


SPE: Concurrency 11/13/201
8

2

•

▫



















SPE: Concurrency 11/13/201
8

3

•
▫

•

▫
▫
▫

•



SPE: Concurrency 11/13/201
8

4

•

▫

•

▫

•

▫





▫

https://www.nvidia.com/en-us/titan/titan-xp/
https://developer.nvidia.com/cuda-zone
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
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https://dl.acm.org/citation.cfm?id=224449
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▫

Concurrent Threads

https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html
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https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html
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http://www.gotw.ca/publications/concurrency-ddj.htm
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https://dl.acm.org/citation.cfm?id=1327492
https://www.microsoft.com/download/details.aspx?id=19222
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https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/how-to-write-a-simple-parallel-foreach-loop
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•
▫ ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc), taskInfo);

•

if Queue<WorkItem>.IsEmpty()

else

Dispatcher.DispatchNext() 
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One does not take a fixed-size problem and run it on various 
numbers of processors except when doing academic research; 
in practice, the problem size scales with the number of 
processors. When given a more powerful processor, the 
problem generally expands to make use of the increased 
facilities. Users have control over such things as grid resolution, 
number of timesteps, difference operator complexity, and 
other parameters that are usually adjusted to allow the 
program to be run in some desired amount of time. Hence, it 
may be most realistic to assume that run time, not problem 
size, is constant.

-- Gustafson, “Reevaluating Amdahl’s Law,” 1988
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𝑪(𝒑) = 𝒑/(𝟏 + 𝒔(𝒑 − 𝟏) + 𝜿𝒑(𝒑 − 𝟏))
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𝑪(𝒑) = 𝒑/(𝟏 + 𝒔(𝒑 − 𝟏) + 𝜿𝒑(𝒑 − 𝟏))
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class Account

{ 

decimal balance; 

private Object thisLock = new Object(); 

public void Withdraw(decimal amount) 

{ 

lock (thisLock) 

{ if (amount > balance) 

{ 

throw new Exception 
("Insufficient funds"); 

} 

balance -= amount; 

} 

} 

}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/standard/threading/interlocked-operations
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var lockObj = new Object(); 

var timeout = TimeSpan.FromMilliseconds(500); 

if (Monitor.TryEnter(lockObj, timeout)) 

{ 

try

{ 

// The critical section.

} 

finally

{ 

// Ensure that the lock is released.
Monitor.Exit(lockObj); 

} 

} 

else { // The lock was not acquired. }

https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor.tryenter?view=netframework-4.7.2
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http://www.gotw.ca/publications/concurrency-ddj.htm
https://dl.acm.org/citation.cfm?id=224449

