CSEP 590 — Programming Systems
University of Washington

Lecture 6: Potpourri

Michael Ringenburg
Spring 2017

’ Course News

* Presentations
— Start next week!
— Schedule posted on course web
* Today — mix of interesting topics that we haven’t
covered yet
— Type Checking
— Loop Parallelism
— JVM and JIT compilation
— Query optimization, if time permits
* Final Homework posted today
— Due end of quarter (June 2)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

P

Types from the Compiler’s
Perspective

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Types

* Types play a key role in most programming
languages. E.g.,
— Run-time safety
— Compile-time error detection
— Improved expressiveness (inheritance,
overloading, etc)
— Provide information to optimizer

* Strongly typed languages — what data might be used
where

* Type qualifiers (e.g., const and restrict in C)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

Type Checking
Terminology

Static vs. dynamic typing
« static: checking done prior to execution (e.g. compile-time)
e dynamic: checking during execution
Strong vs. weak typing
e strong: guarantees no illegal operations performed
e weak: can’t make guarantees

static dynamic

strong |Java, ML Scheme, Ruby

weak |[C PERL

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Type Systems

* Base Types
— Fundamental, atomic types
— Typical examples: int, double, char, bool

e Compound/Constructed Types

— Built up from other types (recursively) via
constructors

— Constructors include arrays, records/structs/
classes, pointers, enumerations, functions,
modules, ...

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

’ Types vs ASTs

* Types are not typically AST nodes
— AST nodes often have a type field, however

* AST = abstract representation of source program
(including source program type info)

* Types = abstract representation of type
semantics for type checking, inference, etc.
— Can include information not explicitly represented in

the source code, or may describe types in ways more
convenient for processing

* Need a separate “type” class hierarchy in your
compiler distinct from the AST

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Base Types

* For each base type (int, boolean, etc), can create a
single object to represent it

— Base types in symbol table entries and AST nodes are
direct references to these objects

— Base type objects usually created at compiler startup
* Useful to create a type “void” object to tag
functions that do not return a value
* Also useful to create a type “unknown” object for
errors

— (“void” and “unknown” types reduce the need for
special case code in various places in the type checker)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

’ Compound Types

* Basic idea: use a appropriate “type
constructor” object that refers to the
component types
— Limited number of these — correspond directly to

type constructors in the language (record/struct/
class, array, function,...)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Array Types

* For regular Java this is simple: only possibility is #
of dimensions and element type

class ArrayType extends Type {
int nDims;
Type elementType;

}

* Length not part of type

* More interesting in languages like Pascal (more
complex array indexing — index types!)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

5/16/17

’ Methods/Functions

* Type of a method is its result type plus an ordered
list of parameter types
class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

10

Class Types

* Type for: class Id { fields and methods }
class ClassType extends Type {
Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods (later)

— Base class pointer, so we can check field references against base class
if we don’t find in this class.

— (Note: may not want to do this literally, depending on how class
symbol tables are represented; i.e., class symbol tables might be
useful or sufficient as the representation of the class type.)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

11

’ Type Equivalance

* For base types this is simple

— If you have just a single instance of each base type
(as recommend), then types are the same if and
only if they are identical

* Pointer/reference comparison in the type checker

— Normally there are well defined rules for
coercions between arithmetic types

* Depending on language rules, compiler inserts these
automatically or when requested by programmer
(casts) — often involves inserting cast/conversion nodes
in AST

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

12

’ Type Equivalence for
Compound Types
* Two basic strategies

— Structural equivalence: two types are the same if they
are the same kind of type and their component types
are equivalent, recursively

* E.g., two struct types, each with exactly two int fields

— Name equivalence: two types are the same only if

they have the same name. If their structures match,
but have distinct names, they are not equal.

* Different language design philosophies

— Mix is common, e.g., C/C++ name for structs/classes,
structural otherwise.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

’ Structural Equivalence

» Structural equivalence says two types are equal
iff they have same structure
— Identical base types clearly have the same structure

— if type constructors:
* same constructor
* recursively, equivalent arguments to constructor

* Ex: atomic types, array types, pointer types

* Implement with recursive implementation of
equals

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

14

’ Name Equivalence

* Name equivalence says that two types are equal
iff they came from the same textual occurrence
of a type constructor

— Ex: class types, C struct types (struct tag name),
datatypes in ML

— special case: type synonyms (e.g. typedef in C) do not
define new types — uses structural equivalence
* Implement with pointer/reference equality
assuming appropriate representation of type info

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

’ Type Equivalence and
Inheritance

* Suppose we have

class Base { ... }
class Extended extends Base { ... }

* Avariable declared with type Base has a compile-
time type of Base

* During execution, that variable may refer to an
object of class Base or any of its subclasses like
Extended (or can be null)

— Sometimes called the runtime type

— Subclasses guaranteed to have all fields/methods of
base class, so typechecking as base class suffices

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

16

’ Type Casts

* In most languages, one can explicitly cast an
object of one type to another

— sometimes cast means a conversion (e.g., casts
between numeric types)

— sometimes cast means a change of static type
without doing any computation (casts between
pointer types or pointer and numeric types)

— With class types, may also mean upcast (free) or
downcast (runtime check)s

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

17

5/16/17

’ Type Conversions
vs Coercions
* InJava, we can explicitly convert an value of
type double to one of type int

— Can represent as unary operator
— Typecheck, generate code normally

* InJava, can implicitly coerce an value of type
int to one of type double

— Compiler must insert unary conversion operators,
based on result of type checking

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

18

’ C and Java: type casts

* |n C: safety/correctness of casts not checked
— Allows writing low-level code that’s type-unsafe
— Result is often implementation dependent/undefined.
Not portable, but sometimes useful.
* In Java: downcasts from superclass to subclass
need run-time check to preserve type safety

— Otherwise, might use field (or call method) that is not
present in superclass

— Static typechecker allows the cast
— Code generator introduces run-time check
— Java’s main form of dynamic type checking

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

19

5/16/17

10

Final Note: Various Notions
of Equivalance

* There are usually several relations on types
that compiler needs to deal with:
— “is the same as”
— “is assignable to”
— “is same or a subclass of”
— “is convertible to”

* Be sure to check for the right one(s)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Useful Compiler
Functions
* Create a handful of methods to decide different
kinds of type compatibility, e.g.:
— Types are identical
— Type tlis assignment compatible with t2
— Parameter list is compatible with types of expressions in
the call
* Usual modularity reasons: isolates these decisions in

one place and hides the actual type representation
from the rest of the compiler

* Probably belongs in the same package with the type
representation classes (package for dealing with

types)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

21

5/16/17

11

Loop Parallelism

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

22

’ What is loop parallelism?

bar
for (i=0; i<N; i++) { "
foo[i] = bar[i]; 4
} 5 2
3
* A serial (non-parallelized) 3
loop consists of a series 7 —
of iterations that run one 5
at a time (in order) on a 2
single thread. 1 d

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

23

5/16/17

12

’ What is loop parallelism?

.]] bar

for (i=0; i<N; i++) { "

foo[i] = bar[i]; 4 —>

} 5 |-
2

* A parallelized loop consists of a 3 —>
series of iterations that may run 2

simultaneously on multiple T >
threads. 5

* Every thread executes a distinct 2 ———
subset of the iterations .

* Iterations not ordered. 1 ——)‘L

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Motivations for Loop
Parallelization

* Take advantage of available parallelism in
architecture

— Multi-core and many-core processors
— Vectorization instructions
— Hyperthreading
 Latency hiding
— Switch contexts rather than waiting

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

13

Conditions for
Parallelization

* Typical necessary conditions for compiler to auto-
parallelize a loop

— It can figure out how to compute the number of iterations
prior to executing the loop

— It can prove that there are no dependences between
iterations

— There are no function calls with unknown side effects (e.g.,
output)

— The loop has a simple structure (e.g., no multiple exits)
* Users may insert extra information to help the
compiler establish that these conditions hold.

— Compiler relies on info: if false, compiled program may
behave unepectedly

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

26

Examples

 Parallelizable loop:

void foo(int n) {
int i;
int my array[n];
for (1 = 0; i < n; i++) {
my array[i] = i;
}

return;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

27

5/16/17

14

’ Examples

* Non-parallelizable loop:

void foo(int *a, int *b) {

int i;

for (i = 0; i < 10000; i++) {
a[i] = b[i];
}

}

* a and b may point to overlapping memory:

foo(x, x+5000)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

28

’ Helping the Compiler

* Common types of hints/information

— This pointer is not aliased with any other pointers
(doesn’t point to data that overlaps with another
pointer). E.g., restrict keyword in C

— There are no dependencies between iterations (loop-
carried dependencies) introduced by this pointer

— Trust me, this loop can be parallelized

* Often better to give the compiler information
about why it is safe to parallelize (allows more
optimization — “trust me it’s safe” only says safe
as written)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

29

5/16/17

15

Compiler Can Help Itself,
Too

e Often compilers will attempt to restructure
code to find or enhance parallelism

* Some common examples
— Scalar expansion
— Reductions

— Loop collapse

Spring 2017 UW CSEP 590 (PMP Programming Systems) 30
8 Ringenburg

’ Scalar Expansion

This loop can not be parallelized as written because of
dependences between the reads and writes of t in different
iterations (writing t in one iteration may overwrite the
value of t from another iteration before it is used):

int t;
for (i = 0; i < n; ++i) {
t = sqrt(b[i]);

al[i] =t + 5;

Spring 2017 UW CSEP 590 (PMP Programming Systems) 31
- Ringenburg

5/16/17

16

Scalar Expansion

* This loop can not be parallelized as written because of
dependences between the reads and writes of t in different
iterations (writing t in one iteration may overwrite the
value of t from another iteration before it is used):

int t[n];
for (i = 0; i < n; ++i) {
t[i] = sqrt(b[i]);

ali] = £[i] + 5;
}

* Compiler can solve this by converting the scalar integer t
into an array of integers.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

32

Reductions

* Compilers often attempt to recognize loops that
calculate sums, products, minimums, and maximums
over an array. E.g.:

int min = MAX VAL;
for (i = 0; i < n; i++) {
if (x[i] < min)
min = x[i];

}

* The compiler can convert these to reductions

— Each thread computes the min/max/sum/product over a
sub-section of the array

— Threads then combine results to determine the final value
(can use tree-structure for efficiency)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

17

Loop Collapse

void foo(int* restrict num bars, int size x,
int* restrict x, int* restrict bar) ({
for (int i = 0; i < size_x; i++)
for (int j = 0; j < num bars[i]; j++)
x[i] += bar[i + j]:;
}
* How do we handle nested parallel loops?

* Option 1: Go parallel for the outer loop, and then again for
the inner loop.

— Inefficient — there is a significant overhead to going parallel. If
we nest, then every iteration of the outer loop has to pay that
overhead.

— May limit effectiveness of the load balancing obtained by some
loop iteration scheduling methods.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

34

Loop Collapse

void foo(int* restrict num bars, int size x,
int* restrict x, int* restrict bar) {
for (int i = 0; i < size_x; i++)
for (int j = 0; j < num bars[i]; j++)
x[i] += bar[i + j1;

}

* Option 2: Loop collapse. Convert the nested pair of parallel loops to a
single parallel loop that simulates the execution of the nested loops.

* Manhattan style, when inner loop iterations may vary

— Create a new parallel loop to calculate the total number of iterations of the
inner loop (across all iterations of the outer loop).

— Convert the pair of loops into a single loop where each iteration corresponds
to a distinct outer/inner iteration pair.
* Ifinner loop iterations are fixed, a simple rectangular collapse suffices
— Miiterations nested in N iterations = M x N collapsed loop iterations
* Big performance win

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

5/16/17

18

Manhattan Collapse

Psuedocode
// t[i] = total # of inner loop iterations
// in first i iterations of outer loop

t[0] = O;
for (i = 0; i < size_x; i++)
t[i + 1] = t[i] + num bars[i];
for (k = 0; k < t[size x]; k++) {
// Set i to index of largest element of t
// less than k (use binary search)
// Optimization: Don’t recompute every time
i = max_element_ less_than(t, k);
j =k - t[i];
x[i] += bar[i + j]; // original loop body

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Example

bool foo(int *a, int *b, int n,
int sought, int *old val) {

int 1i;
for (i = 0; i < n; i++) {
if (b[i] == sought)
break;
a[i] = b[i];
}
return (i < n);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

37

5/16/17

19

5/16/17

’ Example

1 X | for (i = 0; i < n; i++) {
** Joop exit
** multiple exits

1 X | if (b[i] == sought)
| break;

1 X | a[i] = b[i];
I }

* Compiler feedback tools often provided to
tell you where optimization/parallelization
occurred or didn’t, and why.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

38

’ Example

bool foo(int *a, int *b, int n,
int sought, int *old val) {
int i;
int found index = n;
for (i = 0; i < n; i++) {
if (b[i] == sought)
if (i < found index)
found index = i;

}

for (int i = 0; i < found index; i++)
af[i] = b[i];

return (found index < n);

}

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

39

20

a Example

| for (i = 0; i < n; i++) {
3 P:§%| if (b[i] == sought)
** reduction moved out of 1 loop
| if (i < found index)
| found index = i;
|}
| for (int i = 0; i < found index; i++)
4 S | a[i]l=b[i];

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

a Example

bool foo(int * restrict a, int *b, int n,
int sought, int *old val) {

int i;
int found index = n;
for (i = 0; i < n; i++) {

if (b[i] == sought)

if (i < found index)
found index = i;

}
for (int i = 0; i < found_index; i++)

a[i] = b[i];
return (found index < n);

}

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

41

5/16/17

21

Example

| for (i = 0; 1 < n; i++) {
3 P:$| if (b[i] == sought)
** reduction moved out of 1 loop
| if (i < found_ index)
found index = i;
}
for (int i = 0; i < found index; i++)

afi]=b[i];

I
|
I
4p |

UW CSEP 590 (PMP Programming Systems)

Ringenburg 42

Spring 2017

The JVM and JIT

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 43

5/16/17

22

’ Java Implementation
Overview

 Java compiler (javac et al) produces
machine-independent .class files
— Target architecture is Java Virtual Machine
(JVM) — simple stack machine
« Java execution engine (java)
— Loads .class files (often from libraries)

— Executes code

« Either interprets stack machine code or compiles to
native code (JIT)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

44

’ JVM Architecture

 Abstract stack machine
— Bytecodes pop operands,
— and push results

« Implementation not
required to use JVM
specification literally

— Only requirement is that
execution of .class files has
specified effect iconst_1

— Multiple implementation
strategies depending on
goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

23

&P IVM Architecture

 Abstract stack machine
— Bytecodes pop operands,
— and push results

« Implementation not
required to use JVM
specification literally
— Only requirement is that
execution of .class files has
specified effect

— Multiple implementation
strategies depending on
goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

iconst_1

46

&P IVM Architecture

 Abstract stack machine
— Bytecodes pop operands,
— and push results

« Implementation not
required to use JVM
specification literally
— Only requirement is that
execution of .class files has
specified effect

— Multiple implementation
strategies depending on
goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

sipush 100

47

5/16/17

24

5/16/17

&P VM Architecture

 Abstract stack machine
— Bytecodes pop operands,
— and push results

« Implementation not
required to use JVM
specification literally

— Only requirement is that
execution of .class files has
specified effect sipush 100

— Multiple implementation
strategies depending on
goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)
Ringenburg

48

Spring 2017

&P VM Architecture

 Abstract stack machine
— Bytecodes pop operands,
— and push results

« Implementation not
required to use JVM
specification literally

— Only requirement is that
execution of .class files has
specified effect iadd

— Multiple implementation
strategies depending on
goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)
Ringenburg

49

Spring 2017

25

&P IVM Architecture

« Abstract stack machine

— Bytecodes pop operands,
— and push results

« Implementation not

required to use JVM
specification literally

— Only requirement is that

execution of .class files has

specified effect iadd
— Multiple implementation

strategies depending on

goals

» Compilers vs interpreters

+ Optimizing for servers vs
workstations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

& VM Data Types

* Primitive types
— byte, short, int, long, char, float, double,
boolean

« Reference types
— Non-generic only (more on this later)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

26

5/16/17

9 JVM Runtime Data Areas

« Semantics defined by the JVM
Specification

— Implementer may do anything that preserves
these semantics

 Per-thread data
— pC register
— Stack

+ Holds frames (details below)
» May be a real stack or may be heap allocated

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

9 JVM Runtime Data Areas

» Per-VM data — shared by all threads
— Heap — objects allocated here

— Method area — per-class data
* Runtime constant pool
* Field and method data
« Code for methods and constructors

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

27

0’ Frames

 Created when method invoked; destroyed when
method completes

« Allocated on stack of creating thread

« Contents
— Local variables
— Operand stack for JVM instructions

— Reference to runtime constant pool
» Symbolic data that supports dynamic linking

— Anything else the implementer wants

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

0’ JVM Instruction Set

« Stack machine
Byte stream
Instruction format

— 1 byte opcode
— 0 or more bytes of operands

Instructions encode type information
— Verified when class loaded

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

28

’ Instruction Sampler

« Load/store

— Transfer values between local variables and
operand stack

— Different opcodes for int, float, double,
addresses

— Load, store, load immediate

« Special encodings for load0, load1, load2, load3 to
get compact code for first few local vars

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

’ Instruction Sampler

 Arithmetic

— Again, different opcodes for different types
* byte, short, char & boolean use int instructions

— Pop operands from operand stack, push result
onto operand stack

— Add, subtract, multiply, divide, remainder,
negate, shift, and, or, increment, compare

 Stack management
— Pop, dup, swap

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

5/16/17

29

’ Instruction Sampler

 Type conversion

— Widening — int to long, float, double; long to
float, double, float to double

— Narrowing — int to byte, short, char; double to
int, long, float, etc.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Instruction Sampler

 Object creation & manipulation
— New class instance
— New array
— Static field access
— Array element access
— Array length
— Instanceof, checkcast

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

30

’ Instruction Sampler

« Control transfer
— Unconditional branch — goto
— Conditional branch — ifeq, iflt, ifnull, etc.
— Compound conditional branches - switch

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

60

’ Instruction Sampler

« Method invocation
— invokevirtual
— invokeinterface
— invokespecial (constructors, superclass, private)
— invokestatic

« Method return

— Typed value-returning instructions
— Return for void methods

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

61

5/16/17

31

Bytecode Example

outer:
for (inti=2;i<1000; i++) { as TS-a
for (intj=2;j<i; j++) { K ™\
if (i % j==0) / ‘{/
continue outer; 0: iconst_2 1117: iload_2
s . . 1: istore_1 / 18: irem
System.out.println (i); 2: iload_1 ': 19: ifne 25
} 3: sipush 1000 | 22: goto 38
6: if_icmpge 44 1 25:iinc 2,1
9: iconst_2 | 28: goto 11
10: istore_2 : 31: getstatic #84; System.out
11: iload_2 i 34: iload_1
12: iload_1 ,’ 35: invokevirtual #85; printin
13: if_icmpge 31 | 38 iinc 1,1
16: iload_1 1 41: goto 2
/ 44: return
\\ '/
Spring 2017 UW CSEP 590 (Pl[\{/‘\':’glir’:i::!w‘nw;v Systems) 62

Execution Engines

« Basic Choices
— Interpret JVM bytecodes directly
— Compile bytecodes to native code, which then
executes on the native processor
* Just-In-Time compiler (JIT)

Spring 2017 UW CSEP 590 (PMP Programming Systems) 03
: Ringenburg

5/16/17

32

’ JIT Levels

* C1: Fast, simple light-weight optimizations
— Often used for shorter codes (“client” mode)

e C2: More aggressive optimization, significantly
slower
— Often used for long running codes (“server”
mode)

e But both cause overhead when invoked

UW CSEP 590 (PMP Programming Systems)

Ringenburg b4

Spring 2017

’ JIT Profiling

* JIT compilation typically profile-driven
— Compilation (even C1) has a cost

— Count executions of methods, identify hot loop nests
— JIT only hot code

* Tiered JIT
— Multiple hot-ness thresholds
— Use light-weight JIT (C1) once hit lower threshold

— Pay cost of heavy-weight JIT (C2) if hit higher
threshold

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/16/17

33

Speculative JIT

* Profiling can do more than just identify code blocks executed
Certain branches always/never taken
Actual types used/method implementations called
Detect if NULL pointers never passed
— Etc...
* Can speculatively optimize based on profile
— Remove unused branches
— Inline particular implementations of virtual methods
— Remove NULL checks
* Must detect and back off if speculation incorrect
— Detect via “guards”, e.g., checking type or condition, handling SIGSEGV
— “Deoptimization” ... switch back to interpreter
— Switching back can be expensive

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

66

’ Speculation Example

o.foo(a, b, b);

o = receiver object ;

X = receiver class (o) ;

if (x == expected-class) ({ // virtual guard
x.foo(a, b, ¢); // direct call can be inlined

} else {
o.foo(a, b, ¢); // guard failed, virtual call

}
From IBM Just-In-Time Compiler (JIT) for Java: Best practices and coding
guidelines for improving performance

Spring 2017 UW CSEP 590 (Pl[\{/‘\':’glir’:i:‘:!mwm Systems) 67

5/16/17

34

0’ Escape Analysis

« Another optimization based on observation
that many methods allocate local objects
as temporaries

 Idea: Compiler tries to prove that no
reference to a locally allocated object can
“escape”
— Not stored in a global variable or object
— Not passed as a parameter

Spring 2017 UW CSEP 590 (PI?GP Programming Systems)

68
Ringenburg

0’ Using Escape Analysis

« If all references to an object are local, it
doesn’ t need to be allocated on the heap
in the usual manner

— Can allocate storage for it in local stack frame
« Essentially zero cost

— Still need to preserve the semantics of new,
constructor, etc.

Spring 2017 UW CSEP 590 (PI?GP Programming Systems)

69
Ringenburg

5/16/17

35

’ Other Techniques

* Save profile information from previous
executions

— Can also save JIT’ed results
— Eliminate “warm-up”
— Possibly better profile info than fake warm-ups
sometimes employed
* Azul Falcon: recently announced JIT using LLVM
— Take advantage of powerful open source compiler
— More optimizations potentially available

— More processor specific optimizations — e.g.,
vectorization instructions

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

70

P

SQL Query Optimization
(Excerpts from Spark Summit Catalyst Optimizer Deep Dive,
Spark Summit 2016)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

71

5/16/17

36

