Benchmarking

Performance Engineering: Theory & Practice

SPE: Benchmarking 10/10/201

Benchmarking

« Benchmarks
- Performance tests that, when run repeatedly on the same platform,
reliably produce very similar results
- Execution time/Response time
» Throughput
- Synthetic benchmarks

- Performance tests specifically developed to be representative of a broad
class of common, computational problems
- may include an element of randomness in order to discourage “benchmark
engineering”
= Micro-benchmarks
- easy to run; but a narrow focus

SPE: Benchmarking 10/10/201

Benchmarking

- Standardized benchmarks: usually synthetic benchmarks that are
used to compare different platforms
= For example:

- as CPU architectures became more complex (ucode, cache, pipelining, 000
execution, RISC optimizing compilers, etc.), it became apparent that MIPS
or clock speed alone (GHz) was inadequate as a basis for comparison

- e.g., dhrystone
- originally published ~ 1988

- short (100 HLL C statements) synthetic benchmark program intended to be
representative of system (i.e., integer) programming

http://performance.netlib.org/performance/html/dhrystone.data.col0.html

SPE: Benchmarking 10/10/201

Benchmarking

« LINPACK

- Measures floating point performance
- originally published ~ 1978

» CPU-intensive: solves a randomly generated, dense n x n matrix,
representing a set of linear equations

* i.e., LINPACK 1000 : »=1000
- included in the Intel Math Kernel Library Benchmarks
- High Performance Linpack (parallelism)

- Supercomputer bragging rights regularly reported at Top500.org (link)
- e.8., IBM Power System AC922 with 2 million cores

https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
https://www.top500.org/resources/top-systems/

SPE: Benchmarking 10/10/201

Benchmarking

* Problem:
= Customer buys a system based (partially) on independent benchmark results

= But, the installed system, running the customer’s workload, however, does not
measure up

« How representative is the benchmark workload of my actual workload?

- Benchmarks measure something; the question is always, “Does it measure
something useful and/or meaningful for me?”

= How does the benchmark workload compare to my workload?
- High Performance Conjugate Gradients (HPCG) compared to HP LINPACK
- sparse matrix, Gauss-Seidel smoothing, etc.

https://en.wikipedia.org/wiki/Gauss–Seidel_method

SPE: Benchmarking 10/10/201

Benchmarks proliferate!

« One size doesn’t fit all!

- SPEC (Standard Performance Evaluation Corporation)
= generally, but not exclusively, CPU-intensive
= portable, easy-to-run

- Transaction Processing Council
= transaction-oriented Database workloads
- throughput + cost/transaction

- Storage Performance Council
= price/performance of 10 subsystems

SPE: Benchmarking 10/10/201

SPEC

- SPEC (Standard Performance Evaluation Corporation)
= generally, but not exclusively, CPU-intensive
= integer
= floating point
= vector graphics
= HPC
= energy consumption (Server Efficiency Rating Tool — SERT)
= etc.

= Only practical method to compare the performance of Intel vs. AMD vs. ARM vs.
SPARC architectures

SPE: Benchmarking 10/10/201

TPC

- Standardization effort inspired by Jim Gray’s original Debit/Credit
benchmark (~1985)
= SPEC CPU-intensive benchmarks are not representative of many
mission-critical commercial workloads
- particularly Database back-ends

- $/transaction measurements can be more important to many
customers than peak transaction processing rates

= s0, TPC publishes both

= Issues:
- elaborate and relatively expensive to implement (compared to SPEC)
- Vendors only publish results that are competitive !

SPE: Benchmarking 10/10/201

TPC

« TPC-C: Order Entry

- TPC-DS: Decision Support (Big Data; read-only data warechouse)
« TPC-E: more complex OLTP

« TPC-VMS: TPC-C + TPC-DS + TPC-E + virtualization

o Issues:
- Benchmarking vs. “Benchmarketing”

= TPC $/transaction may depend more on 10 subsystem performance than any
other single factor!

= motivation for the development of the SPC (Storage Performance Council)
benchmarks

SPE: Benchmarking 10/10/201

Storage benchmarking

« Cost/performance of the storage subsystem being used is a major
factor in TPC benchmarks

- Often representing > 50% of the system cost

- Non-volatile RAM technology (SSDs) is game-changing!
= No seek; no rotational delay
- Bandwidth
- performance of random Reads equivalent to sequential
- Writes are usually significantly slower than Reads

- Example: see NetApp NVMe white paper

https://www.demartek.com/Reports_Free/Demartek_NetApp-Broadcom_NVMe_over_Fibre_Channel_Evaluation_2018-05.pdf

SPE: Benchmarking 10/10/201

Benchmark Engineering

 When hardware/software developers build systems that are
optimized to run specific benchmark workloads

- Some benchmark engineering is inevitable & quite innocent:

= Developers evaluate new products in development based on execution
of these standard benchmarking programs

« Where do you cross the line? From the TPC:

= “Specifically prohibited are benchmark systems, products, technologies or
pricing...whose primary purpose is performance optimization of TPC
benchmark results without any corresponding applicability to real-world
applications and environments.”

SPE: Benchmarking 10/10/201

Why Benchmarks proliferate

« Popular benchmarks attempt to encapsulate “important” real-world
workloads
= processor instruction mixes (integer vs. floating point)
= representative scientific computing tasks (vector instructions)
= transaction-processing (Create-Read-Update-Delete)
= disk io (sequential, random, cache-friendliness)

O

Workload

characterization
N~

C

SPE: Benchmarking 10/10/201

Workload characterization

- A statistical distillation process that is based on an (often implicit)
underlying n-dimensional, scalability model
X
- integer vs, scientific instruction mix
- resource usage profiles for queueing models
- CRUD operation mix

O

Workload

characterization
N~

C

SPE: Benchmarking 10/10/201

Scalability model

- A testable hypothesis that predicts the performance of a specific
application workload on a designated computing platform

= execution of repeatable benchmarks that encapsulate the workload are
one way to test the viability of a scalability model

- For example, consider how various data structures perform standard
CRUD operations:
= arrays, lists, hash tables, binary trees, etc.

SPE: Benchmarking 10/10/201

Scalability model Aice

Arthur
» Consider static arrays:

= fast, efficient iteration
s direct access using an integer indexer

= sorted arrays support binary search Homer
Ida

- but Inserts and Deletes into an ordered ‘ Leslie

array are problematic

Chris

George

Nancy

Rob
= especially as n, the size of the array,

increases el

Taylor

Zeke

SPE: Benchmarking 10/10/201

Scalability model Aice

Arthur
 Dynamic arrays and Lists Chris
= no direct indexing, but fast iteration by George

chasing Address pointers

- Sorted Lists
= binary search

« Hash Tables
= Key-Value-Pairs
= collisions
 Binary trees
= tree traversal
= balanced binary trees

Homer

Ida

Leslie

Scalability model for dynamic containers

"N e | srt|_Seach | oolie
103

104
10°
106
107

10%

15%

60%

SPE: Benchmarking

15%

10/10/201

Alice
Arthur
Chris
George

Homer

Ida

Leslie

SPE: Benchmarking 10/10/201

Homework

Wi | N_| terate | Insert | Search | Delete_
« Write a benchmark program to 103

compare the scalability of standard 104

Container (or Collection) classes in 105

a familiar programming Framework 106 10% 15% 60% 15%

> C++ (link) 107

>Java (link)

- C# (link)

- executing a synthetic CRUD
workload

https://en.cppreference.com/w/cpp/container
https://www.tutorialspoint.com/java/java_collections.htm
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1?view=netframework-4.7.2

SPE: Benchmarking 10/10/201

Homework
» Write a benchmark program to - Deliverables: due on 10/24

compare the scalability of 1. Program listing
standard Container (or 2. Report results that demonstrate
Collection) classes in a familiar the benchmark is repeatable
programming Framework 3. Analyze the results, reporting on
o C++ (link) the scalability of the various

; container classes, i.e.,
> Java (link) - Meets expectations
- C# (link) - Exceeds expectations
o etc. - Fails to meet expectations

- executing a synthetic CRUD
workload

https://en.cppreference.com/w/cpp/container
https://www.tutorialspoint.com/java/java_collections.htm
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1?view=netframework-4.7.2

SPE: Benchmarking 10/10/201

Questions

SPE: Benchmarking 10/10/201

References

- Standard Performance Evaluation Corporation (SPEC)

http://www.spec.org/

