5/7/17

CSEP 590 — Programming Systems
University of Washington

Lecture 5: Garbage Collection

Michael Ringenburg
Spring 2017

’ Course News

* Presentations
— Schedule Posted on course web
* Reminder: No class on May 2
* Will try to start catching up on HW grading ... sorry (no TA)
* Today: Garbage collection

* May 9: Potpourri of suggested topics. So far I've had
suggestions for ...
— Just-In-Time (JIT) compilation
— Query optimization
— Type Theory/Type Checking intro — slightly outside the charter

of this class ... but may try to squeeze it in with more of a focus
on checking

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Garbage Collection
References
* First topic we’ve covered that | haven’t implemented
(just studied) ... but some of you may have?

* Some great references:

— Uniprocessor Garbage Collection Techniques
Wilson, IWMM 1992 (longish survey)

— The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)
* Today’s slides adapted from Hal Perkins, CSE 401 and
501
— In turn adapted from slides by Vijay Menon, CSE 501, Sp09
— Plus additions from other sources as noted within

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Program Memory

* Typically divided into 3 regions:

— Global / Static: fixed-size at compile time; exists
throughout program lifetime

— Stack / Automatic: per function, automatically
allocated and released (local variables)

— Heap: Explicitly allocated by programmer

* Need to recover storage for reuse when no longer
needed: Manually or automatically

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

’ Manual Heap Management

* Programmer calls free/delete/etc when done
with storage

* Pro
— Low overhead
— Precise

* Con

— Error-prone
* Memory Leaks (don’t free when done)
* Free before done

— Difficult to debug

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Garbage Collection

e Automatically reclaim heap memory no longer
in use by the program
— Simplify programming
— Better modularity
— Avoids huge problems with dangling pointers
— Almost required for type safety

— But not a panacea

* Still need to watch for stale pointers, GC’s version of
“memory leaks”

* Overhead
* The dreaded “pause times”

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

’ Heap Characteristics

* Most objects are small-ish (often < 128 bytes)
* Object-oriented and functional code allocates
a huge number of short-lived objects

* Want allocation, recycling to be fast and low
overhead

— Serious engineering required

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ What is Garbage?

* An objectis live if it is still in use

* Need to be conservative
— OK to keep memory no longer in use

— Not ok to reclaim something that is live

* An object is garbage if it is not live

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

’ Reachability

* Root set : the set of global and local (stack/
register) variables visible to active procedures
* Heap objects are reachable if:
— They are directly accessible from the root set

— They are accessible from another reachable heap
object (pointers/references)

* Liveness implies reachability (conservative
approximation)

* Not reachable implies garbage

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

|
|
|
|

——

Static Variables

System.in

System.out

From Douglas Q Hawkins, https://www.slideshare.net/douggh/understanding-garbage-collection
licensed under Creative Commons: Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/)

9

5/7/17

’ Reachability

* Compiler produces:

— A stack-map at GC safe points

* Stack map: enumerates all GC roots (e.g., global variables,
stack variables, live registers)

* GC safe points: Points in execution where we are guaranteed
to know all roots, and have a consistent heap (e.g., new(),
method entry, method exit, etc).

* When a thread reaches a safe point, check if the
safe point is needed (e.g., a GC has been
scheduled). If so, block.

— Once all threads blocked at safe point, GC can
proceed.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Reference Counting
Collectors
* Keep extra integer associated with every heap
object
— Set to 1 when object allocated

— Increment when new reference established

— Decrement when reference disappears (e.g.,
pointers stack frame/scope goes away; pointer
assigned different value)

— When reference count == 0, can be freed

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

11

5/7/17

5/7/17

Reference Counting
Example

HEAP SPACE

ROOT
SET

From “Uniprocessor Garbage Collection Techniques”, Paul R Wilson
1992 International Workshop on Memory Management

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 12

Reference Counting:
The Cycle Problem

HEAP SPACE

///ﬁv y
y Sun
vl
ROOT ,F
SET
Dl

From “Uniprocessor Garbage Collection Techniques”, Paul R Wilson
1992 International Workshop on Memory Management

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 13

’ Reference Counting:
Evaluation
* Pros
— Simple to understand
— No large pauses to clean: just free anything when its
RC gets to 0. Important for real-time applications.
* Cons
— Cycles!
— Space inefficient: extra integer per object

— Time inefficient: operations on every pointer change/
allocation/deallocation. Can get rid of some (e.g.,
local pointer adjustments), but costs still generally
higher than tracing collectors.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

14

’ Tracing Collectors

* Mark the objects reachable from the root set,
then perform a transitive closure to find all
reachable objects

e All unmarked objects are dead and can be
reclaimed

* Various algorithms: mark-sweep, copying,
generational...

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

’ Mark-Sweep Allocation

* Multiple free lists organized by size for small
objects (e.g., 8, 16, 24, 32 bytes); additional
list for large blocks
— Regular malloc does exactly the same

 Allocation
— Grab a free object from the right free list

— No more memory of the right size triggers a
collection

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

16

’ Mark-Sweep Collection

* Mark phase — find the live objects

— Transitive closure from root set marking all live
objects

* Sweep phase

— Sweep memory for unmarked objects and return
to appropriate free list(s)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

17

Spring 2017

5/7/17

Mark Phase

Stack Frames

|
|
!-
i

|

Static Variables

System.in

System.out

|
|

Static Variables

System.in

System.out

5/7/17

10

Mark Phase

Stack Frames

|
|
!-
i

|

Static Variables

System.in

System.out

|
|

Static Variables

System.in

System.out

5/7/17

11

5/7/17

’ Mark Phase i

Stack Frames

|
|
!-
i

|

Static Variables

System.in

System.out

From Douglas Q Hawkins, https://www.slideshare.net/douggh/understanding-garbage-collection

icensed under Creative Commons: Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/) 22

’ Sweep Phase Wil

Stack Frames

|
|
!-
i

|

Static Variables
System.in /
System.out
From Douglas Q Hawkins, https://www.: slldeshare net/douggh/understanding-garbage-collection

censed under Creative Commons Att ibution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/) 23

12

’ Mark-Sweep Evaluation

* Pro
— Space efficiency
— Incremental object reclamation
* Con
— Relatively slower allocation time
— Poor locality of objects allocated at around the same
time
— Redundant work rescanning long-lived objects

— May lead to fragmentation
* Sometimes add compaction

— Long pauses: “Stop the world | want to collect”

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

24

’ Semispace Copying
Collector
* Idea: Divide memory in half

— Storage allocated from one half of memory

— When full, copy live objects from old half (“from
space”) to unused half (“to space”) & swap

semispaces (“from” becomes “to”, “to” becomes
llfrom”)

* Fast allocation — next chunk of to-space

* Requires copying collection of entire heap
when collection needed

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

13

* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 26

Spring 2017

’ Semispace collection

* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 27

Spring 2017

5/7/17

14

* Same notion of root set and

reachable W

* Copy each object when first :
encountered B

* Install forwarding pointers in from- i
space referring to new copy in to- o
space '

* Transitive closure: follow pointers,
copy, and update as it scans §

* Reclaims entire “from space” in D/1E
one shot i

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 28

Spring 2017

’ Semispace collection

* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 2

Spring 2017

5/7/17

15

* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 30

Spring 2017

’ Semispace collection

* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done

UW CSEP 590 (PMP Programming Systems)

Ringenburg 31

Spring 2017

5/7/17

16

’ Semispace Copying
Collector Evaluation

* Pro

— Fast allocation

— Locality of objects allocated at same time

— Locality of objects connected by pointers (can use
depth-first or other strategies during the mark-copy
phase)

* Con

— Wastes half of memory

— Redundant work rescanning long-lived objects

— Long pauses: “Stop the world | want to collect”

UW CSEP 590 (PMP Programming Systems)
Ringenburg

32

Spring 2017

’ Generational Collectors

e Generational hypothesis: young objects die
more quickly than older ones (Lieberman &
Hewitt ‘83, Ungar ‘84)

— Bimodal distribution — most object have a short
life span, but the rest tend to live a very long time

* Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

* So, organize heap into young and old regions,
collect young space more often

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

17

5/7/17

’ Generational Collectors

* Divide heap into two spaces: young, old

* Allocate new objects in young space

* When young space fills up, collect it and copy surviving
objects to old space

— Refinement: require objects to survive at least a few
collections before copying

— Generally using copying collector for young generation,
since small (not too much wasted memory)

* When old space fills, collect both
— Old space may use different technique, e.g. mark-sweep
* Can generalize to multiple generations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

34

Pointers from Old to New

/\ Younger Generation
. [

* Pointersfromoldto |¥ \ roor
new are rare, but do
occur]

* What do we do
during minor GC p
(young collection)?

— Must treat these
pointers as roots //
. . . Older G i
— Can use indirection er Deneration
table {
— Or, mark pointers \
that were Changed K From “Uniprocessor Garbage
H 1 Collection Techniques”, Paul R Wilson
in old generahon :D 1992 International Workshop on
L Memory Management
UW CSEP 590 (PMP Programming Systems) ‘ - ‘

Spring 2017 Ringenburg

18

Pointers from Old to New

P Younger Generation
* Pointersfromoldto |Y.---. . | roor
new are rare, butdo | :ratw

occur
* What do we do

r-€ma
0
lea!
.-

] [}
lea!
S

L]

during minor GC P Ik o
(young collection)? / /
— Must treat these)

pointers as roots / J
— Can use |nd||"ect|on K Older Generation

table

— Or, mark pointers

that were changed
in old generation

From “Uniprocessor Garbage
Collection Techniques”, Paul R Wilson
1992 International Workshop on
Memory Management

UW CSEP 590 (PMP Programming Systems ‘ 5 ‘
Ringenburg o0

Spring 2017

’ GC Tradeoffs

* Performance

— Mark-sweep often faster than semispace
— Generational better than both
* Mutator performance
— Semispace is often fastest
— Generational is better than mark-sweep

* Overall: generational is a good balance
» But: we still “stop the world” to collect

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

37

5/7/17

19

Enhancements

* Parallel copying collector

— Multiple threads tracing roots/copying objects. Each thread
responsible for a subset of the roots and a segment of the
object table

— Original parallel collector in Hotspot JVM used this for young
generation (old generation serial)

* Parallel mark-sweep
— Same idea, except marking rather than copying. Threads
assigned regions of heap
— To compact: Identify low occupency regions to move objects to.
Thread responsible for destination region does copy

— New parallel collector (“parallel compacting”) in Hotspot JVM
uses this for old generation (young still uses parallel copying).

UW CSEP 590 (PMP Programming Systems)

Ringenburg 38

Spring 2017

Enhancements, cont

* Concurrent Mark-Sweep (e.g., in Hotspot)

— Goal: Minimize stop-the-world long pauses. Increased
responsiveness.

— Young Generation: Parallel Copying Collector (young is quick)
— Old Generation has three phases:

« Initial mark: Short pause to identify object directly reachable from
roots

* Concurrent mark: A thread or threads continue to trace and mark
while application continues running. May miss some objects since
heap is changing.

* Remark: Pause while parallel mark visits anything that has changed
while concurrent mark was running

* Concurrent sweep: Collect all unmarked objects while rest of
application continues to run. No compaction.

* Concurrent phases can also be done incrementally.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

39

5/7/17

20

’ G1 Collector

* Divide heap into contiguous regions
— Concurrent Mark identifies relative ordering of
emptiest regions
— Collect emptiest regions first

— Collection copies live objects into new region
(parallel copying), thus compacting in the process

— Collect as many regions as you can given pause
time constraints
* Try to hit constraints, but best-effort/no guarantee

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Compiler & Runtime
Support

* GC tightly coupled with safe runtime (e.g.,
Java, CLR, functional languages)
— Total knowledge of pointers (type safety)
— Tagged objects with type information
— Compiler maps for information
— Objects can be moved; forwarding pointers

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

41

5/7/17

21

’ What about unsafe
languages? (e.g., C/C++)
* Boehm/Weiser collector: GC still possible

without compiler/runtime cooperation(!)
— If it looks like a pointer, it’s a pointer

— Mark-sweep only — GC doesn’t move anything

— Allows GC in C/C++ but constraints on pointer bit-
twiddling

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

42

e Automatic GC has been around since LISP | in
1958

Ubiquitous in functional and object-oriented
programming communities for decades

Mainstream since Java (mid-90s)

Now conventional wisdom?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

5/7/17

22

’ Discussion

* Tracing and Reference Counting ... algorithmic

Sp

duals?

— (They had to slightly modify the formulation of
reference counting)

Argued that any optimized collector can be
viewed as a hybrid

What are the implications of this Duality?
What does this imply about the design space?

Can you think of algorithms that don’t fit this
model?

UW CSEP 590 (PMP Programming Systems)

ring 2017 Ringenburg

44

5/7/17

23

