
Mark Friedman

Demand Technology Software

markf@demandtech.com

http://computerperformancebydesign.com

1

mailto:markf@demandtech.com
http://computerperformancebydesign.blogspot.com/

 Background

 Review the major changes adopted in HTTP/2 protocol
 multiplexing

 server push

 Priority

 Performance impact of web site architecture

 Highlight areas where HTTP/2 and the default TCP
congestion control policy may conflict

2

 First change to the HTTP standard since 1999
 HTTP/1.1 was a set of changes associated with session-oriented, web

applications that deliver dynamic HTML web pages

 IETF HTTP Working Group recently adopted most, but not all,
protocol changes proposed in a large scale Google experiment
called SPDY
 Designed to improve web application performance

 HTTP/2 support in the web server and client will build on SPDY

 SPDY benefits certain types of web sites more than others

3

4

▪ Mark Nottingham, chairperson of the IETF HTTP Working Group,
from his blog, setting expectations for the transition to HTTP/2.

https://www.mnot.net/blog/2014/01/30/http2_expectations

 Google’s SPDY experiment previews the most important of the
changes to the HTTP standard

 Changes justified based on browser-based Real User
Measurements (RUM) of web app performance

 Web site workload characterization:

 HTTP/2 helps monolithic sites, but not necessarily federated
web publishing

5

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires extensive changes at both the web
client and web server

6

 JavaScript serialization delays

 Network-enabled applications that do not run inside the
browser, but do rely on web services
 e.g., native iPhone or Android apps

 TCP’s use of Acknowledgements to confirm delivery of
messages

 The TCP congestion control policy is unchanged
 Consider adjusting some of the TCP defaults if your web site goes to HTTP/2

 Plus, HTTP/2 cannot repeal the laws of Physics that make
network latency the fundamental source of web application
performance problems 7

8
See http://quoteinvestigator.com/2013/04/11/better-light/.

 Observational bias that favors the measurements we can readily
acquire without sufficient regard for how valid and reliable those
measurements are.
 Real User Measurements (RUM) of web Page Load Time were used to

validate and justify the HTTP/2 design decisions, despite their known
limitations

 Absent an understanding of the key characteristics of web application
workloads that most impact performance

9

 monolithic web publishing utilizes a very small number of domains

 federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

10

11

 Building the page requires access > 10 distinct domains
 Among the Top 500 web sites, some pull together content > 50 domains

 e.g., Requests to 3rd party Ad servers

 Some web publishing sites were federated deliberately to take
advantage of the web client’s support for concurrent TCP sessions
 Improved throughput because concurrent TCP sessions allow content from

the same domain to be downloaded in parallel

 Whenever the domains are co-located, this practice is known as sharding
 handshaking protocol required to establish each individual TCP session, so domain

sharding has to be done carefully

12

 Predecessor of HTTP/2 multiplexing

 Developed at Google

 Implemented on Chrome and across the Google web properties
 Developers report a 15% overall improvement in Page Load Times with SPDY

 Fewer TCP connections
 Smaller GET Requests
 number of packets shows 20% reduction
 Google Search page shows minimal improvement (already highly optimized)

 < 20 GET Requests (most of which are cached on the client)
 < 5 domains

 But looks promising for bandwidth thirsty sites like YouTube

 SPDY white paper reports 50% reduction in page load times

13

http://www.chromium.org/spdy/spdy-whitepaper

 Guy Podjarney, a CTO at Akamai blogs “not as SPDY as you thought”

 He reports,
 “SPDY, on average, is only about 4.5% faster than plain HTTPS, and is in fact

about 3.4% slower than unencrypted HTTP”

 SPDY improves performance under two sets of circumstances:
 monolithic sites that consolidated content on a small number of domains

 pages that did not block significantly during resolution of JavaScript files and .css
style sheets

 SPDY particularly benefits page composition for
1. complex web pages,

2. composed from Requests mainly directed to a single domain,

3. where multiplexing is able to re-use a single TCP connection effectively

14

http://www.guypo.com/not-as-spdy-as-you-thought/

 Is SPDY a worthwhile improvement or is it just making the public Internet
safer for cat videos (in HD, no less)?
 e.g., https://youtu.be/UIrEM_9qvZU with 16M views

 Overall, web Page size and complexity are increasing, however

 TCP Port number constrained to 16-bits, an upper limit on the number of
concurrent sessions, so any relief is welcome

15

Year Average web page size

2011 0.7 MB

2015 > 2 MB

https://youtu.be/UIrEM_9qvZU

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires changes at both the web client and
web server

16

 Web client sends GET Requests to a web server serially over a single TCP
connection.

17

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 Any follow-up GET Requests are delayed until the Response message
from the previous Request is received.

 This delay is the Round Trip Time (RTT)

18

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 RTT = 2 * Network latency

 RTT affects Time To First Byte; bandwidth and HTTP object size affect
Page Load Time

19

Web client

Web Server

Response
GET

Request
GET

Request
GET

Request

RTT

Time

 Web page composition (usually) requires multiple GET Requests

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time  RoundTrips * RTT

where

RoundTrips = σ𝒊=𝟏
𝒏 𝒉𝒕𝒕𝒑𝑶𝒃𝒋𝒆𝒄𝒕𝑺𝒊𝒛𝒆

𝒊

𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒊𝒛𝒆
20

21

 Web servers are clustered using virtual IP addressing
 Sessionless (aka REST) Requests can be handled by any web server in the cluster

 Multiple domains can be accessed concurrently
 Benefits federated sites
 Benefits sharded sites

 Multiple sessions can be established for each domain
 Diminishing returns expected from multiple sessions

 Web services can be accessed asynchronously

 However, there is no explicit support for multithreading at the
application level for JavaScript running on the browser
 JavaScript files must be downloaded and executed serially

Assuming rendering time inside the web client is minimal,

Web Page Load Time = Render Time  RoundTrips * RTT
where

RoundTrips = σ𝒊=𝟏
𝒏 𝒉𝒕𝒕𝒑𝑶𝒃𝒋𝒆𝒄𝒕𝑺𝒊𝒛𝒆

𝒊

𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒊𝒛𝒆

 A degree of parallelism is obtained due to multiple sessions and
multiple domains

 RTT is apt to vary by location/domain
22

1. The number of distinct domains

2. the number of GET Requests directed to each domain

3. the distribution of the size of those objects

 monolithic web publishing utilizes a concise number of domains

 federated web publishing where content may be pulled from as
mainly as 50 affiliated domains

23

 To improve performance, the web browser in HTTP/1.1 downloads
individual content files in parallel

 Client can access multiple domains in parallel
 Dynamic and static content is often split across separate web servers

 Whenever these dmains are co-located, this is known as domain sharding

 Static content is often cached on a CDN or in-house “edge” network

 Client can open multiple sessions to each web server domain
 The official guideline is up six sessions per domain, but mileage varies with

the browser and the platform

24

 To improve performance, the web browser in HTTP/1.1 downloads individual
content files in parallel

 Effective when the sessions are relatively long-lived.
 Each new domain may require a DNS Lookup
 Handshaking for each new TCP Session requires 1 * RTT
 Handshaking for HTTPS requires an additional RTT

 This parallelism works under HTTP/1.x because the HTTP protocol was
originally designed to be sessionless and connectionless

 Any web server in the cluster can respond to any HTTP Request

 HTTP sits atop TCP, which is session-oriented, which many web applications do
exploit (e.g., session-aware ASP.NET apps on the Microsoft platform)

25

 Any web server in the
cluster can respond
to any HTTP Request

 Provisioned using
 Virtualization

 CDNs

 Cloud (e.g., AWS)

26

 Add explicit parallelism to the page using JavaScript to make
asynchronous XMLHttpRequests to web services after the page is
Loaded (aka, AJAX) and is (ostensibly) Ready for user input
 A Best Practice for accessing 3rd party Advertising services, for example.

 Note: The web client downloads JavaScript and executes it serially
 This is the reason why experts recommend placing all external JavaScript

hrefs near the end of the HTML message

27

Web client

Web Server

Response
GET

Request

RTT

Time 28

 Web browser can send multiple GET Requests without waiting for each
individual Response

Web client

Web Server

Response
GET

Request

RTT

Time 29

 Web server can send Response messages in any sequence

 Segments from multiple Response messages can be interleaved

Web client

Web Server

Response
GET

Request

RTT

Time 30

 Achieve the same or higher levels of concurrency as HTTP/1.1 over a
single TCP connection

 Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

1. DNS Lookup

2. HTTPS handshaking
 SPDY exchanges two fewer packets to establish the secure connection

3. GET Request to www.facbook.com
 Very large amount of cookie data is transmitted (> 1 packet)

4. FB server-side php builds an initial, custom Response message
 ~ 550 KB

 requires 2 seconds to transmit

 contains a large number of external references: scripts, styles sheets,
image files, video, and advertising content

31

http://www.facbook.com/

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 Steps 1-4: SPDY = HTTP/1.1

5. Loading the full page then requires

 216 GET Requests and Response message sequences

 transfers 7.24 MB of data over the wire

 3.6 seconds until Page Load event fires

6. JavaScript issuing XmlHttpRequests in the background continues
to execute for ~20 seconds more

32

 Compare HTTP/1.1 to SPDY/3 access using Internet Explorer (IE 11)

 Step 5: SPDY  HTTP/1.1.
 For example:

 Early in the original Response message, 5 external .css files are
referenced:

 Residing on a Facebook web site affiliate devoted to static content:

href="https://fbstatic-a.akamaihd.net/
33

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yB/r/PQzGy_gthig.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yJ/r/cuqNSNZ2dlI.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yi/r/RH3rvDA7dSR.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yf/r/QFcEQNF3244.css" />

<link type="text/css" rel="stylesheet" href="https://fbstatic-a.akamaihd.net/rsrc.php/v2/yD/r/flQGK0biLk6.css" />

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 Steps 1-4: SPDY = HTTP/1.1

 216 GET Requests

 But ¾ of the Requests are directed to just two web sites

 fbstatic domain where common style sheets, image files, and
scripts are located

 an fbcdn-profile domain where content specific to my
Facebook profile and set of Friends was stored.

34

 Clustered & Partitioned
 Front-end proxy/switch

 PHP web servers

 Back-end file servers
 static content

 profile content

 Persistent back-store

 Massively parallel
 Any web server in the cluster can

respond to any connectionless
HTTP Request

35

switch

Shared
Disk

texttexttext

php static profile

 HTTP/1.1
parallelism
requires using
multiple,
concurrent TCP
sessions

36

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n
s

TC
P

Co
n

n
ec

ti
o

n
s

 current SPDY
implementation:

 one TCP session
per tier

 requires session-
aware web servers
at all three tiers

 not noticeably
faster than
HTTP/1

37

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

 SPDY implementation not noticeably faster than HTTP/1.1 with
parallel TCP sessions

 monolithic web site

 (> 75% of the Requests  two Facebook domains

 web servers must be session-aware

 static content can be cached effectively
 on the CDN

 or in the web client

38

switch

Shared
Disk

texttexttext

php static profile

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

TC
P

Co
n

n
ec

ti
o

n

 Comparing HTTP/1.1 to SPDY/3 multiplexing

 99 GET Requests  4.4 MB landing page
 Home page html: 500 KB

 Requests accounting for > 3 MB all directed to a single domain
 3 style sheets: 300 KB

 JavaScript file for video playback: 900 KB

 common.js library: 350 KB

 50 jpeg thumbnail images that serve as link buttons to the advertised videos

 ten smaller graphic sprites, each 1.5-15 KB, from a second domain

1. 5 JavaScript framework files from https://apis.google.com.

 10 JavaScript files from a 3rd domain

 10 small ads (~500 bytes each) from doubleclick (a Google web property)

 1 rich media display ad: 250 KB (from another Google web property)
39

 Requires a new generation of web server software that knows how
to consolidate Response messages into a single, session-oriented
stream
 Responsive web design still required due to the wide variation in the

capabilities of web clients/platforms

 HTTP/2 changes do not impact native phone or tablet apps that call web
services directly

 Consider TCP congestion control policy changes in order to maximize
throughput over a single TCP connection

40

41

switch

Shared
Disk

texttexttext

php static profile

TCP Connection

 Eventually,
 Consolidating content on fewer

domains should make web site
administration easier

 Undo any extreme web domain
sharding that was done for HTTP/1.1

 But that might be a whole bunch
of web site re-engineering!

 Multiplexing

 Priority

 Server Push

 Header compression

 Improved performance with Transport Layer Security
(compared to HTTPS)

 HTTP/2 requires changes at both the web client and
web server

42

 Priority would help web servers differentiate among multiple GET
Requests sent by the web client

 Priority was not implemented in the SPDY experiment

 How HTML markup will indicate priority to the browser is currently
undefined
 e.g., Microsoft has been experimenting with a non-standard lazyload

keyword in IE 10

43

 Server Push would allow HHTP/2 web servers to send Response
messages before specific GET Requests are received from the web client

 e.g.,
 as soon as the initial Response message is handed to the TCP/IP stack for

delivery

 anticipating that the web client will making these Requests

 the web server could start to push .css and image files referenced in the
original Response message to the web client

 Goals:
 improve line utilization

 eliminate the need to inline scripts and style sheets for performance reasons

44

 Server Push specification
 a new HTTP/2 frame called a PUSH_PROMISE

 used by the web server to notify the client that it intends to push content into the
interleaved Response message stream not yet Requested by the client.

 Meanwhile, the web client might be searching its cache to locate the same
HTTP object being pushed by the server

 Web client can send a RST_STREAM message to reject the server push on a
cache hit

 Significant risk that PUSH_PROMISE and RST_STREAM messages could
cross in the mail for cacheable, static content

45

 Primarily helps on uploads
 The same Header data is sent for each GET Request in HTTP/1.1

 cookie data

 Host name and User Agent fields are sent in clear text

 In HTTP/2,
 the Server retains Header fields from earlier Requests

 subsequent GET Requests to the same domain need only send added or changed
Header fields

 increases the number of GET Requests that require multiple packets

 reduces the performance penalty associated with large cookies

46

 In HTTP/2, improved performance with Transport Layer Security (TLS)

 unlike SPDY, does not require HTTPS

 continues to plug into TCP Port 80

 TLS can be requested at connection time

 A fix that saves 2 handshaking packets to create a secure connection during the initial
TCP session setup

 HTTP/2 also supports sending binary data fields in Request streams
 binary data will initially present more challenges to hackers

 But, expect they will quickly overcome this new obstacle

47

 Multiplexing
 biggest change, but may require extensive web site re-engineering to take full advantage of

 Server Push
 need to figure out the interaction with caching and CDNs

 Priority
 need to understand the browser impact; will the DOM understand lazy loading of resources?

 Header compression
 helps reduce the size of GET Request messages
 requires additional web server changes to preserve header data between interactions

 Improved performance with Transport Layer Security
 nice to have

 HTTP/2 bring significant changes to both the web client and web server, with
the protocol embracing session-oriented behavior by default 48

 HTTP/2 tries to push as many bytes as possible into the TCP Send
Window of a connection as early and as often as possible.
 Maximize HTTP message throughput over a single TCP connection

 Meanwhile, the TCP congestion control policy is conservative about
overloading a connection
 slow start, determines the small, initial size of the cwin
 the size of the cwin ramps up slowly – additive increase
 backs off the transmission rate sharply when a congestion signal is received

over a connection
 multiplicative decrease
 the most common congestion signal is a Send Window full condition, corresponding

to a Sender sending data faster than the Receiver can receive and process it

49

 The conservative TCP congestion control policy
 initial size of the cwin = 2 packets
 additive increase adds 1 packet to the cwin each Send interval

 So, for example,
 over a connection with an RTT = 100 ms
 maximum throughput = 10 * cwin / sec
 during the first second of the connection:

 cwin ranges from 2 – 11 * 1.5 KB pac kets
 Sender can only transmit 55 packets, or about 80 KB

 In Windows, change the TCP defaults:
Set -NetTCPSetting –SettingName Custom

–CongestionProvider CTCP

–InitialCongestionWindowMss 16

50

 The conservative TCP congestion control policy
 on a congestion signal,

 multiplicative decrease cuts the size of the cwin to cwin / 2

 and reverts to slow start

 So, in HTTP/2 with one active TCP connection,
 multiplicative decrease reduces the throughput over the connection by 50%

 But, in HTTP/1.1 with parallel connections active between the client and server,

 a single congestion signal has much less impact on overall throughput

51

 Impact of a
congestion signal on a
single connection is
one of the reasons
why SPDY does not
consistently
outperform a well-
designed HTTP/1.1
web site

52

Front End

Proxy Servers

Back End

File Servers

switch

Shared
Disk

 The conservative TCP congestion control policy
 multiplicative decrease sets the size of the cwin = cwin / 2 and reverts to

slow start

 Impact of a congestion single on a single connection is one of the reasons why
SPDY does not consistently outperform a well-designed HTTP/1.1 web site

 In Windows, change the TCP defaults:
Set -NetTCPSetting –SettingName Custom

–CwndRestart True

53

 HTTP/2 multiplexing is based on Google’s SPDY experiment

 HTTP/2 makes the protocol more explicitly session-oriented,
with implications for
 the web server
 the web client
 web site re-engineering and re-architecture

 HTTP/2 throughput goals and default TCP congestion control
policies are in conflict

54

55

