Introduction

Performance Engineering: Theory & Practice

SPE: Introduction 10/3/2018 2

Definition

“Software Performance Engineering (SPE)
represents the entire collection of software
engineering activities and related analyses used
throughout the software development cycle,

which are directed to meeting performance
requirements.’

Woodside, et.al., “The Future of Software Performance Engineering,” 2007

SPE: Introduction 10/3/2018 3

Housekeeping

- PowerPoint versions of the slides require installation of the Barmeno
ExtraBold font to be viewed properly.

« Poll Everywhere software (link)

« Contact me:
= e-mail: markf@demandtech.com or mbfried@uw.edu
= call or message my cell: (425) 949-2302
= office hours: CSE 264, 4-6 pm or TBA
= my blog: https://performancebydesign.blogspot.com/
 Contact Sam: samgao365@gmail.com

« See https://courses.cs.washington.edu/courses/csep590a/18au/ & follow
the Canvas link for slides, readings, assignments, etc.

- Distance classroom logistics
- No final exam: Special projects instead

https://itconnect.uw.edu/learn/tools/polleverywhere/
mailto:markf@demandtech.com
https://performancebydesign.blogspot.com/
mailto:samgao365@gmail.com
https://courses.cs.washington.edu/courses/csep590a/18au/

SPE: Introduction 10/3/2018

Your first reading assignment

 Read Bondi, ch. 1-3
FouNDATIONS OF SOFTWARE

AND SYSTEM PERFORMANCE
ENGINEERING

Process, Performance ".\' - 1
Modeling, Requirements, /
[esting, Scalability;

e
and Practice g /1
L) " - L -
g : " - :l

Andre B. Bondi

SPE: Introduction 10/3/2018

Your first reading assignment (Optional)

e I
= B
ogeo ° HE FRACTICA Perfi
- Additional Readings: ERFORMANCE er Wﬁ&ﬁe
—mm =3

= Gunther, Practical Performance Analyst, e
ch. 1-3 . &
= Menasce, Performance by Design

= Friedman, “Performance Concepts,”
unpublished chapter

 Background Reading:

= Friedman, Windows Server 2003
Performance Guide, ch. 1.

= Hennessy & Patterson, Computer
Architecture

- Lazowska, et. al., QSP

COMPUTER
ARCHITECTURE
A

Quan

https://smile.amazon.com/Practical-Performance-Analyst-Neil-Gunther/dp/059512674X/ref=pd_sim_14_6?_encoding=UTF8&pd_rd_i=059512674X&pd_rd_r=60c11a40-bd19-11e8-91c0-8d9d1b6891e3&pd_rd_w=31LZi&pd_rd_wg=6kVE8&pf_rd_i=desktop-dp-sims&pf_rd_m=ATVPDKIKX0DER&pf_rd_p=18bb0b78-4200-49b9-ac91-f141d61a1780&pf_rd_r=XQ4PK6GYH7F7NBNWNHPE&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=XQ4PK6GYH7F7NBNWNHPE
https://smile.amazon.com/Performance-Design-Computer-Capacity-Planning/dp/0130906735/ref=pd_sbs_14_2?_encoding=UTF8&pd_rd_i=0130906735&pd_rd_r=fa55027e-bd18-11e8-bbb7-a1e6f2a82859&pd_rd_w=5zKft&pd_rd_wg=6LtvF&pf_rd_i=desktop-dp-sims&pf_rd_m=ATVPDKIKX0DER&pf_rd_p=0bb14103-7f67-4c21-9b0b-31f42dc047e7&pf_rd_r=RP3R3M0BC0B94W3NRPJG&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=RP3R3M0BC0B94W3NRPJG
https://smile.amazon.com/Computer-Architecture-Quantitative-Approach-Kaufmann-ebook-dp-B078MFDTX4/dp/B078MFDTX4/ref=mt_kindle?_encoding=UTF8&me=&qid=1538005625
https://homes.cs.washington.edu/~lazowska/qsp/

SPE: Introduction 10/3/2018

About me

- Professional software developer: 40+ years
= Master’s in CS ~1980

- specialized in performance tool development, beginning
around 1984
- Landmark’s The Monitor for MVS™ (1989)
- Performance SeNTry, aka NTSMF (1997)
- Architect, Microsoft Developer Division, 2006-2010

SPE: Introduction 10/3/2018 7

About me

» Industry analyst and technology entrepreneur
 Author and Instructor:
- two books on Windows performance (published 2002, 2005)

- blog
- numerous technical articles published in journals and magazines
- professional seminars, mainly on performance topics

https://smile.amazon.com/Windows-2000-Performance-Guide-Administrators/dp/1565924665/ref=sr_1_9?s=books&ie=UTF8&qid=1536862454&sr=1-9&keywords=Windows+Performance+Guide
https://performancebydesign.blogspot.com/

SPE: Introduction 10/3/2018 8

Is “there is no room in the
refrigerator for my stuff” a
roommate performance
problem or a capacity
problem?

Friedman’s 37 Law of Storage
Management: “No one cleans up their
hard drive until it is full’

SPE: Introduction 10/3/2018

Performance Engineering: Theory and Practice

e Theory
= Algorithms and Complexity (e.g., NP-completeness)
= Queuing Theory
- Resource scheduling

= Probability, Statistics and Data mining: exploratory data analysis
- Feedback & control engineering

SPE: Introduction 10/3/2018

Performance Engineering: Theory and Practice

« Practice
= Instrumentation & Measurement
- Integration into the software development Life Cycle
= Performance Testing: benchmarking and load testing
= Parallel programming & Concurrency
= Caching
= Web applications

- Lots of practical examples, mostly from Windows, using C# & .NET
* Guest lecturers

SPE: Introduction 10/3/2018 11

Performance Engineering: Theory and Practice

. Attendance (link):
« Grading:

= Class participation (15%)
- Homework (25%)

- emphasis is on your thinking process, not on your getting the right
answer, because there is unlikely to be a single right answer

= Individual or Group project (60%)
» Challenge yourself!

https://my.uw.edu/teaching/2018,autumn,CSE P,590/A/students

SPE: Introduction 10/3/2018 12

Definition

“Software Performance Engineering (SPE)
represents the entire collection of software
engineering activities and related analyses used
throughout the software development cycle,

which are directed to meeting performance
requirements.’

Woodside, et.al., “The Future of Software Performance Engineering,” 2007

SPE: Introduction 10/3/2018 13

About the discipline

- Performance Engineering: Theory and Practice

o The “streetlight effect”:
- based on an old joke about the drunk who is searching for his lost keys:

= “Late at night, a police officer finds a drunk man crawling around on
his hands and knees under a streetlight. The drunk man tells the officer
he’s looking for his keys. When the officer asks if he’s sure this is
where he dropped the keys, the man replies that he thinks he more
likely dropped it across the street. Then why are you looking over here?
the befuddled officer asks.’

SPE: Introduction 10/3/2018 14

- Because the light’s better here, explains the
drunk man. ©

i EZ piD You DROP |fuo 1 DRoPPED
- . N - T HERE?

1M LOOKING)k - AT Two BLOLKS

THEN WHY ARE .
You LGoKING
FOR T HERE?J

o N

| FOR MY QUARTER) - DO THE T

I DROPPED! [« ! ST‘RGET.‘ ‘
- =

SPE: Introduction 10/3/2018

Performance Engineering: Theory and Practice

- Impact of the “streetlight effect” on performance investigations

should be fairly obvious:

- Gaps in the measurement data: leaving important aspects of
performance opaque due to a dearth of instrumentation
- Challenge, but also an opportunity

- We may need to adopt tools that were not originally intended for this
purpose

= Performance tools typically lag current technology by one or more
releases

- Until we have an opportunity to build applications that exploit the new
technology, we do not understand what performance tools are required

15

SPE: Introduction 10/3/2018 16

About You

» Class survey
- How many classes in the PMP have you taken?
- How many are professional software developers?

- What programming languages do you use?
- C++, C#, Java, JavaScript, Python, Ruby, R, assembler, etc.

- What platform do the applications you work on target?
- LAMP, MacOS, iPhone, Android, ASP.NET, etc.?

- What performance tools are you familiar with?

SPE: Introduction 10/3/2018 17

About You

- (Optional)

- Your first assignment is to tell me a little about you and why you are
taking this class (other than I need to take something in order to
graduate), including:

- What do you hope to gain from the class?
- Do you have any background or experience in the subject matter?

= Are there topics/subject areas that you are particularly interested that
the class should cover?

e 500 words or less
o ¢e-mail me at markf@demandtech.com or mbfried@uwa.edu

mailto:markf@demandtech.com

SPE: Introduction 10/3/2018

Performance Engineering Overview

My highly personal view of the discipline

SPE: Introduction 10/3/2018 19

What is system or application performance?

- Responsiveness

= Real-time control applications often have hard limits on how long
they can wait before they must react to current conditions

= Consistent response times establish a pattern for human-
computer interaction

« Throughput

- Real world business requirements generate a workload
- Scalability

- How many customers for an e-business application?

- How many devices for an loT application?

SPE: Introduction 10/3/2018

What is system or application performance?

- Responsiveness

= How long does it take to respond
to a customer request?

Consider an e-business application...

« Throughput

- How many requests/second does
the application need to process?

- Scalability

- How many concurrent customers?

SPE: Introduction 10/3/2018

What is system or application performance?

« How long is a customer willing

Consider some mobile applications... to wait...

= to debit or credit a checking
account?

= to receive notification about the
movement of a stock price?

= to update a work order in order to
proceed to the next queued work
item?

SPE: Introduction 10/3/2018

What is system or application performance?

« What if? « How long is a customer willing
to wait...

= You are a service bureau and your

customers are banks? = to debit or credit a checking

account?

= to receive notification about the
movement of a stock price?

= You are a bank and you are losing = to update a work order in order to
customers to a rival that has a proceed to the next queued work

superior mobile app? item?

SPE: Introduction 10/3/2018

What is system or application performance?

« What if? « How long is a customer willing
to wait...

= Your are a company of

professional stock traders? > to debit or credit a checking
account?

= to receive notification about the
movement of a stock price?

= to update a work order in order to
proceed to the next queued work
item?

SPE: Introduction 10/3/2018

What is system or application performance?

« What if? « How long is a customer willing
to wait...

- 3 slow application affects the . . .
productivity of your workers, = to debit or credit a checking

which impacts the company’s account?

bottom line?] L
= to receive notification from a

stock trade?

= to update a work order in order to
proceed to the next queued work
item?

SPE: Introduction 10/3/2018

What is system or application performance?

- Performance is a very important and often critical aspect of
software quality!

= Performance engineering is a discipline within software engineering

- Performance is often highly correlated with User satisfaction
= Poor and/or erratic response times are a huge dissatisfier

- Performance (or service levels) can measured; many other aspects
of software quality are not so readily quantified

SPE: Introduction 10/3/2018 26

Why do so many large scale software
development projects fail when it comes
to meeting their performance
requirements?

SPE: Introduction 10/3/2018 27

Performance engineering is a hard problem!

- Complex software development is risky!

- Development projects can fail when it comes to meeting
their performance requirements due to many reasons:
- Scalability requirements are not understood or well-defined

- Performance is not emphasized early enough in the
development process

- Time constraints and budgetary considerations
- Hardware constraints

- Organizational emphasis on fire-fighting, instead of more
pro-active approaches

https://www.theatlantic.com/politics/archive/2014/07/obamacare-website-has-cost-840-million/440478/

SPE: Introduction 10/3/2018 28

Performance and the Development Life Cycle

- Why aren’t performance concerns incorporated into the fashionable

software development methodologies?

- Performance is considered a “non-functional” requirement of an
application

- Yet, meeting performance requirements is often a key success factor.

- Still...
- no mention in Design Patterns
- seldom considered when people discuss Use cases

* Rarely comes up when people are teaching Agile

- even though it make good sense to annotate a scenario with its performance
requirements

SPE: Introduction 10/3/2018 29

Performance and the Development Life Cycle

- Concerns about “premature optimization” that defers tuning efforts
until the code base is stable are valid - up to a point

- Senior technical staff are heroes that parachute into investigations
to fix performance problems in the latter stages of a project

- But if there is a fundamental design flaw that was baked in early...
- More expensive to fix it in the later stages
= 3 serious enough “flaw” can delay (or even torpedo) the entire release

SPE: Introduction 10/3/2018 30

Performance and the Development Life Cycle
« Here are some things that have been tried:

- Performance “anti-patterns” approach

- single-lane bridge

- long path

- resource bottlenecks

- e.g., Resource Ris a candidate bottleneck if:

it is used by the majority of scenarios,
many scenarios that use it are too slow,
it is near saturation (>80% of its units are busy),

resources that are acquired earlier and released later then R are also
near saturation

- layered software bottlenecks

s

SPE: Introduction 10/3/2018 31

Performance and the Development Life Cycle

* Here are some things that have been tried:

- Generate 3 model from the specification
- Markov models of sequence, to queueing models
- annotated UML = Queueing model

- Issues:
- Validation

- Use static analysis to parameterize a model rather than wait for actual
run-time measurements

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Day of Reckoning when a major
release misses its performance
objectives by a wide margin

= Can lead to adding a performance stress
test step to assess risk prior to release

» Pro-active performance management

- Monitor and report on progress/risk
against performance objectives throughout
the life cycle

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Preventative performance management
- Sometimes following a particularly “heroic”
tuning effort that finally brings the
performance of the release into an
acceptable range

- Continuous improvement model

= Monitor and report on progress/risk against
performance objectives throughout the life
cycle

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Continuous improvement model

= Set achievable Performance goals

ﬁ initially based on requirements
Design = 80 they can inform design decisions
(and early stage scouting)

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Continuous improvement model

= Performance tests performed early
and often to monitor progress
against goals

- Automated performance testing
- Instrument early and test often

- Every unit test can also be a
Timing test!

= Performance Quality gates to detect
problems prior to integration

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Continuous improvement model

- Full scale load/stress testing

- Evaluate the cost of embedded
instrumentation

SPE: Introduction 10/3/2018

Performance and the Development Life Cycle

- Continuous improvement model
= Service level reporting

- Management by Exception
- Statistical Quality Control techniques

- Embedded instrumentation

= Diagnostic tools to drill into problems on
demand

SPE: Introduction 10/3/2018 38

Fundamentals of software performance engineering

* Problems of Scale
s Algorithms and Complexity

= Hardware capacity limitations
- network latency
- parallel programming
- resource sharing & queueing
- n-tiers, clustering

Model Parameters

= Cost/Performance trade-offs

* €8 virtual memory, Caches from Geoffrey B. West, et. al., “A General
- energy & power consumption Model for the Origin of Allometric Scaling Laws
in Biology,” Science, April 1997

SPE: Introduction

10/3/2018

Web
Application
Scalability

e Architecture

- Management

« Measurement

. Cost/Performance
trade-offs

 Growth; capacity
planning

 Continuous
improvement

Edge Cache layer
(CDN)

Load

Middleware

Management

B

Data Warehouse

Balancing
‘_- '- — TCP Connection

Analytics

SPE: Introduction 10/3/2018

loT
Scalability

 Hardware capacity
& performance

 Network
performance

- Analytics

SPE: Introduction 10/3/2018

Datacenter provisioning

» Cloud computing
- both on and off premises

« Virtualization
= servers
SANs
software-defined Networks
= fungible resources:
= capacity planning replaced by
“provisioning”
- Containers and microservices
* DevOps

]

O

SPE: Introduction 10/3/2018

Cloud computing

« Either,

- 3rd party data centers where massive resources are available on
demand

= on-premises cloud option when very sensitive data is involved

- Performance characteristics of workloads readily shifted
to run off premises in the “cloud”
= customer-facing web services
= geographically distributed
= highly elastic demand (e.g., FIFA World Cup video streaming)
- new applications that anticipate rapid scale up (e.g., loT)

SPE: Introduction 10/3/2018

Prospects for Automating Computer
Performance

How do we scale performance management to meet these challenges?

SPE: Introduction 10/3/2018 a4

Automating performance management

 Automated optimization & tuning approaches
- Manual tuning does not scale to the quantity of computer resources that
need to be managed today
- What are the prospects for autonomic computing?
= Machine Learning
- Anomaly detection
- Bottleneck detection needs to be informed by analytic models
- Feedback and control engineering
- success factors:
+ clear, unambiguous measurements
- resources that can be provisioned dynamically

SPE: Introduction 10/3/2018

- Bill Gates, Elon Musk, Jeff
Bezoz, Eric Schmidt, and
John Hennessy meet at
Davos and decide to pool
their considerable wealth
and intellect to build the
world’s most powerful
supercomputer to answer
the question,

“What is the meaning of life?”

SPE: Introduction 10/3/2018

“What is the meaning of life?”

e | Let me tell
21 you 3
story...

SPE: Introduction 10/3/2018

So, that reminds me of a story...

* In the mid-1990s, I decided to investigate a claim in the 1t edition of
the book, /nside Windows NT, by Helen Custer, that the file cache
feature in the OS was “self-tuning.”’

» Microsoft Windows NT was a new 0S, created from scratch by a team
led by David Cutler, formerly the developer Lead for Digital’s
VAX/VMS operating system

* In 1996, | was beginning to invest in building performance
monitoring software for the Windows NT platform

SPE: Introduction 10/3/2018

Is the Windows NT file cache “self-tuning” ?

* In principle, an intelligent
cache could size itself
dynamically

- by calculating the shape of
its distribution of the cache
hit ratio : cache size
distribution

- and making appropriate
adjustments

100%

80%

60%

40%

20%

0%

Cumulative Distribution of Hits by Stack Depth

Disk cache and me

* In the early 1980s, while working
for a hardware vendor, | had the
opportunity to investigate the
effectiveness of emerging
commercial disk cache technology.

« See Alan Jay Smith, “Disk Cache”,
ACM TOCS, 1985.

SPE: Introduction 10/3/2018

100%

80%

60%

40%

20%

0%

Cumulative Distribution of Hits by Stack Depth

http://delivery.acm.org/10.1145/10000/3961/p161-smith.pdf?ip=73.254.231.177&id=3961&acc=ACTIVE SERVICE&key=4D4702B0C3E38B35.4D4702B0C3E38B35.07A4DB06C9A305D5.4D4702B0C3E38B35&__acm__=1536952257_cc317d25d322294c3e9e3b6e71340303

SPE: Introduction 10/3/2018

My trace-driven, disk cache simulator program

Cumulative Distribution of Hits by Stack Depth

- Initially, | gathered 10 traces from several -
customers

» LRU Stack depth (hit ratio by cache size) -
distributions for disk cache were the o
same shape as virtual memory and -
processor caches

- These simulations demonstrated that disk
cache was a very effective 10 accelerator
for commercial, transaction-processing
workloads

SPE: Introduction 10/3/2018

My trace-driven, disk cache simulator program

Cumulative Distribution of Hits by Stack Depth

- Counter-intuitive result that required
further investigation:

= the back-store consisted of rotating magnetic
disks known as Direct Access Storage Devices

(DASD) o
= hardware support for direct Seeks to a 2
random disk location on the disk platter
= to simplify modeling, an average hardware
Seek was defined as 1/; the maximum Seek
distance

= Performance tools that used data from 10
traces to optimize file placement on disk to
minimize seek distance were in wide used

SPE: Introduction 10/3/2018

My trace-driven, disk cache simulator program

Cumulative Distribution of Hits by Stack Depth

- Of course, the use virtual memory
management was also controversial when -
it was first introduced!
= see Denning .

» | published results from my disk cache
simulation program in 1983, at which
time | also had data that confirmed these
speculations empirically from several
customers

http://delivery.acm.org/10.1145/240000/234403/p213-denning.pdf?ip=73.254.231.177&id=234403&acc=ACTIVE SERVICE&key=4D4702B0C3E38B35.4D4702B0C3E38B35.07A4DB06C9A305D5.4D4702B0C3E38B35&__acm__=1536953930_e2fec2e9b5b4176eb994855b0767cf91

SPE: Introduction 10/3/2018

“self-tuning” dynamic cache sizing

° By 1990’ there were fo“r we“_ . Cumulative Distribution of Hits by Stack Depth
understood examples of cache
technology in wide use

80%

= virtual memory (Denning) oo
- working set model of program behavior
o= CPU cache (Smith) o

= disk cache
- relational database memory buffering

20%

0%

- If cache sizes adjustments were
possible, decision-support for good
dynamic adjustments in real-time
seemed achievable

http://delivery.acm.org/10.1145/240000/234403/p213-denning.pdf?ip=73.254.231.177&id=234403&acc=ACTIVE SERVICE&key=4D4702B0C3E38B35.4D4702B0C3E38B35.07A4DB06C9A305D5.4D4702B0C3E38B35&__acm__=1536953930_e2fec2e9b5b4176eb994855b0767cf91
http://delivery.acm.org/10.1145/360000/356892/p473-smith.pdf?ip=73.254.231.177&id=356892&acc=ACTIVE SERVICE&key=4D4702B0C3E38B35.4D4702B0C3E38B35.07A4DB06C9A305D5.4D4702B0C3E38B35&__acm__=1536953676_54f9ccab983e2a3ad74e390d90a87b52#URLTOKEN#

SPE: Introduction 10/3/2018 54

The shape of the cache hit : cache size distribution

 When sma“, Cumulative Distribution of Hits by Stack Depth

incremental

changes in cache
size cause large
fluctuations in
cache hit ratios,
then the cache is
too small

80%

60%

40%
20%

‘ increase
cache size

Cache size =

* slope >> 1

0%

SPE: Introduction 10/3/2018 55

The shape of the cache hit : cache size distribution

Cumulative Distribution of Hits by Stack Depth

« When large, 100%
incremental changes in
cache size cause only coos

Diminishing
returns

minor fluctuations in
cache hit ratios, then
the cache is larger
than necessary

60%

40%

- slope = 0

20%

0%
Cache size =

SPE: Introduction 10/3/2018 56

The shape of the cache hit : cache size distribution

Cumulative Distribution of Hits by Stack Depth

100%

Cache is right-sized
when slope = 1

Diminishing
returns

80%

60% \ right-sized

40%

20%

\ increase
cache size

0%
Cache size =

SPE: Introduction 10/3/2018 57

The shape of the cache hit : cache size distribution

A dynamic approach to Cumulative Distribution of Hits by Stack Depth
regulating the size of the ™ : ‘
cache:

o retain cache miss vs. size 3%
recent history

- attempt to derive the full . \ right-sized
distribution

- track a gradient from the
current size to an optimal
size

Diminishing
returns

20%

seems feasible (or even
desirable) 0%

\ increase
cache size

Cache size =

SPE: Introduction

10/3/2018

Was this what the
“intelligent” file
cache
management
function inside
Windows NT was
doing?

o If so, IMHO, it
would have been
a considerable
achievement!

100%

80%

60%

40%

20%

0%

Cumulative Distribution of Hits by Stack Depth

N

increase

cache size

i

\ right-sized

Cachesize =

Diminishing

returns

SPE: Introduction 10/3/2018

Windows NT file system cache

- An important use case for the initial versions of Windows NT was to
function as a multiple-user File and Print Server

= Cached disk controller cards were not yet available for PCs, so disk access
was relatively slow

= With semi-conductor DRAM prices decreasing steadily (Moore’s Law), speed
up access to disk files by using some portion of the machine’s physical
memory to cache them

Workstation PCs Windows NT Server

SPE: Introduction 10/3/2018

Windows NT file system cache

Workstation PCs Windows NT Server

Problem: how much memory should be devoted to use for the disk
cache?

« Note: caching disk files in memory speeds up access to files only when there is
Read access to shared files by multiple users concurrently!

SPE: Introduction 10/3/2018 61

How would you determine if the
Windows NT File cache was s
breakthrough in intelligent, adaptive
behavior?

SPE: Introduction 10/3/2018 62

Evaluating the Windows NT File cache

- Feed it a “worst-case” workload designed to defeat an LRU-based
caching scheme

- See if the Windows NT File cache can recognize this workload and
adapt to it by limiting the memory used by the File cache
- Does it do sequential limiting?

- Feed it a file cache workload analogous to the PageAlot program, a
performance anti-pattern that is designed to defeat LRU-based
virtual memory management schemes

SPE: Introduction 10/3/2018 63

Evaluating the Windows NT File cache

- | fed it a file to Read sequentially that was considerably larger than the
sizeof (RAM) so it would overflow the memory-resident cache and
watched what happened using Perfmon counters
= Memory counters
= Cache counters

« On Windows NT Server, the OS expanded the size of the file cache until it
consumed almost all of physical memory

= The File cache used pre-fetching during sequential Read operations, so file
cache hit % measurements indicated quite good performance

= But the machine itself was unusable, if you tried to run any other workload
concurrently, due to a physical memory shortage & related excess paging

SPE: Introduction 10/3/2018 64

Was Windows NT self-tuning?

o Claims in the 1t “Inside Windows NT” book about the OS being
“self-tuning” were greatly exaggerated!

= The OS had a large number performance parameters that were hidden from
the customer, but available in the Registry under various keys

o see, e.8., HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management

- Some of these parameters were set at boot time, automatically based on
memory size, processor speeed

- Some of these parameters were set differently, depending on whether you
were running Server edition or Workstation

- Eventually, the Registry settings were documented

- Subsequently, David Solomon published a much better version of “Inside
Windows NT” that detailed how the OS worked!

SPE: Introduction 10/3/2018 65

What are the prospects for autonomic computing?

 Manual tuning does not scale to the quantity of computer resources that
need to be managed today
- Traditional capacity planning has given way to “provisioning”
= Virtualization, cloud services, containerization, micro-services, serverless
computing
« Can this provisioning be automated?
= QoS
= Machine Learning

- Anomaly detection & alerting
- Bottleneck detection needs to be informed by analytic models
= Feedback and control engineering
- Requires:
- clear, unambiguous measurements
- resources that can be provisioned dynamically

SPE: Introduction 10/3/2018

The Challenge of Virtualization

- Initial VM Host machine sizing appears relatively easy
- Stack 5-dimensional shapes efficiently into a 5-dimensional container

66

Resource Usage
CPU
Memory
Disk*
E g I Network
by
Time of Day

- being careful not to ever exceed the capacity of the container in any
dimension

SPE: Introduction 10/3/2018 67

The Challenge of Virtualization

- Note: the capacity of the container is sfatic, but usage behavior of
the guest machines is dynamic

<o

« Post-virtualization, it becomes much more difficult to assess how
much physical resources guest machines actually require
- e.g., Physical memory requirements are especially difficult to assess®

SPE: Introduction 10/3/2018 68

The Challenge of Virtualization

» Balance more efficient use of the
hardware against the performance risks
of over-commitment

- Leverage configuration options that are
not available in physical hardware:
= Is three CPUs enough?

= RAM partition sizes that are not available
in hardware configurations

« Virtualized SAN disks that cut across the
physical machines, representing an
independent virtualization layer

SPE: Introduction 10/3/2018 69

Virtualization capacity planning challenges

- “Guest machine physical memory requirements are especially
difficult to assess
- Memory management is very dynamic

- virtual memory management tends to allocate all the RAM that is available
- reclaims “older” memory areas on demand when there is contention

- applications like SQL Server that rely on memory-resident caching
immediately allocate all the RAM that is available on the guest machine

- well-behaved Windows server apps respond to Lo/Hi memory
notifications issued by the 0S

- SQL Server
- .NET Framework applications (including ASP.NET Web Server apps)

= Justifies over-committing physical memory on the VM Host

SPE: Introduction 10/3/2018 70

The Long View:

- Managing a large, virtualized computing infrastructure mainly
involves /oad-balancing of the hardware and rapid provisioning of
new guest machines that execute in an application c/uster when they
begin to encounter constraints.

- This mode of operation is reactive, rather than proactive, which flies
in the face of 40 years of effective data center capacity planning.
- Note: the mega-datacenters that are devoted to servicing a small
number of huge, monolithic application suites do not face this problem
- e.g., Google, Facebook, AWS, Microsoft Azure

- But the traditional corporate IT datacenters, trying to support a
heterogeneous mix of applications, do!

SPE: Introduction 10/3/2018 71

The Challenge of Virtualization

- Virtualized infrastructure in the corporate IT datacenter introduces
resource sharing, amid complex, heterogeneous configurations

VM Host machines “ Application Guest machines

- Unfortunately, no single view of the infrastructure is adequate or
complete

- Shared storage layer

- Shared networking infrastructure
- VM Host clusters

- Guest machines (often clustered)
* N-tier layered applications

SPE: Introduction 10/3/2018 72

The Performance Monitoring challenge:

= No single view of the infrastructure topology is adequate or complete:

e

e Physical Disk ® Routers * CPUs ® Processes e Service levels e Includes the
and controller e Load balancers e RAM o Virtual e Delays network
utilization e Cache VM scheduling memory e Component Round Trip

e storage o SLAT (includes GC) Response time (RTT)
hierarchy e VVirtual Device Times

e Cache service times ¢ HA Clustering

= Consequences:

- Absence of accurate measurement data limits the effectiveness of automatic
feedback and control mechanisms

- Hypervisor provides familiar Load Balancing, priority scheduling and QoS
reservations tuning options

SPE: Introduction 10/3/2018 73

Virtualization capacity planning challenge:

- Virtualized infrastructure presents significant challenges to
traditional data center capacity planning practices

= Virtualization has only a minor impact on guest machine performance
so long as the resources of a massively over-provisioned VM Host
machine are not over-committed

- But, when over-commitment occurs, the performance impact can be
severe

- as a consequence of the black box approach

- Plus, untangling the root cause of the performance problems is difficult
» due to the complexity of the environment and the limited vision of the tools

SPE: Introduction 10/3/2018 74

Virtualization capacity planning challenge:

- Virtualized infrastructure presents significant challenges to
traditional data center capacity planning practices

= The potential for resource contention is minimized when the VM Host
machine’s resources are underutilized, but that sacrifices efficiency

= Goal: run hardware systems that are balanced and guest machines that
are right-sized

- Note that dynamic load balancing (e.g., VMWare vMotion) is potentially
disruptive

SPE: Introduction 10/3/2018 75

Virtualization capacity planning challenge:

- Virtualized infrastructure presents significant challenges to
traditional data center capacity planning practices

- Partitioning introduces the potential for resource contention, especially
in the case when the VM Host is over-subscribed
- Round-robin (fair) + priority-based scheduling mechanisms at the Processor

- Dynamic memory management, including inflating a guest machine
physical memory balloon

- By design, paravirtvalization treats the guest machine as a black box
- With the exception of a few, targeted Windows Hyper-V “enlightenments,’
there is no ability to feed-forward guest machine service level/
measurements into the physical resource scheduling algorithms

SPE: Introduction 10/3/2018 76

When does Guerilla Capacity Planning work?

- Massive computing resources devoted to large-scale, monolithic web
properties tends to create predictably stable configurations

= Relatively easy to load balance using simple, round-robin Request
scheduling

- Once they reach a critical mass, forecasting incremental application
growth is also straight-forward

= Predictive analytic modeling techniques can also be applied

- Option to divert applications with very variable resource
requirements to on-demand, pay-for-play, public Cloud Computing
resources

SPE: Introduction 10/3/2018 77

Virtualization capacity planning challenge:

- Virtualized infrastructure presents significant challenges to
traditional data center capacity planning practices

- Many current industry Best Practices are based on experience with very
large scale, monolithic web sites & services

- However, in most corporate data centers, the IT department must
manage a diverse portfolio of application workloads

= Result: the VMs residing on a given VM Host represent a complex,
heterogeneous, and combustible mixture

- With many different server applications running on each VM Host and
sharing its physical resources

SPE: Introduction 10/3/2018

Virtualization capacity planning challenge summary

- Virtualized infrastructure presents significant challenges to
traditional data center capacity planning practices

- Guest machine performance suffers when
- the guest machine is under-provisioned
- or -—
- the VM Host machine is over-committed

= Plus, configuring more resources than the guest requires can impact
other resident guest machines

= Virtualization of clock interrupts interferes with the quality of guest
machine performance from internal measurements

78

R RRRRRRRRERRERRRRRRRRyimREW

Provisioning VM Host machines

Condition Who suffers a performance penalty
Over-committed VM Host All resident guest machines suffer
Efficiently provisioned VM Host No resident guest machines suffer

No guest machines suffer, but hardware

Over-provisioned VM Host o
cost is higher than necessary

Under-provisioned Guest Guest machine suffers

- and “right-sizing” the guest machines

R E———S——————————_———_—
Virtualization Configuration strategies

Very Large scale hardware
a few large scale guest machines (e.g., large database servers)

Partitioned Guest machine right-sized to underlying physical hardware
e.g., 15 vCPUs outperforms 16 vCPUs on a physical machine with 15
physical CPUs/core
e o « VvCPUs <= Physical CPUs
Over-pr ovisioned - Y virtual RAM <= Machine memory

large number of smaller guests
heterogeneous workloads
variable demand

vCPUs > Physical CPUs

Y. virtual RAM > Machine memory

Efficiently provisioned

large number of smaller guests

Over-committed * heterogeneous workloads
. « variable demand
(over-subscribed) . vCPUs >> Physical CPUs

Y. virtual RAM >> Machine memory

SPE: Introduction 10/3/2018 81

Hypervisor
Architecture

* Interrupt processing

1.
2,
3.

hardware interrupt
native device driver

virtual device routing &
translation

transfer to guest machine

virtual hardware interrupt
processing

synthetic device driver
application scheduling

VM Worker process

Child Partition

Application

Virtualization Synthetic

Device Driver

Hardware

Service Device Driver
Provider

(VSP) | 1

Virtualization
Service
Client
(VSC)

= Interrupts ~

Hypercall
Interface

SPE: Introduction 10/3/2018 82

Hypervisor
Architecture

- Performance impacts

= increased code path

- mitigated somewhat by “enlightened”
device driver software

= Pending interrupt time accumulates
if an available guest machine Logical
Processor cannot be dispatched
immediately

 Hardware clock (rdtsc) instructions
and timers are also subject to
virtualization (with similar delays)

Child Partition

Applicati 4—‘
VM Worker process _ Sl

Virtualization Synthetic
Service Device Driver

Provider

(VSP) t

Virtualization
Service
Client
(VSC)

Interrupts
[|
Device Driver

Hypercall
Interface

Hardware

Performance impact of virtualization “overheads”

* Minor performance impact so long as the VM Host is not
over-committed
= 5-15% stretch factor due to:
- Instruction emulation
- Guest VM Scheduler overheads
- Virtual interrupt processing

- However, expect 3 major performance impact when the VM
Host machine is over-committed
- e.g., Guest Machine Memory ballooning

Performance impact of virtualization “overheads”

 Instruction emulation

- Whenever the guest machine (usually the guest 0S) executes restricted
instructions that must be trapped by the VM Host layer and then
emulated

- CPUID
- 0S accessing MSRs
- accessing 10 ports

- invalid operations (page faults, attempts to divide by zero)
* rdtsc

e.g., Hyper-V intercepts

Hyper-V Hypervisor Root Virtual Processor\Total Intercepts/sec
WS2012VMHOST

3/24/2015

per Second

1:20 PM

B Total_Intercepts_sec [SUM]

Hyper-V Hypervisor Root Virtual
Processor\MSR_Accesses_sec

6.000

1:50PM 2:00PM 2:10PM 2220PM 2:30PM 240PM 2:50PM

Time of Day

puodag Jad

Benchmarking results (Hyper-V)

CPUs .
Confisuration of per elapsed time stretch ‘ Thruput Hyper-V
8 .) (minutes) factor % Run Time
machines machine |
1 90 [X N] 1 [X N]

4

Native machine

Root Partition 1 4 100 1.11 1 6%

Guest machine 1 4 105 1.17 1 8%
Under-provisioned Guest o

machine 1 2 147 1.63 1 4%

2 Guest machines 2 2 178 1.98 2 6%

4 Guest machines 4 2 370 4.08 4 6%

I ———————————..
Benchmarking results (Hyper-V)

- Timing test executes 10-17% longer, compared to Native baseline

- Under-provisioned guest machine pays a significant penalty
= stretch factor = 1.6

- Scalability improvements can mediate the performance impact
= stretch factor = 2.0; throughput = 2x

- Over-committed VM Hosts can cause significant degradation

- Setting guest machine Priority or making a QoS capacity reservation
will protect a cherished workload

EEEEEE————————————_ i
Benchmarking results (Hyper-V)

 Over-committed VM Hosts can cause significant degradation

- Setting guest machine Priority or making a QoS capacity reservation
will protect a cherished workload

H CPUs Best case

Configuration guest per elapsed
MEIGES machine time

stretch

factor

Recognizing under-provisioned guest machines

- Hypervisor does not have direct access to internal performance
counters
- With one notable exception of an “enlightenment” used by the Hyper-V
Memory Manager
 Manual tuning knobs are provided

= Not enough CPUs defined to the guest W

- VMware ESX (relaxed) chained processor scheduling discourages over-
provisioning the guest VM

- Evaluate the System\Processor Queue Length counter
= Not enough RAM provisioned for the guest
» Chronic shortage of Memory\Available Bytes
- High rates of hard paging to disk (Memory\Pages input/sec)

Recognizing over-committed VM Host machines

 Over-commitment has the potential to impact every resident guest
machine

= Without some degree of over-commitment, however, the Host machine
hardware will be under-utilized!

s > 1 # Virtual Processorsguesti > Host Machine #CPUs
- Guest machine CPU Ready (milliseconds)

o Y1 sizeof (RAM) ,,.s,; > Host Machine sizeof(RAM)
- Guest machine Balloon Memory

= Qver-subscribed is more apt term than Over-committed
- Note: Shared disk and networking hardware can also be over-subscribed

Over-committed VM Host machines

 Over-commitment has the potential to impact every resident guest machine

- Automatic load balancing using active migration of guest VMs
= e.g., VMotion
= But, without an understanding of the guest machine application state, a feature
like vMotion is potentially disruptive, and

= Hypervisor does not have direct access to internal performance counters to assist
in its decision-making

- So, manual tuning knobs are provided
s Load balancing at the VM Host level
= Scheduling Priority settings
= QoS Reservations and Limits

Over-committed VM Host machines

- Hypervisor does not have direct access to guest machine internal
performance indicators
- With one notable exception of a proprietary “enlightenment” used by

the Hyper-V Memory Manager

 Manual tuning knobs are provided
= Scheduling priority settings
= QoS reservations and limits
= Crude controls that are difficult to implement (trial & error)

- Given the size and complexity of the configurations SysAdmins must
manage, these tuning options are poor alternatives to goal-oriented
control systems that have access to guest machine feedback

Over-committed memory in Hyper-V

 Hyper-V attempts to equalize Memory Pressure across all Windows VMs
with the same dynamic memory allocation priority

= an “enlightenment” used by the Hyper-V Memory Manager
« Pressure is a Memory contention index (V/;):

guest machine Committed Bytes * 100

current machine memory allocation

= guest machine paging increases as Memory Pressure >> 100
= interfaces with the “hardware” hot memory Add/Remove facility
= memory priority creates “bands” of machines based on Memory Pressure

R ——
Addendum

- Answer to most performance questions: It depends!
- Measure, measure, measure
> (Remember the “lighthouse effect”)

- Performance anti-patterns and worst-case performance
- best case performance
- gverage performance

- Open source benchmarking projects: (link)

https://github.com/topics/benchmark

R ——
Addendum

* Algorithms and complexity
= Problems of scale:
- what happens when 7 grows large?
= Data structures: Arrays, Lists, trees, etc.
= Search
- linear: 0(n/2)
- binary: 0(log n)
= Sort
- Bubble: 0(n2)
» QuickSort, Heap: O(n log n)
= SortedBinaryTree.Insert()
- What happens to scalability when O = n" ?

NP-complete

« e.g. Hamiltonian Path
= Is there a path through all the nodes that touches each

n
|

" P

ode only once?

! possible paths

Calculate the shortest path?

that returns to the origin (Hamiltonian cycle)
ractical examples:

Chess Knight’s traversal

- shortest path (traveling salesman)
- optimize placement of components on a computer chip
- static analysis of all possible code paths through a library

routine

- optimize computer resources efficiently over a set of

geographically-distributed network nodes

Insight from Number theory

- Project to establish Mathematics as a formal system (based on a set of

axioms, like Geometry), using first-order Logic (predicate calculus)
and Set theory (Cantor, Zermolo-Fraenkle)

s e.g., What is a number?

- Russell & Whitehead: using Set theory and logical types
- e.g., The number 3 is the set of all things that have that number of items in them.

 Demolished forever by Gddel's Incompleteness Theorem, namely

= for any computable axiomatic system powerful enough to describe the
arithmetic of the natural numbers (e.g., Peano)

= If a (logical or axiomatic formal) system is consistent, it cannot be
complete.

- The consistency of axioms cannot be proved within their own system.

https://en.wikipedia.org/wiki/Peano_axioms

Insight from Number theory

» Turing’s Halting problem:
= Is there a deterministic procedure for deciding whether a given program
will execute to completion, computing the correct answer?
= No, it is undecidable for Turing machines (note: Church’s thesis)

- Informal proof:
- suppose a computer program is executing an algorithm that is NP-complete

» There is no provably correct method that can accurately decide whether
- the program is defective, i.e., it is in an infinite loop, and should be canceled, or
- the program is making program progress towards a solution

R RRRRRRRRERRRRRREREREEBEEERDRERRRRRRIY
Computationally intractable problems

- The argument that computers are finite-state machines does not help:
= A machine with finite memory has a finite number of states,

= §$0, any deterministic program on it must eventually either halt or repeat
a previous state

= but how many states are there?
- 3 machine with 1 Million bits = 21,000,000 gogsible states

» Undecidable becomes intractable

« Conclusion: beware of NP-complete algorithms

- e.g., optimizing computer resources efficiently over a set of
geographically distributed network nodes, based on the workload

NP-complete

- practical examples:

- shortest path (traveling salesman)

- optimize placement of components on 3
computer chip

- static analysis of all possible code paths through
a library routine

- optimize computer resources efficiently over a
set of geographically-distributed network nodes

SPE: Introduction 10/3/2018 101

Questions

SPE: Introduction 10/3/2018 102

References

- Woodside, et.al., “The Future of Software Performance Engineering,”
Proceedings Future of Software Engineering, \EEE, 2007,

« Friedman, "Virtual memory management in VMware*
* Friedman, “Hyper-V performance”

http://performancebydesign.blogspot.com/2013/06/virtual-memory-management-in-vmware.html
http://performancebydesign.blogspot.com/2017/12/hyper-v-performance-introduction.html

