CSEP 590 — Programming Systems
University of Washington

Lecture 1: Motivation; Administratrivia;
Overview Part |

Michael Ringenburg
Spring 2017

’ Agenda

* What are programming systems?
— Why do we study them?

e About this course

* High level overview of compilers and
programming systems

* Fundamentals of Programming Systems, Part |

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

What are Programming Systems,
and why do we care?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

What are programming
systems?

* Broadly all of the pieces of the software stack
that enable a developer’s source code to
execute.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

What are programming
systems?

* Broadly all of the pieces of the software stack
that enable a developer’s source code to
execute.

— Can you think of any examples?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

What are programming
systems?

* My examples ...
— Compilers
* High level language compilers, e.g., C++, Java, etc
* Assemblers (translate assembly to machine code
Runtime Systems,
* Stack and memory management
* Libraries for interacting with the system (sockets libraries, graphics libraries, etc)
* Garbage collection
* Virtual machines (e.g., the JVM)
Interpreters
* Python, ML, etc
Programming Frameworks
* E.g., analytics frameworks like Hadoop/Spark
Verification tools
* Debuggers
* Profilers
* Program Analysis tools

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

Why Study Programming
Systems?

* Become a better programmer(!)
— Insight into interaction between high-level language
source and hardware
* What “really” happens when you run your code
— Understanding of implementation techniques, how
code maps to hardware
— Better intuition about what your code does
* Write better, and faster, code
— Understanding how compilers optimize code helps
you write code that is easier to optimize

* And not waste time making optimization that the compiler
would do as well or better.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Why Study Programming
Systems?

* Compiler techniques are everywhere
— Parsing (“little” languages, interpreters, XML)
— Software tools (verifiers, checkers, ...)
— Database engines, query languages
— Text processing
* Tex/LaTex -> dvi -> Postscript -> pdf
— Hardware: VHDL; model-checking tools
— Mathematics (Mathematica, Matlab)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

Why Study Programming
Systems?

* Fascinating blend of theory and engineering
— Lots of beautiful theory around compilers
— But also interesting engineering challenges and
tradeoffs, particularly in optimization

* Ordering of optimization phases
* What’s good for some programs may not be good for others

— Plus some very difficult problems (NP-hard or worse)
* E.g., register allocation is equivalent to graph-coloring

* Need to come up with good-enough approximations/
heuristics

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Why Study Programming
Systems?

* Draws ideas from many parts of CSE
— Al: Greedy algorithms, heuristic search

— Algorithms: graph algorithms, dynamic programming,
approximation algorithms

— Theory: Grammars, DFAs and PDAs, pattern matching,
fixed-point algorithms
— Systems: Interaction with OS, runtimes

— Architecture: pipelines, instruction set use, memory
hierarchy management, locality

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

Spring 2017

This Course

UW CSEP 590 (PMP Programming Systems)

Ringenburg 10

Spring 2017

About me

UW CSE PhD alum — graduated in 2014
— Thesis research on architectures and programming
models for approximate computing (reducing energy
consumption by relaxing accuracy/precision guarantees)
— Previously, research on programming language
extensions for transactional memory, and runtime
enforcement of security properties

Worked at Cray since 2006

— The supercomputer company
* Building the world’s fastest computers since 1972 ©
— ~7 years working on an automatically parallelizing compiler
* Take non-parallel C/C++ code, plus (optional) pragmas, convert to a parallel program
via automatic loop parallelization
— More recently: working on data analytics and machine learning frameworks
* High-productivity programming systems like Hadoop, Spark, Python Data Stack

* How do we make them fast/take advantage of Cray hardware?

UW CSEP 590 (PMP Programming Systems)

Ringenburg "

3/31/17

’ What am | doing here?

* Give something back to the department

* Enjoy teaching, meeting students
— Taught undergraduate compilers course in 2013, PMP
parallel computing in 2015
— Both broadly about programming systems

* Programming systems is a broad, fascinating,
ever-changing subject — always more to learn
— Many of you probably have experiences and
knowledge that | don’t (even if you don’t realize it!)

— | hope to learn as much from you as you learn from
me

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

12

’ Overall Course Goals

* Provide basic foundations of programming systems

— Get everyone on the same page

— First 2 or 3 weeks will be focused on this
* Explore a selection of topics relevant to modern languages and

architectures

— Topics you might not see in a traditional curriculum

— 1 will provide some, but also want this to be partially driven by you...
* Gain experience with important skills for Masters grads:

— Reading research literature in programming systems

* Typical class format: short presentation(s) of papers about weekly topic,
classroom discussion

» Before class: Read paper(s), submit summary and discussion questions
* Presenting material, leading discussions
— Everyone in class will present at some point this quarter ...

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

Spring 2017

Presentations

Everyone will be expected to prepare a presentation on a programming
systems topic. Options:

— Present a relevant project that you have worked on

— Present a research paper in programming systems

— Other ideas you suggest: E.g., implement something we discussed, present
results?

— Some ideas on course web (soon!), but feel free to suggest others

— Proposal due to me by April 14 — more details to come soon
We will allocate ~30 minutes each. 20 to present, 10 for questions and
discussion.

— Last 3 or 3.5 class sessions, depending on final enroliment
Why?

— Important skill for Masters graduates — career advancing
Allows class to share knowledge, learn about more topics than | could cover
Best way to learn is by teaching
Hopefully generate interesting discussions!

UW CSEP 590 (PMP Programming Systems)
Ringenburg

14

Spring 2017

Class Sessions

Don’t worry, | won’t lecture for three hours straight...
— You would fall asleep; | would lose my voice
Class will be a mix of lectures/presentations and discussion
First 2 or 3 weeks will be more lecture heavy, as we cover the foundations
Later classes will more discussion heavy
Discussion basics
— Discussion session is for you to discuss/debate (politely) the papers and related
topics
— Be considerate, polite, respectful of everyone — we all have different
backgrounds
— lam just here to moderate/keep things on track
— So, please be prepared: do the readings and any homeworks on time
— Otherwise discussions will not be valuable
Today’s discussion will be short, since the first reading isn’t due until next
week (maybe we can leave a little early!)s
— Introduce yourselves, why you are here, what you work on, etc.

Warning: | have some travel coming up middle of the quarter. Stay tuned...

UW CSEP 590 (PMP Programming Systems)

-
Ringenburg n

3/31/17

3/31/17

’ Your Work

* Assignments:
— Most weeks will include ~2 articles/research papers to read and
review (sometimes 1, occasionally more if they are short)
— May also include a couple short written and/or programming
problems, especially in the beginning
* Review format:
— 0.5 -1 pages (using a “reasonable” font size)
— Include:
* Summary of articles key points
* Do you agree/disagree? Why?
» 2-3 discussion questions related to the article(s)
* Late policy: At most twice during the quarter, you may turn
in an assignment late (max 1 week). This is intended for
use with work/family emergencies — don’t abuse.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

16

’ Grading

* Don’t worry, I’'m not here because | want to
fail anyone. ©

* Everyone should be able to get a high grade if
you show up, do the work, participate in the
discussions as well as you can, and enjoy
yourself.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

17

Spring 2017

Overview of Programming Systems

UW CSEP 590 (PMP Programming Systems)

Ringenburg 8

Spring 2017

Types of Programming
Systems

Compilers

— Responsible for translating human readable source into machine-executable
instructions

Runtime systems
— Provides the common infrastructure needed to execute compiled programs

— E.g., memory management, device access, threading, language features like
garbage collection, etc

Interpreters

— Combine aspects to compilers and runtimes

— Directly execute source code
May also include tools like debuggers, profilers, static checkers, etc, used
by developers to improve their programs
We will focus the first couple lectures on compilation, but touch on other
aspects as appropriate

— Some of our later topics will touch on other types of programming systems
more extensively

UW CSEP 590 (PMP Programming Systems)
Ringenburg

19

3/31/17

10

9 What do compilers do?

* How do we turn this into something the
computer can execute?

int nPos = 0;
int k = 0;
while (k < length) {
if (afk] > 0) {
nPos++;
}
}

* The computer only knows 1’s & 0’s

* Using a compiler (and/or an interpreter)
— We'll discuss the differences in a few slides

UW CSEP 590 (PMP Programming Systems):
Ringenburg

20

Spring 2017

9 Structure of a Compiler

* At a high level, compilers have two pieces:
— Front end: read source code
* Parse the source, understand its structure

— Back end: produce an executable

* Generate equivalent target language program. May
optimize (improve) code, but must not change behavior.

UW CSEP 590 (PMP Programming Systems):
Ringenburg

Spring 2017 21

3/31/17

11

1

9 Compiler must... Al

* recognize legal programs (& complain about illegal
ones)
* generate correct code

— Programmer’s favorite pastime is blaming their buggy
code on “compiler bugs”. ©

* manage runtime storage of all variables/data

* agree with OS (loader) and linker on target format

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

22

TOF

9 How does this happen? nMu

* Phases communicate via Intermediate
Representations, a.k.a., “IR”.
— Front end maps source into IR
— Back end maps IR to target machine code

— Often multiple IRs produced by different phases of front/
back ends — higher level at first, lower level in later phases

Java IR MC

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

23

3/31/17

12

Front End

tokens

source

* Usually split into two main parts
— Scanner: Responsible for converting character stream to token
stream: operation, variable, constant, etc.
* Also: strips out white space, comments
— Parser: Reads token stream; generates IR

* (Semantics analysis can happen here, or immediately afterwards)
* Both of these can be generated automatically

— Use a formal grammar to specify source language (e.g., Java)

— Tools read the grammar and generate scanner & parser (e.g.,
lex and yacc for C, or JFlex and CUP for Java)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

24

’ Scanner Output Example

* Input text

// Look, I wrote a comment! I'm a good programmer!
if (x >= y) y = 42;

* Token Stream

[1F] [paren | [10p) |[cEQ] [1Dy) |

|RPAREN | [1Dly) | | BECOMES | |INT(42) ||scoLon |

— Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages,
ahem, FORTRAN)

* Tokens may have associated data, e.g., a value or a variable name.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

25

3/31/17

13

Parser Output (IR)

* Given token stream from scanner, parser must
produce output that conveys meaning of program.
* Most common is an abstract syntax tree (“AST”)
— Essential meaning of program without syntactic noise

— Nodes are operations, children are operands
« E.g., 1+ 1 Parent: +, Child1: 1, Child2: 1 i
1

* Many different forms of IR used in compilers
— Engineering tradeoffs have changed over time

— Tradeoffs (and IRs) also can vary between different phases
of compilation.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

26

Parser Example

// Look, I wrote a comment! I’'m a good programmer!
if (x >= y) y = 42;

Token Stream Input e Abstract Syntax Tree

| LPAREN | ||D(x) |

|GEQ || Dly) || RPAREN | é
liD(y) | | secomes |
| INT(42) ||scoton |

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

3/31/17

14

’ Static Semantic Analysis

* During and/or after parsing, checks that
program is legal, and collects info for back end
— Type checking

— Check language requirements like proper
declarations/initializations (e.g. Java locals), etc.

— Collect other information used by back end
analysis (e.g., scoping, aliasing restrictions)
» Key data structure: Symbol Table(s)
— Maps names -> meaning/types/details

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

28

’ Back End

* Responsibilities
— Translate IR into target machine code
— Should produce “good” code

* “good” = fast, compact, low power (pick some)

* Optimization phases translate code into semantically
equivalent but “better” code.

— Should use machine resources effectively
* Registers
* Instructions
* Memory hierarchy

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

29

3/31/17

15

Back End Structure

* Typically split into two major parts
— “Optimization” — code improvements, e.g.,
* Common subexpression elimination:

(x+y) * (xty) —> t=x +y; t*t

* Constant folding: (1+2) * X — 3 * x

* Optimization phases often interleaved with analysis
phases to better understand program meaning/know
what transformations preserve that meaning

— Target Code Generation (machine specific)
* Instruction selection & scheduling, register allocation

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

30

The Result

* Input * Output

if (x >= y) mov eax,[ebptl6]
y = 42; cmp eax,[ebp-8]
j1 L17

e AST Parser LII;IC.JV [ebp-8],42

Back End

Spring 2017 UW CSEP 590 (PMP Programming Systems)
Ringenburg

g

31

3/31/17

16

’ Interpreters & Compilers

* Programs can be compiled or interpreted (or in
some cases both)

* Compiler

— A program that translates a program from one
language (the source) to another (the target)

— In some cases the source and target can even be the
same.

* Interpreter

— A program that reads a source program and produces
the results of executing that program on some input

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

32

’ Common Issues

e Compilers and interpreters both must read
the input — a stream of characters —and
“understand” it: front-end analysis phase

while(k<length){<nl><tab>if(al[k]>0
) <nl> <tab> <tab>{nPos + +;} <nl> <tab>}

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

17

’ Compiler

* Read and analyze entire program

* Translate to semantically equivalent program
in another language
— Presumably easier or more efficient to execute

* Offline process

* Tradeoff: compile-time overhead
(preprocessing) vs execution performance

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

34

Typically implemented with
Compilers
 FORTRAN, C, C++, COBOL, other programming

languages, (La)TeX, SQL (databases), VHDL (a
hardware description language), many others

 Particularly appropriate if significant
optimization wanted/needed

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

18

’ Interpreter

* |nterpreter
— Typically implemented with “execution engine” model
— Program analysis interleaved with execution

running = true;

while (running) {
analyze next statement;
execute that statement;

}

— Usually requires repeated analysis of individual statements
(particularly in loops, functions)
* But - hybrid approaches can avoid this ...

— But: immediate execution, good debugging/interaction, etc.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

36

Often implemented with
interpreters

 Javascript, PERL, Python, Ruby, awk, sed,
shells (bash), Scheme/Lisp/ML, postscript/pdf,
machine simulators

 Particularly efficient if interpreter overhead is
low relative to execution cost of individual
statements

— But even if not (machine simulators), flexibility,
immediacy, or portability may be worth it

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

37

3/31/17

19

’ Hybrid approaches

* Compiler generates byte code intermediate
language, e.g., compile Java source to Java Virtual
Machine .class files, then

* Interpret byte codes directly, or

* Compile some or all byte codes to native code

— Variation: Just-In-Time compiler (JIT) — detect hot
spots & compile on the fly to native code

* Also widely use for Javascript, many functional

languages (Haskell, ML, Ruby), C# and Microsoft
Common Language Runtime, others

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

38

Fundamentals of Compilers and
Programming Systems

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

39

3/31/17

20

9 Front End

* We'll walk through the compilation process in
order. Front end first:
— Translate source code into compiler intermediate
representation (IR)
— Two parts
* Scanning: read text, recognize tokens

* Parsing: translate token stream into Abstract Syntax Tree
(AST)

* Produce IR (can take many forms)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

40

Programming Language
Specifications

* Since the 1960s, the syntax of every significant
programming language has been specified by
a formal grammar

— First done in 1959 with BNF (Backus-Naur Form)
used to specify ALGOL 60 syntax

— Borrowed from the linguistics community
(Chomsky)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

41

3/31/17

21

Review of Formal Languages /s
and Automata Theory

y- N

* Starring Mr. Pig xl:‘-;_' S— y

* Alphabet: a finite set of symbols and characters
- Eg., {7, K, n, 0, "}

» String: a finite, possibly empty sequence of
symbols from an alphabet
— E.g., “oink”

* Language: a set of strings (possibly empty or
infinite)
— E.g., {“oink”, “oink oink”, “oink oink oink”, ...}

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

42

Review of Formal Languages /s
and Automata Theory

* Finite specifications of (possibly infinite) languages:
— Automaton — a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)
* E.g., a pig detector: accepts all sequences of oinks, rejects “moo”s
or “baa”s (or anything else)
— Grammar — a generator; a system for producing all strings
in the language (and no other strings)

* Unfortunately, we can’t use a pig as our grammar — no pig (that
I've met) can generate an infinite amount of “oink” sequences.

* Instead we use formal (aka mathematical) grammars.
* A particular language may be specified by many
different grammars and automata
* A grammar or automaton specifies only one language

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 43

3/31/17

22

Language (Chomsky) hierarchy:
quick reminder

* Regular (Type-3) languages are
specified by regular expressions/
grammars and finite automata
(FAs)

* Context-free (Type-2) languages
are specified by context-free
grammars and pushdown
automata (PDAs)

* Context-sensitive (Type-1)
languages ... aren’t too important

* Recursively-enumerable (Type-0)
languages are specified by
general grammars and Turing
machines

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

Example: Grammar for
Pig-ish (or Pig-ese?)

* A formal grammar for our pig language could be:

PigTalk ::= oink PigTalk (rule 1)
| oink (rule 2)

* This can generate, for example:

PigTalk ::= oink (Rule 2)
PigTalk ::= oink PigTalk (Rule 1)
::= oink oink (Rule 2)

PigTalk ::= oink PigTalk (Rule 1)
::= oink oink PigTalk (Rule 1)
::= oink oink oink (Rule 2)

UW CSEP 590 (PMP Programming Systems):

Spring 2017 Ringenburg

45

3/31/17

23

3/31/17

Example: Grammar for a Tiny s
Language

* A more realistic (but still small) language:

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr :=id | int | expr + expr
id:=a|b|cliljlk|ln|x]|y]|z
int::=0]1|2|3]|4|5|6]7]|8]|9

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

46

Example:
Derive a one line program

program ::= statement | program statement program ::=
statement ::= assignStmt | ifStmt

. . statement ::=
assignStmt ::= id = expr ;

2??
ifStmt ::= if (expr) statement e

expr ::=id | int | expr + expr
idi=alblcliljlk|n|x]|y]|z
intz=0]112|3|4|5|6|7]8]9

if (x) y=1+y;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

47

24

Example:
Derive a one line program

program ::= statement | program statement program ::=
statement ::= assignStmt | ifStmt

statement ::=
ifStmt =

assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement

expr = id | int | expr+ expr if (expr) statement ::=
id:=alblcliljlklinlx|y]|z if (id) statement ::=
intz=0]112|3(4(5/6[7[8]9 if (x) statement =

if (x) assignStmt ::=

if (x) id = expr; =

if (x)y=expr; 1=

if (x) y = expr + expr; =
if (x) y =int + expr; =

if (x)y=1+expr; =
This is just one possible derivation. if(x)y=1+id; ==

Many others are possible. if(x)y=1+y;

if(x) y=1+y;

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

48

Example 2:
A multiline program

program ::= statement | program statement program ::=
statement ::= assignStmt | ifStmt 297

assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::=id | int | expr + expr
idi=alblcliljlk|n|x]|y]|z
int::=0]112]3|4|5|6|7]8]9

if (x) y=1+y ; x=1;

Your solution may reference your previous
derivation.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

49

3/31/17

25

3/31/17

Example 2:
A multiline program

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

program ::=
program statement ::=

ifStmt ::= if (expr) statement program GSSIgnStmt o=
expr :=id | int | expr + expr program id = expr; :=
idi=alb|cliljlkln|x]|y]|z program X = expr; =

int:=0]112]3(4]|5/6]|7]8]9

program x =int ; =
programx=1; u=

Then derive program as in

if =1+y;x=1;
tE(x)y R 4 the previous example.

Once again, others are possible.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Alternative Notations

* There are several syntax notations for
productions in common use; all mean the
same thing
ifStmt ::=if (expr) statement
ifStmt—if (expr) statement
<ifStmt> ::= if (<expr>) <statement>

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

26

’ Parsing

* Parsing: reconstruct the derivation (syntactic
structure) of a program

* In principle, a single recognizer could work
directly from a concrete, character-by-
character grammar

* In practice this is never done

UW CSEP 590 (PMP Programming Systems)
Ringenburg

52

Spring 2017

’ Parsing & Scanning

* Inreal compilers the recognizer is split into two
phases*
— Scanner: translate source code to tokens
* Reports lexical errors like illegal characters and illegal symbols.
— Parser: read token stream and reconstruct the derivation

* Reports parsing errors —i.e., source that is not derivable from the
grammar. E.g., mismatched parens/braces, nonsensical
statements (x =1 +;)

source tokens

*Not always quite this clean of a separation — but true at a high level.

UW CSEP 590 (PMP Programming Systems)
Ringenburg

53

Spring 2017

3/31/17

27

Why Separate the Scanner
and Parser?

* Simplicity & Separation of Concerns
— Scanner hides details from parser (comments, whitespace,
input files, etc.)
— Parser is easier to build; has simpler input stream
(tokens) / narrow interface
* Efficiency
— Tokens can be defined by regular expressions, and
recognized by finite automata.

* (But still often consumes a surprising amount of the compiler’s
total execution time))
File 1/0!

— Parsing requires context-free grammars, and thus
pushdown automata.

— Can build automatic DFA generators for scanning (Jflex)
and automatic PDA generators for parsing (CUP) .

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

But ...

* Not always possible to separate cleanly
* Example: C/C++/Java type vs identifier

— Parser would like to know which names are types and which are
identifiers, but

— Scanner doesn’t know how things are declared ...
* Things are even uglier in Fortran 77

— E.g., myvar,my var,andmy var are all the same identifier,
keywords are not reserved, etc. Tokenizing requires context...

* So we hack around it somehow...

— Either use simpler grammar and disambiguate later, or communicate
between scanner & parser (with some semantic analysis mixed in).

— Real world: Often ends up very complex and hard to follow. Compiler
front ends are sometimes referred to as “black magic”.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

28

Regular Expressions and
Finite Automate (FAs)
* The lexical grammar (structure) of most

programming languages can be specified with
regular expressions

— (Sometimes a little cheating is needed)

* Therefore, tokens can be recognized by a
deterministic finite automaton

— Can be either table-driven (automated tools like
lex/flex) or built by hand based on lexical
grammar

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Fundamental REs

re |L(re) |Notes

a |{a} Singleton set, for each symbol
a in the alphabet

e [{€g} Empty string
g |{} Empty language

These are the basic building blocks that other
regular expressions are built from.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

29

3/31/17

’ Operations on REs

re |L(re) Notes

rs |L(r)L(s) Concatenation — r followed by s

r|s|L(r) U L(s) |Combination (union) —rors

r* | L(r)* 0 or more occurrences of r
(Kleene closure)

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Examples

re Meaning

+ single + character

! single ! character

I= 2 character sequence

Xyzzy 5 character sequence

(1]0)* Zero or more binary digits
(1]10)(1]0)* Binary constant

0|1(1]0)* Binary constant without leading Os

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

30

P

Abbreviations

The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r]e 0 or 1 occurrence

[a-Z] (alb]...|2) 1 character in given range
[abxyz] | (a|b]x]y|z) |1 of the given characters

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg 60

’ Examples

re Meaning

[abc]+ Sequence of one or more a’s, b's
and c’s

[abc]* Zero or more a’s, b’s, and c's

[0-9]+ Integer (possibly with leading 0s)

[1-9][0-9]* Integer (no leading 0s)

[a@-zA-Z][a-zA-Z0-9_]* |One or more letters or digits, must
start with a letter.

Spring 2017

UW CSEP 590 (PMP Programming Systems)

Ringenburg o1

3/31/17

31

3/31/17

’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

digits ::= digit+

number ::= digits (. digits)?
([eE] (+ | -)? dligits) ?

* Notice that this allows (unnecessary) leading
Os, e.g., 00045.6. (0, or 0.14 would be
necessary 0s.)

* How would you prevent that?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

62

’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

nonzero_digit ::= [1-9]

digits ::= digit+

number ::= (0 | nonzero_digit digits?)
(.digits)?
([eE] (+ | -)? digits) ?

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

63

32

’ Recognizing REs

* Recall from your undergrad CS theory course
... finite automata can be used to recognize
strings generated by regular expressions

e Can build by hand or automatically

— Reasonably straightforward, and can be done
systematically

— Tools like Lex, Flex (for compilers written in C++),
and JFlex (for compilers written in Java) do this
automatically, given a set of REs

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

64

’ Finite State Automaton

* Operate by reading input symbols (usually characters)
— Transition can be taken if labeled with current symbol
— Deterministic (DFA): Always one or zero possible transitions

— Nondeterministic Finite Automata (NFA): May have multiple transitions.

May also have e-transitions that can be taken on any input.
— Can convert to NFA -> DFA (recall your CS theory class).
* Accept when final state reached and no more input

— Slightly different in a scanner, where the FSA is used as a subroutine to
find the longest input string that matches a token RE.

* Reject if no transition possible, or no more input and not in
final state

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

3/31/17

33

’ Example: DFA for “pig”

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

66

Example NFA: Seahawks
Cheer token

Input 1: GOSEAHAWKS

Status: Executing...

UW CSEP 590 (PMP Programming Systems)

Ringenburg 67

Spring 2017

3/31/17

34

Example NFA: Seahawks
Cheer token

Input 1: GOSEAHAWKS

Spring 2017

Example NFA: Seahawks
Cheer token

Input 1: GOSEAHAWKS

Spring 2017

3/31/17

35

Input 1:

Example NFA: Seahawks
Cheer token

SEAHAWKS

Input 1:

Example NFA: Seahawks
Cheer token

EAHAWKS

3/31/17

36

Example NFA: Seahawks
Cheer token

Input 1: AHAWKS

Spring 2017

Example NFA: Seahawks
Cheer token

Input 1: HAWKS

Spring 2017

3/31/17

37

Example NFA: Seahawks
Cheer token

Input 1: HAWKS

Example NFA: Seahawks
Cheer token

3/31/17

38

Example NFA: Seahawks
Cheer token

Spring 2017

Example NFA: Seahawks
Cheer token

Spring 2017

3/31/17

39

Example NFA: Seahawks
Cheer token

Spring 2017

Example NFA: Seahawks
Cheer token

Spring 2017

3/31/17

40

3/31/17

Example NFA: Seahawks
Cheer token

Input 2: GOPACKERS

Spring 2017

Example NFA: Seahawks
Cheer token

Input 2: GOPACKERS

Spring 2017

41

Input 2:

Example NFA: Seahawks
Cheer token

PACKERS

Input 2:

Example NFA: Seahawks
Cheer token

PACKERS

3/31/17

42

Input 2:

Spring 2017

Status: REJECT! No
transitions possible.

Example NFA: Seahawks
Cheer token

PACKERS

UW CSEP 590 (PMP Programming Systems)
Ringenburg

84

P

Example

* Draw the NFA for: b(at|ag) | bug

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

3/31/17

43

’ Example

* Draw the NFA for: b(at|ag) | bug

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

86

’ Example

* Draw the NFA for: b(at|ag) | bug

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 87

3/31/17

44

’ Example

* Draw the NFA for: b(at|ag) | bug

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

88

’ Example

* Draw the NFA for: b(at|ag) | bug

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

89

3/31/17

45

To Tokens

e Ascanneris a DFA that finds the next token each time it is
called

— Slight modification: always try to find the longest token
* Every “final” state of a DFA emits (returns) a token
* Tokens are the internal compiler names for the lexemes
== becomes equal
(becomes leftParen
private becomes private
* You choose the names

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

90

DFA => Code

* QOption 1: hand written
— Pros
* If written well, can be faster than auto-generated scanners

* Handles weird language corner cases that don’t map perfectly to the RE/ FA
model

* Readable code
— Cons:
* Alot of tedious work — thus, error prone

* QOption 2: use a tool to generate a scanner
— Pros
* Convenient —just feed it the token regular expressions
* Exactly matches specification you give it, if tool correct
— Cons
* Sometimes language constructs don’t map perfectly to FA model
— Table driven: Rows are states of DFA, columns are input characters,
entries are action (go to next state, accept, error)
— Direct-coded auto-generated scanner: transitions embedded in the code

* Faster than table-driven, but generated code is very hard to follow
UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 91

3/31/17

46

’ The Real World

* In commercial settings (and most gcc front ends)
hand written scanners used more often than not.

— Especially for larger languages, e.g., C++/Java.
— Can purchase, e.g., EDG C/C++ front end.

* Auto-generated used for simpler languages,
parsing “other things” (e.g., queries).

* Why hand written?
— Fastest

— Can handle language corner cases — C++ especially
bad.

— Readable/debugable code.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Parsing

if (babySleeps) wine++;

| LPAREN | | ID(babysleeps) |

| RPAREN | | ID(wine) | | INCR |

* We have: a scanner that generates a token stream
* We want an abstract syntax tree (AST)

— A data structure that encodes the meaning of the
program, and captures its structural features (loops,
conditionals, etc.)

— Primary data structure for next phases of compilation

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

47

3/31/17

How is this done?

* A grammar specifies the . -
syntax of a language xpr K o P e
* Parsing algorithms build parse op -> -
trees based on a grammar and | *
a stream of tokens

— Parse trees represent how a a*b-c Expr
string can be derived from a A\
grammar, and encode meaning
 E.g., multiply a by b, then Expr Op Expr
subtract ¢ from result. L \
— Can build AST by traversing e - ID(c)
parse tree (parsers may do this Expr 0p XPr
implicitly). ¢ ! l

* Do you see a problem here? ~ 1P(@ ~ ID(b)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Context-free Grammars

* The syntax of most programming languages can be
specified by a context-free grammar (CGF)
* Compromise between
— REs: can’t nest or specify recursive structure
— General grammars: too powerful, undecidable
* Context-free grammars are a sweet spot
— Powerful enough to describe nesting, recursion
— Easy to parse; but also allow restrictions for speed
* Not perfect

— Cannot capture semantics, as in “variable must be
declared” — requires later semantic pass

— Can be ambiguous

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

48

’ What about ambiguity?

expr ::= expr + expr | expr —expr
| expr* expr | expr [expr
| INTEGER | ID | (expr)

* Need to construct unambiguous grammars for parsing
— Otherwise nondeterminstic results of parsing and
compilation!
* Classic example — order of operations

— How do we ensure that * and / have higher precedence in
our AST than + and - ??7?

— Another common ambiguity: nested if-then-else

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ What about ambiguity?

expr ::= expr + term | expr — term | term
term ::= term * factor | term / factor | factor
factor ::= INTEGER | ID | (expr)

* Need to construct unambiguous grammars for parsing
— Otherwise nondeterminstic results of parsing and
compilation!
* Classic example — order of operations

— How do we ensure that * and / have higher precedence in
our AST than + and - ??7?

— Another common ambiguity: nested if-then-else

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

3/31/17

49

Examples

expr ::= expr + term | expr — term | term
term ::= term * factor | term / factor | factor
factor ::= INTEGER | ID | (expr)

a+b+c
a*b-c
Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg o8
expr ::= expr + term | expr —term | term
term ::= term * factor | term / factor | factor
factor ::= INTEGER | ID | (expr)

expr a+b+c
a*b-c m
expr - term
term factor

te\f”’ * factor ID(c)

factor l’
‘t ID(b)

ID(a)

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

99

3/31/17

50

Examples

expr ::= expr + term | expr — term | term
term ::= term * factor | term / factor | factor
factor ::= INTEGER | ID | (expr)

expr i b e expr
a*b - c /\L\ /N
+ term
expr - term expr
term factor expr + term factor
term x factor ID(c) term factor ~ 1P(O)
) l '))
factor factor ID(b)
J ID(b) |
ID(a) ID(a)

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg 100

Shift-Reduce Parsing

* Most common parsing algorithms are shift-
reduce bottom-up parsers

— Bottom-up: Start with tokens, derive grammar
starting symbol

— Shift: Read tokens left to right, push them onto a stack

— Reduce: Whenever the set of topmost tokens on the
stack matches the right-hand side of a production,
replace them with the appropriate non-terminal and
add that non-terminal to the parse tree.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

101

3/31/17

51

’ Shift-Reduce Example

Stack Input Action

S abbcdeS shift

Sa bbcde$S shift

Sab bcde$ Reduce A=>b
SaA bcde$ shift

SaAb cdeS shift

SaAbc deS reduce A=>Abc
SaA de$ shift

SaAd esS reduce B=>d
SaAB esS shift

SaABe S reduce S=>aABe
SS S accept

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

102

’ Tables

* What if multiple choices possible (shift? reduce
by rule 1? reduce by rule 27?)

— Parsing algorithms generate a DFA based on the
grammar that tells you what to do in each state
* DFA + stack = PDA ... which is how we recognize a CFG
* DFA converted to table for efficiency

— May use lookahead (peek at future symbols) to avoid
backtracking

— If table generation leads to conflict (shift-reduce or
shift-shft), grammar is not parsable by that algorithm.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

103

3/31/17

52

’ More Details

* Large amount of literature on parsing algorithms, but
this is mostly a solved problem now
— We will could spend the next few lectures going over this —
but will instead refer the curious to any compiler textbook
— And will have a short reading and homework problem to
let you try it out
* Parser generators like yacc/bison (C) and CUP (Java)
work well in many cases.
— Specify grammar, actions to take to build AST
— Will detect ambiguities, problems

— Make it easy to specify precedence (so don’t need to build
more complicated grammars to encode)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

104

’ Discussion

* Today will be short (we can go home early!),
since you haven’t read any papers yet.
* Briefly introduce yourself:
— Name
— Where you work
— What you do
— Why you are interested in this course

— Any other interesting facts about yourself/
relevant background you bring/jokes/etc.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

105

3/31/17

53

