optimistic stance to the actual ;

v

A 4

v

v

performance of a parallel program Worker

Thread

One does not take a fixed-size problem and run it on various
numbers of processors except when doing academic research;
in practice, the problem size scales with the number of
processors. When given a more powerful processor, the

Worker
Thread

Worker
Thread

Worker
Thread

Worker
Thread

problem generally expands to make use of the increased |

facilities. Users have control over such things as grid resolution,
number of timesteps, difference operator complexity, and
other parameters that are usually adjusted to allow the
program to be run in some desired amount of time. Hence, it
may be most realistic to assume that run time, not problem
size, is constant.

-- Gustafson, “Reevaluating Amdahl’s Law,” 1988

;

Join()

!

(Post-processing)

) () ()

SPE: Concurrency 11/13/201

The Limits of Parallel Programming < Preamblo >
'

Fork()

= Attempts to model the actual performance o [w!k) T

Thread Thread Thread Thread Thread
of a parallel program

N
I-p
)4
- using K, for coherency delays D
)4
1-p
4

e Gunther’s Law

Cp)=pr/(1+s(p—1)+ kp(p— 1))

—

Join()
(Post—processing>

Gunther’s Law

Model Parameters:

serial portion = 10%
K=0.001

SPE: Concurrency 11/13/201

Thruput (scalability)

12

Gunther's Law vs. Amdahl's Law

soccAmdablslaw, L.

ess==s Gunther's Universal ScalabilityModel | == ===

16 32 48
Concurrency

SPE: Concurrency

11/13/201

The Limits of Parallel Programming < Preamblo >

 Gunther’s Law
= K, represents coherency delays

Clp)=p/1+s(p—1)+ kp(p — 1))

= queueing delays associated with accessing
critical sections

= slowdown in hardware execution due to
cache coherence delays

= overheads (spinning up additional threads,
Fork, Join methods, etc.)

!

Fork()

!

Worker
Thread

1

Join()

!

(Post—processing>

SPE: Concurrency 11/13/201

Concurrent Programming concepts

oge o Thread A Thread B
« Critical Sections
= block of shared code that only one et

thread at a time can execute CriticalSection

= mutual exclusion o

- commonly implemented using atomic whastlet
instructions on Locks """ inerlockadinsamerm IS
- Test and Set N
- Compare and Swap
- XCHG (x86 instruction) e

Interlocked. Decrement(BUSY);

SPE: Concurrency 11/13/201

Concurrent Programming concepts

e Critical Sections Best Practice:

> Keep the body of a mutual exclusion, Thread A
critical section very concise

static int BUSY =0;

= What should the blocked Thread do wher
the critical section is occupied?

- Spin
- short duration : M/D/1 (Busy Waits)
- kernel threads (pre-emptible?)
- Queue
* longer waits
- indeterminate waits

CriticalSection

do

{}
while (BUSY);

enter: e
Interlocked.Increment(BUSY);

-eg, -
GetAccountBalance();

exit: | : I
Interlocked.Decrement(BUSY);

Thread B

SPE: Concurrency 11/13/201 H

Concurrent Programming concepts

class Account

- see lock Statement {
decimal balance;
(C# reference) private Object thisLock = new Object();
= link public void Withdraw(decimal amount)
{
lock (thisLock)
. see also { if (amount > balance)
Monitor class; {)
. throw new Exception
Interlocked Operatlons ("Insufficient funds");
etc. }
balance -= amount;
}
- potential for deadlocks! }

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/standard/threading/interlocked-operations

SPE: Concurrency 11/13/201 H

Concurrent Programming concepts

var lockObj = new Object();

o SCe Monitor- class var timeout = TimeSpan.FromMilliseconds(500);
. m if (Monitor.TryEnter(lockObj, timeout))
{
t
o User mode threads o
0 spinlocks? // The critical section.
}
finally
= critical section code is {
. . // Ensure that the lock is released.
s“b]ect to. preemptlon Monitor.Exit(lockObj);
and blocking by lower }
level routines)

else { // The lock was not acquired. }

https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor.tryenter?view=netframework-4.7.2

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

Fine-grained

(Post-processing)

® ® ® ®
- Fine-grained vs. coarse-grained parallelism (\
Preamble
'
Fork()
< Preamble >) T) T 1
Worker Worker Waorker Worker Worker
l Thread Thread Thread Thread Thread
Fork()
v v v
Worker Worker Worker
Thread Thread Thread
| |
Join() Join()

co Urse- gl"a i n ed (Post—pr;cessing)

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

- “Fine-grained” parallelism is distinguished
from “coarse-grained” empirically < e >
= Coarse-grained parallelism applies when the !
amount of work each parallel task does okl
exceeds the “overhead” associated with v ¥ W{ vy
scheduling and executing additional threads freed || Tree T“Iad e
 Anti-pattern: Join()
= Qverhead also includes Jock serialization l
delays, which tend to increase with the number (Post-processing)

of contending tasks

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

- Serialization
delays tend to
increase with
the number of
contending

- ' ' l l
e Instrumentation ' ' ' '
1 P 3 4 5 6 7 o

= some higher-
level counters Concurrent Threads

o Traces

Execution Time per Thread

B Computation M Scheduling Overhead M Serailization Delay

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

- “Fine-grained” vs. “coarse-grained” parallelism
= Synchronization delays tend to increase with the number of contending tasks
- Excessive contention requires finer-grained locking
- replace global locks with local locks
- lock a unique data row ID
- lock a partition

= e.g., consider the One Writer : multiple Readers pattern
- uses a counting semaphore

= Complex locking schemes can have nasty side effects

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

» “Fine-grained” vs. “coarse-grained” parallelism

- Qptimistic locking works well when the probability of lock contention is low
- Repeatable Read

Don’t acquire the Lock initially

Read

Update

repeatable Read OK? following Update
otherwise, backout the change and try again

RO

* More lock contention requires finer-grained locking

SPE: Concurrency 11/13/201

The Limits of Parallel Programming

- Shared Nothing scalability:

- requires partitioning the problem space so no resources are shared
across concurrently executing threads

- SIMD Example: Work ftems k
Warker Shared Nothing
. . threads ? Physical Database
What is the optimal T N
number of database | Thread
update threads that Pool |

SQL Server

should be released?

Collection
of Files

SPE: Concurrency 11/13/201

Questions

SPE: Concurrency 11/13/201

References

 Herb Sutter, “The Free Lunch Is Over,” Dr. Dobbs Computer Journal,
2004

- Susan Eggers, et. al., “Simultaneous Multi-Threading: Maximizing
On-Chip Parallelism,” 1995.

http://www.gotw.ca/publications/concurrency-ddj.htm
https://dl.acm.org/citation.cfm?id=224449

