C C

1 theilr 1m pact

mailto:markf@demandtech.com
http://computerperformancebydesign.blogspot.com/

Presentation Outline

Background

Review the major changes adopted in HTTP/2 protocol

multiplexing
server push
Priority
Performance impact of web site architecture

Highlight areas where HTTP/2 and the default TCP
congestion control policy may conflict

Background

First change to the HTTP standard since 1999

HTTP/1.1 was a set of changes associated with session-oriented, web
applications that deliver dynamic HTML web pages

IETF HTTP Working Group recently adopted most, but not all,
protocol changes proposed in a large scale Google experiment
called SPDY

Designed to improve web application performance
HTTP/2 support in the web server and client will build on SPDY
SPDY benefits certain types of web sites more than others

“HTTP/2 isn't magic Web performance pixie dust; you
can't drop it in and expect your page load times to
decrease by 50%. It’'s more accurate to view the new
protocol as removing some key impediments to
performance; once browsers and servers learn how and
when to take advantage of that, performance should
start incrementally improving,”

Mark Nottingham, chairperson of the IETF HTTP Working Group,
from his , setting expectations for the transition to HTTP/2.

https://www.mnot.net/blog/2014/01/30/http2_expectations

Background to the HTTP/2 changes

Google’s SPDY experiment previews the most important of the
changes to the HTTP standard

Changes justified based on browser-based Real User
Measurements (RUM) of web app performance

Web site workload characterization:
HTTP/2 helps monolithic sites, but not necessarily federated
web publishing

HTTP/2 introduces

Multiplexing
Priority

Server Push

Header compression

Improved performance with Transport Layer Security
(compared to HTTPS)

HTTP/2 requires extensive changes at both the web
client and web server

What HTTP/2 does not address

JavaScript serialization delays

Network-enabled applications that do not run inside the
browser, but do rely on web services
e.g., native iPhone or Android apps

TCP’s use of Acknowledgements to confirm delivery of
messages

The TCP congestion control policy is unchanged
Consider adjusting some of the TCP defaults if your web site goes to HTTP/2

Plus, HTTP/2 cannot repeal the laws of Physics that make
network latency the fundamental source of web application
performance problems

Using RUM measurements to justify the change sufters
from the “Streetlight effect” (aka “Drunkard’s Search”)

(Mo, 1 DROPPED | THEN WHY ﬁg‘f :
:.::'." - ~ X ' ; VOU LOGK)
S 1M LOOKING Ao BT TWoBLOCKS | Cop 17 HERE?
T cor 1y ouaRTER) - PR J 5ail\ DOWN THE :
U} DROPPED! o B iy 25| BT/

See http://quoteinvestigator.com/2013/04/11/better-light/.

“Streetlight effect” in computer performance

Observational bias that favors the measurements we can readily
acquire without sufficient regard for how valid and reliable those

measurements are.
Real User Measurements (RUM) of web Page Load Time were used to
validate and justify the HTTP/2 design decisions, despite their known
limitations
Absent an understanding of the key characteristics of web application
workloads that most impact performance

Tror my auarTer) % /4
Y 1 DROPPED! '
iyt

Key characterization of web application workloads that
most impact performance under HTTP/2

monolithic web publishing utilizes a very small number of domains

federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

10

DOM Explorer

» B (% B % [=] X

SUMMARY DETAILS

Console %1 Debugger Network

LRL

fpbfarfp/default/r0GORM 30CqkHrpfinstance. js?_=a3ba7
fpb/farfcfdefault/rOGORM30CqkHrpfafter_features/ab2a22c20d.js?_=al
{pb/arjcfiavascript/r0TEMgBRropdrp figmodal f23bdf533 1b.js7_=cfcd2

https:/fis. washingtonpost. compb/resources fis/pluagins /plugin. jouery.co

fpb/far fcfiavascript/r 0TEMgBRrcpdrpfconf-production/b 541 128 5o
fpb/far/cfiavascript/r0TEMgBRrcpdrp/modal-css/238c 25806 7. css? _

fpb/far fcfiavascipt/r0TEMgBRrcpdrp/fidentity-management,a925dd0

https: /fis. washingtonpost,com/pb/resources fisjutils fmain.js

https:/fis. washingtonpost, com/wp-stat/advertising/pseudo-staticidentityretargeting. js
{pb/farjcfiavascript/r0TEMgBRropdrpfwapo-production8f8c39c3da. js?_=8b31b

https: /fcss. washingtonpost, comwp-stat/wapo -sass-assetsfonts Franklin-ITC Pro-Ligh. ..
/pb fresourcesjassets ffonts fwebtype Franklin-ITC-Pro-Llight/b 147beet eh48-462 1-862 1. ..
https:/fcss. washingtonpost, com wp-stat/fwapo-sass-assets fonts Franklin-ITC-Pro-Bold. ..

/pb fresources fassets ffonts fontawesome latestffonts ffontawesome-webfont. eot?

https://css. washingtonpost, comfwp-stat/wapo-sass-assetsfonts/Postoni-Standard-Re. ..
https: /fcss. washingtonpost, comwp-stat/wapo -sass-assetsfonts Postoni-Standard -Bal. ..
https: /s, washingtonpost, com fwp-stat/wapo-sass-gssetsfonts diversions-icons/dive. ..
https:/fs. tagsrvcs. com/ 2242433 /analytics, js?pp=washingtonpost. com&sn=washingto. ..

https:/fc.amazon-adsystem.comfaax 2 famzn_ads.js
https:/frequest-nformation-api. ext.nile. works /v 1finfo?calback=ch

https://s.amazon-adsystem. com fiui37d =forester -did ex-fargs =%3Fid %30 2fac2d4e-1...

https:/jcss.washingtonpost. comfwp-stat/ad loaders latest/css fwp. css
https:/jox-d.washingtonpost. servedbyopen. comfw) 1. 0 fistag?nc=70 1-Washingtonpost

https: /fimg.washingtonpost. com/rw fsites ftwpweb fima/sprites fad-sprite, png?t=201302...
https:/faax. amazon-adsystem. com fe/dthbid?src=304 180 =https 3634 36 2F Se2Pwwew . w. .

fwp-statfad loaderslatest fjs minfwp_secure.min.js?cachebuster=27513

https: //ssl. washingtonpost, comjapps /national fiweather fapifv 2 fweather ffformat=json&. ..

https:/fpartner.aoogleadservices. comfapt/pubads_impl_74.3s

https:/jrtax. criteo.comfdeliveryfriafrta.js'netld=1180&cookieMame =cto_was&rnd=91...
https://jz.moatads. comfwashpost42 1KgtH31/moatcontent. jsMloyalty_bsg=1%avgsestim...

£
[terns: 174

Sent: 172.64 KB (176,731 bytes)

www.washingtonpost.com - F12 Developer Tools

Ul Responsiveness

Protocol

HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
HTTPS
SPDY/3
HTTPS
HTTPS

Profiler

Method Result

GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200
GET 200

Memory

Type

applicationfjavascript
applicationfjavascript
applicationfiavascript
applicationfiavascript
application fjavascript
text/fcss
applicationfjavascript
applicationfjavascript
applicationfx-java. ..
applicationfjavascript
applicationfoctet-s. ..
applicationfvnd.ms. ..
applicationfoctet-s. ..
applicationfvnd. ms...
applicationfoctet-s. .,
applicationfoctet-s...
applicationfoctet-s. ..

applicationfix-java. ..
applicationfiavascript
image fgif

text/fcss
textfjavascript
image fvnd.ms-photo
textfjavascript
textfjavascript
application fison
textfjavascript
textfjavascript
applicationfi-java...

Received: 4.30 MEB (4,512,684 bytes)

Emulation

Received

3986
2.51KB
401B
1.37KEB
2.61FKE
1.19KE
21.48 KB
113.80 KB
2,56 KB
29.14KB
32.85KB
.63 KB
350,46 KB
69.85 KB
056.05 KB
68,10 KB
0.59 KB
221B
15.11 KB
1656
3366
3298 KB
173.94KE
2,13KB
1.45 KB
112.54KE
4.35KB
143.55 KB
2.70FKE
1.35KE

Initiator Tirings
<sriptx I
<script l
<script |
<acripts |
<scripts |
<link rel="style... |
<script> |
<sripts |
<sriptx |
<script |
Efont-face |
Efont-face |
Efont-face |
Efont-face |
@font-face
Efont-face
Efont-face
<sript>

<sript>

<sript=

<img=

<link rel="style...
<script=
background-image
<script=

<sript>
XMLHttpRequest
<sript=

<script=

<sCript=

Federated web sites

Building the page requires access > 10 distinct domains
Among the Top 500 web sites, some pull together content > 50 domains
e.g., Requests to 3™ party Ad servers

Some web publishing sites were federated deliberately to take
advantage of the web client’s support for concurrent TCP sessions

Improved throughput because concurrent TCP sessions allow content from
the same domain to be downloaded in parallel
Whenever the domains are co-located, this practice is known as sharding

handshaking protocol required to establish each individual TCP session, so domain
sharding has to be done carefully

12

SPDY

Predecessor of HTTP/2 multiplexing
Developed at Google

Implemented on Chrome and across the Google web properties

Developers report a 15% overall improvement in Page Load Times with SPDY
Fewer TCP connections
Smaller GET Requests
number of packets shows 20% reduction

Google Search page shows minimal improvement (already highly optimized)
< 20 GET Requests (most of which are cached on the client)
< 5 domains

But looks promising for bandwidth thirsty sites like YouTube
SPDY reports 50% reduction in page load times

L

http://www.chromium.org/spdy/spdy-whitepaper

SPEY @riticisim

Guy Podjarney, a CTO at Akamai “not as SPDY as you thought”

He reports,

“SPDY, on average, is only about 4.5% faster than plain HTTPS, and is in fact
about 3.4% slower than unencrypted HTTP”

SPDY improves performance under two sets of circumstances:
monolithic sites that consolidated content on a small number of domains

pages that did not block significantly during resolution of JavaScript files and .css
style sheets

SPDY particularly benefits page composition for
complex web pages,
composed from Requests mainly directed to a single domain,
where multiplexing is able to re-use a single TCP connection effectively

14

http://www.guypo.com/not-as-spdy-as-you-thought/

Evaluating SPDY

Is SPDY a worthwhile improvement or is it just making the public Internet
safer for cat videos (in HD, no less)?
e.g., with 16M views

Overall, web Page size and complexity are increasing, however

Year Average web page size

2015 >2 MB

TCP Port number constrained to 16-bits, an upper limit on the number of
concurrent sessions, so any relief is welcome

2

https://youtu.be/UIrEM_9qvZU

Major new features in HT'TP/2:

Multiplexing
Priority

Server Push

Header compression

Improved performance with Transport Layer Security
(compared to HTTPS)

HTTP/2 requires changes at both the web client and
web server

16

Page composition in HTTP/1.x

Web client sends GET Requests to a web server serially over a single TCP
connection.

RTT
Web client

GET % Response
Request P Request Request
Web Server

Page composition in HTTP/1.x

Any follow-up GET Requests are delayed until the Response message
from the previous Request is received.

This delay is the Round Trip Time (RTT)

RTT
Web client ¢ >

GET ™ GET GET
Response
Request * ', Request ', Request
Web Server
X X

18

Round Trip Time (RTT)

RTT = 2 * Network latency

RTT affects Time To First Byte; bandwidth and HTTP object size affect
Page Load Time

RTT
Web client

GET % Response
Request P Request Request
Web Server

YSlow scalability model

Web page composition (usually) requires multiple GET Requests

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time = RoundTrips * RTT

where

tpObjectSize,

ht
n
RoundTrips =

Scmlaia Z packetsize

20

Parallelism in HTTP/1.1 rendering

Web servers are clustered using virtual IP addressing
Sessionless (aka REST) Requests can be handled by any web server in the cluster

Multiple domains can be accessed concurrently
Benefits federated sites
Benefits sharded sites

Multiple sessions can be established for each domain
Diminishing returns expected from multiple sessions

Web services can be accessed asynchronously

However, there is no explicit support for multithreading at the
application level for JavaScript running on the browser
JavaScript files must be downloaded and executed serially

A better YSlow scalability model

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time ~ RoundTrips * RTT

where

httpObjectSize,
RoundTrips = Z?:l) l

packetsize

A degree of parallelism is obtained due to multiple sessions and
multiple domains

RTT is apt to vary by location/domain

22

Key characterization of web application workloads that
aftect performance under HTTP/2

The number of distinct domains
the number of GET Requests directed to each domain
the distribution of the size of those objects

monolithic web publishing utilizes a concise number of domains

federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

23

Parallelism in web page composition in HTTP/1.x

To improve performance, the web browser in HTTP/1.1 downloads
individual content files in parallel

Client can access multiple domains in parallel

Dynamic and static content is often split across separate web servers
Whenever these dmains are co-located, this is known as domain sharding

Static content is often cached on a CDN or in-house “edge” network

Client can open multiple sessions to each web server domain

The official guideline is up six sessions per domain, but mileage varies with
the browser and the platform

24

Parallelism in web page composition in HTTP/1.x

To improve performance, the web browser in HTTP/1.1 downloads individual
content files in parallel

Effective when the sessions are relatively long-lived.
Each new domain may require a DNS Lookup

Handshaking for each new TCP Session requires 1 * RTT
Handshaking for HTTPS requires an additional RTT

This parallelism works under HTTP/1.x because the HTTP protocol was
originally designed to be sessionless and connectionless

Any web server in the cluster can respond to any HTTP Request

HTTP sits atop TCP, which is session-oriented, which many web applications do

exploit (e.g., session-aware ASP.NET apps on the Microsoft platform) ;
5

Parallelism in the web server infrastructure

Any web server in the
cluster can respond
to any HTTP Request

Provisioned using
Virtualization
CDNs
Cloud (e.g., AWS)

switch

TCP Front End
connection Proxy Servers

Back End
File Servers

Shared |
Disk |

26

Parallelism in web page composition in HTTP/1.x

Add explicit parallelism to the page using JavaScript to make
asynchronous XMLHttpRequests to web services after the page is
Loaded (aka, AJAX) and is (ostensibly) Ready for user input

A Best Practice for accessing 39 party Advertising services, for example.

Note: The web client downloads JavaScript and executes it serially

This is the reason why experts recommend placing all external JavaScript
near the end of the HTML message

27

Multiplexing in HTTP/2

Web browser can send multiple GET Requests without waiting for each
individual Response

FTTT
Web client

Sy X Response
Request g
Web Server

Multiplexing in HTTP/2

Web server can send Response messages in any sequence
Segments from multiple Response messages can be interleaved

RTT
Web client

Sy X Response
Request g
Web Server

Multiplexing in HTTP/2

Achieve the same or higher levels of concurrency as HT'TP/1.1 over a
single TCP connection

FTTT
Web client

Sy X Response
Request g
Web Server

An Example: https:\\facebook.com
Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

DNS Lookup
HTTPS handshaking

SPDY exchanges two fewer packets to establish the secure connection

GET Request to

Very large amount of cookie data is transmitted (> 1 packet)
FB server-side php builds an initial, custom Response message

~ 550 KB
requires 2 seconds to transmit

contains a large number of external references: scripts, styles sheets,

image files, video, and advertising content
31

http://www.facbook.com/

An Example: https:\\facebook.com

Comparing HTTP/1.1 to SPDY/3 multiplexing
Steps 1-4: SPDY = HTTP/1.1
Loading the full page then requires

216 GET Requests and Response message sequences
transfers 7.24 MB of data over the wire
3.6 seconds until Page Load event fires

JavaScript issuing XmlHttpRequests in the background continues
to execute for ~20 seconds more

32

An Example: https:\\facebook.com
Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

Step 5: SPDY = HTTP/1.1.

For example:

Early in the original Response message, 5 external .css files are
referenced:
<link type="text/css" "stylesheet” ://fbstatic-a.akamaihd.net/rsrc.php/v2/yB/r/PQzGy_gthig.

<link type="text/css" stylesheet” ://fbstatic-a.akamaihd.net/rsrc.php/v2/yJ/r/cugNSNz2d1I.
<link type="text/css" stylesheet"” ://fbstatic-a.akamaihd.net/rsrc.php/v2/yi/r/RH3rvDA7dSR.

<link type="text/css" "stylesheet" ://fbstatic-a.akamaihd.net/rsrc.php/v2/yf/r/QFcEQNF3244.
<link type="text/css" stylesheet” ://fbstatic-a.akamaihd.net/rsrc.php/v2/yD/r/f1QGKObiLk6.

Residing on a Facebook web site affiliate devoted to static content:

33

An Example: https:\\facebook.com

Comparing HTTP/1.1 to SPDY/3 multiplexing
Steps 1-4: SPDY = HTTP/1.1

216 GET Requests
But % of the Requests are directed to just two web sites

fbstatic domain where common style sheets, image files, and
scripts are located

an fbcdn-profile domain where content specific to my
Facebook profile and set of Friends was stored.

34

switch

o AT

1%
3 \‘\ .\ k

.

i

-
-
-

static profile

Shared
Disk

e switch
__JJ DiE

TCP Connection

(7] (7]
c [=
S o
))
(8] (6]
(V] ()
(= c
c c
(] Q
o o
o. o.
(O] o
= =

static profile

Shared
Disk

switch

.
it ,
0INY

e

(43 ',': U
-\\‘**

o
- ¥?

.

el

UL 8 Yo

=
c c
2 =)]
g % g
c & =
c = =
] S S
o < S
a. e 3
a. a.
(@)
S S S

static profile

Shared
Disk

https:\\facebook.com

SPDY implementation not noticeably faster than HTTP/1.1 with
parallel TCP sessions

monolithic web site

(> 75% of the Requests = two Facebook domains

web servers must be session-aware N N TN
he
Ay AT P
static content can be cached effectively
on the CDN L - "
or in the web client 1% - 1@

Shared [
Disk ‘

An Example: https:\\youtube.com
Comparing HTTP/1.1 to SPDY/3 multiplexing

99 GET Requests = 4.4 MB landing page
Home page html: 500 KB

Requests accounting for > 3 MB all directed to a single domain
3 style sheets: 300 KB
JavaScript file for video playback: goo KB
common.js library: 350 KB
50 jpeg thumbnail images that serve as link buttons to the advertised videos
ten smaller graphic sprites, each 1.5-15 KB, from a second domain
5 JavaScript framework files from https://apis.google.com.
10 JavaScript files from a 3" domain
10 small ads (~500 bytes each) from doubleclick (a Google web property)
1 rich media display ad: 250 KB (from another Google web property)

39

Architecting for HT'TP/2

Requires a new generation of web server software that knows how
to consolidate Response messages into a single, session-oriented
stream

Responsive web design still required due to the wide variation in the
capabilities of web clients/platforms

HTTP/2 changes do not impact native phone or tablet apps that call web
services directly

Consider TCP congestion control policy changes in order to maximize
throughput over a single TCP connection

40

TCP Connection

static

Shared
Disk

Major new features in HT'TP/2:

Multiplexing
Priority

Server Push

Header compression

Improved performance with Transport Layer Security
(compared to HTTPS)

HTTP/2 requires changes at both the web client and
web server

42

HTTP/2 Priority

Priority would help web servers differentiate among multiple GET
Requests sent by the web client

Priority was not implemented in the SPDY experiment

How HTML markup will indicate priority to the browser is currently
undefined

e.g., Microsoft has been experimenting with a non-standard lazyload
keyword in IE 10

43

HTTP/2 Server Push

Server Push would allow HHTP/2 web servers to send Response
messages before specific GET Requests are received from the web client
e.g.,
as soon as the initial Response message is handed to the TCP/IP stack for
delivery

anticipating that the web client will making these Requests
the web server could start to push .css and image files referenced in the
original Response message to the web client
Goals:
improve line utilization
eliminate the need to inline scripts and style sheets for performance reasons

44

HTTP/2 Server Push

Server Push specification
a new HTTP/2 frame called a PUSH PROMISE

used by the web server to notify the client that it intends to push content into the
interleaved Response message stream not yet Requested by the client.

Meanwhile, the web client might be searching its cache to locate the same
HTTP object being pushed by the server

Web client can send a RST_STREAM message to reject the server push on a
cache hit

Significant risk that PUSH_PROMISE and RST_STREAM messages could
cross in the mail for cacheable, static content

45

HTTP/2 Header compression

Primarily helps on uploads
The same Header data is sent for each GET Request in HTTP/1.1

cookie data
Host name and User Agent fields are sent in clear text

In HTTP/2,

the Server retains Header fields from earlier Requests

subsequent GET Requests to the same domain need only send added or changed
Header fields

increases the number of GET Requests that require multiple packets
reduces the performance penalty associated with large cookies

HTTP/2 Security enhancements

In HTTP/2, improved performance with Transport Layer Security (TLS)

unlike SPDY, does not require HTTPS
continues to plug into TCP Port 8o
TLS can be requested at connection time
A fix that saves 2 handshaking packets to create a secure connection during the initial
TCP session setup
HTTP/2 also supports sending binary data fields in Request streams
binary data will initially present more challenges to hackers
But, expect they will quickly overcome this new obstacle

47

New feature summary for HTTP/2:

Multiplexing

biggest change, but may require extensive web site re-engineering to take full advantage of

Server Push

need to figure out the interaction with caching and CDNs
Priority

need to understand the browser impact; will the DOM understand lazy loading of resources?
Header compression

helps reduce the size of GET Request messages
requires additional web server changes to preserve header data between interactions

Improved performance with Transport Layer Security
nice to have

HTTP/2 bring significant changes to both the web client and web server, with
the protocol embracing session-oriented behavior by default 48

HTTP/2and TCP congestion control

HTTP/2 tries to push as many bytes as possible into the TCP Send
Window of a connection as early and as often as possible.
Maximize HTTP message throughput over a single TCP connection

Meanwhile, the TCP congestion control policy is conservative about
overloading a connection
slow start, determines the small, initial size of the cwin
the size of the cwin ramps up slowly - additive increase
backs off the transmission rate sharply when a congestion signal is received
over a connection

multiplicative decrease

the most common congestion signal is a Send Window full condition, corresponding
to a Sender sending data faster than the Receiver can receive and process it

49

TCP congestion control

The conservative TCP congestion control policy
initial size of the cwin = 2 packets
additive increase adds 1 packet to the cwin each Send interval

So, for example,
over a connection with an RTT =100 ms
maximum throughput = 10 * cwin / sec

during the first second of the connection:
cwin ranges from 2 — 11 * 1.5 KB pac kets
Sender can only transmit 55 packets, or about 8o KB

In Windows, change the TCP defaults:
Set -NetTCPSetting -SettingName Custom

-CongestionProvider CTCP
-InitialCongestionWindowMss 16

50

TCP congestion control

The conservative TCP congestion control policy
on a congestion signal,
multiplicative decrease cuts the size of the cwin to cwin / 2
and reverts to slow start

So, in HTTP/2 with one active TCP connection,
multiplicative decrease reduces the throughput over the connection by 50%

But, in HTTP/1.1 with parallel connections active between the client and server,
a single congestion signal has much less impact on overall throughput

51

Shared
Disk

Front End
Proxy Servers

Back End
File Servers

TCP congestion control

The conservative TCP congestion control policy

multiplicative decrease sets the size of the cwin = cwin / 2 and reverts to
slow start

Impact of a congestion single on a single connection is one of the reasons why
SPDY does not consistently outperform a well-designed HTTP/1.1 web site

In Windows, change the TCP defaults:
Set -NetTCPSetting -SettingName Custom

—~CwndRestart True

53

Summary
HTTP/2 multiplexing is based on Google’s SPDY experiment

HTTP/2 makes the protocol more explicitly session-oriented,
with implications for

the web server

the web client

web site re-engineering and re-architecture

HTTP/2 throughput goals and default TCP congestion control

policies are in conflict
54

v ”t._.T...«..f.L.. Vv

