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’ Course News

* Presentations
— Schedule Posted on course web
* Reminder: No class on May 2
*  Will try to start catching up on HW grading ... sorry (no TA)
* Today: Garbage collection

* May 9: Potpourri of suggested topics. So far I've had
suggestions for ...
— Just-In-Time (JIT) compilation
— Query optimization
— Type Theory/Type Checking intro — slightly outside the charter

of this class ... but may try to squeeze it in with more of a focus
on checking
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’ Garbage Collection
References
* First topic we’ve covered that | haven’t implemented
(just studied) ... but some of you may have?

* Some great references:

— Uniprocessor Garbage Collection Techniques
Wilson, IWMM 1992 (longish survey)

— The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)
* Today’s slides adapted from Hal Perkins, CSE 401 and
501
— In turn adapted from slides by Vijay Menon, CSE 501, Sp09
— Plus additions from other sources as noted within
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’ Program Memory

* Typically divided into 3 regions:

— Global / Static: fixed-size at compile time; exists
throughout program lifetime

— Stack / Automatic: per function, automatically
allocated and released (local variables)

— Heap: Explicitly allocated by programmer

* Need to recover storage for reuse when no longer
needed: Manually or automatically
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’ Manual Heap Management

* Programmer calls free/delete/etc when done
with storage

* Pro
— Low overhead
— Precise

* Con

— Error-prone
* Memory Leaks (don’t free when done)
* Free before done

— Difficult to debug
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Garbage Collection

e Automatically reclaim heap memory no longer
in use by the program
— Simplify programming
— Better modularity
— Avoids huge problems with dangling pointers
— Almost required for type safety

— But not a panacea

* Still need to watch for stale pointers, GC’s version of
“memory leaks”

* Overhead
* The dreaded “pause times”
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’ Heap Characteristics

* Most objects are small-ish (often < 128 bytes)
* Object-oriented and functional code allocates
a huge number of short-lived objects

* Want allocation, recycling to be fast and low
overhead

— Serious engineering required
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’ What is Garbage?

* An objectis live if it is still in use

* Need to be conservative
— OK to keep memory no longer in use

— Not ok to reclaim something that is live

* An object is garbage if it is not live
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’ Reachability

* Root set : the set of global and local (stack/
register) variables visible to active procedures
* Heap objects are reachable if:
— They are directly accessible from the root set

— They are accessible from another reachable heap
object (pointers/references)

* Liveness implies reachability (conservative
approximation)

* Not reachable implies garbage
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From Douglas Q Hawkins, https://www.slideshare.net/douggh/understanding-garbage-collection
licensed under Creative Commons: Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/)
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’ Reachability

* Compiler produces:

— A stack-map at GC safe points

* Stack map: enumerates all GC roots (e.g., global variables,
stack variables, live registers)

* GC safe points: Points in execution where we are guaranteed
to know all roots, and have a consistent heap (e.g., new(),
method entry, method exit, etc).

* When a thread reaches a safe point, check if the
safe point is needed (e.g., a GC has been
scheduled). If so, block.

— Once all threads blocked at safe point, GC can
proceed.
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’ Reference Counting
Collectors
* Keep extra integer associated with every heap
object
— Set to 1 when object allocated

— Increment when new reference established

— Decrement when reference disappears (e.g.,
pointers stack frame/scope goes away; pointer
assigned different value)

— When reference count == 0, can be freed
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Reference Counting
Example

HEAP SPACE

ROOT
SET

From “Uniprocessor Garbage Collection Techniques”, Paul R Wilson
1992 International Workshop on Memory Management
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Reference Counting:
The Cycle Problem

HEAP SPACE

///ﬁv y
y Sun
vl
ROOT ,F
SET
Dl

From “Uniprocessor Garbage Collection Techniques”, Paul R Wilson
1992 International Workshop on Memory Management
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’ Reference Counting:
Evaluation
* Pros
— Simple to understand
— No large pauses to clean: just free anything when its
RC gets to 0. Important for real-time applications.
* Cons
— Cycles!
— Space inefficient: extra integer per object

— Time inefficient: operations on every pointer change/
allocation/deallocation. Can get rid of some (e.g.,
local pointer adjustments), but costs still generally
higher than tracing collectors.
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’ Tracing Collectors

* Mark the objects reachable from the root set,
then perform a transitive closure to find all
reachable objects

e All unmarked objects are dead and can be
reclaimed

* Various algorithms: mark-sweep, copying,
generational...
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’ Mark-Sweep Allocation

* Multiple free lists organized by size for small
objects (e.g., 8, 16, 24, 32 bytes); additional
list for large blocks
— Regular malloc does exactly the same

 Allocation
— Grab a free object from the right free list

— No more memory of the right size triggers a
collection
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’ Mark-Sweep Collection

* Mark phase — find the live objects

— Transitive closure from root set marking all live
objects

* Sweep phase

— Sweep memory for unmarked objects and return
to appropriate free list(s)
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’ Mark Phase i
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’ Sweep Phase Wil
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’ Mark-Sweep Evaluation

* Pro
— Space efficiency
— Incremental object reclamation
* Con
— Relatively slower allocation time
— Poor locality of objects allocated at around the same
time
— Redundant work rescanning long-lived objects

— May lead to fragmentation
* Sometimes add compaction

— Long pauses: “Stop the world | want to collect”

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

24

’ Semispace Copying
Collector
* Idea: Divide memory in half

— Storage allocated from one half of memory

— When full, copy live objects from old half (“from
space”) to unused half (“to space”) & swap

semispaces (“from” becomes “to”, “to” becomes
llfrom”)

* Fast allocation — next chunk of to-space

* Requires copying collection of entire heap
when collection needed
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* Same notion of root set and
reachable ‘ ‘

* Copy each object when first
encountered

* Install forwarding pointers in from-
space referring to new copy in to-
space

* Transitive closure: follow pointers,
copy, and update as it scans

* Reclaims entire “from space” in
one shot

— Swap from- and to-space when copy 1
done
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’ Semispace Copying
Collector Evaluation

* Pro

— Fast allocation

— Locality of objects allocated at same time

— Locality of objects connected by pointers (can use
depth-first or other strategies during the mark-copy
phase)

* Con

— Wastes half of memory

— Redundant work rescanning long-lived objects

— Long pauses: “Stop the world | want to collect”
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’ Generational Collectors

e Generational hypothesis: young objects die
more quickly than older ones (Lieberman &
Hewitt ‘83, Ungar ‘84)

— Bimodal distribution — most object have a short
life span, but the rest tend to live a very long time

* Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

* So, organize heap into young and old regions,
collect young space more often
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’ Generational Collectors

* Divide heap into two spaces: young, old

* Allocate new objects in young space

* When young space fills up, collect it and copy surviving
objects to old space

— Refinement: require objects to survive at least a few
collections before copying

— Generally using copying collector for young generation,
since small (not too much wasted memory)

* When old space fills, collect both
— Old space may use different technique, e.g. mark-sweep
* Can generalize to multiple generations
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Pointers from Old to New

/\ Younger Generation
. [

* Pointersfromoldto |¥ \ roor
new are rare, but do
occur ]

* What do we do
during minor GC p
(young collection)?

— Must treat these
pointers as roots //
. . . Older G i
— Can use indirection er Deneration
table {
— Or, mark pointers \
that were Changed K From “Uniprocessor Garbage
H 1 Collection Techniques”, Paul R Wilson
in old generahon :D 1992 International Workshop on
L Memory Management
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Pointers from Old to New

P Younger Generation
* Pointersfromoldto |Y.---. . | roor
new are rare, butdo | :ratw

occur
* What do we do
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(young collection)? / /
— Must treat these )

pointers as roots / J
— Can use |nd||"ect|on K Older Generation

table

— Or, mark pointers

that were changed
in old generation

From “Uniprocessor Garbage
Collection Techniques”, Paul R Wilson
1992 International Workshop on
Memory Management
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’ GC Tradeoffs

* Performance

— Mark-sweep often faster than semispace
— Generational better than both
* Mutator performance
— Semispace is often fastest
— Generational is better than mark-sweep

* Overall: generational is a good balance
» But: we still “stop the world” to collect
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Enhancements

* Parallel copying collector

— Multiple threads tracing roots/copying objects. Each thread
responsible for a subset of the roots and a segment of the
object table

— Original parallel collector in Hotspot JVM used this for young
generation (old generation serial)

* Parallel mark-sweep
— Same idea, except marking rather than copying. Threads
assigned regions of heap
— To compact: Identify low occupency regions to move objects to.
Thread responsible for destination region does copy

— New parallel collector (“parallel compacting”) in Hotspot JVM
uses this for old generation (young still uses parallel copying).
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Enhancements, cont

* Concurrent Mark-Sweep (e.g., in Hotspot)

— Goal: Minimize stop-the-world long pauses. Increased
responsiveness.

— Young Generation: Parallel Copying Collector (young is quick)
— Old Generation has three phases:

« Initial mark: Short pause to identify object directly reachable from
roots

* Concurrent mark: A thread or threads continue to trace and mark
while application continues running. May miss some objects since
heap is changing.

* Remark: Pause while parallel mark visits anything that has changed
while concurrent mark was running

* Concurrent sweep: Collect all unmarked objects while rest of
application continues to run. No compaction.

* Concurrent phases can also be done incrementally.
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’ G1 Collector

* Divide heap into contiguous regions
— Concurrent Mark identifies relative ordering of
emptiest regions
— Collect emptiest regions first

— Collection copies live objects into new region
(parallel copying), thus compacting in the process

— Collect as many regions as you can given pause
time constraints
* Try to hit constraints, but best-effort/no guarantee
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’ Compiler & Runtime
Support

* GC tightly coupled with safe runtime (e.g.,
Java, CLR, functional languages)
— Total knowledge of pointers (type safety)
— Tagged objects with type information
— Compiler maps for information
— Objects can be moved; forwarding pointers
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’ What about unsafe
languages? (e.g., C/C++)
* Boehm/Weiser collector: GC still possible

without compiler/runtime cooperation(!)
— If it looks like a pointer, it’s a pointer

— Mark-sweep only — GC doesn’t move anything

— Allows GC in C/C++ but constraints on pointer bit-
twiddling
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e Automatic GC has been around since LISP | in
1958

Ubiquitous in functional and object-oriented
programming communities for decades

Mainstream since Java (mid-90s)

Now conventional wisdom?
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’ Discussion

* Tracing and Reference Counting ... algorithmic

Sp

duals?

— (They had to slightly modify the formulation of
reference counting)

Argued that any optimized collector can be
viewed as a hybrid

What are the implications of this Duality?
What does this imply about the design space?

Can you think of algorithms that don’t fit this
model?
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