Caching Strategies for High Performance

Presented by
Mark B. Friedman

SPE: Cache H

Seminar Outline

» What is a cache?
- Why does caching work?
- Measuring cache effectiveness.
= Cache management and cache coherence.

 Cache implementations
= CPU caching
= Virtual memory
= Disk caching
- Database caching

« Caching and web-based applications

SPE: Cache H

What is a cache?

* The design Goal of adding cache to a
subsystem is to achieve

« performance near the speed of the smaller,
faster, more expensive cache unit

- at a cost closer to cost of the larger, slower,
less expensive backing store

» Hierarchical memory management

SPE: Cache H

What is a cache?

« Caches store a subset of the objects in
Primary Storage in a compact storage
medium, with significantly reduced latency
* 3 a3 mapping from Primary < Cache

* The cache is “hidden” from the application
* i.e., not directly addressable
* access to data in the cache is transparent to the |

o

application
* In general, an n-tiered memory hierarchy 2 EACHEE

« Access to data in Cache (a cache “hit”) is
fasterthan accessing Primary storage

SPE: Cache 11/7/2018 H

How caches work

Cache Read Hit The Cache contains a Cache Read Miss
subset of the items in

Primary object storage.
Requests that can

satisfied from cache are
“hits”; requests that
cannot are “misses.’

staging

Ideally, latency on
Reduced latency on a Cache Miss
Cache Hits is the should be close to
main performance the performance of
benefit of a cache native access

o SPECache]
Cache Read hits

* Read hits are serviced at the speed of cache

Type Cache latency Backing store latency

Processor memory CPU clock speed

Virtual memory CPU clock speed 1-20 ms

Disk controller 500 psecs 1-20 ms
Relational CPU clock speed 1-20 ms
Database

Web browser Direct file system Network access

aCCess

SPE: Cache H

Cache Read misses

- Data requested from the Primary is usually sfaged on
demand into the cache first (forking also possible)

* The amount of data staged (a chunk) can be > than the
request size

Type Request Chunk size
Processor memory Address Cache line (e.g., 256 bytes)
Virtual memory Address Page (e.g., 4KB, 1 MB)

Disk controller Record Track
Relational Database Block Block

Web browser File File

SPE: Cache H

Cache Read misses

* When the amount of data staged = the request
size and the size of the Request is non-uniform:

* First Fit vs. Best Fit

« allocation failures due to fragmentation
« de-fragmentation or compaction

* e.8., LOH in .NET Memory Mgmt

* Object size matters!
* front-end vs. back-end bandwidth
e pre-fetching
. “superfluidity”

SPE: Cache H

Cache Read misses

* Cache “cold start” vs. a “warm start”
* Resident set vs. an ideal Working set
- if sizeof (cache) << working set

* Context switch
X
* a different thread starts execution

« 3 different thread from a different process starts
execution

3 new tab is opened in the browser

SPE: Cache H

Cache Read misses

- Since Primary Storage >> Cache, the Cache will
(eventually) fill up

- So, the cache requires a rep/acement policy

« most studied: LRU

- make room for the new (Most Recently Accessed) object by
removing an older (Least Recently Used) object

- order items in cache by Last Access timestamp

« “Stack” algorithm

SPE: Cache H

Cache Read misses

* Replacement policy invoked when cache is full

optimal: Most Recently Referenced
near optimal: LRU + application hints

- modified LRU
- partial ordering by Last Memory Management event | |

- sequential limiting H CACHE @ 4/
* read ahead : delete behind l

FIFO: approximates LRU
random replacement

« if cache is large enough, often performs better than you
might otherwise expect

EEEEEEERR————————————eTT———————.n
LRU stack algorithm

« The Top of Stack is the Most Recently Referenced object,

 The Bottom of the Stack is the Least Recently Used object in the current
resident set, and

 Maintain a 7o7al Order by time of Last Reference -

Stack Depth

o

 For a3 new Request:
« Search the Stack in sequence from Top to Bottom
« if there is a Hit at depth j
* Push down elements 0 through /-7 and
« Move the object at depth, to TOS
* ON 3 miss,
* Remove the object at depth , ,
* Push down elements 0 through »-2, and
* Insert the new object at the TOS

VIO U] H|IWIN]|F-

n-1

EEEEEEERR————————————eTT———————.n
LRU stack algorithm

- Typical distribution of cache hits by
stack depth (cache size) 0%

Cumulative Distribution of Hits by Stack Depth

100%

60%

Most hits occur at or near the TOS

40%

Diminishing returns from adding more
cache memory

20%

Why do caches work so well?

Cache size =

SPE: Cache

* Why do caches work so well?

° locality of Reference oo Cumulative Distribution of Hits by Stack Depth

- Tendency for objects that were recently referenced
to be referenced again soon

- Tautological explanation, but there might be
something to it

80%

40%

- What are some of the reasons Locality of Reference
occurs in the following?

» CPU instruction execution streams 0%
* Processor memory management

 Disk and Database Access

- Web access

20%

Cache size

Cache sizing

SPE: Cache

® Diminishing ret“rns from adding more oo Cumulative Distribution of Hits by Stack Depth

memory

* Increasing memory management
“overhead” from larger memories
= Coherence (Write Back caches)

» Three operating regions:
= Too small
= Too large
= Just right

« What about multiple Caches arranged in a
hierarchy

80%

60%

40%

20%

0%

H

SPE: Cache

Cumulative Distribution of Hits by Stack Depth

100%

Cache sizing

80%

« Multiple Caches arranged in a hierarchy

= Example: multiple levels of cache in Intel
processors: L1, L2, L3

s Logically,
‘L1123 o

40%

= So, the L3 cache contains duplicate
entries for everything stored in L2

EEEEEEERR————————————eTT———————.n
LRU stack algorithm

Stack Depth
* Consider the performance of this algorithm: 0
« minimum Search time occurs for a Hit near the 1
TOS 2
« maximum Search time occurs for a cache miss 3
and increases linearly with the size of the cache 4
5
* For your cache implementation, you may prefer a 6
modified form of LRU such that the service time -
to search the cache has less variance ;

- e.g., use a Hash function to place items in the
Cache

n-1

SPE: Cache H

Cache Replacement policy

* Because maintaining a sorted list in the cache
directory LRU can be expensive...

- modified LRU: partial order based on some recurring (and
relevant) management interval

* Clock = partial sort by residence time

* Low memory event (in licu of using the reference bit): VAX
VMS and Windows 0S

» the Garbage Collection interval in .NET memory mgmt.

SPE: Cache

How does cache impact the overall service time distribution?

» Service time distribution is bi-modal Bi-modal service time distribution

e==Cache misses e==Cache hits

« Calculate a weighted average service time:

w = hit % * Wpis + (1 — hit %) * Wihisses)

« Cache benefit depends on both
o the hit %, and

= how much faster requests are serviced on a cache
hit.

SPE: Cache ‘H

Cache sizing

Cumulative Distribution of Hits by Stack Depth
%

- Despite the prevalence of cache-friendly
access patterns (principle of Locality), there
are also well known cache anti-patterns

- extended, rapid sequential access
- exploit superfluidity |
+ truly random access

« Caches can only be modeled as finite-state
machines where the sequence of events matters
 Load-dependent servers

SPE: Cache

Cache sizing

Cumulative Distribution of Hits by Stack Depth

* Virtual Memory “Thrashing”

80%

« When cache size is too small, the overhead of the ..
page replacement policy may be excessive

40%

20%

0%
Cache size =

SPE: Cache

Cache sizing

Cumulative Distribution of Hits by Stack Depth
%

- Experience predicting cache hits as a
function of cache size from address
reference traces

- generic stack algorithm varies from the actual
replacement policy

« Cost of acquiring traces
* Representativeness of trace samples

SPE: Cache

Cache sizing

Cumulative Distribution of Hits by Stack Depth
%

- Experience predicting paging as a function
of the ratio of
real memory : virtual memory

 V/R ratio

- To Do: show relationship of Committed Bytes (V)
to “Hard” Paging rates on a Windows Server

o sPE:cache |
Cache Writes

* Replacement Policy
- maintain a Dirty bit associated with each object that
resides in the Cache

- if the data in the Primary object storage is current,
than the cache block can be safely discarded

- if the object in Primary Storage is not current, it must T ‘/
be updated before the cache block can be discarded -
 Maintain an elastic free space buffer so that there is l

seldom any additional latency associated with

SPE: Cache H

Cache writes

* Write Through
- Update primary and cache copies
synchronously

 Write operation executes at the speed of the
slow memory component T

* Write Around - =

- when Read after Write is unlikely

» Write Back

 Update cache immediately; update primary
storage eventually Write Write

- Lazy write benefits many workloads Through Around

SPE: Cache H

Write Back caching
* Write Back

 Always Write to cache
* Write service time = Read Hit service time

* Update cache immediately; update primary
storage eventually

- Asynchronous writes to the backing store
requires that the cache is non-volatile
storage

o Lazy write benefits many workloads

Write Write
Through Around

SPE: Cache H

Instrumenting the cache

* rate of Reads : Writes
* rate of Hits : Misses

- Latency (Reads, Writes, Hits, Misses)
to calculate the weighted average
service time

- Memory management overhead
- replacement policy trigger rate

- object Residency time: age of the last Write Write
removed object Through Around

SPE: Cache

CPU caching

° Direct Mapped 2-Way Associative
* Direct mapped Cache Fi Cache Fi
o ® ® c h Main Main
n-way set aSSOCIatIve ac e Memnr'l_.f CaChE Memgw [:a[he
° M Index Memory Index Memory
Replacement pOIlcy 0 > |ndex 0 0 Index 0, Way 0
 Random 1 Index 1 1 Index 0, Way 1
. : 2 Index 2 2 Index 1, Way 0
(approx"nate) LRU 3 v * |ndex 3 3 Index 1, Way 1
- FIFO i n
5 5
Ea-:h kcation in main memary can be) ”EIa-:h kbcation in main memary can be
P Types of misses: cached by just one cache lbcation. cached by one of two cache bcations.

- Compulsory (on first access; a cold
start following a context switch)

- Capacity
 Collisions

SPE: Cache H

cpu caChlng Cache size, associativity and Replacement Policy

6
t ——2-way LRU -@-2-way Random
[] -
n way se 5 -0-"4-way LRU" "4-way Random"
HSSOCIatlve ‘ -@-"8-way LRU" -@-"8-way Random"
’
Caches don’t 4
experience S
° & 3

quite as many -

collisions)
1 e
0

0 64 128 192 256

Cache size (KB)

SPE: Cache

CPU caching

® o fo Direct Mapped 2-Way Associative
° Slgmflcant stall of CPU Cache Fil Cache Fil
N g g . o Main Main
instruction pipeline on a miss ..., Cache | Memory Cache
Index Memory | Index Memory
° Memory wa“ 0 > |ndex 0 0 Index 0, Way 0
o o o 1 Index 1 1 Index 0, Way 1
- motivation for 0-0-0 execution and > v > ndex L War 0
simultaneous multithreading : 7 > index 3 fi index 1, Way 1
5 5
Ea-:h kcation in main memary can be) ”EIa-:h kbcation in main memary can be
cached by just one cache lbcation. cached by one of two cache bcations.

* Unified or Separate
Instruction and Data caches

EEEEEE—————————— e emmmm———
CPU caching

- Main memory is a resource
shared across CPU cores,
while caches are dedicated to U 2
processor cores and/or
sockets

Socket

* Write-back caching with

coherence @ﬁ

* False Sharing

EEEEEE—————————— e emmmm———
CPU caching

 Multiple levels of Cache in 3

hierarchy _

- Latency is a function of distance oy B 7

(signal propagation delay)

« Fewer misses, but increases s
complexity @

* LRU or approximate LRU

* Context switches and Processor o W

node affinity

« (cold vs. warm starts) @

- Additional caches
* e.g., Translation Lookaside buffer
* e.g., CISC = pinstruction cache

Socket

SPE: Cache H

Cache coherence

- When multiple threads have concurrent
access to primary storage

- e.g., primary storage is shared and each
active thread has its own private cache

- Ensuring that each concurrent
execution thread has consistent Read
access to the most current data is

known as the cache coherence problem

Write Write
Through Around

SPE: Cache H

Cache coherence

- Shared Write Back cache
- Writes to memory must be B
propagated to the other caches] | ‘
- =
» Preserve the order of Write i |u -
operations across all agents g

e atomic
- serializable

* Consistent

SPE: Cache 11/7/2018 ‘H

Cache coherence

Intel MESI protocol

« Each cache line is tagged as belonging to one of four mutually exclusive states:

M | Modified | Dirty Data is stored in this cache
E Exclusive Clean Data is stored in one cache
S

Shared Clean Data is stored in more than one cache

I Invalid Data in the cache is invalid; upon access, the
contents must be refreshed from the Primary store

SPE: Cache H

Cache coherence

- Spinlock example spin_lock:

. mov eax, 1
test eax, eax
jnz spin_lock
ret

spin_unlock:
xor eax, eax
xchg eax, [lockword]
ret

SPE: Cache H

Cache coherence

» Spinlock example cacHe (] NISEWRHN shared
* e.g., the NTFS Lock

- Initially, the Lock Word, which contains a temoy H)
“1” indicating the LOCK is currently held,
resides in two caches in 3 SHARED state

CACHE] JUBERWER] Shre

- Thread B is in a Busy Wait, executing its
spin_lock code until the Lock is released

 Thread A holds the lock and issues a
Compare and Swap instruction (xchg) in
its spin_unlock routine to Release it. e

SPE: Cache H

Cache coherence

Invalid

- Spinlock example

* The cache line containing the Lock Word in shared
Thread A’s cache changes to an EXCLUSIVE emory HIY
state

Exclusive

* Thread B, listening to the Shared Memory bus,
transitions its corresponding Cache line to the
INVALID state

* Forcing Thread B to refresh the Cache line from
shared Memory the next time the xchg T
instruction executes ¢

SPE: Cache H

Cache coherence

- Spinlock example

Invalid

* Thread A, listening to the Shared Memory bus,
pushes the contents of its Cache line to shared
Memory

* Thread B’s fetch from shared Memory is then
allowed to execute

Exclusive

SPE: Cache H

Cache coherence

Thread

- Spinlock example

Shared

* Following Thread B’s fetch from shared
Memory, its Cache line is tagged SHARED

- Thread A, listening to the Shared Memory bus,
changes its Cache line state to SHARED

Shared

Thread

SPE: Cache

False sharing

 On an SMP, false sharing occurs when threads on different processors
modify variables that reside on the same cache line.

 Example: Two different Lock Words allocated on the same cache line

e RAM

See https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

SPE: Cache

CPU cache and pipelining

 Additional caches are utilized at
different pipeline stages to increase
instruction execution rates
. e.g., instruction : p-op translation

- Translation Look-aside Buffer (TLB)

« caches recent virtual address : physical address
mappings

* TLBs reduce the cost of virtual memory translation
to 3 minimum

* A context switch that dispatches a new thread
from a different process loads a pointer to a new
set of Page Tables, effectively clearing the TLB

Execution

L]

Instruction
Fetch
&
Decode

Execution

Execution

p-op
translation

Execution

Execution

i

Writeback

SPE: Cache

CPU cache: Thread scheduling

 Multiprogramming
* Dispatch a waiting Thread from

the Ready Queue when the
current thread enters an 10 Wait

» time-slicing
* Processor affinity

- remember the processor ID from
the previous dispatch

* “Ideal processor”’

* increase the probability of a cache
warm start if the thread’s ideal
processor is idle

OS Scheduler

Wait for Event

(Y

= AQuouy

Thread

Thread

Thread

Thread

Thread

Thread

Ready Queue

Time Limit exceeded
(Priority decays)

A

Interrupt
(Priority boosted)

SPE: Cache H

CPU Cache and NUMA

- Multi-socket servers have ccNUMA performance characteristics
= cache-coherent Non-uniform Memory Access

Node A Node B
Local

Local
RAM RAM

Memory Controller + + Memory Controller
|

I
L3

L3
1

1
o 7 I - = 7 7 T I <
L2 L2 L2 L2 é% L2 L2 L2 L2 g;—;
IM m M lm9§ M M m mg‘%
CPU 3 CPU 2 CPU 1 CPUO CPU 3 CPU 2 CPU1 CPUO

o SPECache |
CPU Cache and NUMA

 Accesses to remote memory
take longer than local

CPU
memory Core
1
= = 4
- Developers encounter NUMA g e HETH g
scts : = Multi-core .
characteristics on a single : g :
socket in some hardware = ceu |[alv
. C
architectures 4

HyperTransport
- >

X}
LR R BB R R R R R R R R R R R R R

CPU Cache and NUMA

SPE: Cache

* Accesses to remote memory take longer than local memory

Node A

Node B

Local

RAM

Memory Controller +

ross-Node Lin

19%00s
0J02-RINW

+ Memory Controller

Thread 1

195008
2J09-NINW

EEEEEE—————————— e emmmm———
CPU cache: NUMA thread scheduling

* Processor “soft” affinity

* Processor node “soft” affinity
« remember the node from the previous dispatch
» “Ideal node”
* reduce the probability of remote memory accesses
- augmented by per Node memory management

* Node affinity is a very important consideration in hypervisor virtual
machine scheduling

SPE: Cache H

CPU Cache and NUMA

* Accesses to remote memory take longer than local memory

- overheads vary greatly based on the cache coherence scenario
s e.8., Remote memory cache hit vs. Remote memory cache miss

Node B

Node A
Local Local
Mem A T Mem B SEES
Memory Controller + Memory Controller
1 1
Mem A L3 L3
1 — . 1)
|

S
19008
2100-1INW

E

19%008
0J00-NINY

CPUO

[

CPU3 | |CPU2||CPU1||CPUD

Thread 1

o sPECache |
CPU Cache instrumentation

- Intel processors support an extensive set of internal performance
counters
= Documented measurement interface
= Only a small number of the available counters can be active at any one time

- Some are general purpose:

- Instruction execution rate (Instructions retired)
- Cache hit rates

= Many are processor-specific and change from release to release

» Intel vTune performance tool

https://software.intel.com/en-us/intel-vtune-amplifier-xe/

SPE: Cache H

Hypervisor Memory Management

- Terminology
- VM Host machine memory:
- physical memory installed on the VM Host machine
= Guest machine physical memory:

- virtualized physical memory granted to the guest machine; looks like
physical memory to the guest 0S

- tracked by a set of shadow Page Tables
= Guest machine virtual memory:

- per process virtual memory created by the guest 0S and mapped to guest
machine physical memory using Page Tables

SPE: Cache

Hypervisor Memory Management

Linear (virtual) address space, one per process

2x0000 3x0000 4x0000 5x0000

 Hardware virtual i

. I UXOOU0C X I ZRU I SRU l TROTCU] Sx0000
address translation o o000 | 230000 | 3000 | E0000 | 50000
uses both sets of

Page Tables Guest OS 10000 67760000

2x0000: 3298x0000

Page Tables 3x0000: 54CDx0000 B g
epuramiadiesss. (R B "% Virtual Add
to : Irtua ress
(virtual) physical addresses — .
SHORR0: SO0 Translation
Hardware
/ [
MGuest OS TLB
VMware Page Tables
CD8AX0000:8362x0000
Shadow 677 4x0000:98ABX0000 0x0000: CD8AX0000
3298x0000:5684x0000 1x0000: 6774x0000
Page Tables 54C Dx0000:2334x0000 2x0000:298x0000
map virtualized physical 2D8Bx0000:7756x0000 CD8Ax0000:8362x0000
addresses 1286x0000:688Cx0000 6774x0000:98ABX0000
; 3298x0000:5684x0000
to NHypervisor
(real) physical addresses o S et L [Page Tables]

SPE: Cache ‘

Hypervisor Memory Management

- The safe way to configure a VM Host machine is to
run only the number of guest machines that will fit
inside Host machine memory without overflowing it.

Guest Machine A

- Static memory allocation schemes are expensive!
= machine memory is under-utilized because Guest Machine B

- Guest machines don’t understand how much
memory they need

- Guest machines are often allocated more Guest Machine C
physical memory that they can consume

- Guest machine virtual memory management (a Guest Machine D
caching approach) is very dynamic!

rree Spa“’> Host Machine RAM

SPE: Cache ‘

Hypervisor Memory Management

« In the history of computing, this was the classic

problem with early machines where memory was Guest Machine A
partitioned statically
= e.g.,
- 0S/MFT Guest Machine B
- OS/MVT

. Guest Machine C
- that virtual memory technology was specifically

designed to address
= MULTICS Guest Machine D

e

Host Machine RAM

SPE: Cache

Hypervisor Memory Management

- Early versions of VMware allowed customers (often Web
site and Host machine vendors like GoDaddy) to run more Guest Machine A
VMs than would fit neatly into machine memory
= Grant physical memory to a VM on a provisional basis
= Provide paging/swapping mechanisms to relieve the Guest Machine B

pressure on 3 Host machine whose memory is “over-
committed” Guest Machine C

Guest Machine D

Guest Machine E

Host Machine RAM

SPE: Cache

Hypervisor Memory Management

 Grant physical memory to a VM provisionally

- Provide paging/swapping mechanisms to relieve
the pressure on a Host machine whose memory
is “over-committed”

Guest Machine A

Guest Machine B

without a Paging file &
without page usage data

Guest Machine D
Guest Machine E
Host Machine RAM

Guest Machine C

SPE: Cache H

Hypervisor Memory Management

« Memory Ballooning

= VMware does not duplicate the very dynamic memory management

facilities of the guest OS due to overhead considerations

- On initial access by a guest 0S to a Page granted to that guest Machine, the
VMware Memory Manager turns on the valid bit in the shadow Page Table
entry (PTE)

- VMware estimatese guest machine memory usage using sampling,
periodically flipping the valid bit in a small number of shadow PTEs and
then seeing if they are accessed in the next interval

- Designed to identify idle Guest machines that can swapped out of machine
memory completely: idle machine tax

- There is an optional swap file, but no paging file(s)!

SPE: Cache H

Hypervisor Memory Management

 Memory State”

State Value Free Reclamation Action
Memory
Threshold

> 6% None

< 6% Ballooning

<4% Swapping to Disk or Pages compressed

<2% Blocks execution of active VMs > target allocations

+ see “Understanding Memory Resource Management in VMware® ESX™ Server” white paper

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf

SPE: Cache H

Memory Ballooning

« When there is a shortage of available machine memory, the
Hypervisor uses “ballooning” to push the decision about which
allocated virtual pages can be replaced down to the guest 0S, which
maintains page usage data

- 3 management thread inside the guest 0S “inflates” its memory
balloon, which are physical pages the thread acquires that are
empty, idle, and exempt from guest 0S page replacement

- if ballooning results in a shortage of pages inside the guest 0S, it
has recourse to its page replacement algorithm

Memory
Ballooning

- Pages pinned in
memory by the
balloon driver are
reported to the
Hypervisor, which
then makes them
available to grant to
other guest Machines
on demand

Virtual Machine
Management

Service
(VMMS)

Dynamic Memory
Balancer

Free list

| VM Worker |

process

VM Worker |
process

Child Partition

Dynamic Memory
VSC

(dmvsc.sys)

=-=; MmAllocatePagesForMdIEx

Hypercall
Interface

Memory Manager

Hypervisor:

SPE: Cache H

(- R
Memory VMware.Guest.Memory\Memory Balloon (KB)
Ballooning WORKHORSE
4/25/2013
20,000,000

15,000,000 -

2 10.,000.000 -

5.000.000 —
0-
S00 AM 910 AM 920 AM 930 AM 940 AM 950AM 1000AM 10:10AM 1020AM 1030AM 1040AM
Time of Doy
BN Memory_Balloon_KB_ (ESKASIZE) 1 Memory_Balloon_KB_(ESMASIZC) BN Memory_Balloon_KB_ (ESXASIZE)
B Memocy_Balloon_KB_ (ESXAS120)

SPE: Cache ‘

i &
Memory Memory\Physical Memory Usage summary report
Ballooning WINSITEST1
3/24/2015
80,000,000 3,000
2,500
60,000,000
2,000
g
a.f:;' 40,000,000 3 1 : :'. fi 1\ : Iy \ £ B i ;:‘,\ ' : i 1.500 g;
1000 °
20,000,000
0
£00PM 410PM 420PM 430PM 440PM 450PM S500PM 510PM 520PM 530PM 540PM 550 PM

Time of Day

o= Available_MBytes M Pool_Nonpaged_Bytes

SPE: Cache H

Virtual Machine memory balancing in Hyper-V

+ on Over-committed VM Host machines

- Hypervisor does not have direct access to guest machine internal
performance indicators

= With one notable exception of a proprietary “enlightenment” used by
the Hyper-V Memory Manager

- Instead, manual tuning knobs are provided
- Scheduling priority settings
* QoS reservations and limits

= Crude controls that are difficult to implement (trial & error)

= Given the size and complexity of the configurations SysAdmins must
manage, these tuning options are poor alternatives to goal-oriented
control systems that have access to guest machine feedback

SPE: Cache H

Virtual Machine memory balancing in Hyper-V

- when memory is over-committed on Hyper-V Host machines

= Hyper-V attempts to equalize Memory Pressure across all Windows VMs
with the same dynamic memory allocation priority

- an “enlightenment” used by the Hyper-V Memory Manager

- Memory Pressure is a Memory contention index (V/5):

guest machine Committed Bytes * 100

current machine memory allocation

- because the likelihood of guest machine paging increases as Memory
Pressure >> 100

SPE: Cache H

Virtual Machine memory balancing in Hyper-V

- when memory is over-committed on Hyper-V Host machines

= Hyper-V attempts to balance Memory Pressure across all Windows VMs
running at the same dynamic memory allocation priority

guest machine Committed Bytes 100

= Memory Pressure = : :
current machine memory allocation

= since the likelihood of guest machine paging increases when Memory
Pressure >> 100

- Control engineering approach
- interfaces with the “hardware” hot memory Add/Remove facility
- memory priority creates “bands” of machines based on Memory Pressure

SPE: Cache H

Virtual Machine memory balancing in Hyper-V

- However, Committed Bytes is not always a reliable indicator of actual
memory requirements on 3 Windows machine
= SQL Server immediately allocates all available RAM
- Uses a manual setting to override the default policy

- well-behaved Windows apps that respond to Lo/Hi memory notifications
issued by the OS

- e.g., Lo/Hi memory notification trigger garbage collection by the .NET Framework
Common Language Runtime (CLR)

« Access to additional guest machine metrics would likely improve the
Hyper-V dynamic memory management routines
= access to Lo/Hi memory notifications
= balance physical memory to minimize demand paging

SPE: Cache

Virtual Machine memory balancing in Hyper-V

I)
Hyper-V Dynamic Memory VM\Average Memory Pressure

WS52012VMHOST
5/14/2015

200

Average Memory Pressure

0 T T T T T T
2.:00PM 2:10PM 2:20PM 2:30PM 240PM 250PM 3:00PM 3:10PM 3:20PM 3:30PM 340PM 3:50PM
Time of Day
w—= Nverage Pressure (WINST1TEST4) === Average Pressure (WINS1TEST1) Average_Pressure (WINS1TESTS)

Average_Pressure (WINS1TEST3) === Average Pressure (WINS1TEST2)

SPE: Cache H

Questions

SPE: Cache H

References

« Alan Jay Smith, “Cache memories”, ACM Computing Surveys, Sept.
1982,

* Alan Jay Smith, “Disk cache miss ratio analysis and design
considerations”, ACM Transactions on Computer Systems (TOCS),
Aug. 1985.

 Waldspurger, Memory Resource Management in VMware ESX Server,
Usenix, Dec. 2002”

* Friedman, “Virtual memory management in VMware: memory
ballooning.”

https://www.vmware.com/pdf/usenix_resource_mgmt.pdf
http://performancebydesign.blogspot.com/2013/07/virtual-memory-management-in-vmware.html

