CSEP 590 — Programming Systems
University of Washington

Lecture 2: Overview Part Il — Back End

Michael Ringenburg
Spring 2017

Course News

* Submit presentation topic proposals by April 14
— If you would like to work with a partner, both of you will have to
present, and | will expect a more in depth/longer presentation

— We're up to 19 students — tricky to fit >18 into final 3 weeks.
Let me know if you’d be willing to present May 9.

* Otherwise may have to come early or stay late one class (we’ll vote)
* Today and next week:
— Finish compiler overview
— Cover 1 or 2 advanced topics in compilers:
* Register allocation via graph coloring
* Possibly SSA form
* After that, broaden our horizons a bit and look at other
types of programming systems

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

P

“Front End”

“Back End”

characters

Spring 2017

Reminder: Compiler ‘
§| }
o 5%

Structure

tokens IR (may be different)
A 4

! IR (often different)

A

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017

Intermediate Representations

UW CSEP 590 (PMP Programming Systems):
Ringenburg

4/8/17

’ Intermediate
Representations
* The parser builds an intermediate

representation of the program
— Typically an AST

* Rest of the compiler checks and transforms
the IR to improve (“optimize”) it, and
eventually translates it to final code

— Typically will transform initial IR to one or more
lower level IRs along the way

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ IR Desigh Taxonomy

* Structure
— Graphical (trees, graphs, etc.)
— Linear (code for some abstract machine)

— Hybrids are common (e.g., control-flow graphs
with linear code in basic blocks)

* Abstraction Level
— High-level, near to source language
— Low-level, closer to machine

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

’ Example: Array Reference |

Source: Alij] Low-level linear (3 address):

loadI 1 => rl
sub rj,rl => r2
AST:]
loadI 10 => r3
mult r2,r3 => r4
sub ri,rl => r5
add r4,r5 => ré6
High-level linear: t1 < A[i,]] loadI @A => r7
add r7,r6 => r8
load «r8 => r9

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Graphical IRs

* |IRs represented as a graph (or tree)

* Nodes and edges typically reflect some structure
of the program
— E.g., source, control flow, data dependence

* May be large (especially syntax trees)

* High-level examples:
— Syntax trees
— Control flow graphs
— Data dependence graphs
— Often used in optimization and code generation

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

’ Graphical IR:
Concrete Syntax Trees

* The full grammar is needed to guide the parser, but
contains many extraneous details
— E.g., syntactic tokens, rules that control precedence

* Typically the full syntax tree does not need to be
used explicitly

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

’ Graphical IR:
Abstract Syntax Trees

* Want only essential structural information
* Can be represented explicitly as a tree or in a linear form, e.g.,
in the order of a depth-first traversal. For a[i+j], this might be:
Subscript
Id(R)
Plus
Id(i)
Id(3J)
¢ Common output from parser; used for static semantics (type
checking, etc.) and sometimes high-level optimizations

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

’ Control Flow Graph (CFG)

* Nodes are Basic Blocks

— Code that always executes together (i.e., no branches
into or out of the middle of the block).

— l.e., “straightline code”
* Edges represent paths that control flow could
take.
— l.e., possible execution orderings.
— Edge from Basic Block A to Basic Block B means Block
B could execute immediately after Block A completes.
* Required for much of the analysis done in the
optimizer.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ CFG Example

print(“hello”);

a = 17;

if (x == y) {
print(“equal”);
b =9;

} else {
b = 10;

}

while (a < b) {
at+;
print(“increase”);

}

print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

11

4/8/17

’ CFG Example

print(“hello”);

rint(“hello”);
b print()

. a=7;
Ho(x == y) o if (x = y)
print(“equal”);
b =29;
} else {
b = 10;
}
while (a < b) {
at+;
print(“increase”);
}

print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

12

’ CFG Example

print(“hello”);

?f= 7;__ a=1717;
print(“equal”);

b - 9; /

- print(“equal”);
} else { b = 9;

b = 10;

print(“hello”);

}
while (a < b) {
at+;
print(“increase”);
}
print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

13

4/8/17

’ CFG Example

print(“hello”);

rint(“hello”);
e P ()

: a=717;
if (x == y) { if (x == vy)

Print(”equal")i /\

b =9; print(“equal”); b = 10:
} else { b =9; -

b = 10;
}
while (a < b) {
at+;
print(“increase”);
}
print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

14

’ CFG Example

print(“hello”);
a=717;

print(“hello”);

: a=717;
L=) if (x == y)
print(“equal”);
b = 9; . ”k//j/i\\\\\\\»
O by e b = 105
b = 10; ~—
} while (a < b)
while (a < b) {

at+;

print(“increase”);

}
print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

’ CFG Example

print(“hello”);
O a=7;

print(“equal”);
b=9; /\

print(“equal”);
} else { b = 9; b=

b = 10; ~——

} while

print(“hello”);

10;

(a < b)
while (a < b) { \\\\s 6\\j

at++; a++

print(“increase”); print(”increase”);

}
print(“done”);

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

16

’ CFG Example

print(“hello”); print(“hello”);
a=7; =
i a=17;
if (x ==y) {

if (x ==
print(“equal”); { o

b=9; /\

print(“equal”);

} else { b = 9; 9 = 205
b = 10; ~—
} while (a < b)
while (a < b) { S~
at+; at+;
print(“increase”); print(”increase”);
}
print(“done”); print(“done”);
UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

17

4/8/17

(Program/Data)
Dependence Graph

* Often used in conjunction with another IR.

* |In a data dependence graph, edges between nodes
represent “dependencies” between the code
represented by those nodes.

— If A and B access the same data, and A must occur before B
to achieve correct behavior, then there is a dependence
edge from A to B.

— A->B means compiler can’t move B before A.

— Granularity of nodes varies. Depends on abstraction level
of rest of IR. E.g., nodes could be loads/stores, or whole
statements.

—Eg.,a=2;b=2;c=a+7
* Where’s the dependence?

UW CSEP 590 (PMP Programming Systems)

Ringenburg 8

Spring 2017

’ Types of dependencies

* Read-after-write (RAW)/“flow dependence”
— Eg,a=7;b=a+1;
— The read of ‘a’ must follow the write to ‘a’, otherwise it won’t
see the correct value.

* Write-after-read (WAR)/“anti dependence”
— Eg,b=a*2;a=5;
— The write to ‘@’ must follow the read of ‘a’, otherwise the read
won’t see the correct value.
* Write-after-write (WAW)/“output dependence”
— Eg,a=1;..a=2; ..
— The writes to ‘@’ must happen in the correct order, otherwise ‘a’
will have the wrong final value.

* What about RAR/”input dependence”??

UW CSEP 590 (PMP Programming Systems)

Ringenburg o

Spring 2017

4/8/17

10

’ Loop-Carried Dependence

* Loop carried dependence: A dependence across
iterations of a loop

for (i = 0; i < size; i++)
x = foo(x);

* RAW loop carried dependence: the read of ‘x’ depends
on the write of ‘x’ in the previous iteration

* lIdentifying and understanding these is critical for loop
parallelization/vectorization

— If the compiler “understands” the nature of the
dependence, it can sometimes be removed or dealt with

— Often use sophisticated array subscript analysis for this

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

20

’ Dependence Graph
Example

a=7;

print(“hello”);

while (a < b) {
print(“increase”);
at+;

}

print (“done”);

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 21

4/8/17

11

P

Spring 2017

Dependence Graph
Example

a=7;
<:::::print(“hello");
while (a < b) {
print(“increase”);

at+;

}

print (“done”);

UW CSEP 590 (PMP Programming Systems)
Ringenburg

22

P

Spring 2017

Dependence Graph
Example

a=7;
<:::::print(“hello");
while (a < b) {
print(“increase”);

at+;

}

print (“done”);

UW CSEP 590 (PMP Programming Systems)
Ringenburg

23

4/8/17

12

P

Spring 2017

Dependence Graph
Example

a=7;

print (“hello”);

while (a < b) {
print(“increase”);
at+;

}

print (“done”);

UW CSEP 590 (PMP Programming Systems)
Ringenburg

24

P

Spring 2017

Dependence Graph
Example

a=7;
print(“hello”);

while (a < b) { LCD
print(“increase”); i:)

at+;

}

print (“done”);

LCD: Loop-Carried Dependence

UW CSEP 590 (PMP Programming Systems)
Ringenburg

25

4/8/17

13

Spring 2017

Dependence Graph
Example

a=7;

print (“hello”);

while (a < b) { LCD
print(“increase”);
at+; LCD

}

print (“done”);

LCD: Loop-Carried Dependence

UW CSEP 590 (PMP Programming Systems)
Ringenburg

26

P

Linear IRs

* Pseudo-code for some abstract machine

* Level of abstraction varies
* Simple, compact data structures

— Commonly used: arrays, linked structures

* Examples: 3-address code, stack machine code

T1<2 push 2
T2<¢b push b
T3 TL*T2 multiply
T4 €< a push a
T5 € T4-T3 subtract

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

14

4/8/17

What IR to Use?

* Common choice: all(!)

— AST or other structural representation built by parser and
used in early stages of the compiler
* Closer to source code
* Good for semantic analysis
* Facilitates some higher-level optimizations
— Lower to low-level linear IR for later stages of compiler
* Closer to machine code
* Exposes machine-related optimizations
* Good for resource allocation and scheduling

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg 28
S tic Analysi
Spring 2017 UW CSEP 590 (PMP Programming Systems) 29
Ringenburg

15

What do we need
to check to compile this?

class C{ class Main {
int a; public static void
C(int initial) { main(String[] args) {
a = initial; Cc=new C(17);
} c.setA(42);
void setA(int val) { }
a =val; }
}
}
- UW CSEP 590 (PMP Programming Systems) .

Ringenburg

Beyond Syntax

* There is a level of correctness that is not captured by
a context-free grammar
— Has a variable been declared?
— Are types consistent in an expression?
— In the assignment x=y, is y assignable to x?

— Does a method call have the right number and types of
parameters?

— Ina selector p.q, is g a method or field of class instance p?
— Is variable x guaranteed to be initialized before it is used?
— In p.q, could p be null?

— Etc.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

31

4/8/17

16

’ Checked Properties

* Some enforced at compile time, others at run
time (typically depends on language spec).
* Different languages have different requirements
— E.g., Cvs. Java typing rules, initialization requirements
— Some of these properties are often desirable in
programs, even if the language doesn’t require them.
— Compilers shouldn’t enforce a property that is not
required by the language (but can warn).

— However, there are static checkers for some of these
properties that use compiler-style algorithms.

Spring 2017 UW CSEP 590 (PMP Programming Systems) 32
° Ringenburg

What else do we need to
know to generate code?

* Where are fields allocated in an object?

* How big are objects? (i.e., how much storage
needs to be allocated)

* Where are local variables stored when a method
is called?

— Stack? What offset? Or exclusively in register?
Which register?

* Which methods are associated with an object/
class?

— In particular, how do we figure out which method to
call based on the run-time type of an object?

Spring 2017 UW CSEP 590 (PMP Programming Systems) 33
° Ringenburg

4/8/17

17

* Main tasks:

Semantic Analysis

— Extract types and other information from the program

— Check language rules that go beyond the context-free grammar

— Resolve names

* Relate declarations and uses of each variable
— “Understand” the program well enough for synthesis
* E.g., sizes, layouts of classes/structs
* Key data structure: Symbol tables
— Map each identifier in the program to information about it

(kind, type, etc.)

* This is typically considered the final part of the “front end”

of the compiler (once complete, know whether or not

program is legal).

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg

Some Kinds of Semantic

expressions

Information
Information Generated From Used to process
Symbol names Declarations Expressions,
(variables, methods) statements
Type information Declarations, Operations

Memory layout

Assigned by compiler

Target code

information generation
Values Constants Expressions
(constant folding)

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg

4/8/17

18

A Sampling of Semantic
Checks and Computations

e Appearance of a name in an expression: id
— Check: Symbol has been declared and is in scope

— Compute: Inferred type is the declared type of
symbol

* Constant: v
— Compute: Inferred type and value are explicit
— Example: 42 .0 has type double and value 42.0

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

36

A Sampling of Semantic
Checks and Computations

* Binary operator: exp, op exp,
— Check: exp, and exp, have compatible types

* Either identical, or well-defined conversion to
appropriate types

* Types are compatible with op

* Example: 42 + true fails, 20 + 21.9999 passes

— Compute: Inferred type of expression is a function
of the operator and operand types

* Example: 20 + 21.999 has type double, 42 + #,
the answer” has type String (in Java).

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

37

4/8/17

19

4/8/17

’ Attribute Grammars

* A systematic way to think about semantic
analysis

* Formalize properties checked/computed
during semantic analysis and relate them to
grammar productions in the CFG.

* Sometimes used directly, but even when not,
AGs are a useful way to organize the analysis
and think about it

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

38

’ Attribute Grammars

* |dea: associate attributes with each node in the
syntax tree

* Examples of attributes
— Type information
— Storage information

— Assignable (e.g., expression vs variable — Ivalue vs
rvalue for C/C++ programmers)

— Value (for constant expressions)
— etc. ...

* Notation: X.a if a is an attribute of node X

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

39

20

’ Inherited and Synthesized
Attributes

* Given a production X ::=Y; Y, ... Y,

* A synthesized attribute X.a is a function of some
combination of attributes of Y,'s (bottom up)
— E.g., a value attribute

* An inherited attribute Y,.b is a function of some

combination of attributes X.a and other Y;.c (top
down)

— Often restricted a bit: only Y’s to the left can be used.

— E.g., a “type environment” or a “value environment”
mappings of symbols to types or values (if they are
known constants).

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Attribute Equations

* For each kind of node we give a set of equations
relating attribute values of the node and its children

— Example:

plus.val = expl.val + exp2.val

* Attribution (aka, evaluation) means implicitly
finding a solution that satisfies all of the equations
in the tree

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

41

4/8/17

21

’ Informal Example of
Attribute Rules
* Suppose we have the following grammar for a
trivial language
program ::= declList stmt
declList ::= declList decl | decl
twostmts ::= stmt stmt
decl ::=intid;
stmt ::=exp =exp;
exp ::=id | exp + exp | INTEGER_LITERAL
* We want to give suitable attributes for basic type
and lvalue/rvalue checking, and constant folding

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

42

’ Informal Example of
Attribute Rules
e Attributes of nodes

— env (type environment) stores the types of all declared
variables; synthesized by declarations, inherited by the
statement

e Each entry maps a name to its type
— envPre (for declarations) — Used to build up the environment
* Represents the environment prior to the declaration.

* E.g, “intx; inty;”. The envPre of “int y” will map x to an int. The env
of “int y” will map x to int and y to int.

— type (for expressions); synthesized from children (and
possible env lookup)

— kind: var (assignable) or val (not assignable); synthesized

— value (for expressions): UNK (unknown) or an Integer,
represents computed constant value; synthesized

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

22

’ Attributes for Declarations

* decl::=intid;
— decl.env = decl.preEnv U {(id, int)}

— Intuition: add (id, int) mapping to an environment
containing mappings for previous declarations

* Example: Attribution for int vy, given that we
previously saw int x
— Saw int x earlier, so assume decl.preEnv = {(x, int)}
—decl::=int y;
— decl.env = decl.preEnv U {(y, int)} =
{(x, int)} U {(y, int)} =
{(x, int), (y, int)}

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

44

’ Attributes for Declarations

* decllist, ::= declList, decl
— decl.preEnv = declList,.env
— declList,.env = decl.env

— Intuition: declList,.env contains all of the
previously seen mappings, so use it as the pre-
environment for our new declaration. The
environment for the combined list (list 1) will be
the result of adding the mapping for decl to the
mappings of the sublist (list 2).

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

23

4/8/17

’ Attributes for Declarations

* declList ::= decl
— decl.preEnv ={}
— declList.env = decl.env

— Intuition: For the first element in our declaration
list, we can start with an empty environment,
because we won’t have seen any declarations yet.
(True here, but probably not in a real language.)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

46

Example Declaration List

int a; int b; int c;

e declList ::= decl
e decl.preEnv={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList,.env = decl.env
e decl::=intid;
e decl.env = decl.preEnv U {(id, int)}

Spring 2017

24

int a;

Example Declaration List

int b; int c;

e declList ::= decl

Spring 2017

e decl.preEnv={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList;.env = decl.env
e decl::=intid;
* decl.env = decl.preEnv U {(id, int)}

int a;

Example Declaration List

int b; int c;

e declList ::= decl

Spring 2017

e decl.preEnv={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList,.env = decl.env
e decl::=intid;
e decl.env = decl.preEnv U {(id, int)}

4/8/17

25

Example Declaration List

int a; int b; int c;

I env: {a,int} |

pre: {}, env: {a,int}

3

Spring 2017

e declList ::= decl
e decl.preEnv={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList;.env = decl.env
e decl::=intid;
* decl.env = decl.preEnv U {(id, int)}

Example Declaration List

int a; int b; int c;

I env: {a,int} | pre: {a,int}

pre: {}, env: {a,int}

g
3

Spring 2017

e declList ::= decl
e decl.preEnv={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList,.env = decl.env
e decl::=intid;
e decl.env = decl.preEnv U {(id, int)}

4/8/17

26

Example Declaration List

int a; int b; int c;

| env: {a,int} | pre: {a,int}, env: {(a,int) ¢ declList ::= decl

3 (b,int)} + decl.preEnv ={}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList;.env = decl.env
e decl::=intid;
* decl.env = decl.preEnv U {(id, int)}

pre: {}, env: {a,int}

Spring 2017

Example Declaration List

int a; int b; int c;

env: {(a,int) (b,int) (c,int)}

env: {(a,int) (b,int)} pre- {(a,int) (b,int)}, env: {(a,int) (b,int) (c,int)}

| env: {a,int} | pre: {a, mt}, env: {(a,int) ¢ declList ::= decl

(b,int)} decl.preEnv =1{}
* declList.env = decl.env
* decllList, ::= declList, decl
* decl.preEnv = declList,.env
* declList,.env = decl.env
e decl::=intid;
e decl.env = decl.preEnv U {(id, int)}

pre: {}, env: {a,mt}

Spring 2017

4/8/17

27

’ Attributes for Program

* program ::= declList stmt
— stmt.env = declList.env

— Intuition: We want to typecheck our statement given the
type environment synthesized by our declaration list.

* Example: If program was
int a; int b; b = a + 1;

We would typecheck the assignment statement
with the environment {(a, int), (b, int)}

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Attributes for Constants

* exp ::= INTEGER_LITERAL
— exp.kind = val
— exp.type =int
— exp.value = INTEGER_LITERAL

— Intuition: An integer constant (literal) clearly has
type int, and explicit value. You can’t assign to it
(5 =xis not legal), so it is a value (val) not a
variable (var).

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

28

Attributes for
|dentifier Expressions

* exp:=id
— id.type = exp.env.lookup(id)
* If this lookup fails, issue an undeclared variable error.
exp.type =id.type
exp.kind = var
exp.value = UNK

Intuition: We look up the identifier’s type in the
environment, and use that as the expression’s type. If it
doesn’t exist in the environment, it must not have been
declared, so it’s an error. Since it is a variable, it is
assignable and has unknown value.

— Example: Typechecking a with environment {(a,int)} gives
type int. Typechecking b with the same environment gives
an error.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Attributes for Addition

* exp :i=exp; +exp,
— exp,.env = exp,.env = exp.env

error if exp,.type != exp,.type (or if not compatible if using more
complex rules)

exp.type = exp,.type (or converted type if more complex rules)

exp.kind = val

exp.value = (exp,.value == UNK | | exp,.value == UNK) ?
UNK : exp,.value + exp,.value

— Intuition: Typecheck operands with same environment as
operation. Verify that types are compatible, and set result
type appropriately. Not assignable, so set kind to val.
Compute value if both operands have constant value.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

29

’ Attribute Rules for
Assignment
* stmt ::= exp, = exp,;
— exp,.env = stmt.env

— exp,.env = stmt.env

— Error if exp2.type is not assignment compatible
with expl.type

— Error if exp,.kind is not var (can’t be val)

— Intuition: Verify that left hand side is assignable,
and that types of left and right hand sides are
compatible.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

58

Example

intx; inty; intz; x =y + (1+2);

E : e program ::= decllist stmt

* stmt.env = declList.env
e exp ::= INTEGER_LITERAL

e exp.kind =val

* exp.type =int

e exp.value = INTEGER_LITERAL
e exp:=id

* type = exp.env.lookup(id)

e (error if fails)
* exp.type =id.type

‘ e exp.kind =var
Spring 2017 ;.J M e exp.value = UNK

4/8/17

30

Example

intx; inty; intz; x =y + (1+2);

program

Typecheck y with declList env

= Kind: var, Value: UNK
a E ! e program ::= declList stmt

* stmt.env = declList.env
e exp ::= INTEGER_LITERAL

* exp.kind = val

* exp.type =int

e exp.value = INTEGER_LITERAL
e exp:=id

* type = exp.env.lookup(id)

* (errorif fails)

* exp.type =id.type

e exp.kind =var
Spring 2017 INT(1) INT(2) + exp.value = UNK

Example

intx; inty; intz; x =y + (1+2);

program

= Type: int, Value: 1, Kind: val
a E ! ‘.= declList stmt

t.env = decllList.env

Type: int, Value: 2, Kind: val

exp.kind = val
exp.type = int
exp.value = INTEGER_LITERAL
n=id
type = exp.env.lookup(id)
* (errorif fails)
exp.type = id.type
exp.kind = var

sprine 2017 INT(1) INT(2) + exp.value = UNK

4/8/17

31

program

Example

intx; inty; intz; x =y + (1+2);

Type: int, Value: 3, Kind: val

Spring 2017

INT(2)

exp ::= exp; + exp,

exp;.env = exp,.env = exp.env
* error if exp,.type !=

exp,.type (or if not
compatible)

exp.type = exp;.type (or

converted type)

exp.kind = val

exp.value = (exp;.value ==

UNK | | exp,.value == UNK) ?

UNK : exp,.value + exp,.value

program

Example

intx; inty; intz; x =y + (1+2);

Type: int, Value: UNK, Kind: val

Spring 2017

INT(2)

exp ::= exp; + exp,

exp;.env = exp,.env = exp.env
* error if exp,.type !=

exp,.type (or if not
compatible)

exp.type = exp;.type (or

converted type)

exp.kind = val

exp.value = (exp;.value ==

UNK || exp,.value == UNK) ?

UNK : exp,.value + exp,.value

4/8/17

32

Example

intx; inty; intz; x =y + (1+2);

program

Typecheck x with declList env
Type:int, Kind: var

Type: int, Value: UNK, Kind: val

Spring 2017 INT(2)

* stmt::=exp; = exp,;
* exp;.env=stmt.env
* exp,.env =stmt.env

expl.type

(can’t be val)

* Error if exp2.type is not
assignment compatible with

* Error if exp,.kind is not var

Example

intx; inty; intz; x =y + (1+2);

program

Passes both checks!

Typecheck x with declList env
Type:int, Kind: var

Type: int, Value: UNK, Kind: val

Spring 2017 INT(2)

* stmt::=exp; = exp,;
* exp;.env =stmt.env
* exp,.env =stmt.env

expl.type

(can’t be val)

* Error if exp2.type is not
assignment compatible with

* Error if exp,.kind is not var

4/8/17

33

Observations

* These are equational (functional) computations
* This can be automated (if equations are non-circular)

* But implementation problems
— Non-local computation: Attribute equations can only refer to
values associated with symbols that appear in a single
production rule.
* If you need non-local values, you need to add special rules to the
grammar to copy them around. Can make grammar very large.

— Can’t afford to literally pass around copies of large, aggregate
structures like environments.

— Use of production rules binds attributes to the parse tree rather

than the (typically smaller, and more useful) AST. Can work
around this (use “AST grammar”), but results in more complex
attribute rules.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

66

In Practice

* Attribute grammars give us a good way of
thinking about how to structure semantic checks

* Symbol tables will hold environment information

* Add fields to AST nodes to refer to appropriate
attributes (symbol table entries for identifiers,
types for expressions, etc.)

— Put in appropriate places in AST class inheritance tree

— most statements don’t need types, for example

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

67

4/8/17

34

’ Symbol Tables

* Map identifiers to

<type, kind, location, other properties>
* Operations

— Lookup(id) => information

— Enter(id, information)

— Open/close scopes
* Build & use during semantics pass

— Build first from declarations

— Then use to check semantic rules

* Use (and add to) during later phases as well

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

68

Code Generation

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

69

4/8/17

35

’ Basic Code Generation
Strategy

* Walk the AST or other IR, outputting code for
each construct encountered

* Handling of node’s children is dependent on type

of node

— E.g., for binary operation like +:
* Generate code to compute operand 1 (and store result)
* Generate code to compute operand 2 (and store result)
* Generate code to load operand results and add them

together
* Today is just a sampling of basic constructs, to
give basic idea

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Conventions for
Examples

* The following slides will walk through how this is
done for many common language constructs

* Examples show code snippets in isolation

* Register eax used below as a generic example
— Rename as needed for more complex code using
multiple registers
* A few peephole optimizations included below for
a flavor of what’s possible

— Localized optimizations performed on small ASM
instruction sequences.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

71

4/8/17

36

4/8/17

’ Variables

e For our purposes, assume all data will be in
either:

— A stack frame (method local variables)
— An object (instance variables)
 Local variables accessed via ebp (stack base
pointer)
mov eax,[ebp-12]

* Object instance variables accessed via an
object address in a register

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

72

’ Code Generation for
Constants

* Source

17

* x86

mov eax,17

— Idea: realize constant value in a register

* Optimization: if constantis 0
Xor eax,eax
— May be smaller and faster

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

73

37

’ Assignment Statement

* Source

var = exp;

* x86

<code to evaluate exp into, say, eax>

mov [ebp+offset,.]eax

var

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

74

’ Unary Minus

* Source
-exp

* x86

<code evaluating exp into eax>
neg eax

* Optimization
— Collapse -(-exp) to exp
* Unary plusis a no-op

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

38

Binary +

* Source
expl + exp2

* x86

<code evaluating exp1 into eax>
<code evaluating exp2 into edx>
add eax,edx

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

76

Binary +

* Optimizations
— If exp2 is a simple variable or constant, don’t need to
load it into another register first. Instead:
add eax,immc,,; ; imm is constant

add eax,[ebp+offset,,] ; offset is variable’s stack offset

— Change exp1l + (-exp2) into expl-exp2
— Ifexp2is1
inc eax

* Somewhat surprising: whether this is better than add
eax,1 depends on processor implementation and has
changed over time

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

77

4/8/17

39

Control Flow

* Basic idea: decompose higher level operation into
conditional and unconditional gotos

* In the following, j;,. is used to mean jump when a
condition is false
— No such instruction on x86

— Can realize with appropriate sequence of instructions to
set condition codes followed by conditional jumps

— Normally don’t actually generate the value “true” or
“false” in a register

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

78

While

* Source
while (cond) stmt
* X86
test: <code evaluating cond>
Jfaise dONE
<code for stmt>
jmp test

done:

— Note: In generated asm code we’ll need to generate
unique labels for each loop

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

79

4/8/17

40

4/8/17

P .f

* Source
if (cond) stmt

* x86

<code evaluating cond>
jfalse Skip
<code for stmt>

skip:

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

80

’ Boolean Expressions

* What do we do with this?

x>y

* It is an expression that evaluates to true or
false
— Could generate the value (0/1 or whatever the
local convention is)
— But normally we don’t want/need the value;
we’re only trying to decide whether to jump
* One exception: assignment expressions, e.g.,
while (my_bool = (x<vy)){... }

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

81

41

’ Code for expl > exp2

* Generated code depends on context
— What is the jump target?
— Jump if the condition is true or if false?

* Example: evaluate expl > exp2, jump on false,
target if jump taken is L123
<evaluate exp1 to eax>
<evaluate exp2 to edx>
cmp eax,edx
jng L123 ; greater-than test, jump on false, so jng
; (jJump not greater)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

82

Optimization Overview

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

83

4/8/17

42

Spring 2017

Optimizations

Use added passes to identify inefficiencies in intermediate
or target code

Replace with equivalent (“has the same externally visible
behavior”) but better sequences

— Better can mean many things: faster, smaller, less memory,
more energy-efficient, etc.

Target-independent optimizations best done on IR code
— Removing redundant computations, dead code, etc.
Target-dependent optimizations best done on target code
— Generating sequence that are more efficient on a particular
machine
“Optimize” overly optimistic: “usually improve” is generally
more accurate
— And “clever” programmers can outwit you!

UW CSEP 590 (PMP Programming Systems)

Ringenburg 84

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
2 = t1 * 4;

c[i] = x - 5;

Spring 2017

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[i]
t5 = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ..
t10 = *(fp + xoffset); // x
tll = 5;

tl2 = t10 - t11;

tl3 = *(fp + ioffset); // i
tld = t13 * 4;

tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSEP 590 (PMP Programming Systems)
Ringenburg

4/8/17

43

An example

x = a[i] + b[2];
c[i] = x - 5;

t2 = tl << 2;

t3 = fp + t2;

t4d = *(t3 + aoffset);

t5 = 2;

Strength Reduction: shift often
cheaper than multiply

t6 = t5 << 2;
t7 = £p + t6;

t9 = t4 + t8;
*(fp + xoffset)

t8 = *(t7 + boffset);

tl = *(fp + ioffset); // i

// alil

// bl2]

=t9; // x = ..

t10 = *(fp + xoffset); // x
tll1 = 5;

tl2 = t10 - tl11;

tl3 = *(fp + ioffset); // i
tl4d = t13 << 2;

tl5 = fp + tl4;

Spring 2017

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSEP 590 (PMP Programming Systems)
Ringenburg

86

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
ts = 2;
Constant propagation: Replace t6 = 2 << 2; // was t5 << 2
variables with known constant t7 = fp + t6;
value. t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
t10 = *(fp + xoffset); // x
tll1 = 5;
tl2 = t10 - 5; // was t10 - tl1
tl3 = *(fp + ioffset); // i
tld = tl13 << 2;
tl5 = fp + tl4;
*(tl5 + coffset) = tl1l2; // c[i] := ..
Spring 2017 UW CSEP 590 (PMP Programming Systems) 87

Ringenburg

4/8/17

44

4/8/17

An example
x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
£5=2+
Dead Store (or Dead t6 = 2 << 2;
Assignment) Elimination: t7 = fp + t6;
Remove assignements to t8 = *(t7 + boffset); // b[2]
provably unused variables. t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
t10 = *(fp + xoffset); // x
£11—=5+
tl2 = t10 - 5;
tl3 = *(fp + ioffset); // i
t1l4 = t13 << 2;
tl5 = fp + tl1l4;
*(tl5 + coffset) = tl1l2; // c[i] := ..
Spring 2017 UW CSEP 590 (P,,;/‘I:gz:ﬁ??mmg Systems) og

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
5 t2 = tl << 2;

14
t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
t6 = 2 << 2;

cl[i] = x -

Dead Store (or Dead t7 = fp + t6;
Assignment) Elimination: t8 = *(t7 + boffset); // b[2]
Remove stores to provably t9 = t4 + t8;
unused variables. *(fp + xoffset) = t9; // x = ..

t10 = *(fp + xoffset); // x

t1l2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = t13 << 2;

tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSEP 590 (PMP Programming Systems)

Ringenburg 89

Spring 2017

45

An example

x = a[i] + b[2];
c[i] = x - 5;

Constant Folding: Statically
compute operations with only
constant operands.

Spring 2017

tl = *(fp + ioffset); // i

t2 = tl1 << 2;

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[il]

t6 = 8; // was 2 << 2
///////7t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;

* (fp + xoffset) = t9; // x = ..

t10 = *(fp + xoffset); // x

t1l2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = t13 << 2;

tl5 = fp + tl4;

*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Programming Systems)
Ringenburg

90

An example

x = a[i] + b[2];

cli]

X

5;

tl = *(fp + ioffset); // i
t2 = tl << 2;

t3 = fp + t2;

t4d = *(t3 + aoffset); // ali]
t6—=8+

Constant Propagation, then
Dead Store Elimination

t8 = *(t7 + boffset);

Spring 2017

t9 = t4 + t8;
*(fp + xoffset) = t9;

’/,,/”7t7 = fp + 8; // was fp + t6

// bl2]

// x = ..

t10 = *(fp + xoffset); // x
tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i
tld = tl3 << 2;

t15 = fp + tl4;

*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Programming Systems)
Ringenburg

91

4/8/17

46

4/8/17

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
5; t2 = tl << 2;

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[il]

cl[i] = x -

t7 = fp + 8;
Constant Propagation, then t8 = *(t7 + boffset); // b[2]
Dead Store Elimination t9 = t4 + t8;

* (fp + xoffset) = t9; // x = ..

tl10 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4d = t13 << 2;

tl5 = fp + tl4;

*(tl5 + coffset) = tl1l2; // c[i] := ..

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

92

An example
x = a[i] + b[2]; tl = *(fp + ioffset); // i
C[i] =x - 5; t2 = tl << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = boffset + 8;
Applying arithmetic identities: t8 = *(t7 + fp); // bl2]
We know + is commutative & t9 = t4 + t8;
associative. boffset is typically *(fp + xoffset) = t9; // x = ..
a known compile-time t1l0 = *(fp + xoffset); // x
constant (say, -30), so this tl2 = t10 - 5;
enables ... t13 = *(fp + ioffset); // i
tld = t13 << 2;
tl5 = fp + tl4;
*(tl5 + coffset) = tl1l2; // c[i] := ..
Spring 2017 UW CSEP 590 (P,,;/‘I:gz:ﬁ??mmg Systems) 03

47

An example

x = a[i] + b[2];
c[i] = x - 5;

tl = *(fp + ioffset); // i
t2 = tl << 2;

t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
t7 = -22; // was boffset(-30) + 8

... more constant folding.
Which in turn enables ...

|_—7t8 = *(t7 + £p); // b[2]

t9 = t4 + t8;

Spring 2017

* (fp + xoffset) = t9; // x = ..
tl10 = *(fp + xoffset); // x
tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i
tl4d = t13 << 2;

tl5 = fp + tl4;

*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Programming Systems)
Ringenburg

94

An example

x = a[i] + b[2];
c[i] = x - 5;

tl = *(fp + ioffset); // i
t2 = tl << 2;

t3 = fp + t2;
t4d = *(t3 + aoffset);
=225

// alil

More constant propagation
and dead store elimination.

t9 = t4 + t8;

Spring 2017

* (fp + xoffset) = t9; // x = ..
tl10 = *(fp + xoffset); // x
tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i
tld = t13 << 2;

tl5 = fp + tl4;

*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Programming Systems)
Ringenburg

’/,,/”7t8 = *(fp - 22); // b[2] (was t7+fp)

4/8/17

48

An example

x = a[i] + b[2];
c[i] = x - 5;

tl =
t2 =

t3 =
td4 =
t8 =

More constant propagation
and dead store elimination.

t9 =
*(fp

Spring 2017

t1l0 =
tl2 =
tl3 =
tl4 =
tl5 =
*(tl5

UW CSEP 590 (PMP Programming Systems)

*(fp + ioffset); // i

tl << 2;

fp + t2;

*(t3 + aoffset); // alil]

*(fp - 22); // bl2]

t4 + t8;

+ xoffset) = t9; // x = ..
* (fp + xoffset); // x
tl0 - 5;

*(fp + ioffset); // i

t13 << 2;

fp + tl4;

+ coffset) = t12; // c[i] := ..

96

Ringenburg

An example

x = a[i] + b[2];
c[i] = x - 5;

tl =
t2 =

t3 =
td4 =
t8 =

Common subexpression
elimination: No need to
compute *(fp+ioffset) twice if
we know it won’t change.

t9 =
*(fp

t10 =
tl2 =

Spring 2017

tl3 =
tl4 =
tl5 =
*(tl5

UW CSEP 590 (PMP Progr
Ringenbu

*(fp + ioffset); // i
tl << 2;

fp + t2;

*(t3 + aoffset); // ali]
*(fp - 22); // bl2]

t4 + t8;

+ xoffset) = t9; // x = ..
* (fp + xoffset); // x
tl0 - 5;
tl; // i (was * (fp+ioffset))
t13 << 2;
fp + tl4;

+ coffset) = t12; // c[i] := ..

amming Systems)
g

97

4/8/17

49

x = a[i] + b[2]; tl =
5. £2 =

! t3 =
td =
t8 =

c[i] = x -

Copy propagation: Replace t9 =
assignment targets with their * (fp

values. E.g., replace t13 with tlo =
t1. tl2 =

tl3 =
tl4 =
tl5 =
*(tl5

Spring 2017

An example

*(fp + ioffset); // i

tl << 2;

fp + t2;

*(t3 + aoffset); // alil]
*(fp - 22); // bl2]

t4 + t8;

+ xoffset) = t9; // x = ..

t9; // x (was *(fp+xoffset))
tl0 - 5;
tl; // i

tl << 2; // was t13 << 2
fp + tl4;

+ coffset) = t12; // c[i] := ..

UW CSEP 590 (PMP Programming Systems)
Ringenburg

98

x = a[i] + b[2]; tl =

21 = - E. t2 =
cl[i] = x 5; 63 =
t4 =
t8 =

More copy propagation t9 =

*(fp
tl0 =
tl2 =
tl3 =
tld =
tl5 =
* (15

UW CSEP 590 (PMP Progr:

Spring 2017 Ringenbu

An example

*(fp + ioffset); // i
tl << 2;
fp + t2;
* (3 + aoffset); // alil
*(fp - 22); // b[2]
td + t8;
+ xoffset) = t9; // x = ..
t9; // x
t9 - 5; // Was t10 - 5
tl; // i
tl << 2;
fp + tl14;

+ coffset) = t12; // c[i] := ..

amming Systems)
g

99

4/8/17

50

4/8/17

An example
x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i]=x—5; t2 = tl << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
t8 = *(fp - 22); // b[2]
Common subexpression t9 = t4 + t8;
elimination. *(fp + xoffset) = t9; // x =
t10 = t9; // x
tl2 = t9 - 5;
t13 = tl; // i
tld = t2; // was tl << 2
tl5 = fp + tl1l4;
*(tl5 + coffset) = tl2; // c[i] :=
Spring 2017 UW CSEP 590 (Pl[\g/‘l:gz:f;??mmg Systems) 100

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 22); // b[2]
Copy Propagation t9 = t4 + t8;
* (fp + xoffset) = t9; // x =
t10 = t9; // x
tl2 = t9 - 5;
t13 = tl; // i
tld = t2;
tl5 = fp + t2; // was fp + tl4
*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Progr:

Spring 2017 Ringenbu

amming Systems)
g

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
5; t2 = tl1 << 2;

t3 = fp + t2;

t4d = *(t3 + aoffset); // ali]
t8 = *(fp - 22); // b[2]

c[i] = x -

Dead Assignment Elimination t9 = t4 + t8;

£L0=£9+—F/ =
tl2 = t9 - 5;
£13 =1 // i
£14—=+2;

tl5 = fp + t2;

*(tl5 + coffset) = tl2; // c[i]

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

* (fp + xoffset) = t9; // x = ..

102

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
cl[i] = x - 5; t2 = t1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // ali]
t8 = *(fp - 22); // b[2]
Dead Assignment Elimination t9 = t4 + t8;
* (fp + xoffset) = t9; // x = ..
tl2 = t9 - 5;
tl5 = fp + t2;
*(tl5 + coffset) = tl2; // c[i]
Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

103

4/8/17

52

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
cli] = x - 5; £2 = tl << 2;

t3 = fp + t2;

t4 = *(t3 + aoffset); // alil

t8 = *(fp - 22); // b[2]

t9 = t4 + t8;

* (fp + xoffset) = t9; // x = ..

tl2 = t9 - 5;
tl5 = fp + t2;
*(tl5 + coffset) = tl1l2; // c[i] := ..

Final: 3 loads (i, a[i], b[2]), 2 stores (x, c[i]), 5 register-only moves, 9 +/-, 1 shift
Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *
¢ (Optimizer typically deals in “pseudo-registers” — can have as many as you want — and lets
register allocator figure out optimal assignments of pseudo-registers to real registers.)

UW CSEP 590 (PMP Programming Systems)

Ringenburg 104

Spring 2017

’ Kinds of Optimizations

* peephole: look at adjacent instructions
* local: look at individual basic blocks
— Straight-line sequence of statements
* intraprocedural: look at whole procedure
— Commonly called “global”
* interprocedural: look across procedures
— “whole program” analysis
— gcc’s “link time optimization” is a version of this
* Larger scope => usually better optimization but more
cost and complexity
— Analysis is often less precise because of more possibilities

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

105

4/8/17

53

’ Peephole Optimization

» After target code generation, look at adjacent

instructions (a “peephole” on the code
stream)
— try to replace adjacent instructions with

something faster, e.g., store and load with store

and register move:

movqg %r9,12 (%rsp)
movqg 12 (%rsp) ,%rl2

movqg %r9,12 (%$rsp)
movqg %r9,%rl2

— Jump chaining can also be considered a form of
peephole optimization (removing jump-to-jump)

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg 106

’ Algebraic Simplification

* ‘“constant folding”: pre-calculate operation on constant

* “strength reduction”: replace operation with a cheaper operation

* “simplification”: applying algebraic identities

—z=34+4; 2 z =17;

-z x+ 0; 2 z = x;

-z x *1; 2 z = x;
—z=x*2; 2 z=x<<1l; or z = x + x;
-z x * 8, 2 z = x << 3;
—z=x/8; 2 z =x > 3;
—z=(x+y) -y; 2z =x;

* Can be done at many levels, from peephole on up.

* Why do these examples happen?
— Often created: Conversion to lower-level IR, Other optimizations, Code generation

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

107

4/8/17

54

Higher-level Example: Loop- /m
based Strength Reduction

for (inti=0; i< size; i++) { for (inti=0; i< size; i++) {
fooli] = i; > *(foo +i * elementSize) = i;

} }

t1=0;

for (inti=0; i< size; i++) {
*(foo +t1) = 1i;
t1=t1+8;

}

* Sometimes multiplication by the loop variable in a loop can
be replaced by additions into a temporary accumulator

* Similarly, exponentiation can be replaced by multiplication.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

108

’ Local Optimizations

* Analysis and optimizations within a basic block

* Basic block: straight-line sequence of
statements

— no control flow into or out of middle of sequence

* Not too hard to implement with a reasonable
IR

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

109

4/8/17

55

4/8/17

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; unoptimized intermediate code:

count = 10; count = 10
. // No count assigns tl = count;

X = count * 5; t2 = 5;

y=x " 3; t3 = tl * t2;
X = t3;
t4 = x;
t5 = 3;
t6 = exp(t4, t5);
y = t6;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

110

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; propagated intermediate code:

count = 10; count = 10
. // No count assigns tl = 10; // CP count

X = count * 5; t2 = 5;

y =x *~ 3; t3 =10 * 5; // CP t1
X = t3;
t4 = x;
t5 = 3;
t6 = exp(t4, 3); // CP t5
y = t6;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

111

56

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; folded intermediate code:

count = 10; count = 10
. // No count assigns tl = 10;

X = count * 5; t2 = 5;

y =x *~ 3; t3 = 50; // CF 5 * 10
X = t3;
t4 = x;
t5 = 3;
t6 = exp(t4, 3);
y = t6;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

112

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; repropagated intermediate code:

count = 10; count = 10

. // No count assigns tl = 10;
X = count * 5; t2 = 5;
y=x " 3; t3 = 50;

x = 50; // CP t3

t4 = 50; // CP x
t5 = 3;
t6 = exp(50, 3); // CP t4

y = t6;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

113

4/8/17

57

4/8/17

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; refolded intermediate code:

count = 10; count = 10
. // No count assigns tl = 10;
X = count * 5; t2 = 5;
y=x " 3; t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000; // CF 50”3
y = t6;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

114

Local Constant
Propagation

* |f variable assigned a constant, replace
downstream uses of the variable with constant
(until variable is next assigned)

* Can enable more constant folding
— Code; repropagated intermediate code:

count = 10; count = 10
. // No count assigns tl = 10;

X = count * 5; t2 = 5;

y=x " 3; t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000; // CP té6

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

115

58

Local Dead Assignment
Elimination

* If left side of assignment never referenced again before being
overwritten, then can delete assignment
— Why would this happen?
— Clean-up after previous optimizations, often

* Intermediate code after constant propagation:

count = 10; count = 10
... // No count assigns tl = 10;
X = count * 5; t2 = 5;
y=x " 3; t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000; // CP té6

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

116

Local Dead Assignment
Elimination

* If left side of assignment never referenced again before being
overwritten, then can delete assignment
— Why would this happen?
— Clean-up after previous optimizations, often

* Intermediate code after constant propagation:

count = 10; count = 10
// No count assigns £1 =10
= count * 5; £2—=5+
y=x"3; £3—=50+

[V
|

y = 125000; // CP té6

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 117

4/8/17

59

Local Common
Subexpression Elimination

* Looks for repetitions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation
— Eliminates redundant loads

* Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;
t3 = fp + t2;
td = *(t3 + aoffset);
t5 = *(fp + ioffset);
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset);
t9 = t4 + t8;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

118

Local Common
Subexpression Elimination

* Looks for repititions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation
— Eliminates redundant loads

* Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;

t3 = fp + t2;

td = *(t3 + aoffset);
t5 = tl; // CSE

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);
t9 = t4 + t8;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

119

4/8/17

60

Local Common
Subexpression Elimination

* Looks for repititions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation
— Eliminates redundant loads

* Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;

t3 = fp + t2;

td = *(t3 + aoffset);
t5 = tl;

t6 = tl1 * 4; // cP
t7 = fp + t6;

t8 = *(t7 + boffset);
t9 = t4 + t8;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

120

Local Common
Subexpression Elimination

* Looks for repititions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation
— Eliminates redundant loads

* Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;

t3 = fp + t2;

td = *(t3 + aoffset);
t5 = tl;

t6 = t2; // CSE

t7 = fp + t2; // CP
t8 = *(t7 + boffset);
t9 = t4 + t8;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

121

4/8/17

61

Local Common
Subexpression Elimination

Looks for repititions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation

— Eliminates redundant loads

Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;

t3 = fp + t2;

td = *(t3 + aoffset);

t5 = tl;

t6 = t2;

t7 = t3; // CSE

t8 = *(t3 + boffset) ;//cp
t9 = t4 + t8;

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg 122

Local Common
Subexpression Elimination

Looks for repititions of the same computation, and eliminate
them if the result won’t have changed (and no side effects)
— Avoids repeating the same calculation

— Eliminates redundant loads

Idea: walk basic block, keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl * 4;

t3 = fp + t2;

td = *(t3 + aoffset);
£5—=+1+ // DAE
£6—=+t2;+ // DAE

+7 =+3; // DAE

t8 = *(t3 + boffset);
t9 = t4 + t8;

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg 123

4/8/17

62

4/8/17

’ Intraprocedural
optimizations
* Enlarge scope of analysis to whole procedure
— more opportunities for optimization
— have to deal with branches, merges, and loops
* Can do constant propagation, common

subexpression elimination, etc. at function-
wide level

e Can do new things, e.g. loop optimizations

* Optimizing compilers usually work at this level
(-02)

UW CSEP 590 (PMP Programming Systems)

Ringenburg 124

Spring 2017

’ Code Motion

* Goal: move loop-invariant calculations out of loops

* Can do at source level or at intermediate code level

for (i 0; 1 < 10; i = i+1) {
a[i] a[i] + b[J];
z = z + (foo*bar)*2;

}

tl = b[jl;
t2 = (foo*bar)*2;
for (i 0; i < 10; i = i+1) {

a[i] ; a[i] + t1;
z =z + t2;
}

UW CSEP 590 (PMP Programming Systems)
Ringenburg

125

Spring 2017

63

’ Interprocedural
Optimization
* Expand scope of analysis to procedures calling
each other

* Can do local & intraprocedural optimizations
at larger scope

* Can do new optimizations, e.g. inlining

UW CSEP 590 (PMP Programming Systems)

Ringenburg 126

Spring 2017

’ Inlining: replace call
with body

* Replace procedure call with body of called procedure, and
substituting actual arguments for formal parameters
* Source:
final double pi = 3.1415927;
double circle area(double radius) {
return pi * (radius * radius);

}
double r = 5.0;

double a = circle area(r);
e Afterinlining:
double r = 5.0;

double a = pi * r * r;

* (Then what? Constant propagation/folding.)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

127

Spring 2017

4/8/17

64

4/8/17

Data Structures for
Optimizations

* Need to represent control and data flow

* Control flow graph (CFG) captures flow of control
— nodes are basic blocks

edges represent (all possible) control flow

node with multiple successors = branch/switch

node with multiple predecessors = merge or join point

loop in graph = loop

* Data flow graph (DFG) capture flow of data, e.g. def/use

chains:

— nodes are def(inition)s and uses of data/variables
— edges from defs to uses of (potentially) the same data
— a def can reach multiple uses

— a use can have multiple reaching defs (different control flow,
possible aliasing, etc.)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

128

Analysis and
Transformation

* Each optimization is made up of
— some number of analyses
— followed by a transformation
* Analyze CFG and/or DFG by propagating info forward or
backward along CFG and/or DFG edges
— merges in graph require combining info
— loops in graph require (conservative) iterative approximation

* Perform (improving) transformations based on info computed

* Analysis must be conservative/safe/sound so that
transformations preserve program behavior

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

129

65

Example: Constant Propagation,
Folding

* Can use either the CFG or the DFG

* CFG analysis info: table mapping each variable in scope to one of:
— a particular constant
— NonConstant
— Undefined

* Transformation at each instruction:

— If encounter an assignment of a constant to a variable, set variable as
constant

— if reference a variable that the table maps to a constant, then replace
with that constant (constant propagation)

— if r.h.s. expression involves only constants, and has no side-effects, then
perform operation at compile-time and replace r.h.s. with constant result
(constant folding)

* For best analysis, do constant folding as part of analysis, to learn all constants
in one pass

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

130

Merging data flow
analysis info

* Constraint: merge results must be sound

— if something is believed true after the merge, then it
must be true no matter which path we took into the
merge

— only things true along all predecessors are true after the
merge
* To merge two maps of constant information, build
map by merging corresponding variable information
* To merge information about two variable

— if one is Undefined, keep the other (uninitialized
variables in many languages allowed to have any value)

— if both are the same constant, keep that constant
— otherwise, degenerate to NonConstant

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

131

4/8/17

66

4/8/17

Example Merges

// Block A
int x;
A {x:5} X = 5;

/\ if (foo) {
// Block B
B {x:6}\/c {x:6}

X++;
} else {
// Block C
D {x:6} x=6;
}
// Block D

UW CSEP 590 (PMP Programming Systems)
Ringenburg

132

Spring 2017

Example Merges

// Block A
int x;
A {x:Undefined} if (foo) {

// Block B
z2++;
B {XZS}\/C {x:5}

x = 5;
else {
// Block C
D {x:5} Z—=7;
x = 5;
}
// Block D

-

UW CSEP 590 (PMP Programming Systems)
Ringenburg

133

Spring 2017

67

Spring 2017

A {x:Undefined}

N/

D {x:NonConstant}

Example Merges

// Block A
int x;

if (foo) {
// Block B
z2++;

x = 5;
else {

// Block C
Z——;

X = 4;

}

// Block D

-

UW CSEP 590 (PMP Programming Systems)

Ringenburg

134

Spring 2017

A {x:Undefined}

/////\\\\\C {x:4}
X :Undefined} \/

D {x:4}

Example Merges

// Block A
int x;

if (foo) {
// Block B
z2++;

else {

// Block C
zZ--;

X = 4;

-

}
// Block D

UW CSEP 590 (PMP Programming Systems)

Ringenburg

135

4/8/17

68

i=0; » Safe but imprecise:
forget everything when
we enter or exit a loop

y = 20;
while (...) {
// what’'s true here? * Precise but unsafe:

keep everything when

i=1i+1; we enter or exit a loop
= 30;
: e Can we do better?

// what’s true here?

X .. 1 Ll y ...

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

Loop Terminology

preheader

entry edge

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

137

4/8/17

69

Optimistic Iterative
Analysis

* Assuming information at loop head is same as
information at loop entry

* Then analyze loop body, computing information at
back edge

* Merge information at loop back edge and loop entry

* Test if merged information is same as original
assumption
— If so, then we’re done

— If not, then replace previous assumption with merged
information,

— and go back to analysis of loop body

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

138

Example
i=20;
x = 10;
y = 20;

while (...) {
// what’s true here?

i=1i+1;
y = 30; }
// what’s true here?

X ... 1 ...y

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

139

4/8/17

70

Example

i=20;
x = 10;
y = 20;
while (...) { i=0,x=10,y=20

// what’s true here?

i=1i+1;
y = 30; }
// what’s true here?

X ... 1 ...y

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

140

Example

i=20;
x = 10;
y = 20;
while (...) { i=0,x=10,y=20

// what’s true here?

i=1i+1;

y = 30; } i=1,x=10,y=30

// what’s true here?

X ... 1 ...y

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

141

4/8/17

71

Example

i=20;
x = 10;
y = 20;
while (...) { i=NC, x=10,y=NC

// what’s true here?

i=1i+1;
y = 30; }
// what’s true here?

X ... 1 ...y

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

142

Example

i=20;
x = 10;
y = 20;
while (...) { i=NC, x=10,y=NC

// what’s true here?

i=1i+1;

y = 30; } i=NC,x=10,y=NC

// what’s true here?

X ... 1 ...y

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

143

4/8/17

72

’ Example

i=20;
x = 10;
y = 20;
while (...) { i=NC, x=10,y=NC

// what’s true here?

i=1i+1;

y = 30; }
// what’s true here?
X ... 1 ...y ... i=NC x=10,y=NC

UW CSEP 590 (PMP Programming Systems)
Ringenburg

144

Spring 2017

’ Why does this work?

* Why are the results always conservative?

* Because if the algorithm stops, then

— the loop head info is at least as conservative as
both the loop entry info and the loop back edge
info

— the analysis within the loop body is conservative,
given the assumption that the loop head info is
conservative

UW CSEP 590 (PMP Programming Systems)
Ringenburg

145

Spring 2017

4/8/17

73

’ Optimization Summary

* Optimizations organized as collections of
passes, each rewriting IL in place into
(hopefully) better version

* Each pass does analysis to determine what is
possible, followed by (or concurrent with)
transformations that (hopefully) improve the
program

— Sometimes have “analysis-only” passes — produce
info used by later passes

UW CSEP 590 (PMP Programming Systems)

Ringenburg 146

Spring 2017

Dataflow Analysis
(if we have extra time and energy!)

UW CSEP 590 (PMP Programming Systems)

Ringenburg a7

Spring 2017

4/8/17

74

Next topic:
Dataflow Analysis

A framework and algorithm for many common
compiler analyses

Initial example: dataflow analysis for common
subexpression elimination

Other analysis problems that work in the same
framework

We’ll be discussing some of the same
optimizations we saw in the optimization
overview, but with more formalism and details.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

148

Motivating Example: Common
Subexpression Elimination (csg)

* Goal: Find common Alm=a+b
subexpressions, replace ‘/”z ath L
. . B
with temporaries p-c+d Clg=a+b
* |dea: calculate available r=c+d 7 c+d
expressions at beginning 3] —— = pa—
of each basic block s=a+b t=c+d
. . u=e+f u=e+f
* Avoid re-evaluation of an \, —
available expression — Flv=arb
copy a temp instead weord
— Simple inside a single block; GroC
’ y=a+b
more complex dataflow z=c+d /

analysis used across bocks

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

149

4/8/17

75

’ “Available” and
Other Terms
* An expression e is defined at g
point p in the CFG (control flow ~ defined "~
graphfif its value is computed at tl=a+b
p
— Sometimes called definition site l

* An expression e is killed at a+b,| be ~= -3 t10=a+b
oint p if one of its operands avatiable _

components) is redefined at p
— Sometimes called kill site

* An expression e is available at _Ab=7

point p if every path leadingtop 2 --~
contalems a prior definition of e killed
and e is not killed between that

definition and p

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Available Expression Sets

* To compute available expressions, for each
block b, define

— AVAIL(b) — the set of expressions available on
entryto b
— NKILL(b) — the set of expressions not killed in b

— DEF(b) — the set of expressions defined in b and
not subsequently killed in b

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

76

’ Computing Available
Expressions

* AVAIL(b) (expressions available on entry to b) is the set
AVAIL(b) = Mycpreas(o) (DEF(X) U (AVAIL(x) N NKILL(x)))

— preds(b) is the set of b’s direct predecessors in the CFG

— In “english”, the expressions available on entry to b are the
expressions that were available at the end of every directly
preceding basic block x. (This is the M,/ cqq0))

— The expressions available at the end of block x are exactly
those that were defined in x (and not killed), and those that
were available at the beginning of x and not killed in x.

* Applying to every block gives a system of simultaneous
equations — a dataflow problem

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Computing Available
Expressions

* Big Picture
— Build control-flow graph
— Calculate initial local data — DEF(b) and NKILL(b)
for every block b
* This only needs to be done once
— Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes
* A fixed-point algorithm

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/8/17

77

P

Computing DEF and
NKILL (1)

* For each block b with operations 0,, 0,, ..., 0,

KILLED = J
DEF(b) =

// Killed variables (not expressions)

fori=kto1 // Note we are working backwards - important

assume o, is “x=y +z”

if (y & KILLED and z € KILLED) // Expression in DEF only if
add “y + z” to DEF(b) // they aren’t later killed

add x to KILLED

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Example: Computing DEF

and KILL
x=a+b; DEF ={}
b=c+d; KILL = { }
m = 5%*n;
Spring 2017 UW CSEP 590 (PMP Programming Systems) 155

Ringenburg

4/8/17

78

X=a+b;
b=c+d;
m = 5%*n;

Spring 2017

Example: Computing DEF

and KILL

DEF = {5*n}
KILL={m }

UW CSEP 590 (PMP Programming Systems)
Ringenburg

X=a+b;
b=c+d;
m = 5%*n;

Spring 2017

Example: Computing DEF

and KILL

DEF ={5%n, c+d }
KILL={m, b}

UW CSEP 590 (PMP Programming Systems)
Ringenburg

4/8/17

79

Example: Computing DEF

and KILL

X=a+b;
b=c+d;
m = 5%*n;

. DEF ={5%n, c+d }
KILL={m, b, x}

Spring 2017

(b is killed, so don’t
add a+b to DEF)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

P

e After computing DEF and KILL for a block b,

Computing DEF and
NKILL (2)

conceptually we do the following:

// NKILL is expressions not killed.

NKILL(b) =
for each expression e

{ all expressions in program}

for each variablev&e
if v EKILL then
NKILL(b) = NKILL(b) - e

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

// Remove any killed

4/8/17

80

4/8/17

Example: Computing DEF

and NKILL
X=a+b; DEF ={5*n, c+d }
b=c+d; KILL={m, b, x }
m =5%n; NKILL = all expressions

that don’t use m, b, or x

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

160

’ Computing Available
Expressions

* Once DEF(b) and NKILL(b) are computed for all
blocks b, compute AVAIL for all blocks by
repeatedly applying the previous formulain a
fixed-point algorithm:

Worklist = { all blocks b, }
while (Worklist = &)
remove a block b from Worklist
// If b in Worklist, at least 1 predecessor changed
let AVAIL(D) = Nyepreqs) (DEF(X) U (AVAIL(x) N NKILL(x)))
if AVAIL(b) changed
Worklist = Worklist U successors(b)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

161

81

4/8/17

Example: Computing DEF
and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL(x)))

j=2*a | DEF={2%a, 2*b}
k = 2*b NKILL = exprs w/o jork

—

_ *
DEF={5*I’\,C+C|} X=a+b; C=5*n DEF—ES n}
NKILL = exprs w/om, b, | _ « 4 4. NKILL = exprs w/o ¢
?
orXx
m = 5*n;

= *
D = in Worklist h=2%a |DFF {2%a)

NKILL = exprs w/o h
D = Processing

Spring 2017

UW CSEP 590 (PMP Programming Systems) 162
Ringenburg 7

Example: Computing DEF
and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL()))

j= 2*3 AVAIL={}
k= Z*b DEF={2*a, Z*b}

NLL=exprs w/o jork
_ *
DEF={5*n, c+d } Xx=a+b; c=5*n DEF—ES n}
NKILL = exprs w/om, b, | _ « 4 4 NKILL = exprs w/o ¢
?
or X
m = 5*n;

= *
D = in Worklist h=2*a DEF ={2%a}

NKILL = exprs w/o h
D = Processing

Spring 2017

UW CSEP 590 (PMP Programming Systems) 163
Ringenburg >

82

DEF={5*n, c+d }

orx

D =in Worklist
D = Processing

Spring 2017

NKILL = exprs w/om, b,

Example: Computing DEF
and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2%*3 AVAIL={}

k=2%p |DEF={2%3,2%)

/\NlilLL=exprs w/o jork
_ *

X=a+b; c=5%n EEIFLIESeXI;r}s w/oc
b=c+d; -
m = 5*n;

o AVAIL={5%n}

h=2%a DEF = {2*a}

NKILL = exprs w/o h

UW CSEP 590 (PMP Programming Systems)
Ringenburg

164

AVAIL = {2*a, 2*b}
DEF={5*n, c+d }

NKILL = exprs w/om, b,
or x

D =in Worklist
D = Processing

Spring 2017

Example: Computing DEF
and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL()))

j= 2%*3 AVAIL={}

k=2%p |DEF={2%a,2%)

NLL =exprs w/o jork
_ *

(AT ¢=5%n EEIFLIESex:Jr}s w/oc
b=c+d; h
m = 5*n;

_ o AVAIL={5%n}

h=2%a | e 2%y

NKILL = exprs w/o h

UW CSEP 590 (PMP Programming Systems)

Ringenburg

165

4/8/17

83

AVAIL = {2*a, 2*b}
DEF={5*n, c+d }

NKILL = exprs w/om, b,
orx

D =in Worklist
D = Processing

Spring 2017

Example: Computing DEF

and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2%*3 AVAIL={}

k - z*b DEF = { 2*3, Z*b}
/\NlilLL=exprs w/o jork
—_ * *
x=a+b; o= B AVAIL = {2*a, 2*b}
bec+d. DEF ={5*n}
—C-: ’ NKILL = exprs w/o c
m =5%n;
_ %, | AVAIL={5*n}
h=2%a | ero 2%y

NKILL = exprs w/o h

UW CSEP 590 (PMP Programming Systems)
Ringenburg

166

Example: Computing DEF

and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL()))

k=2*b

j= 2%*3 AVAIL={}
DEF ={2*3, 2*b }

NLL =exprs w/o jork

D = Processing

Spring 2017

AVAIL = {2*a, 2*b} X=a+b; c=5%*%n
DEF ={5*n, c+d } b=c+d:
NKILL = exprs w/om, b, | 5*n"
orx !
D = in Worklist h=2%*a

AVAIL = {2*a, 2*b}
DEF={5*n}
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF={2*a}

NKILL = exprs w/o h

UW CSEP 590 (PMP Programming Systems)
Ringenburg

167

4/8/17

84

Example: Computing DEF
and NKILL

AVAIL(D) = Ny reqsn) (DEF(X) U (AVAIL(x) N NKILL(x)))

AVAIL = {}
DEF = {2*a, 2*b }

NLL = exprs w/o jork

AVAIL = {2*a, 2*b}
DEF={5*n}
NKILL = exprs w/o c

c=5%n

j=2*a
k=2*b
AVAIL = {2*a, 2*b} Xx=a+b;
DEF ={5%n, c+d } b=c+d:;
NKILL = exprs w/o m, b, = 5* ;
o = n,\
D = in Worklist h=2*a

AVAIL = { 5*n, 2*a }
DEF={2*a}

D = Processing

Spring 2017 Ringenburg

NKILL = exprs w/o h

UW CSEP 590 (PMP Programming Systems)

168

’ Dataflow analysis

* Available expressions are an example of a
dataflow analysis problem

* Many other compiler analyses can be
expressed in a similar framework

* Only the first part of the story — once we’ve
discovered facts, we then need to use them to

improve code

Spring 2017 Ringenburg

UW CSEP 590 (PMP Programming Systems)

169

4/8/17

85

Characterizing Dataflow
Analysis

* All of these algorithms involve sets of facts about
each basic block b
— IN(b) — facts true on entry to b
— OUT(b) — facts true on exit from b
— GEN(b) — facts created and not killed in b
— KILL(b) — facts killed in b
* These are related by the equation
OUT(b) = GEN(b) U (IN(b) — KILL(b))
— (Subtracting KILL(b) is equivalent to intersecting NKILL(b))
— Solve this iteratively for all blocks

— Sometimes information propagates forward; sometimes
backward (reverse in and out)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

170

’ Example: Live Variable
Analysis

* Avariable v is live at point p if and only if there is
any path from p to a use of v along which v is not
redefined (i.e., v might be used before it is redefined)

* Some uses:

— Register allocation — registers allocated to live ranges

— Eliminating useless stores — if variable is not live at store,
the stored value will never be used

— Detecting uses of uninitialized variables — if live at
declaration (before initialization), may be used
uninitialized.

— Improve SSA construction — only create phi functions
(variable merges) for live variables - coming later ...

UW CSEP 590 (PMP Programming Systems)

Ringenburg e

Spring 2017

4/8/17

86

’ Liveness Analysis Sets

* For each block b, define
— use[b] = variable used in b before any def
— def[b] = variable defined in b before any use
—in[b] = variables live on entry to b
— out[b] = variables live on exit from b

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

172

’ Equations for Live
Variables
* Given the preceding definitions, we have
in[b] = use[b] U (out[b] — def[b])
out[b] = Usesucclb] in[s]
* l.e,, live at entry iff this blocks generates liveness

(use[b]) or it was live at the exit and this block does not
kill liveness (out[b] — def[b]).
* And live at exit iff live at entry to any successor.
* Algorithm
— Setin[b] = out[b] = &
— Compute use[b] and def[b] for every block (one time)
— Update in, out until no change

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

173

4/8/17

87

