
Mark Friedman

Demand Technology Software

markf@demandtech.com

http://computerperformancebydesign.com

1

mailto:markf@demandtech.com
http://computerperformancebydesign.blogspot.com/

 Background

 Review the major changes adopted in HTTP/2 protocol
 multiplexing

 server push

 Priority

 Performance impact of web site architecture

 Highlight areas where HTTP/2 and the default TCP
congestion control policy may conflict

2

 First change to the HTTP standard since 1999
 HTTP/1.1 was a set of changes associated with session-oriented, web

applications that deliver dynamic HTML web pages

 IETF HTTP Working Group recently adopted most, but not all,
protocol changes proposed in a large scale Google experiment
called SPDY
 Designed to improve web application performance

 HTTP/2 support in the web server and client will build on SPDY

 SPDY benefits certain types of web sites more than others

3

4

▪ Mark Nottingham, chairperson of the IETF HTTP Working Group,
from his blog, setting expectations for the transition to HTTP/2.

https://www.mnot.net/blog/2014/01/30/http2_expectations

 Google’s SPDY experiment previews the most important of the
changes to the HTTP standard

 Changes justified based on browser-based Real User
Measurements (RUM) of web app performance

 Web site workload characterization:

 HTTP/2 helps monolithic sites, but not necessarily federated
web publishing

5

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires extensive changes at both the web
client and web server

6

 JavaScript serialization delays

 Network-enabled applications that do not run inside the
browser, but do rely on web services
 e.g., native iPhone or Android apps

 TCP’s use of Acknowledgements to confirm delivery of
messages

 The TCP congestion control policy is unchanged
 Consider adjusting some of the TCP defaults if your web site goes to HTTP/2

 Plus, HTTP/2 cannot repeal the laws of Physics that make
network latency the fundamental source of web application
performance problems 7

8
See http://quoteinvestigator.com/2013/04/11/better-light/.

 Observational bias that favors the measurements we can readily
acquire without sufficient regard for how valid and reliable those
measurements are.
 Real User Measurements (RUM) of web Page Load Time were used to

validate and justify the HTTP/2 design decisions, despite their known
limitations

 Absent an understanding of the key characteristics of web application
workloads that most impact performance

9

 monolithic web publishing utilizes a very small number of domains

 federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

10

11

 Building the page requires access > 10 distinct domains
 Among the Top 500 web sites, some pull together content > 50 domains

 e.g., Requests to 3rd party Ad servers

 Some web publishing sites were federated deliberately to take
advantage of the web client’s support for concurrent TCP sessions
 Improved throughput because concurrent TCP sessions allow content from

the same domain to be downloaded in parallel

 Whenever the domains are co-located, this practice is known as sharding
 handshaking protocol required to establish each individual TCP session, so domain

sharding has to be done carefully

12

 Predecessor of HTTP/2 multiplexing

 Developed at Google

 Implemented on Chrome and across the Google web properties
 Developers report a 15% overall improvement in Page Load Times with SPDY

 Fewer TCP connections
 Smaller GET Requests
 number of packets shows 20% reduction
 Google Search page shows minimal improvement (already highly optimized)

 < 20 GET Requests (most of which are cached on the client)
 < 5 domains

 But looks promising for bandwidth thirsty sites like YouTube

 SPDY white paper reports 50% reduction in page load times

13

http://www.chromium.org/spdy/spdy-whitepaper

 Guy Podjarney, a CTO at Akamai blogs “not as SPDY as you thought”

 He reports,
 “SPDY, on average, is only about 4.5% faster than plain HTTPS, and is in fact

about 3.4% slower than unencrypted HTTP”

 SPDY improves performance under two sets of circumstances:
 monolithic sites that consolidated content on a small number of domains

 pages that did not block significantly during resolution of JavaScript files and .css
style sheets

 SPDY particularly benefits page composition for
1. complex web pages,

2. composed from Requests mainly directed to a single domain,

3. where multiplexing is able to re-use a single TCP connection effectively

14

http://www.guypo.com/not-as-spdy-as-you-thought/

 Is SPDY a worthwhile improvement or is it just making the public Internet
safer for cat videos (in HD, no less)?
 e.g., https://youtu.be/UIrEM_9qvZU with 16M views

 Overall, web Page size and complexity are increasing, however

 TCP Port number constrained to 16-bits, an upper limit on the number of
concurrent sessions, so any relief is welcome

15

Year Average web page size

2011 0.7 MB

2015 > 2 MB

https://youtu.be/UIrEM_9qvZU

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires changes at both the web client and
web server

16

 Web client sends GET Requests to a web server serially over a single TCP
connection.

17

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 Any follow-up GET Requests are delayed until the Response message
from the previous Request is received.

 This delay is the Round Trip Time (RTT)

18

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 RTT = 2 * Network latency

 RTT affects Time To First Byte; bandwidth and HTTP object size affect
Page Load Time

19

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 Web page composition (usually) requires multiple GET Requests

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time RoundTrips * RTT

where

RoundTrips = σ𝒊=𝟏
𝒏 𝒉𝒕𝒕𝒑𝑶𝒃𝒋𝒆𝒄𝒕𝑺𝒊𝒛𝒆

𝒊

𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒊𝒛𝒆
20

21

 Web servers are clustered using virtual IP addressing
 Sessionless (aka REST) Requests can be handled by any web server in the cluster

 Multiple domains can be accessed concurrently
 Benefits federated sites
 Benefits sharded sites

 Multiple sessions can be established for each domain
 Diminishing returns expected from multiple sessions

 Web services can be accessed asynchronously

 However, there is no explicit support for multithreading at the
application level for JavaScript running on the browser
 JavaScript files must be downloaded and executed serially

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time RoundTrips * RTT
where

RoundTrips = σ𝒊=𝟏
𝒏 𝒉𝒕𝒕𝒑𝑶𝒃𝒋𝒆𝒄𝒕𝑺𝒊𝒛𝒆

𝒊

𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒊𝒛𝒆

 A degree of parallelism is obtained due to multiple sessions and
multiple domains

 RTT is apt to vary by location/domain
22

1. The number of distinct domains

2. the number of GET Requests directed to each domain

3. the distribution of the size of those objects

 monolithic web publishing utilizes a concise number of domains

 federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

23

 To improve performance, the web browser in HTTP/1.1 downloads
individual content files in parallel

 Client can access multiple domains in parallel
 Dynamic and static content is often split across separate web servers

 Whenever these dmains are co-located, this is known as domain sharding

 Static content is often cached on a CDN or in-house “edge” network

 Client can open multiple sessions to each web server domain
 The official guideline is up six sessions per domain, but mileage varies with

the browser and the platform

24

 To improve performance, the web browser in HTTP/1.1 downloads individual
content files in parallel

 Effective when the sessions are relatively long-lived.
 Each new domain may require a DNS Lookup
 Handshaking for each new TCP Session requires 1 * RTT
 Handshaking for HTTPS requires an additional RTT

 This parallelism works under HTTP/1.x because the HTTP protocol was
originally designed to be sessionless and connectionless

 Any web server in the cluster can respond to any HTTP Request

 HTTP sits atop TCP, which is session-oriented, which many web applications do
exploit (e.g., session-aware ASP.NET apps on the Microsoft platform)

25

 Any web server in the
cluster can respond
to any HTTP Request

 Provisioned using
 Virtualization

 CDNs

 Cloud (e.g., AWS)

26

 Add explicit parallelism to the page using JavaScript to make
asynchronous XMLHttpRequests to web services after the page is
Loaded (aka, AJAX) and is (ostensibly) Ready for user input
 A Best Practice for accessing 3rd party Advertising services, for example.

 Note: The web client downloads JavaScript and executes it serially
 This is the reason why experts recommend placing all external JavaScript

hrefs near the end of the HTML message

27

Web client

Web Server

Response
GET

Request

RTT

Time 28

 Web browser can send multiple GET Requests without waiting for each
individual Response

Web client

Web Server

Response
GET

Request

RTT

Time 29

 Web server can send Response messages in any sequence

 Segments from multiple Response messages can be interleaved

Web client

Web Server

Response
GET

Request

RTT

Time 30

 Achieve the same or higher levels of concurrency as HTTP/1.1 over a
single TCP connection

 Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

1. DNS Lookup

2. HTTPS handshaking
 SPDY exchanges two fewer packets to establish the secure connection

3. GET Request to www.facbook.com
 Very large amount of cookie data is transmitted (> 1 packet)

4. FB server-side php builds an initial, custom Response message
 ~ 550 KB

 requires 2 seconds to transmit

 contains a large number of external references: scripts, styles sheets,
image files, video, and advertising content

31

http://www.facbook.com/

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 Steps 1-4: SPDY = HTTP/1.1

5. Loading the full page then requires

 216 GET Requests and Response message sequences

 transfers 7.24 MB of data over the wire

 3.6 seconds until Page Load event fires

6. JavaScript issuing XmlHttpRequests in the background continues
to execute for ~20 seconds more

32

 Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

 Step 5: SPDY HTTP/1.1.
 For example:

 Early in the original Response message, 5 external .css files are
referenced:

 Residing on a Facebook web site affiliate devoted to static content:

href="https://fbstatic-a.akamaihd.net/
33

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yB/r/PQzGy_gthig.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yJ/r/cuqNSNZ2dlI.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yi/r/RH3rvDA7dSR.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yf/r/QFcEQNF3244.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yD/r/flQGK0biLk6.css" />

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 Steps 1-4: SPDY = HTTP/1.1

 216 GET Requests

 But ¾ of the Requests are directed to just two web sites

 fbstatic domain where common style sheets, image files, and
scripts are located

 an fbcdn-profile domain where content specific to my
Facebook profile and set of Friends was stored.

34

 Clustered & Partitioned
 Front-end proxy/switch

 PHP web servers

 Back-end file servers
 static content

 profile content

 Persistent back-store

 Massively parallel
 Any web server in the cluster can

respond to any connectionless
HTTP Request

35

switch

Shared
Disk

texttexttext

php static profile

 HTTP/1.1
parallelism
requires using
multiple,
concurrent TCP
sessions

36

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n
s

TC
P

Co
n

n
ec

ti
o

n
s

 current SPDY
implementation:

 one TCP session
per tier

 requires session-
aware web servers
at all three tiers

 not noticeably
faster than
HTTP/1

37

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

 SPDY implementation not noticeably faster than HTTP/1.1 with
parallel TCP sessions

 monolithic web site

 (> 75% of the Requests two Facebook domains

 web servers must be session-aware

 static content can be cached effectively
 on the CDN

 or in the web client

38

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 99 GET Requests 4.4 MB landing page
 Home page html: 500 KB

 Requests accounting for > 3 MB all directed to a single domain
 3 style sheets: 300 KB

 JavaScript file for video playback: 900 KB

 common.js library: 350 KB

 50 jpeg thumbnail images that serve as link buttons to the advertised videos

 ten smaller graphic sprites, each 1.5-15 KB, from a second domain

1. 5 JavaScript framework files from https://apis.google.com.

 10 JavaScript files from a 3rd domain

 10 small ads (~500 bytes each) from doubleclick (a Google web property)

 1 rich media display ad: 250 KB (from another Google web property)
39

 Requires a new generation of web server software that knows how
to consolidate Response messages into a single, session-oriented
stream
 Responsive web design still required due to the wide variation in the

capabilities of web clients/platforms

 HTTP/2 changes do not impact native phone or tablet apps that call web
services directly

 Consider TCP congestion control policy changes in order to maximize
throughput over a single TCP connection

40

41

switch

Shared
Disk

texttexttext

php static profile

TCP Connection

 Eventually,
 Consolidating content on fewer

domains should make web site
administration easier

 Undo any extreme web domain
sharding that was done for HTTP/1.1

 But that might be a whole bunch
of web site re-engineering!

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires changes at both the web client and
web server

42

 Priority would help web servers differentiate among multiple GET
Requests sent by the web client

 Priority was not implemented in the SPDY experiment

 How HTML markup will indicate priority to the browser is currently
undefined
 e.g., Microsoft has been experimenting with a non-standard lazyload

keyword in IE 10

43

 Server Push would allow HHTP/2 web servers to send Response
messages before specific GET Requests are received from the web client

 e.g.,
 as soon as the initial Response message is handed to the TCP/IP stack for

delivery

 anticipating that the web client will making these Requests

 the web server could start to push .css and image files referenced in the
original Response message to the web client

 Goals:
 improve line utilization

 eliminate the need to inline scripts and style sheets for performance reasons

44

 Server Push specification
 a new HTTP/2 frame called a PUSH_PROMISE

 used by the web server to notify the client that it intends to push content into the
interleaved Response message stream not yet Requested by the client.

 Meanwhile, the web client might be searching its cache to locate the same
HTTP object being pushed by the server

 Web client can send a RST_STREAM message to reject the server push on a
cache hit

 Significant risk that PUSH_PROMISE and RST_STREAM messages could
cross in the mail for cacheable, static content

45

 Primarily helps on uploads
 The same Header data is sent for each GET Request in HTTP/1.1

 cookie data

 Host name and User Agent fields are sent in clear text

 In HTTP/2,
 the Server retains Header fields from earlier Requests

 subsequent GET Requests to the same domain need only send added or changed
Header fields

 increases the number of GET Requests that require multiple packets

 reduces the performance penalty associated with large cookies

46

 In HTTP/2, improved performance with Transport Layer Security (TLS)

 unlike SPDY, does not require HTTPS

 continues to plug into TCP Port 80

 TLS can be requested at connection time

 A fix that saves 2 handshaking packets to create a secure connection during the initial
TCP session setup

 HTTP/2 also supports sending binary data fields in Request streams
 binary data will initially present more challenges to hackers

 But, expect they will quickly overcome this new obstacle

47

 Multiplexing
 biggest change, but may require extensive web site re-engineering to take full advantage of

 Server Push
 need to figure out the interaction with caching and CDNs

 Priority
 need to understand the browser impact; will the DOM understand lazy loading of resources?

 Header compression
 helps reduce the size of GET Request messages
 requires additional web server changes to preserve header data between interactions

 Improved performance with Transport Layer Security
 nice to have

 HTTP/2 bring significant changes to both the web client and web server, with
the protocol embracing session-oriented behavior by default 48

 HTTP/2 tries to push as many bytes as possible into the TCP Send
Window of a connection as early and as often as possible.
 Maximize HTTP message throughput over a single TCP connection

 Meanwhile, the TCP congestion control policy is conservative about
overloading a connection
 slow start, determines the small, initial size of the cwin
 the size of the cwin ramps up slowly – additive increase
 backs off the transmission rate sharply when a congestion signal is received

over a connection
 multiplicative decrease
 the most common congestion signal is a Send Window full condition, corresponding

to a Sender sending data faster than the Receiver can receive and process it

49

 The conservative TCP congestion control policy
 initial size of the cwin = 2 packets
 additive increase adds 1 packet to the cwin each Send interval

 So, for example,
 over a connection with an RTT = 100 ms
 maximum throughput = 10 * cwin / sec
 during the first second of the connection:

 cwin ranges from 2 – 11 * 1.5 KB pac kets
 Sender can only transmit 55 packets, or about 80 KB

 In Windows, change the TCP defaults:
Set -NetTCPSetting –SettingName Custom

–CongestionProvider CTCP

–InitialCongestionWindowMss 16

50

 The conservative TCP congestion control policy
 on a congestion signal,

 multiplicative decrease cuts the size of the cwin to cwin / 2

 and reverts to slow start

 So, in HTTP/2 with one active TCP connection,
 multiplicative decrease reduces the throughput over the connection by 50%

 But, in HTTP/1.1 with parallel connections active between the client and server,

 a single congestion signal has much less impact on overall throughput

51

 Impact of a
congestion signal on a
single connection is
one of the reasons
why SPDY does not
consistently
outperform a well-
designed HTTP/1.1
web site

52

Front End

Proxy Servers

Back End

File Servers

switch

Shared
Disk

 The conservative TCP congestion control policy
 multiplicative decrease sets the size of the cwin = cwin / 2 and reverts to

slow start

 Impact of a congestion single on a single connection is one of the reasons why
SPDY does not consistently outperform a well-designed HTTP/1.1 web site

 In Windows, change the TCP defaults:
Set -NetTCPSetting –SettingName Custom

–CwndRestart True

53

 HTTP/2 multiplexing is based on Google’s SPDY experiment

 HTTP/2 makes the protocol more explicitly session-oriented,
with implications for
 the web server
 the web client
 web site re-engineering and re-architecture

 HTTP/2 throughput goals and default TCP congestion control
policies are in conflict

54

55

