


SPE: Concurrency 11/13/201
8

2

•

▫



















SPE: Concurrency 11/13/201
8

3

•
▫

•

▫
▫
▫

•



SPE: Concurrency 11/13/201
8

4

•

▫

•

▫

•

▫





▫

https://www.nvidia.com/en-us/titan/titan-xp/
https://developer.nvidia.com/cuda-zone
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html


SPE: Concurrency 11/13/201
8

5

•

▫

•

•

•

•

•




SPE: Concurrency 11/13/201
8

6



SPE: Concurrency 11/13/201
8

•

•

•



SPE: Concurrency 11/13/201
8

•
•
•









SPE: Concurrency 11/13/201
8



SPE: Concurrency 11/13/201
8

•

•

•

•



SPE: Concurrency 11/13/201
8

11

•

▫
▫

•
▫

•
▫

•

https://dl.acm.org/citation.cfm?id=224449


SPE: Concurrency 11/13/201
8

12

▫

▫

▫

Concurrent Threads

https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html


SPE: Concurrency 11/13/201
8

13

•

▫

▫

https://performancebydesign.blogspot.com/2012/04/mystery-of-scalability-of-cpu-intensive.html


SPE: Concurrency 11/13/201
8

•

•
•

http://www.gotw.ca/publications/concurrency-ddj.htm


SPE: Concurrency 11/13/201
8

•

•

•

http://www.gotw.ca/publications/concurrency-ddj.htm


SPE: Concurrency 11/13/201
8

•

•

http://www.gotw.ca/publications/concurrency-ddj.htm


SPE: Concurrency 11/13/201
8

•
•
•
•
•

•
▫
▫

•

https://dl.acm.org/citation.cfm?id=1327492
https://www.microsoft.com/download/details.aspx?id=19222


SPE: Concurrency 11/13/201
8

•
▫





▫
▫

▫

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/how-to-write-a-simple-parallel-foreach-loop


SPE: Concurrency 11/13/201
8

•
▫





▫

•

•
▫



•

▫

•

•

•

▫

▫

▫



•

▫

▫

•

▫

▫

▫

▫

▫

▫



•
▫ ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc), taskInfo);

•

if Queue<WorkItem>.IsEmpty()

else

Dispatcher.DispatchNext() 



SPE: Concurrency 11/13/201
8

23

•

▫

▫

▫

•

▫

▫

•



SPE: Concurrency 11/13/201
8

24

•
▫

▫

▫

p

1-p

1-p



SPE: Concurrency 11/13/201
8

25

•
▫

p

1-p

1-p

One does not take a fixed-size problem and run it on various 
numbers of processors except when doing academic research; 
in practice, the problem size scales with the number of 
processors. When given a more powerful processor, the 
problem generally expands to make use of the increased 
facilities. Users have control over such things as grid resolution, 
number of timesteps, difference operator complexity, and 
other parameters that are usually adjusted to allow the 
program to be run in some desired amount of time. Hence, it 
may be most realistic to assume that run time, not problem 
size, is constant.

-- Gustafson, “Reevaluating Amdahl’s Law,” 1988



SPE: Concurrency 11/13/201
8

26

•
▫

▫

𝑪(𝒑) = 𝒑/(𝟏 + 𝒔(𝒑 − 𝟏) + 𝜿𝒑(𝒑 − 𝟏))

p

1-p

1-p



SPE: Concurrency 11/13/201
8

27

𝑪(𝒑) = 𝒑/(𝟏 + 𝒔(𝒑 − 𝟏) + 𝜿𝒑(𝒑 − 𝟏))



SPE: Concurrency 11/13/201
8

28

•
▫

𝑪(𝒑) = 𝒑/(𝟏 + 𝒔(𝒑 − 𝟏) + 𝜿𝒑(𝒑 − 𝟏))

▫

▫

▫

p

1-p

1-p



SPE: Concurrency 11/13/201
8

29

•
▫

▫

▫





 XCHG



SPE: Concurrency 11/13/201
8

30

•
▫

▫















SPE: Concurrency 11/13/201
8

• lock

▫

•

•

class Account

{ 

decimal balance; 

private Object thisLock = new Object(); 

public void Withdraw(decimal amount) 

{ 

lock (thisLock) 

{ if (amount > balance) 

{ 

throw new Exception 
("Insufficient funds"); 

} 

balance -= amount; 

} 

} 

}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/standard/threading/interlocked-operations


SPE: Concurrency 11/13/201
8

• Monitor
▫

•
▫

▫

var lockObj = new Object(); 

var timeout = TimeSpan.FromMilliseconds(500); 

if (Monitor.TryEnter(lockObj, timeout)) 

{ 

try

{ 

// The critical section.

} 

finally

{ 

// Ensure that the lock is released.
Monitor.Exit(lockObj); 

} 

} 

else { // The lock was not acquired. }

https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor.tryenter?view=netframework-4.7.2


SPE: Concurrency 11/13/201
8

33

•



SPE: Concurrency 11/13/201
8

34

•

▫

•

▫



SPE: Concurrency 11/13/201
8

35

•

•

▫

▫



SPE: Concurrency 11/13/201
8

36

•
▫









▫



▫



SPE: Concurrency 11/13/201
8

37

•

▫







SPE: Concurrency 11/13/201
8

38

•
▫

•



SPE: Concurrency 11/13/201
8

39



SPE: Concurrency 11/13/201
8

40

•

•

http://www.gotw.ca/publications/concurrency-ddj.htm
https://dl.acm.org/citation.cfm?id=224449

