CSEP 590 — Programming Systems
University of Washington

Lecture 4: Programming System for Distributed Data
Analytics

Michael Ringenburg
Spring 2017

’ Course News

* Presentations
— Thanks for submitting your topics
— Presentations will be weeks 8,9, and 10
* 6,6,and 7, unless somebody wants to volunteer to go early

— I'll be putting together the schedule this weekend. If
you have a date preference, please send it to me by
Friday.

* Announcement: No class on May 2

* Today: Specialized programming systems for Data
Analytics

* Next week: Garbage collection

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

’ Big Data

* As of 2012, 2.5 exabytes of data created every
day

 Storage capacity doubling every 40 months

* Massive amount of data now exist/are being
generated

* How can we understand/process/utilize this
amount of data?

* Does it open new possibilities? New
paradigms? New challenges?

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

’ The 345 V’s of Big Data

* Challenges of big data typically lie in one (or
more) of the following V’s
— Volume: very large amount of data
— Velocity: data coming in very rapidly
— Variety: many different types of data
* Two additional V’s are sometimes added:

— Veracity: Large variance in the quality of the data/
difficulty in determining quality
— Variability: Inconsistency in the data

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

4/22/17

a Big Data Examples

* Large Hadron Collider: 600 million particle
collisions per second

* Twitter: 500 million tweets per day

* Cybersecurity: Analyzing network/file/other log
data — potentially high velocity, high volume

* Banking: Credit card fraud detection

* Real estate: Windermere using 100 million GPS
trackers to estimate commute times for new
home buyers

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

a Big Data Examples

* Social Media: 50 billion Facebook photos per day

* Bioinformatics/medicine: Massive amounts of
genomic data to analyze; patient treatment
outcomes, etc.

* Financial Trading: Analyzing stock/bond/option
transactions; determining compliance with
regulations; new trading algorithms

* Medicare fraud detection: analyzing medical
billing records

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

Data Analytics

* Gleaning information from big data sets
— Summarizing large data sets
— Finding patterns
— Looking for anomalies
— Developing new models/theories
* Data scientists: experts in data analytics.
Typically combine backgrounds in:
— Statistics
— Computer Science
— Often domain-specific knowledge

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Analytics: The Need for Parallel/ /g
Distributed Computing '

Big Data Analytics Challenge Parallel Computing Solution

High volume of data Many cluster nodes = large amount of
memory to store data (DRAM and disks)

High velocity of data — need to keep up Many processor cores/nodes/threads to

with rapid streams of new data handle incoming data. Can scale up as
velocity increases. Can dedicate some
nodes solely to handling incoming data
streams, leaving others for more complex

processing.
Extracting knowledge from large Large datasets tend to scale up well to
guantities of data large numbers of processes. Parallel

versions of many common machine
learning/statistical algorithms are well
studied

Veracity and Variability Data cleaning and preparation tasks often

parallelize well.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

Productivity-oriented
Analytics Frameworks

* Data Scientists want to quickly explore data, find patterns,
etc ...

— Not fight to parallelize their code and efficiently distribute their
data

— May have some CS training, but not always, and often not
specialized
* Ideally, want a programming system that:

— Supports high level language(s?) with extensive library support
(e.g., Python, R, maybe Java or Scala)

— Supports common analytics tasks: SQL, statistics, machine
learning algorithms, graph algorithms, etc

* Either built-in or easily extensible
— Simplifies parallelism and distribution of data
— Simplifies management of cluster of workers

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Analytics: Hardware
Environments

* Typical analytics framework assumes:
— Loosely connected cluster (e.g., 1 Gigabit Ethernet)
— Cheap/unreliable hardware

— Often, many “spindles” per node (local hard drives) —
i.e., high bandwidth to local storage, but also high
latency. Seeing more and more SSD-based solutions,
however, in higher-end market.

* Frameworks optimized, configured, designed for
this environment.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

Spring 2017

HDFS: distributed file system, uses

Hadoop Framework

replication for fault tolerance,
supports locality (“move compute to

data”)

MapReduce

— Simplify data distribution

YARN: assigns cluster resources (e.g.,
memory, cores) to jobs,

execution

— Simplify cluster management

MapReduce: Application framework
—maps and reduces, based on Jeff
Dean paper linked on course web

— Simplify parallel programming
Can run other frameworks on top of
Yarn (e.g., Spark, Giraph, Hive)

— Extensibility

compatible
applications

schedules

Ringenburg

UW CSEP 590 (PMP Programming Systems):

10

Hadoop HDFS

THE CAST

HADOOP
DISTRIBUTED
FILE

SYSTEM
(HDFS)

People sit in front of me
and ask me fo read/write data

[cLzenT] NAMENODE

There is only ONE of me..

..and I coordinate
everything around here

We store data..
..there are MANY of us
sometimes even thousands!

Eoe
DATANODES @

e

WRITING DATA IN HDFS CLUSTER

REQUEST FROM USER

Let's start with writing some data..

Mr. Client, please write
200 MB data for me

b

It'll be my pleasure.
ut--

®
¥

BLOCK AND REPLICATION

Ah yes.. please:
a) divide the data
in 128MB blocks
b) copy each block
in three places

--are you not
forgetting
something?

A good client always knows
these two things:

BLOCKSIZE: large file is divided
in blocks (usually 64 or 128MB)

REPLICATION FACTOR:
each block is stored in
multiple locations (usually 3)

DIVIDE FILE INTO BLOCKS

ASK NAMENODE

NAMENODE ASSIGNS DATANODES

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXX

XXXXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXX

XXXXXX

First-- I divide the

big file into blocks

Lets work on
the first block
first

Mr. Namenode: please help|
me write a 128MB block

with replication of 3

Replication 3.. Hmm..

need fo find 3 datanodes
for this client

e N
i How do I do that? ‘\‘
\ Will tell you some other time /

11

4/22/17

Hadoop HDFS

Here you go buddy..
Addresses of three datanodes.
T have also sorfed them
in increasing distance from you

Datanode 1, Datanode 2, Datanode 3|

CLIENT STARTS WRITING DATA

I send my data (and the list) to
first datanode only

I store the data
in'hard drive, and--

S

WHILE I am recieving
data, I forward the same
data to the next datanode

© Maneesh Varshney. mvarshney@gmail.com

I'll do the same
what previous guy did | /77

in chain..

TA..DA.. REPLICATION PIPELINE

INFORM NAMENODE WHEN DONE

last
wi

Once all data (for

send DONE to namenode,

this block) is
ritten to hard disk

Block successfully stored
and replicated in HDFS

with remaining blocks

When I am done with a block,
I repeat the same steps

All blocks ,
please close file

Case closed Il
NOW I store all meta

information in persistent
storage (hard disks)

WHEN ALL BLOCKS ARE WRITTEN.. RECAP

I divided the file in blocks--

--for each block,
I provided address
of datanodes--

--we stored data via

Replication Pipeline 12

Hadoop HDFS

READING DATA IN HDFS CLUSTER

REQUEST FROM USER

CONTACT NAMENODE FIRST..

Writing file in HDFS -- check.
What about reading them?
Let's ask the client aqain..

Mr. Client, please read
this file for me..

Please give me info
on this file

I reply (a) list of all blocks
for this file, (b) list of
datanodes for each block
(sorted by distance from client)

Block 1: at DN x1, y1, z1
Block 2: at DN x2,y2, z2
Block 3: at DN x3, y3, z3
...and so on...

Now I know how many
blocks to download, and
the datanodes where each
block is stored

So I download each block,
in turn, like so --

DOWNLOAD DATA

Download data from the nearest
datanode (the first in list)

Please give me block n

DATA for block n

Umm.. Question --
What happens when
the datanode is dead,
or does not have the data,
or the data is corrupted ...

Actually, HDFS can very elegantly
handle these faults and more
as we will see next --

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

13

4/22/17

Hadoop HDFS

FAULT TOLERANCE IN HDFS. PART I: TYPES OF FAULTS AND THEIR DETECTION

FAULT I: NODE FAILURE

FAULT II: COMMUNICATION FAILURE

FAULT III: DATA CORRUPTION

There are typically three kinds of faults:
The first is NODE FAILURE

Goodbye,
* cruel world ;

=

Second is COMMUNICATION FAILURE
(cannot send and receive data)

(t/here Is everybody?/)

Third is DATA CORRUPTION

Data can be corrupted while|
sending over network

Or corrupted while it is !
stored in hard disks A=

DETECTION #1: NODE FAILURES

NOTE: /A
If Namenode is dead,
the entire cluster is dead!
Namenode is the SINGLE

POINT OF FAILURE

Instead, let's focus on

how datanode failures
@ are detected

We send HEARTBEAT
message every 3 seconds.
This is our way of
saying we are alive

% »

o s mar

If I don't get a message
in 10 minutes, the
datanode is dead to me

LTS ~
/(I may be ALIVE and \\

\

there was only a
network failure, but
the namenode treats

\\ both as same)

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

14

Hadoop HDFS

DETECTION #2: NETWORK FAILURES

DETECTION #3: CORRUPTED DATA

Whenever data is sent,
an ACK is replied by the reciever

Iz

If the ACK is not received (after several
retries), the sender assumes that the host
is dead, or the network has failed

Checksum is sent along with
transmitted data

Moreover, when I store

data in hard disks,
I also store the checksum

Periodically, all datanodes
send BLOCKREPORT to
the namenode

List of all
blocks I have

@ing block report
I check if checksums are ok.

I don't send info for
blocks that are corrupted

I have
four blocks

I thought he had five
blocks.. so one
block is corrupted

We send heartbeats every
3 seconds to say we are alive

We send block reports
and we skip blocks
that are corrupted

(which is how the
namenode will know
which blocks are lost)

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

15

4/22/17

Hadoop HDFS

FAULT TOLERANCE IN HDFS. PART II: HANDLING READING AND WRITING FAILURES

HANDLING WRITE FAILURES

One thing I should have said earlier..
I write the block in smaller data
units (usually 64KB) called "packets"

Remember replication pipleline?

Moreover, each datanode replies
back an ACK for each packet to
confirm that they got it

So, if I don't get ACKs from some
datanode, I know it is dead.
I adjust the pipeline to skip him

Here's the adjusted pipeline.
Note that the block will be
"under replicated", but the namenode
will take care of that later on

Remember, when I asked for
location of a block, the
namenode gave me
locations of all datanodes

If one datanode is dead,
I read from the others in the list

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

16

Hadoop HDFS

FAULT TOLERANCE IN HDFS. PART III: HANDLING DATANODE FAILURES

First-- T must tell you
about the two tables I keep..

List of Blocks
Block 1 - stored at DN1, DN2, DN3
Block 2 - stored at DN1, DN4, DN5

List of Datanodes
Datanode 1 - has block 1, 2, ..
Datanode 2 - has block 1, 5, ..

I continuously update these
two tables--

If I find a block on a datanode
is corrupted, I update first table
(by removing bad DN from block's list)

And if I find that a datanode
has died, I update both tables

UNDER REPLICATED BLOCKS

I scan the first list (list
of blocks) periodically, and see if
there are blocks that
are not replicated properly

These are called "under replicated'w

For all under-replicated blocks,
T ask other datanodes to copy
them from datanodes that

have the replica

Could you copy the
block from that datanode.
Hey, I need to
copy a block from you|

|
= lHere you go.,

Umm.. one more question: All of
this works if there is atleast one valid
copy of the block somewhere.. right?

That's correct. HDFS cannot
guarantee that atleast one
replica will always survive.

But it tries it best by smartly

selecting replica locations,

as we will see next --

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

17

4/22/17

Hadoop HDFS

REPLICA PLACEMENT STRATEGY

RACKS AND DATANODES

Remember I promised to tell
you how I select datanode

locations for storing the

replicas of a block?

The cluster is divided into RACKS
Each rack has multiple datanodes

5 % 5

Hang tight.. here it goes..

If the writer is a member of cluster,
it is selected as first replica

Otherwise some random

datanode is selected

first replica

next two replicas Only one replica per datanode

in which case they are .. ahem.. ignored

‘Rack 1‘ |Rack 2‘ |Rack 3|
NEXT TWO REPLICA LOCATIONS SUBSEQUENT REPLICA LOCATIONS
Pick a different rack than first replica's Pick any random datanode, Please note the fine print: sometimes
Select two different datanode on that rack if it satisfies these two conditions: those two conditions cannot be satisfied,

(convenient eh?)

Max two
replicas

Also, HDFS allows you use your

own placement algorithm.
So if you know a better
algorithm, don't be shy now...

b\

* Cartoon ©Maneesh Varshney (https://drive.google.com/file/d/0B-

zw6KHOtbTAMmMRKZWJjYzEtYjI3NiOONTFjLWEOOGItYTU50GMxYjcON2M1/view)

Hadoop Yarn

* Resource Manager: Global
engine responsible for
arbitrating job resource
requests, determining when
jobs run

* Containers: Job processes run
inside containers — essentially
the resources allocated to the
job on each node

* Node Manager: Per-machine,
launches application

. ; MapReduce Status —————

containers, ensures they don’t P ————— N

exceed resource allocations NodeStatss —-—-—»

. . . R R T8 oocoorooad
+ Application master: Runs in — -
first container, requests
resources for rest of job,

Node
anager

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

19

4/22/17

10

a Hadoop MapReduce

* You saw this concept in the Jeff Dean paper

* Mappers (implement Mapper interface)
process (ideally local) key-value pairs, convert
(“map”) them to new key-value pairs.

» Data shuffled and sorted, so that all pairs with
same key land on same node

* One reducer process per key (implements
Reducer interface) processes/summarizes
all data with the same key

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

a MapReduce Word Count

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1l) ;
private Text word = new Text()

public void map (LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException ({
String line = value.toString() ;
StringTokenizer tokenizer = new StringTokenizer (line) ;
while (tokenizer.hasMoreTokens()) {
word. set (tokenizer.nextToken()) ;
output.collect (word, one) ;
}
}
}

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 21

4/22/17

11

’ MapReduce Word Count

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> ({

public void reduce (Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next() .get();
}
output.collect (key, new IntWritable (sum)) ;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

22

Combiners

* Optional class — performs local reductions

— Mappers collect key-value pairs in lists: one per
key

— Combiner method applied to each list prior to
sending to reducer

— When combiner buffer full, flushed by sending to
reducer

— Reduces communication

— Word Count example — combiner adds counts:
* (the, 1), (the, 1), (and,1), (the,1) -> (the,3), (and,1)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

12

MapReduce: More Complex /um
Algorithms?

* More complex algorithms often require multiple passes of
MapReduce
— Each pass generates key-value pairs
— Next pass uses key-value pairs from previous pass as input
* E.g., KMeans clustering:
— Map:
* Read cluster centers from disk

* Compute nearest center to each data point, put it in that cluster
* Write data points (values) in each cluster (key)
— Reduce
* Combines all points in each new cluster, compute average
* This is new cluster center — write it
— Repeat until no more changes

* New frameworks like Spark are more flexible/don’t require such
contortions

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

24

’ Hadoop Performance Issues .

e Conventional wisdom: gated on 10 bandwidth,
network interconnect bandwidth
— Shuffle: Writing mapper output to disk, sending
over network, reading reducer input form disk
— Complex algorithms often require multiple phases
of map-reduce — HDFS I/O between each
— Rule of thumb: “spindle-per-core” (or per 2 cores
for compute intensive jobs)
* Intermediate data lost — often have to
regenerate during next map-reduce

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/22/17

13

Apache Spark

* Tries to address two of key performance issues of
Hadoop:
— Allows “persisting” intermediate data
— Can pipeline many operations in a single stage, keeps
in memory except when shuffle necessary (or spill if
runs out of memory)
* Often nice performance gains

* Also, programming flexibility — not constrained to
rigid Map then Reduce paradigm (but often ends
up similar)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

26

’ Spark Execution Model

¢ "Master-slave" parallelism model
P Node

e Driver (master)
— Executes main

— Distributes data and work to executors Task | Task

* Resilient Distributed Dataset (RDD) Task Task

— Spark's primary original data
abstraction Node
— Partitioned amongst executors :

— Fault-tolerant via lineage
— Newer data abstractions like

dataframes and dataset follow the Node

same basic model
e Executors (workers)

— Lazily execute tasks (operations on Task | Task

partitions of the RDD) Task Task
— Global all-to-all shuffle (with barrier)

for data exchange

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

27

4/22/17

14

RDD In Depth

Original data abstraction of Spark

— DataFrames adds rows and named columns (originally

SchemaRDD)
— DataSets add strong typing to DataFrames
Five parts (two of which are optional)
— Set of partitions
List of dependencies ("parent RDDs")

Function to compute my partition from my parents
Method of compute partitioning of data (optional)
Preferred location for each partition (e.g., HDFS block location)

* Notice that the RDDs contain a description of the data and
computation, but not the actual data ... We will see why

soon ...

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

28

Spring 2017

Spark Programming: Simple

Example

val arrlM Array.range(1,1000001)

val rddlM sc.parallelize(arrlM,
val evens = rddlM.filter(
a => (a%2) ==

)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8,

8)

10)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

29

4/22/17

15

Create array of

{1, 2, ..., 1,000,000}

Spring 2017

Spark Programming: Simple

Example

mval arrlM
val rddlM
val evens

Array.range(1,1000001)
sc.parallelize(arrlM, 8)
rdd1M.filter(

a => (a%2) ==
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

UW CSEP 590 (PMP Programming Systems): 30
Ringenburg

Create array of
{1, 2, ..., 1,000,000}

Partition array into a 8-
partition RDD distributed
across executor nodes.

(Can also create from file.)

Spring 2017

Spark Programming: Simple

Example

= Array.range(1,1000001)
iwal rddlM = sc.parallelize(arrlM, 8)
val evens rdd1M.filter(
a => (a%2) ==
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

UW CSEP 590 (PMP Programming Systems): 31
Ringenburg

4/22/17

16

Spark Programming: Simple
Example

Create array of
{1, 2, ..., 1,000,000}

Array.range(1,1000001)
sc.parallelize(arrlM, 8)
rdd1M.filter(

a => (a%2) == 0

Partition array into a 8-
partition RDD distributed
across executor nodes.

(Can also create from file.))
evens.take(5)

val evens

Filter: example of a Spark >>> Array[Int] = Array(2, 4, 6, 8, 10)
transformation (create new

RDD from old RDD). Filter
keeps data for which the
argument evaluates to true.

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

32

Spark Programming: Simple
Example

Create array of
{1, 2, ..., 1,000,000}

Array.range(1,1000001)
sc.parallelize(arrlM, 8)
rdd1M.filter(

a => (a%2) == 0

Partition array into a 8-
partition RDD distributed
across executor nodes.

(Can also create from file.))
evens.take(5)

val evens

Filter: example of a Spark >>> Array[Int] = Array(2, 4, 6, 8, 10)
transformation (create new

RDD from old RDD). Filter
keeps data for which the
argument evaluates to true.

Spark action
(return result to
driver)

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

33

4/22/17

17

4/22/17

Spark Programming: Simple
Example

Create array of
{1, 2, ..., 1,000,000}

mval arrlM
wal rddlM
ﬁval evens

Array.range(1,1000001)
sc.parallelize(arrlM, 8)
rdd1M.filter(

a => (a%2) == 0

Partition array into a 8-
partition RDD distributed
across executor nodes.

(Can also create from file.))
evens.take(5)

Filter: example of a Spark >>> Array[Int] = Array(2, 4, 6, 8, 10)
transformation (create new

RDD from old RDD). Filter
keeps data for which the

argument evaluates to true. [Lazy Evaluation: No computation until result requested]

Spark action
(return result to
driver)

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

34

Driver:
{1, ..., 1,000,000}

val arrlM = Array.range(1l,1000001) I

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017 35

18

4/22/17

Conceptually ... Driver:
{1, ..., 1,000,000}

Executor O: Executor 1: Executor 2: Executor 3:
{1 ... 125000} {125001 ... 250000} § {250001 ... 375000} § {375001 ... 500000}
{500001 ... 625000} § {625001 ... 750000} @§ (750001 ... 875000} § (875001...1000000}

val rddlM = sc.parallelize(arrlM, 8) l

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

36

Conceptually ... Driver:
{1, ..., 1,000,000}

Executor O: Executor 1: Executor 2: Executor 3:
{2,4, ... 125000} {125002, 125004 ...} § {250000,250002 ...} § {375002,375004 ...}
{500002,500004 ...} § {625002, 625004 ...} §§ (750002,750004 ...} § (875002,875004 ...}

val evens = rddlM.filter(a => a%2==0) l

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

37

19

Conceptually ... {1, ..., 1,000,000}
{2, 4,6, 8,10}

xecutor O: xecutor 1: Xxecutor 2. Xecutor >:
{2,4, ... 125000} {125002, 125004 ...} § {250000,250002 ...} § {375002,375004 ...}
{500002,500004 ...} § {625002, 625004 ...} § (750002,750004 ...} § (875002,875004 ...}

evens.take(5) l

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017

38

9 Example:

Now let's try it out ...

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017 39

4/22/17

20

Lazy Evaluation: Driver:
{1, ..., 1,000,000}

Executor O: Executor 1: Executor 2: Executor 3:

val arrlM = Array.range(1l,1000001) l

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

40

Lazy Evaluation: Driver:
{1, ..., 1,000,000}

Executor O: Executor 1: Executor 2: Executor 3:

RDD Partition 0

[Input: ArrlM

RDD Partition 7
DAG (Directed

Acyclic Graph)
schedule

val rddlM = sc.parallelize(arrlM, 8) l

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

41

4/22/17

21

Lazy Evaluation:

Driver:
{1, ..., 1,000,000}

Executor O:

Executor 1: Executor 2: Executor 3:

[Input: ArrlM

RDD Partition 0 H FilteredRDD 0]

DAG (Directed

RDD Partition 7 H FilteredRDD 7]

Acyclic Graph)
schedule

val evens = rddlM.filter(a => a%2==0) l

Spring 2017

UW CSEP 590 (PMP Programming Systems):

Ringenburg 42

Lazy Evaluation:

Driver:
{1, ..., 1,000,000}

Executor O:

Executor 1: Executor 2: Executor 3:

[Input: ArrlM

Take Result:
RETURNS DATA

RDD Partition 0 H FilteredRDD 0

DAG (Directed

RDD Partition 7 H FilteredRDD 7]

Acyclic Graph)
schedule

evens.take(5) l

Spring 2017

UW CSEP 590 (PMP Programming Systems):
Ringenburg

43

4/22/17

22

9 What's going on here?

Lazy Evaluation: Driver:
{1, ..., 1,000,000}

Start computing!

Exec.ttor O: Executor 1: Executor 2: Executor 3:
{1 ... 125000}

RDD Partition 0 H FilteredRDD 0

Take Result:

[Input: ArriM : : RETURNS DATA
RDD Partition 7 H FilteredRDD 7]
DAG (Directed
Acyclic Graph
Y ph) evens.take(5) l
schedule

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

44

Lazy Evaluation: Driver:
{1, ..., 1,000,000}

Executor O: Executor 1: Executor 2: Executor 3:
{2,4, ... 125000}

RDD Partition 0 H FilteredRDD 0

Take Result:
[Input: ArriM : : RETURNS DATA
RDD Partition 7 H FilteredRDD 7]
DAG (Directed
Acyclic Graph
Y ph) evens.take(5) l
schedule

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

45

4/22/17

23

Lazy Evaluation: {1, ..., 1,000,000}
{21 4) 6! 8! 10}

{2,4, ... 125000}

RDD Partition 0 }—’[FilteredRDD 0
[Input: ArrlM : :

. . RETURNS DATA
RDD Partition 7 }———*[FilteredRDD 7]
DAG (Directed
Acyclic Graph)
schedule evens.take(5) I

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

46

Modified example

val arrlM = Array.range(1,1000001)

val rddlM = sc.parallelize(arrlM, 8)

val evens = rddlM.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)

// How many evens?

val totalEvens = evens.count()

// Sum of evens

val evenSum = evens.reduce((a,b) => atb)

* Imagine we want to perform a number of operations
on our filtered RDD of even integers.

* For each action, Spark will compute the DAG steps...

UW CSEP 590 (PMP Programming Systems):

Ringenburg 47

Spring 2017

4/22/17

24

Count returns the

total size (# elems)
of an RDD.

Modified example

val arrlM = Array.range(1,1000001)

val rddlM = sc.parallelize(arrlM, 8)

val evens = rddlM.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)

// How many evens?

"val totalEvens = evens.count ()

// Sum of evens

val evenSum = evens.reduce((a,b) => a+b)

* Imagine we want to perform a number of operations
on our filtered RDD of even integers.

* For each action, Spark will compute the DAG steps...

Spring 2017

UW CSEP 590 (PMP Programming Systems):

Ringenburg 48

Count returns the
total size (# elems)
of an RDD.

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

Modified example

val arrlM = Array.range(1,1000001)

val rddlM = sc.parallelize(arrlM, 8)

val evens = rddlM.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)

// How many evens?

"val totalEvens = evens.count ()

// Sum of evens

»val evenSum = evens.reduce((a,b) => atb)

* Imagine we want to perform a number of operations
on our filtered RDD of even integers.

* For each action, Spark will compute the DAG steps...

Spring 2017

UW CSEP 590 (PMP Programming Systems):

Ringenburg 49

4/22/17

25

4/22/17

Modified example

val arrlM = Array.range(1,1000001)

Count returns the val rddlM = sc.parallelize(arrlM, 8)
total size (# elems) val evens = rddlM.filter(a => (a%2) == 0)
of an RDD. val firstFiveEvens = evens.take(5)

// How many evens?

"val totalEvens = evens.count ()

// Sum of evens

»val evenSum = evens.reduce((a,b) => atb)

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

* Problem: This means recomputing the filtered
"evens" RDD three times — inefficient.

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

50

Modified example

Persist tells Spark to keep val arrlM = Array.range(1,1000001)
the data in memory even val rddlM = sc.parallelize(arrlM, 8)
after it is done with the val evens = rddlM.filter(a => (a%2) == 0)
action. Allows future Levens.persist() // or cache()

actions to reuse without

val firstFiveEvens = evens.take(5)
// How many evens?
synonym for default storage
level (memory). Can also val totalEvens = evens.count()
persist on disk, etc. // Sum of evens
val evenSum = evens.reduce((a,b) => atb)

recomputing. Cache is

* Problem: This means recomputing the filtered
"evens" RDD three times — inefficient.

* Solution: Persist the RDD!

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

51

26

Modified example

Demo...

UW CSEP 590 (PMP Programming Systems) 52
Ringenburg N

Spring 2017

’ Communication Example

sc.textFile("mytext")
lines.flatMap (
line => line.split(" ")

val lines
val words

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey ()
val wordCounts = groupedWords.map (

t => (t._1, t._2.sum)

val counts = wordCounts.collect()

* Let's like at a global communication example: computing
the number of times each word occurs
* Load a text file
* Splititinto words
* Group same words together (all-to-all
communication)
* Count each word

UW CSEP 590 (PMP Programming Systems) 53
53

Spring 2017 Ringenburg

4/22/17

27

9 Communication Example

Load file, default
number of paritions pval lines
is # of HDFS blocks val words

sc.textFile("mytext")
lines.flatMap (
line => line.split(" ")

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey ()
val wordCounts = groupedWords.map (

t => (t._1, t._2.sum)

)
val counts = wordCounts.collect()

e Let's like at a global communication example: computing
the number of times each word occurs
* Load a text file
¢ Split it into words
* Group same words together (all-to-all
communication)
¢ Count each word

UW CSEP 590 (PMP Programming Systems): 54
Ringenburg

Spring 2017

9 Communication Example

Load file, default

sc.textFile("mytext")

number of paritions pval lines
lines.flatMap (

is # of HDFS blocks L,val words

line => line.split(" ")
flatMap maps one val wordKV = words.map(s => (s, 1))
value to (possibly) val groupedWords = wordKV.groupByKey ()
many, instead of val wordCounts = groupedWords.map (

t => (t._1, t._2.sum)

one-to-one like map

)
val counts = wordCounts.collect()

e Let's like at a global communication example: computing
the number of times each word occurs
* Load a text file
¢ Split it into words
* Group same words together (all-to-all
communication)
¢ Count each word

UW CSEP 590 (PMP Programming Systems): 55

Spring 2017 Ringenburg

4/22/17

28

Load file, default
number of paritions
is # of HDFS blocks

flatMap maps one
value to (possibly)
many, instead of

one-to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), ...,
(k,vn) into a single key-
value pair (k, (v1, ..., vn)).

Spring 2017

pval lines = sc.textFile("mytext")
r‘val words = lines.flatMap (
line => line.split(" ")

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey/()
fval wordCounts = groupedWords.map (

t => (t._1, t._2.sum)

)
val counts = wordCounts.collect()

e Let's like at a global communication example: computing
the number of times each word occurs
* Load a text file
¢ Split it into words
* Group same words together (all-to-all
communication)
¢ Count each word

UW CSEP 590 (PMP Programming Systems):

Ringenburg 6

Load file, default
number of paritions
is # of HDFS blocks

flatMap maps one
value to (possibly)
many, instead of

one-to-one like map

groupByKey combines all
key-value pairs with the
same key (k, v1), ...,
(k,vn) into a single key-
value pair (k, (v1, ..., vn)).

Collect returns all

elements to the
driver

Spring 2017

pval lines = sc.textFile("mytext")
r‘val words = lines.flatMap (
line => line.split(" ")

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey/()
fval wordCounts = groupedWords.map (

t => (t._1, t._2.sum)

)
Vill counts = wordCounts.collect()

e Let's like at a global communication example: computing
the number of times each word occurs
* Load a text file
¢ Split it into words
* Group same words together (all-to-all
communication)
¢ Count each word

UW CSEP 590 (PMP Programming Systems):

Ringenburg o7

4/22/17

29

The DAG

sc.textFile("mytext")
lines.flatMap (

)

val lines
val words

val wordCounts = groupedWords.map (

)
val counts = wordCounts.collect()

line => line.split("

val wordKV = words.map(s => (s, 1)) Omitting
val groupedWords = wordKV.groupByKey ()

t => (t._ 1, t._

u)

collect due

2.sum to space
constraints

[HDFS Block 1 H Partition 1 H Split 1 H Pair 1
[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

[HDFS Block N H Partition N H Split N H Pair N

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017

Group 1 H Count 1]

Group 2 H Count 2]

GroupN H Count N]

58

"the quick "fox jumps
brown" over"

[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

[HDFS Block N H Partition N H Split N H Pair N

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017

brown

dog

Group 1 H Count 1]
Group 2 H Count 2]

GroupN H Count N]

59

4/22/17

30

Execution

—
(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

"the quick

"fox jumps

brown" over"

[HDFS Block 1 H Partition 1 H Split 1 H Pair 1

(the, 1)
(brown, 1)

(dog, 1)

Group 1 H Count 1]

[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

Group 2 H Count 2]

[HDFS Block N H Partition N H Split N H Pair N

GroupN H Count N]

Spring 2017 Ringenburg

UW CSEP 590 (PMP Programming Systems):

60

Execution

—
(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)

(over, 1)

"the quick

"fox jumps

brown"

(the, 1)
(brown, 1)
(dog, 1)

Spring 2017 Ringenburg

UWFCSEP 590 (PMP Programming Systems):

61

4/22/17

31

Execution

—
(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

"the quick

"fox jumps

brown" over"

[HDFS Block 1 H Partition 1 H Split 1 H Pair 1

Jollieg

[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

[HDFS Block N H Partition N H Split N H Pair N

Spring 2017 Ringenburg

UW CSEP 590 (PMP Programming Systems):

€—

(the, 1)
(brown, 1)

(dog, 1)

Group 1 H Count 1]

Group 2 H Count 2]

GroupN H Count N]

62

Execution

(quick, (1))
(brown, (1, 1))

(fox, (1))
(jumps, (1))
(over, (1))

"the quick

"fox jumps

brown" over"

[HDFS Block 1 H Partition 1 H Split 1 H Pair 1

[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

[HDFS Block N H Partition N H Split N H Pair N

Spring 2017 Ringenburg

UW CSEP 590 (PMP Programming Systems):

(L)]

(dog, (1))

Group 1 H Count 1]

Group 2 H Count 2]

GroupN H Count N]

63

4/22/17

32

Execution

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

"the quick

"fox jumps

brown" over"

[HDFS Block 1 H Partition 1 H Split 1 H Pair 1

(the, 2)

(dog, 1)

Group 1 H Count 1]

[HDFS Block 2 H Partition 2 H Split 2 H Pair 2

Group 2 H Count 2]

[HDFS Block N H Partition N H Split N H Pair N

GroupN H Count N]

Spring 2017 Ringenburg

UW CSEP 590 (PMP Programming Systems):

64

Execution

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

"the quick
brown"

"fox jumps
over"

Spring 2017

UW CSEP 590 (PMP Programming Systems):
Ringenburg

(the, 2)
(dog, 1)

4/22/17

33

Execution

(over, 1)

aJay si Jarieq Ajup

Spring 2017 UW CSEP 590 (PMP Programming Systems): 66
Ringenburg

9 Stages and pipelining

* If an RDD partitions's dependencies are on a single
other RDD partition (or on co-partitoned data), the
operations can be pipelined into a single stage

— Co-partitioned: all of the parent RDD partitions are co-
located with child RDD partitions that need them

— Pipelined: Operations can occur as soon as the local
parent data is ready — no synchronization

— Stage: A pipelined set of operations
* Task: Execution of stage on a single partition

* Every stage ends with a shuffle, an output or returning
data back to the driver.

Spring 2017 UW CSEP 590 (PMP Programming Systems): 67
Ringenburg

4/22/17

34

9 Shuffle implementation

* All data exchanges between
executors implemented via
shuffle

\

Meta data lShufﬂe write

Shuffle read

— Senders (“mappers”) send data
to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

— Barrier until all mappers
complete shuffle writes

— Receivers (“reducers”) request
data from block managers that
have data for them; block
managers read and send

Spring 2017

Map task
thread

Block
manager

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Reduce
task
thread

Block
manager

Request

68

Spring 2017

UW CSEP 590 (PMP Programming Systems):
Ringenburg

69

4/22/17

35

quic, |

(brown, 1)

N
Il
(brown, 1)

(over, 1) (brown, 1)

Sort-based shtﬁf‘ﬂe groups by
destination "reducer" (receiver).

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

70

l Block [T

manager

4
7

S
e |

(quick, 1) j) -
(brown, 1) (over, 1) (brown, 1)

"Reducers" request blocks via block
managers (only showing remote
requests here to avoid clutter).

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

71

4/22/17

36

ﬁ
(the, 1) |/
B

(brown, 1)

(over, 1)

Data sent to reducers via block
managers (BMs not shown).

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

72

Communication Example,
Revisited

val lines
val words

sc.textFile("mytext")
lines.flatMap (

line => line.split(" ")
)
val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.reduceByKey (
(a,b) => a + b

val counts = wordCounts.collect()

* Can do this more efficiently with "reduceByKey" —
aggregates results locally before shuffling
— Reduces amount of data sent over the network

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

73

4/22/17

37

Discussion

¢ Common (mis??)conceptions about data analytics performance:
— Optimize Network
— Optimize IO
— Stragglers are tricky

* Many have interpreted the paper you read as claiming these are
not accurate

— Computation is now the real bottleneck
* Do you agree? Why or why not?
— Do you think that is what the authors were really trying to say?
* Were the workloads representative enough? Does this matter?

* What should we focus on now, to improve performance and
scaling?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

74

4/22/17

38

