CSEP 590 – Programming Systems
University of Washington
Lecture 3: SSA, Register Allocation
Michael Ringenburg
Spring 2017

Course News

• Submit presentation topic proposals by April 14
 – If you would like to work with a partner, both of you will have to present, and I will expect a more in depth/longer presentation
 – We’re up to 19 students – tricky to fit >18 into final 3 weeks. Let me know if you’d be willing to present May 9.
 • Otherwise may have to come early or stay late one class (we’ll vote)
• Today:
 – Finish discussing optimization techniques:
 • A couple more dataflow examples
 • SSA Form
 – Register allocation via graph coloring
• After that, broaden our horizons a bit and look at other types of programming systems
 – Next week: Specialized programming systems for Big Data
 – Following week: Garbage collection
Dataflow, Continued

Example: Reaching Definitions

- A write (definition) of a variable reaches a read if the read might use the defined value.
- Formally: A definition \(d \) of some variable \(v \) reaches operation \(i \) if and only if \(i \) reads the value of \(v \) and there is a path from \(d \) to \(i \) that does not define \(v \) (i.e., \(i \) might use value defined at \(d \))
- Uses
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - DEFOUT(b) – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b). \textbf{Generates}.
 - SURVIVED(b) – set of all definitions not obscured by a definition in b. \textbf{Doesn’t kill}.
 - REACHES(b) – set of definitions that reach b

- **Propagate forward through CFG**
- **Equation** – definition reaches b if any predecessor of b generates it, or if it reaches any predecessor and that predecessor does not kill it:

 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
 \]

Using Dataflow Information

- A few examples of possible transformations...
Classic Common-Subexpression Elimination

• In a statement s: t := x op y, if x op y is available at s (from last week) then it need not be recomputed

• Compute reaching expressions i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define x or y
 – As we saw in last week’s example, available expressions may be available from different places in different paths (e.g., 5*n earlier).

Classic CSE

• If x op y is defined at n and reaches s
 – Create new temporary w
 – Rewrite n as
 n: w := x op y
 n’: v := w
 – If multiple reaching definition points, rewrite all of them
 – Modify statement s to be
 s: t := w
 – (Rely on copy propagation to remove extra assignments if not really needed)
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
 – Or if all reaching definitions set t to *same* constant c.

Copy Propagation

• Similar to constant propagation

• Setup:
 – Statement d: t := z
 – Statement n uses t

• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – We saw earlier how this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic

• But it can expose other optimizations, e.g.,

 a := y + z
 u := y
 c := u + z // Copy propagation makes this y + z

 – After copy propagation we can recognize the common subexpressions

Dead Code Elimination

• If we have an instruction

 s: a := b op c

 and a is not live-out after s, then s can be eliminated
 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 – E.g., if b or c are a function call, they may have unknown side effects.
Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- And then: facts open opportunities for code improvement
- Next up: SSA (single static assignment) form – transform program to a new form where each variable has only a single definition.
 - Can make many optimizations/analyses more efficient
Next Topic: SSA Form

- SSA (Single Static Assignment) is a very common IR used by optimizing compilers
 - Makes many analyses (and thus optimizations) more efficient.
 - Key property: Each variable has exactly one *static* definition. May have multiple dynamic definitions, e.g., a loop.
- Our next topic: An overview of the SSA IR
 - Constructing SSA graphs
 - SSA-based optimizations
 - Converting back from SSA form

Motivation: Def(ine)-Use Chains

- Common dataflow analysis problem: Find all sites where a variable is used, or find the possible definition sites of a variable used in an expression
- Traditional solution: def-use (DU) chains – additional data structure on top of the IR
 - Link each statement defining a variable to all statements that use it
 - Link each use of a variable to its possible definitions
DU-Chain Drawbacks

- Expensive: if a typical variable has N uses and M definitions, total cost is \(O(N \times M \times num\text{Variables}) \)
 - Would be nice if cost were proportional to the size of the program
- Unrelated uses of the same variable are mixed together
 - Complicates analysis

SSA: Static Single Assignment

- IR where each variable has only one definition in the program text
 - This is a single static definition, but it may be in a loop that is executed dynamically many times
SSA in Basic Blocks

Idea: For each original variable x, create a new variable \(x_n \) at the \(n^{th} \) definition of the original x. Subsequent uses of x use \(x_n \) until the next def.

- **Original**

 \[
 \begin{align*}
 a &:= x + y \\
 b &:= a - 1 \\
 a &:= y + b \\
 b &:= x \times 4 \\
 a &:= a + b
 \end{align*}
 \]

- **SSA**

 \[
 \begin{align*}
 a_1 &:= x + y \\
 b_1 &:= a_1 - 1 \\
 a_2 &:= y + b_1 \\
 b_2 &:= x \times 4 \\
 a_3 &:= a_2 + b_2
 \end{align*}
 \]

Merge Points

- The issue is how to handle merge points in the CFG.

```plaintext
if (...) 
  a = x;
else
  a = y;
else
  a = y;
b_1 = ??;
```
Merge Points

• The issue is how to handle merge points in the CFG.

if (...)
 a = x;
else
 a = y;
 b = a;

if (...)
 a₁ = x;
else
 a₂ = y;
 a₃ = Φ(a₁, a₂);
 b₁ = a₃;

• Solution: introduce a Φ-function a₃ := Φ(a₁, a₂)
• Meaning: a₃ is assigned either a₁ or a₂ depending on which control path is used to reach the Φ-function

Another Example

Original

b := M[x]
a := 0

if b < 4

a := b

c := a + b

SSA

b₁ := M[x₀]
a₁ := 0

if b₁ < 4

a₂ := b₁

a₃ := Φ(a₁, a₂)
c₁ := a₃ + b₁
How Does Φ “Know” What to Pick?

- Φ-functions seem a bit “magical” – how do they know what value to pick??
- They don’t actually need to, because they don’t exist at run-time …
 - When we’re done using the SSA IR, we translate back out of SSA form, removing all Φ-functions.
 - For analysis, all we typically need to know is the connection of uses to definitions – no need to “execute” anything.

Example With Loop

Original

```
a := 0
b := a + 1
c := c + b
a := b * 2
if a < N
    return c
```

SSA

```
a_1 := 0
a_3 := \Phi(a_1, a_2)
b_1 := \Phi(b_0, b_2)
c_2 := \Phi(c_0, c_1)
b_2 := a_3 + 1
c_1 := c_2 + b_2
a_2 := b_2 * 2
if a_2 < N
    return c_1
```

- Loop back edges also represent merge points, and thus require Φ functions.
- Notes:
 - a_0, b_0, c_0 are initial values of a, b, c on block entry
 - b_1 is dead – can delete later
Converting To SSA Form

• Basic idea
 – First, add Φ-functions
 – Then, rename all definitions and uses of variables by adding subscripts
• Renaming is straightforward. Inserting Φ-functions is where things get a little tricky.

Inserting Φ-Functions

• Could simply add Φ-functions for every variable at every join point
• But
 – Wastes way too much space and time
 – Not needed
When to Insert a Φ-Function

- We need a Φ-function for variable a at entry to block z whenever
 - There are blocks x and y, both containing definitions of a, and $x \neq y$
 - There are nonempty paths from x to z and from y to z
 - These paths have no common nodes other than z
 - i.e., this is where the paths first merge

Some Details

- The start node of the control flow graph is considered to define every variable (possibly just to Undefined)
 - Makes following construction simpler
- Each Φ-function itself defines a variable, which may create the need for a new Φ-function.
 - So we need to keep adding Φ-functions until things converge (no more changes).
- How do we do this efficiently?
 - Using a new concept: dominance
Dominators

- Definition
 - A block x dominates a block y if and only if every path from the entry of the control-flow graph to y includes x
- By definition, x dominates x
- We can associate a Dom(inator) set with each CFG node
 - The set of all basic blocks that must execute before x
 - $|\text{Dom}(x)| \geq 1$
- Properties:
 - Transitive: if a dom b and b dom c, then a dom c
 - No cycles, thus can view dominators as a tree

Example
Dominators and SSA

- Important property of SSA: definitions must dominate uses
 - In other words, the single assignment must occur prior to any uses of the variable. (Although that single assignment may just be the start node assignment of "Undefined").

- More specifically:
 - If \(x := \Phi(\ldots, x_i, \ldots) \) in block \(n \), then the definition of \(x_i \) dominates the \(i \)th predecessor of \(n \)
 - If \(x \) is used in a non-\(\Phi \) statement in block \(n \), then the definition of \(x \) dominates block \(n \)
Dominance Frontier (1)

- To get a practical algorithm for placing Φ-functions, we need to avoid looking at all combinations of nodes leading from x to y.
- Instead, use the dominator tree in the flow graph.
 - Place merges *just beyond the end of the definitions' dominance*.
 - The first point where they may receive a value from an alternate definition.
 - This follows directly from the previous properties:
 - Φ-function means predecessors are dominated by defs.
 - Non Φ usage means dominated by def.
 - This is referred to as the *dominance frontier*.

Dominance Frontier (2)

- Definitions
 - x *strictly dominates* y if x dominates y and $x \neq y$.
 - The *dominance frontier* of a node x is the set of all nodes w such that x dominates a predecessor of w, but x does not strictly dominate w.
 - Interestingly, this means that x can be in *its own dominance frontier!* This can happen if you have a back edge to x (x is the head of a loop).

- Essentially, the dominance frontier is the border between dominated and undominated nodes.
Example

Spring 2017

UW CSEP 590 (PMP Programming Systems): Ringenburg

34

Example

Spring 2017

UW CSEP 590 (PMP Programming Systems): Ringenburg

35
Example

\[x = \text{DominanceFrontier}(x) \]
\[\text{StrictDom}(x) \]

Spring 2017
UW CSEP 590 (PMP Programming Systems)
Ringenburg
Example

Spring 2017
UW CSEP 590 (PIMP Programming Systems)
Ringenburg

= x
= DominanceFrontier(x)
= StrictDom(x)
Example

Spring 2017
UW CSEP 590 (PMP Programming Systems)
Ringenberg

= x
= DominanceFrontier(x)
= StrictDom(x)
Placing Φ-Functions

- If a node x contains the definition of variable a, then every node in the dominance frontier of x needs a Φ-function for a
 - Idea: Everything dominated by x will see x's definition. Dominance frontier represents first nodes we could have reached via an alternate path, which will have an alternate reaching definition (recall that the entry defines everything).
 - Why does this work for loops? Hint: Strict dominance ...
 - Since the Φ-function itself is a definition, this needs to be iterated until it reaches a fixed-point

- Theorem: this algorithm places exactly the same set of Φ-functions as the path criterion given previously.
Placing Φ-Functions: Details

- The basic steps are:
 1. Compute the dominance frontiers for each node in the control flow graph
 2. Insert just enough Φ-functions to satisfy the criterion. Use a worklist algorithm to avoid reexamining nodes unnecessarily
 3. Walk the dominator tree and rename the different definitions of variable a to be a_1, a_2, a_3, ...

SSA Optimizations

- Advantage of SSA: Makes many optimizations and analyses simpler and more efficient.
 - We’ll show a couple examples.
- But first, what do we know? (i.e., what information is kept in the SSA graph?)
SSA Data Structures

- Statement: links to containing block, next and previous statements, variables defined, variables used.
- Variable: link to its (single) definition statement and (possibly multiple) use sites
- Block: List of contained statements, ordered list of predecessors, successor(s)

Dead-Code Elimination

- A variable is live if and only if its list of uses is not empty(!)
 - Without SSA, possibly many stores to each variable. Have to disambiguate which might be used. With SSA each store defines a new variable, so this becomes trivial ...
- Algorithm to delete dead code:
 while there is some variable \(v \) with no uses
 if the statement that defines \(v \) has no other side effects, then delete it
 – Need to remove this statement from the list of uses for its operand variables – which may cause those variables to become dead
Sparse Simple Constant Propagation (SSCP)

- If c is a constant in $v := c$, any use of v can be replaced by c
 - Then update every use of v to use constant c
- If the c_i's in $v := \Phi(c_1, c_2, ..., c_n)$ are all the same constant c (or “Undefined” via start node, if you like), we can replace this with $v := c$
- Can also incorporate copy propagation, constant folding, and others in the same worklist algorithm

Sparse Simple Constant Propagation

$W := \text{list of all statements in SSA program}$
while W is not empty
 remove some statement S from W
 if S is $v := \Phi(c, c, ..., c)$, replace S with $v := c$
 if S is $v := c$
 delete S from the program
 for each statement T that uses v
 substitute c for v in T
 add T to W
Converting Back from SSA

- Unfortunately, real machines do not include a Φ instruction
- So after analysis, optimization, and transformation, need to convert back to a “Φ-less” form for execution

Translating Φ-functions

- The meaning of $x := \Phi(x_1, x_2, \ldots, x_n)$ is “set $x := x_1$ if arriving on edge 1, set $x := x_2$ if arriving on edge 2, etc.”
- So, for each i, insert $x := x_i$ at the end of predecessor block i
- Rely on copy propagation and coalescing in register allocation to eliminate redundant moves
SSA

• There are many details needed to fully and efficiently implement SSA, but these are the main ideas
 – Most modern compiler texts give details:
 • One of my favorites: *Engineering a Compiler*, Cooper & Torczon, 2nd edition

• SSA is used in most modern optimizing compilers & has been retrofitted into many older ones (e.g., gcc)

Register Allocation (Briggs-Chaitin)
Switch to slides courtesy of Preston Briggs
Diamond Graph (2 color)

Diamond Graph (2 color)

Diamond Graph (2 color)
Diamond Graph (2 color)
Diamond Graph (2 color)