
3/31/17	

1	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSEP	590	–	Programming	Systems	
University	of	Washington	

Lecture	1:	MoCvaCon;	Administratrivia;		
Overview	Part	I	

	
Michael	Ringenburg	

Spring	2017	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Agenda	

•  What	are	programming	systems?	
– Why	do	we	study	them?	

•  About	this	course	
•  High	level	overview	of	compilers	and	
programming	systems	

•  Fundamentals	of	Programming	Systems,	Part	I	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 1	

3/31/17	

2	

What	are	Programming	Systems,	
and	why	do	we	care?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 2	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	are	programming	
systems?	

•  Broadly	all	of	the	pieces	of	the	soVware	stack	
that	enable	a	developer’s	source	code	to	
execute.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 3	

3/31/17	

3	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	are	programming	
systems?	

•  Broadly	all	of	the	pieces	of	the	soVware	stack	
that	enable	a	developer’s	source	code	to	
execute.	
– Can	you	think	of	any	examples?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 4	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	are	programming	
systems?	

•  My	examples	…	
–  Compilers	

•  High	level	language	compilers,	e.g.,	C++,	Java,	etc	
•  Assemblers	(translate	assembly	to	machine	code	

–  RunCme	Systems,		
•  Stack	and	memory	management	
•  Libraries	for	interacCng	with	the	system	(sockets	libraries,	graphics	libraries,	etc)	
•  Garbage	collecCon	
•  Virtual	machines	(e.g.,	the	JVM)	

–  Interpreters	
•  Python,	ML,	etc	

–  Programming	Frameworks	
•  E.g.,	analyCcs	frameworks	like	Hadoop/Spark	

–  VerificaCon	tools	
•  Debuggers	
•  Profilers	
•  Program	Analysis	tools	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 5	

3/31/17	

4	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Why	Study	Programming	
Systems?	

•  Become	a	becer	programmer(!)	
–  Insight	into	interacCon	between	high-level	language	
source	and	hardware	
•  What	“really”	happens	when	you	run	your	code	

– Understanding	of	implementaCon	techniques,	how	
code	maps	to	hardware	

–  Becer	intuiCon	about	what	your	code	does	
•  Write	becer,	and	faster,	code	

– Understanding	how	compilers	opCmize	code	helps	
you	write	code	that	is	easier	to	opCmize		
•  And	not	waste	Cme	making	opCmizaCon	that	the	compiler	
would	do	as	well	or	becer.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 6	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Why	Study	Programming	
Systems?	

•  Compiler	techniques	are	everywhere	
– Parsing	(“licle”	languages,	interpreters,	XML)	
– SoVware	tools	(verifiers,	checkers,	…)	
– Database	engines,	query	languages	
– Text	processing		
•  Tex/LaTex	->	dvi	->	Postscript	->	pdf	

– Hardware:	VHDL;	model-checking	tools	
– MathemaCcs	(MathemaCca,	Matlab)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 7	

3/31/17	

5	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Why	Study	Programming	
Systems?	

•  FascinaCng	blend	of	theory	and	engineering	
–  Lots	of	beauCful	theory	around	compilers	
–  But	also	interesCng	engineering	challenges	and	
tradeoffs,	parCcularly	in	opCmizaCon	
•  Ordering	of	opCmizaCon	phases	
•  What’s	good	for	some	programs	may	not	be	good	for	others	

–  Plus	some	very	difficult	problems	(NP-hard	or	worse)	
•  E.g.,	register	allocaCon	is	equivalent	to	graph-coloring	
•  Need	to	come	up	with	good-enough	approximaCons/
heurisCcs	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 8	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Why	Study	Programming	
Systems?	

•  Draws	ideas	from	many	parts	of	CSE	
–  AI:	Greedy	algorithms,	heurisCc	search	
–  Algorithms:	graph	algorithms,	dynamic	programming,	
approximaCon	algorithms	

–  Theory:	Grammars,	DFAs	and	PDAs,	pacern	matching,	
fixed-point	algorithms	

–  Systems:	InteracCon	with	OS,	runCmes	
–  Architecture:	pipelines,	instrucCon	set	use,	memory	
hierarchy	management,	locality	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 9	

3/31/17	

6	

This	Course	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 10	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

About	me		
•  UW	CSE	PhD	alum	–	graduated	in	2014	

–  Thesis	research	on	architectures	and	programming	
models	for	approximate	compuCng	(reducing	energy	
consumpCon	by	relaxing	accuracy/precision	guarantees)	

–  Previously,	research	on	programming	language	
extensions	for	transacConal	memory,	and	runCme	
enforcement	of	security	properCes	

•  Worked	at	Cray	since	2006	
–  The	supercomputer	company	

•  Building	the	world’s	fastest	computers	since	1972	J	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 11	

–  ~7	years	working	on	an	automaCcally	parallelizing	compiler	
•  Take	non-parallel	C/C++	code,	plus	(opConal)	pragmas,	convert	to	a	parallel	program	

via	automaCc	loop	parallelizaCon		

–  More	recently:	working	on	data	analyCcs	and	machine	learning	frameworks	
•  High-producCvity	programming	systems	like	Hadoop,	Spark,	Python	Data	Stack	
•  How	do	we	make	them	fast/take	advantage	of	Cray	hardware?	

3/31/17	

7	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	am	I	doing	here?	
•  Give	something	back	to	the	department	
•  Enjoy	teaching,	meeCng	students	
–  Taught	undergraduate	compilers	course	in	2013,	PMP	
parallel	compuCng	in	2015	

–  Both	broadly	about	programming	systems	
•  Programming	systems	is	a	broad,	fascinaCng,	
ever-changing	subject	–	always	more	to	learn	
– Many	of	you	probably	have	experiences	and	
knowledge	that	I	don’t	(even	if	you	don’t	realize	it!)	

–  I	hope	to	learn	as	much	from	you	as	you	learn	from	
me	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 12	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Overall	Course	Goals	
•  Provide	basic	foundaCons	of	programming	systems	

–  Get	everyone	on	the	same	page	
–  First	2	or	3	weeks	will	be	focused	on	this	

•  Explore	a	selecCon	of	topics	relevant	to	modern	languages	and	
architectures	
–  Topics	you	might	not	see	in	a	tradiConal	curriculum	
–  I	will	provide	some,	but	also	want	this	to	be	parCally	driven	by	you…	

•  Gain	experience	with	important	skills	for	Masters	grads:	
–  Reading	research	literature	in	programming	systems	

•  Typical	class	format:	short	presentaCon(s)	of	papers	about	weekly	topic,	
classroom	discussion	

•  Before	class:	Read	paper(s),	submit	summary	and	discussion	quesCons	
•  PresenCng	material,	leading	discussions	

–  Everyone	in	class	will	present	at	some	point	this	quarter	...		

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 13	

3/31/17	

8	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

PresentaCons	
•  Everyone	will	be	expected	to	prepare	a	presentaCon	on	a	programming	

systems	topic.		OpCons:	
–  Present	a	relevant	project	that	you	have	worked	on	
–  Present	a	research	paper	in	programming	systems		
–  Other	ideas	you	suggest:		E.g.,	implement	something	we	discussed,	present	

results?	
–  Some	ideas	on	course	web	(soon!),	but	feel	free	to	suggest	others	
–  Proposal	due	to	me	by	April	14	–	more	details	to	come	soon	

•  We	will	allocate	~30	minutes	each.		20	to	present,	10	for	quesCons	and	
discussion.	
–  Last	3	or	3.5	class	sessions,	depending	on	final	enrollment	

•  Why?	
–  Important	skill	for	Masters	graduates	–	career	advancing	
–  Allows	class	to	share	knowledge,	learn	about	more	topics	than	I	could	cover	
–  Best	way	to	learn	is	by	teaching	
–  Hopefully	generate	interesCng	discussions!	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 14	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Class	Sessions	
•  Don’t	worry,	I	won’t	lecture	for	three	hours	straight…	

–  You	would	fall	asleep;	I	would	lose	my	voice	
•  Class	will	be	a	mix	of	lectures/presentaCons	and	discussion	
•  First	2	or	3	weeks	will	be	more	lecture	heavy,	as	we	cover	the	foundaCons	
•  Later	classes	will	more	discussion	heavy	
•  Discussion	basics	

–  Discussion	session	is	for	you	to	discuss/debate	(politely)	the	papers	and	related	
topics	

–  Be	considerate,	polite,	respecuul	of	everyone	–	we	all	have	different	
backgrounds	

–  I	am	just	here	to	moderate/keep	things	on	track	
–  So,	please	be	prepared:	do	the	readings	and	any	homeworks	on	Cme	
–  Otherwise	discussions	will	not	be	valuable	

•  Today’s	discussion	will	be	short,	since	the	first	reading	isn’t	due	unCl	next	
week	(maybe	we	can	leave	a	licle	early!)s	
–  Introduce	yourselves,	why	you	are	here,	what	you	work	on,	etc.	

•  Warning:	I	have	some	travel	coming	up	middle	of	the	quarter.		Stay	tuned…	
Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	

Ringenburg	 15	

3/31/17	

9	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Your	Work	
•  Assignments:	

–  Most	weeks	will	include	~2	arCcles/research	papers	to	read	and	
review	(someCmes	1,	occasionally	more	if	they	are	short)	

–  May	also	include	a	couple	short	wricen	and/or	programming	
problems,	especially	in	the	beginning	

•  Review	format:	
–  0.5	-	1	pages	(using	a	“reasonable”	font	size)	
–  Include:	

•  Summary	of	arCcles	key	points	
•  Do	you	agree/disagree?		Why?		
•  2-3	discussion	quesCons	related	to	the	arCcle(s)	

•  Late	policy:	At	most	twice	during	the	quarter,	you	may	turn	
in	an	assignment	late	(max	1	week).		This	is	intended	for	
use	with	work/family	emergencies	–	don’t	abuse.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 16	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Grading	

•  Don’t	worry,	I’m	not	here	because	I	want	to	
fail	anyone.		J	

•  Everyone	should	be	able	to	get	a	high	grade	if	
you	show	up,	do	the	work,	parCcipate	in	the	
discussions	as	well	as	you	can,	and	enjoy	
yourself.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 17	

3/31/17	

10	

Overview	of	Programming	Systems	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 18	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Types	of	Programming	
Systems	

•  Compilers	
–  Responsible	for	translaCng	human	readable	source	into	machine-executable	

instrucCons	
•  RunCme	systems	

–  Provides	the	common	infrastructure	needed	to	execute	compiled	programs	
–  E.g.,	memory	management,	device	access,	threading,	language	features	like	

garbage	collecCon,	etc	
•  Interpreters	

–  Combine	aspects	to	compilers	and	runCmes	
–  Directly	execute	source	code	

•  May	also	include	tools	like	debuggers,	profilers,	staCc	checkers,	etc,	used	
by	developers	to	improve	their	programs	

•  We	will	focus	the	first	couple	lectures	on	compilaCon,	but	touch	on	other	
aspects	as	appropriate	
–  Some	of	our	later	topics	will	touch	on	other	types	of	programming	systems	

more	extensively	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 19	

3/31/17	

11	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What		do	compilers	do?	
•  How	do	we	turn	this	into	something	the	
computer	can	execute?	

	
	
	
	
	
	
	

•  The	computer	only	knows	1’s	&	0’s	
•  Using	a	compiler	(and/or	an	interpreter)	
– We’ll	discuss	the	differences	in	a	few	slides	

int nPos = 0;
int k = 0;
while (k < length) {
 if (a[k] > 0) {
 nPos++;
 }
}

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 20	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Structure	of	a	Compiler	

•  At	a	high	level,	compilers	have	two	pieces:	
– Front	end:	read	source	code	
•  Parse	the	source,	understand	its	structure	

– Back	end:	produce	an	executable	
•  Generate	equivalent	target	language	program.		May	
opCmize	(improve)	code,	but	must	not	change	behavior.	

Source	 Target	Front	End	 Back	End	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 21	

3/31/17	

12	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Compiler	must…	

•  recognize	legal	programs	(&	complain	about	illegal	
ones)	

•  generate	correct	code	
–  Programmer’s	favorite	pasCme	is	blaming	their	buggy	
code	on	“compiler	bugs”.	J	

•  manage	runCme	storage	of	all	variables/data	
•  agree	with	OS	(loader)	and	linker	on	target	format	

Source	 Target	Front	End	 Back	End	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 22	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

How	does	this	happen?	

•  Phases	communicate	via	Intermediate	
RepresentaCons,	a.k.a.,	“IR”.	
–  Front	end	maps	source	into	IR	
–  Back	end	maps	IR	to	target	machine	code	
–  OVen	mulCple	IRs	produced	by	different	phases	of	front/
back	ends	–	higher	level	at	first,	lower	level	in	later	phases	

Source	 Target	Front	End	 Back	End	
Java	 IR	 MC	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 23	

3/31/17	

13	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Front	End	

•  Usually	split	into	two	main	parts	
–  Scanner:	Responsible	for	converCng	character	stream	to	token	
stream:	operaCon,	variable,	constant,	etc.	
•  Also:	strips	out	white	space,	comments	

–  Parser:	Reads	token	stream;	generates	IR	
•  (SemanCcs	analysis	can	happen	here,	or	immediately	aVerwards)		

•  Both	of	these	can	be	generated	automaCcally	
–  Use	a	formal	grammar	to	specify	source	language	(e.g.,	Java)	
–  Tools	read	the	grammar	and	generate	scanner	&	parser	(e.g.,	
lex	and	yacc	for	C,	or	JFlex	and	CUP	for	Java)	

Scanner	 Parser	source	 tokens	 IR	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 24	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Scanner	Output	Example	

•  Input	text	

•  Token	Stream

–  Notes:	tokens	are	atomic	items,	not	character	strings;	
comments	&	whitespace	are	not		tokens	(in	most	languages,	
ahem,	FORTRAN)	
•  Tokens	may	have	associated	data,	e.g.,	a	value	or	a	variable	name.	

IF	 LPAREN	 ID(x)	 GEQ	 ID(y)	

RPAREN	 ID(y)	 BECOMES	 INT(42)	 SCOLON	

// Look, I wrote a comment! I’m a good programmer!
if (x >= y) y = 42;

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 25	

3/31/17	

14	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Parser	Output	(IR)	

•  Given	token	stream	from	scanner,	parser	must	
produce	output	that	conveys	meaning	of	program.	

•  Most	common	is	an	abstract	syntax	tree	(“AST”)	
–  EssenCal	meaning	of	program	without	syntacCc	noise	
–  Nodes	are	operaCons,	children	are	operands		

•  E.g.,	1	+	1	–	Parent:	+,	Child1:	1,	Child2:	1	

•  Many	different	forms	of	IR	used	in	compilers	
–  Engineering	tradeoffs	have	changed	over	Cme	
–  Tradeoffs	(and	IRs)	also	can	vary	between	different	phases	
of	compilaCon.	

+	

1	 1	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 26	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Parser	Example	

•  Token	Stream	Input	 •  Abstract	Syntax	Tree	

IF	 LPAREN	 ID(x)	

GEQ	 ID(y)	 RPAREN	

ID(y)	 BECOMES	

INT(42)	 SCOLON	

ifStmt	

>=	

ID(x)	 ID(y)	

assign	

ID(y)	 INT(42)	

// Look, I wrote a comment! I’m a good programmer!
if (x >= y) y = 42;

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 27	

3/31/17	

15	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

StaCc	SemanCc	Analysis	

•  During	and/or	aVer	parsing,	checks	that	
program	is	legal,	and	collects	info	for	back	end	
– Type	checking	
– Check	language	requirements	like	proper	
declaraCons/iniCalizaCons	(e.g.	Java	locals),	etc.	

– Collect	other	informaCon	used	by	back	end	
analysis	(e.g.,	scoping,	aliasing	restricCons)	

•  Key	data	structure:	Symbol	Table(s)	
– Maps	names	->	meaning/types/details	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 28	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Back	End	

•  ResponsibiliCes	
– Translate	IR	into	target	machine	code	
– Should	produce	“good”	code	
•  “good”	=	fast,	compact,	low	power	(pick	some)	
•  OpCmizaCon	phases	translate	code	into	semanCcally	
equivalent	but	“becer”	code.	

– Should	use	machine	resources	effecCvely	
•  Registers	
•  InstrucCons	
•  Memory	hierarchy	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 29	

3/31/17	

16	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Back	End	Structure	

•  Typically	split	into	two	major	parts	
– “OpCmizaCon”	–	code	improvements,	e.g.,	
•  Common	subexpression	eliminaCon:	
	
	
•  Constant	folding:	
•  OpCmizaCon	phases	oVen	interleaved	with	analysis	
phases	to	becer	understand	program	meaning/know	
what	transformaCons	preserve	that	meaning	

– Target	Code	GeneraCon	(machine	specific)	
•  InstrucCon	selecCon	&	scheduling,	register	allocaCon	

(1+2) * x 3 * x

(x+y) * (x+y) t = x + y; t * t

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 30	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

The	Result	

•  Input	 •  Output	

ifStmt	

>=	

ID(x)	 ID(y)	

assign	

ID(y)	 INT(42)	

•  AST	

if (x >= y)
 y = 42;

 mov eax,[ebp+16]
 cmp eax,[ebp-8]
 jl L17
 mov [ebp-8],42
L17:

Parser	

Back	End	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 31	

3/31/17	

17	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Interpreters	&	Compilers	

•  Programs	can	be	compiled	or	interpreted	(or	in	
some	cases	both)	

•  Compiler	
– A	program	that	translates	a	program	from	one	
language	(the	source)	to	another	(the	target)	

–  In	some	cases	the	source	and	target	can	even	be	the	
same.	

•  Interpreter	
– A	program	that	reads	a	source	program	and	produces	
the	results	of	execuCng	that	program	on	some	input	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 32	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Common	Issues	

•  Compilers	and	interpreters	both	must	read	
the	input	–	a	stream	of	characters	–	and	
“understand”	it:	front-end	analysis	phase	

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 33	

3/31/17	

18	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Compiler	

•  Read	and	analyze	enCre	program	
•  Translate	to	semanCcally	equivalent	program	
in	another	language	
– Presumably	easier	or	more	efficient	to	execute	

•  Offline	process	
•  Tradeoff:	compile-Cme	overhead	
(preprocessing)	vs	execuCon	performance	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 34	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Typically	implemented	with	
Compilers	

•  FORTRAN,	C,	C++,	COBOL,	other	programming	
languages,	(La)TeX,	SQL	(databases),	VHDL	(a	
hardware	descripCon	language),	many	others	

•  ParCcularly	appropriate	if	significant	
opCmizaCon	wanted/needed	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 35	

3/31/17	

19	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Interpreter	
•  Interpreter	
–  Typically	implemented	with	“execuCon	engine”	model	
–  Program	analysis	interleaved	with	execuCon		

–  Usually	requires	repeated	analysis	of	individual	statements	
(parCcularly	in	loops,	funcCons)	
•  But	-	hybrid	approaches	can	avoid	this	…	

–  But:	immediate	execuCon,	good	debugging/interacCon,	etc.	

running = true;
while (running) {
 analyze next statement;
 execute that statement;
}

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 36	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

OVen	implemented	with	
interpreters	

•  Javascript,	PERL,	Python,	Ruby,	awk,	sed,	
shells	(bash),	Scheme/Lisp/ML,	postscript/pdf,	
machine	simulators	

•  ParCcularly	efficient	if	interpreter	overhead	is	
low	relaCve	to	execuCon	cost	of	individual	
statements	
– But	even	if	not	(machine	simulators),	flexibility,	
immediacy,	or	portability	may	be	worth	it	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 37	

3/31/17	

20	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Hybrid	approaches	

•  Compiler	generates	byte	code	intermediate	
language,	e.g.,	compile	Java	source	to	Java	Virtual	
Machine	.class	files,	then	

•  Interpret	byte	codes	directly,	or	
•  Compile	some	or	all	byte	codes	to	naCve	code	
–  VariaCon:	Just-In-Time	compiler	(JIT)	–	detect	hot	
spots	&	compile	on	the	fly	to	naCve	code		

•  Also	widely	use	for	Javascript,	many	funcConal	
languages	(Haskell,	ML,	Ruby),	C#	and	MicrosoV	
Common	Language	RunCme,	others	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 38	

Fundamentals	of	Compilers	and	
Programming	Systems	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 39	

3/31/17	

21	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Front	End	

•  We’ll	walk	through	the	compilaCon	process	in	
order.		Front	end	first:	
–  Translate	source	code	into	compiler	intermediate	
representaCon	(IR)	

–  Two	parts	
•  Scanning:	read	text,	recognize	tokens		
•  Parsing:	translate	token	stream	into	Abstract	Syntax	Tree	
(AST)	

•  Produce	IR	(can	take	many	forms)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 40	

Source	 Target	Front	End	 Back	End	
Java	 IR	 MC	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Programming	Language		
SpecificaCons	

•  Since	the	1960s,	the	syntax	of	every	significant	
programming	language	has	been	specified	by	
a	formal	grammar	
– First	done	in	1959	with	BNF	(Backus-Naur	Form)	
used	to	specify	ALGOL	60	syntax	

– Borrowed	from	the	linguisCcs	community	
(Chomsky)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 41	

3/31/17	

22	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Review	of	Formal	Languages		
and	Automata	Theory	

•  Starring	Mr.	Pig	
•  Alphabet:	a	finite	set	of	symbols	and	characters	
–  E.g.,	{‘i’,	‘k’,	‘n’,	‘o’,	‘	’}	

•  String:	a	finite,	possibly	empty	sequence	of	
symbols	from	an	alphabet	
–  E.g.,	“oink”	

•  Language:	a	set	of	strings	(possibly	empty	or	
infinite)	
–  E.g.,	{“oink”,	“oink	oink”,	“oink	oink	oink”,	…}	

Oink!!!	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 42	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

•  Finite	specificaCons	of	(possibly	infinite)	languages:	
–  Automaton	–	a	recognizer;	a	machine	that	accepts	all	
strings	in	a	language	(and	rejects	all	other	strings)	
•  E.g.,	a	pig	detector:	accepts	all	sequences	of	oinks,	rejects	“moo”s	
or	“baa”s	(or	anything	else)	

–  Grammar	–	a	generator;	a	system	for	producing	all	strings	
in	the	language	(and	no	other	strings)	
•  Unfortunately,	we	can’t	use	a	pig	as	our	grammar	–	no	pig	(that	
I’ve	met)	can	generate	an	infinite	amount	of	“oink”	sequences.	

•  Instead	we	use	formal	(aka	mathemaCcal)	grammars.	

•  A	parCcular	language	may	be	specified	by	many	
different	grammars	and	automata	

•  A	grammar	or	automaton	specifies	only	one	language	
Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	

Ringenburg	 43	

Review	of	Formal	Languages		
and	Automata	Theory	

3/31/17	

23	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Language	(Chomsky)	hierarchy:	
quick	reminder	

•  Regular	(Type-3)	languages	are	
specified	by	regular	expressions/
grammars	and	finite	automata	
(FAs)	

•  Context-free	(Type-2)	languages	
are	specified	by	context-free	
grammars	and	pushdown	
automata	(PDAs)	

•  Context-sensiCve	(Type-1)	
languages	…	aren’t	too	important	

•  Recursively-enumerable	(Type-0)	
languages	are	specified	by	
general	grammars	and	Turing	
machines	

Turing	

CSL	

CFL	

Regular	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 44	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

•  A	formal	grammar	for	our	pig	language	could	be:	
	
	
	
•  This	can	generate,	for	example:	

Example:	Grammar	for		
Pig-ish	(or	Pig-ese?)	

PigTalk	::=	oink	PigTalk							(rule	1)	
															|			oink																					(rule	2)	

PigTalk	::=	oink																									(Rule	2)	
PigTalk	::=	oink	PigTalk											(Rule	1)	
														::=	oink	oink																(Rule	2)	
PigTalk	::=	oink	PigTalk											(Rule	1)	
														::=	oink	oink	PigTalk			(Rule	1)	
														::=	oink	oink	oink								(Rule	2)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 45	

3/31/17	

24	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example:	Grammar	for	a	Tiny	
Language	

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

•  A	more	realisCc	(but	sCll	small)	language:	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 46	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example:		
Derive	a	one	line	program	

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

if (x) y = 1 + y ;

program		::=	
statement		::=	
???	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 47	

3/31/17	

25	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

if (x) y = 1 + y ;

program		::=	
statement		::=			
ifStmt		::=		
if	(expr)	statement		::=			
if	(id)	statement		::=		
if	(x)	statement		::=			
if	(x)	assignStmt		::=	
if	(x)	id	=	expr	;		::=			
if	(x)	y	=	expr	;		::=		
if	(x)	y	=	expr	+	expr	;		::=			
if	(x)	y	=	int	+	expr	;		::=		
if	(x)	y	=	1	+	expr	;		::=			
if	(x)	y	=	1	+	id	;		::=	
if	(x)	y	=	1	+	y	;	

This	is	just	one	possible	derivaCon.	
Many	others	are	possible.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 48	

Example:		
Derive	a	one	line	program	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	2:	
A	mulCline	program	

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

if (x) y = 1 + y ; x = 1 ;

program		::=	
???	

Your	soluCon	may	reference	your	previous	
derivaCon.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 49	

3/31/17	

26	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

if (x) y = 1 + y ; x = 1 ;

program		::=			
program	statement		::=	
program	assignStmt		::=	
program	id	=	expr	;		::=	
program	x	=	expr	;		::=	
program	x	=	int	;		::=	
program	x	=	1	;		::=	
	
Then	derive	program	as	in		
the	previous	example.	

Once	again,	others	are	possible.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 50	

Example	2:	
A	mulCline	program	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

AlternaCve	NotaCons	

•  There	are	several	syntax	notaCons	for	
producCons	in	common	use;	all	mean	the	
same	thing	
ifStmt	::=	if	(expr)	statement	
ifStmt						if	(expr)	statement	
<ifStmt>	::=	if	(<expr>)	<statement>	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 51	

3/31/17	

27	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Parsing	

•  Parsing:	reconstruct	the	derivaCon	(syntacCc	
structure)	of	a	program	

•  In	principle,	a	single	recognizer	could	work	
directly	from	a	concrete,	character-by-
character	grammar	

•  In	pracCce	this	is	never	done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 52	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Parsing	&	Scanning	

•  In	real	compilers	the	recognizer	is	split	into	two	
phases*	
–  Scanner:	translate	source	code	to	tokens	

•  Reports	lexical	errors	like	illegal	characters	and	illegal	symbols.	

–  Parser:	read	token	stream	and	reconstruct	the	derivaCon	
•  Reports	parsing	errors	–	i.e.,	source	that	is	not	derivable	from	the	
grammar.		E.g.,	mismatched	parens/braces,	nonsensical	
statements	(x	=	1	+;)		

Scanner	 Parser	source tokens

*Not	always	quite	this	clean	of	a	separaCon	–	but	true	at	a	high	level.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 53	

3/31/17	

28	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Why	Separate	the	Scanner	
and	Parser?	

•  Simplicity	&	SeparaCon	of	Concerns	
–  Scanner	hides	details	from	parser	(comments,	whitespace,	
input	files,	etc.)	

–  Parser	is	easier	to	build;	has	simpler	input	stream	
(tokens)	/	narrow	interface	

•  Efficiency	
–  Tokens	can	be	defined	by	regular	expressions,	and	
recognized	by	finite	automata.	
•  (But	sCll	oVen	consumes	a	surprising	amount	of	the	compiler’s	
total	execuCon	Cme)	

–  Parsing	requires	context-free	grammars,	and	thus	
pushdown	automata.	

–  Can	build	automaCc	DFA	generators	for	scanning	(Jflex)	
and	automaCc	PDA	generators	for	parsing	(CUP)	.	

File	I/O!	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 54	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

But	…	
•  Not	always	possible	to	separate	cleanly	
•  Example:	C/C++/Java	type	vs	iden<fier		

–  Parser	would	like	to	know	which	names	are	types	and	which	are	
idenCfiers,	but	

–  Scanner	doesn’t	know	how	things	are	declared	…	
•  Things	are	even	uglier	in	Fortran	77	

–  E.g.,	myvar,	my var,	and	my var	are	all	the	same	idenCfier,	
keywords	are	not	reserved,	etc.		Tokenizing	requires	context…	

•  So	we	hack	around	it	somehow…	
–  Either	use	simpler	grammar	and	disambiguate	later,	or	communicate	

between	scanner	&	parser	(with	some	semanCc	analysis	mixed	in).	
–  Real	world:	OVen	ends	up	very	complex	and	hard	to	follow.		Compiler	

front	ends	are	someCmes	referred	to	as	“black	magic”.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 55	

3/31/17	

29	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Regular	Expressions	and		
Finite	Automate	(FAs)	

•  The	lexical	grammar	(structure)	of	most	
programming	languages	can	be	specified	with	
regular	expressions	
–  (SomeCmes	a	licle	cheaCng	is	needed)	

•  Therefore,	tokens	can	be	recognized	by	a	
determinisCc	finite	automaton	
– Can	be	either	table-driven	(automated	tools	like	
lex/flex)	or	built	by	hand	based	on	lexical	
grammar	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 56	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Fundamental	REs	

 re L(re) Notes

 a { a } Singleton set, for each symbol
a in the alphabet Σ

 ε { ε } Empty string

{ } Empty language ∅

These	are	the	basic	building	blocks	that	other	
regular	expressions	are	built	from.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 57	

3/31/17	

30	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

OperaCons	on	REs	

re L(re) Notes

rs L(r)L(s) Concatenation – r followed by s

r|s L(r) L(s) Combination (union) – r or s

r* L(r)* 0 or more occurrences of r
(Kleene closure)

Precedence:	*	(highest),	concatenaCon,	|	(lowest)	
Parentheses	can	be	used	to	group	REs	as	needed	

∪

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 58	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Examples	

re Meaning
+ single + character
! single ! character
!= 2 character sequence
xyzzy 5 character sequence
(1|0)* Zero or more binary digits
(1|0)(1|0)* Binary constant
0|1(1|0)* Binary constant without leading 0s

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 59	

3/31/17	

31	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

AbbreviaCons	

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

The	basic	operaCons	generate	all	possible	regular	
expressions,	but	there	are	common	abbreviaCons	
used	for	convenience.		Some	examples:	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 60	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Examples	

re Meaning

[abc]+ Sequence of one or more a’s, b’s
and c’s

[abc]* Zero or more a’s, b’s, and c’s

[0-9]+ Integer (possibly with leading 0s)

[1-9][0-9]* Integer (no leading 0s)

[a-zA-Z][a-zA-Z0-9_]* One or more letters or digits, must
start with a letter.

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 61	

3/31/17	

32	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

•  Possible	syntax	for	numeric	constants	

•  NoCce	that	this	allows	(unnecessary)	leading	
0s,	e.g.,	00045.6.	(0,	or	0.14	would	be	
necessary	0s.)	

•  How	would	you	prevent	that?	

Example	

digit	::=	[0-9]	
digits	::=	digit+	
number	::=	digits		(.	digits)?		
																	([eE]	(+	|	-)?	digits)	?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 62	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

•  Possible	syntax	for	numeric	constants	

Example	

digit	::=	[0-9]	
nonzero_digit	::=	[1-9]	
digits	::=	digit+	
number	::=	(0	|	nonzero_digit	digits?)			
																							(.	digits)?			
																							([eE]	(+	|	-)?	digits)	?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 63	

3/31/17	

33	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Recognizing	REs	

•  Recall	from	your	undergrad	CS	theory	course	
…	finite	automata	can	be	used	to	recognize	
strings	generated	by	regular	expressions	

•  Can	build	by	hand	or	automaCcally	
– Reasonably	straighuorward,	and	can	be	done	
systemaCcally	

– Tools	like	Lex,	Flex	(for	compilers	wricen	in	C++),	
and	JFlex	(for	compilers	wricen	in	Java)	do	this	
automaCcally,	given	a	set	of	REs	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 64	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Finite	State	Automaton	
•  Operate	by	reading	input	symbols	(usually	characters)	

–  TransiCon	can	be	taken	if	labeled	with	current	symbol	
–  DeterminisCc	(DFA):	Always	one	or	zero	possible	transiCons	
–  NondeterminisCc	Finite	Automata	(NFA):	May	have	mulCple	transiCons.		

May	also	have	ε-transiCons	that	can	be	taken	on	any	input.			
–  Can	convert	to	NFA	->	DFA	(recall	your	CS	theory	class).	

•  Accept	when	final	state	reached	and	no	more	input	
–  Slightly	different	in	a	scanner,	where	the	FSA	is	used	as	a	subrouCne	to	

find	the	longest	input	string	that	matches	a	token	RE.	
•  Reject	if	no	transiCon	possible,	or	no	more	input	and	not	in	

final	state	

1	 3	

2	
b

a a

b

4	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 65	

3/31/17	

34	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example:	DFA	for	“pig”	

i g p

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 66	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 67	

3/31/17	

35	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 68	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 69	

3/31/17	

36	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 70	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 71	

3/31/17	

37	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 72	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 73	

3/31/17	

38	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 74	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 75	

3/31/17	

39	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 76	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 77	

3/31/17	

40	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 78	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	1:	GOSEAHAWKS	

Status:	Accept!	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 79	

3/31/17	

41	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	2:	GOPACKERS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 80	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	2:	GOPACKERS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 81	

3/31/17	

42	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	2:	GOPACKERS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 82	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	2:	GOPACKERS	

Status:	ExecuCng…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 83	

3/31/17	

43	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	NFA:	Seahawks	
Cheer	token	

G	 O	

H	 A	 W	 K	

S	 E	 A	

T	 T	 L	

E	

S	ε	

ε	

ε	

ε	

Input	2:	GOPACKERS	

Status:	REJECT!		No	
transiCons	possible.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 84	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 85	

3/31/17	

44	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

ε	

ε	

b(at|ag)	

bug	

ε	

ε	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 86	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

b	 u	 g	

ε	
ε	

ε	

b(at|ag)	
ε	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 87	

3/31/17	

45	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

b	

ε	

ε	

ε	

ε	

at|ag	

b	 u	 g	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 88	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Example	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

b	

ε	

ε	

ε	

ε	

ε	

ε	
a	

a	 g	

t	

ε	

ε	
b	 u	 g	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 89	

3/31/17	

46	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

To	Tokens 		
•  A	scanner	is	a	DFA	that	finds	the	next	token	each	Cme	it	is	

called	
–  Slight	modificaCon:	always	try	to	find	the	longest	token	

•  Every	“final”	state	of	a	DFA	emits	(returns)	a	token	
•  Tokens	are	the	internal	compiler	names	for	the	lexemes	

== 	becomes	equal	
(becomes	leVParen	
private	becomes	private	

•  You	choose	the	names	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 90	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

DFA	=>	Code	
•  OpCon	1:	hand	wricen	

–  Pros	
•  If	wricen	well,	can	be	faster	than	auto-generated	scanners	
•  Handles	weird	language	corner	cases	that	don’t	map	perfectly	to	the	RE/	FA	

model		
•  Readable	code	

–  Cons:	
•  A	lot	of	tedious	work	–	thus,	error	prone	

•  OpCon	2:	use	a	tool	to	generate	a	scanner	
–  Pros	

•  Convenient	–	just	feed	it	the	token	regular	expressions	
•  Exactly	matches	specificaCon	you	give	it,	if	tool	correct	

–  Cons	
•  SomeCmes	language	constructs	don’t	map	perfectly	to	FA	model	

–  Table	driven:	Rows	are	states	of	DFA,	columns	are	input	characters,	
entries	are	acCon	(go	to	next	state,	accept,	error)	

–  Direct-coded	auto-generated	scanner:	transiCons	embedded	in	the	code	
•  Faster	than	table-driven,	but	generated	code	is	very	hard	to	follow	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 91	

3/31/17	

47	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

The	Real	World	
•  In	commercial	se�ngs	(and	most	gcc	front	ends)	
hand	wricen	scanners	used	more	oVen	than	not.	
–  Especially	for	larger	languages,	e.g.,	C++/Java.	
–  Can	purchase,	e.g.,	EDG	C/C++	front	end.	

•  Auto-generated	used	for	simpler	languages,	
parsing	“other	things”	(e.g.,	queries).	

•  Why	hand	wricen?	
–  Fastest	
–  Can	handle	language	corner	cases	–	C++	especially	
bad.	

–  Readable/debugable	code.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 92	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Parsing	

•  We	have:	a	scanner	that	generates	a	token	stream	
•  We	want	an	abstract	syntax	tree	(AST)		
–  A	data	structure	that	encodes	the	meaning	of	the	
program,	and	captures	its	structural	features	(loops,	
condiConals,	etc.)		

–  Primary	data	structure	for	next	phases	of	compilaCon	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 93	

IF	 LPAREN	 ID(babySleeps)	

RPAREN	 ID(wine)	 INCR	

SCOLON	

ID(babySleeps)	 postIncr	

ID(wine)	

if (babySleeps) wine++; ifStmt	

3/31/17	

48	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

How	is	this	done?	
•  A	grammar	specifies	the	
syntax	of	a	language	

•  Parsing	algorithms	build	parse	
trees	based	on	a	grammar	and	
a	stream	of	tokens	
–  Parse	trees	represent	how	a	
string	can	be	derived	from	a	
grammar,	and	encode	meaning	
•  E.g.,	mulCply	a	by	b,	then	
subtract	c	from	result.	

–  Can	build	AST	by	traversing	
parse	tree	(parsers	may	do	this	
implicitly).	

•  Do	you	see	a	problem	here?	
Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	

Ringenburg	 94	

Expr -> Expr Op Expr
 | ID
Op -> -
 | *

a * b - c Expr

Expr

Expr

Op

ID(c)
Op

ID(b)

-

ID(a) *

Expr

Expr

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Context-free	Grammars	
•  The	syntax	of	most	programming	languages	can	be	
specified	by	a	context-free	grammar	(CGF)	

•  Compromise	between	
–  REs:	can’t	nest	or	specify	recursive	structure		
–  General	grammars:	too	powerful,	undecidable		

•  Context-free	grammars	are	a	sweet	spot	
–  Powerful	enough	to	describe	nesCng,	recursion	
–  Easy	to	parse;	but	also	allow	restricCons	for	speed	

•  Not	perfect	
–  Cannot	capture	semanCcs,	as	in	“variable	must	be	
declared”	–	requires	later	semanCc	pass	

–  Can	be	ambiguous	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 95	

3/31/17	

49	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	about	ambiguity?	

•  Need	to	construct	unambiguous	grammars	for	parsing	
–  Otherwise	nondeterminsCc	results	of	parsing	and	
compilaCon!	

•  Classic	example	–	order	of	operaCons	
–  How	do	we	ensure	that	*	and	/	have	higher	precedence	in	
our	AST	than	+	and	-	???	

–  Another	common	ambiguity:	nested	if-then-else	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 96	

expr	::=	expr	+	expr	|	expr	–	expr			
										|		expr	*	expr	|	expr	/	expr	
										|		INTEGER	|	ID	|	(expr)	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

What	about	ambiguity?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 97	

expr	::=	expr	+	term	|	expr	–	term	|	term		
term	::=	term	*	factor	|	term	/	factor	|	factor		
factor	::=	INTEGER	|	ID	|	(expr)	

•  Need	to	construct	unambiguous	grammars	for	parsing	
–  Otherwise	nondeterminsCc	results	of	parsing	and	
compilaCon!	

•  Classic	example	–	order	of	operaCons	
–  How	do	we	ensure	that	*	and	/	have	higher	precedence	in	
our	AST	than	+	and	-	???	

–  Another	common	ambiguity:	nested	if-then-else	

3/31/17	

50	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Examples	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 98	

expr	::=	expr	+	term	|	expr	–	term	|	term		
term	::=	term	*	factor	|	term	/	factor	|	factor		
factor	::=	INTEGER	|	ID	|	(expr)	

a * b - c
a + b + c

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Examples	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 99	

expr	::=	expr	+	term	|	expr	–	term	|	term		
term	::=	term	*	factor	|	term	/	factor	|	factor		
factor	::=	INTEGER	|	ID	|	(expr)	

a * b - c
expr

expr - term

term

ID(b)

*

factor

ID(c) factor term

factor

ID(a)

a + b + c

3/31/17	

51	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Examples	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 100	

expr	::=	expr	+	term	|	expr	–	term	|	term		
term	::=	term	*	factor	|	term	/	factor	|	factor		
factor	::=	INTEGER	|	ID	|	(expr)	

a * b - c
expr

expr - term

term

ID(b)

*

factor

ID(c) factor term

factor

ID(a)

a + b + c
expr

+ term expr

ID(b)

+ factor

ID(c)

term

factor

ID(a)

term

factor

expr

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

ShiV-Reduce	Parsing	

•  Most	common	parsing	algorithms	are	shiV-
reduce	bocom-up	parsers	
–  Bocom-up:	Start	with	tokens,	derive	grammar	
starCng	symbol	

–  ShiV:	Read	tokens	leV	to	right,	push	them	onto	a	stack	
–  Reduce:	Whenever	the	set	of	topmost	tokens	on	the	
stack	matches	the	right-hand	side	of	a	producCon,	
replace	them	with	the	appropriate	non-terminal	and	
add	that	non-terminal	to	the	parse	tree.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 101	

3/31/17	

52	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

ShiV-Reduce	Example	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 102	

Stack		 	 	Input		 	 	AcCon	
$		 	 	 	abbcde$	 	shiV	
$a		 	 	bbcde$		 	shiV	
$ab		 	 	bcde$		 	Reduce		A=>b	
$aA	 	 	bcde$			 	shiV	
$aAb		 	 	cde$		 	 	shiV	
$aAbc			 	de$	 	 	reduce	A=>Abc	
$aA	 	 	de$	 	 	shiV	
$aAd	 	 	e$		 	 	reduce	B=>d	
$aAB	 	 	e$		 	 	shiV	
$aABe		 	$	 	 	 	reduce	S=>aABe	
$S			 	 	$		 	 	 	accept	

S	::=	aABe	
A	::=	Abc	|	b	
B	::=	d	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Tables	

•  What	if	mulCple	choices	possible	(shiV?	reduce	
by	rule	1?	reduce	by	rule	2?)	
–  Parsing	algorithms	generate	a	DFA	based	on	the	
grammar	that	tells	you	what	to	do	in	each	state	
•  DFA	+	stack	=	PDA	…	which	is	how	we	recognize	a	CFG	
•  DFA	converted	to	table	for	efficiency	

– May	use	lookahead	(peek	at	future	symbols)	to	avoid	
backtracking	

–  If	table	generaCon	leads	to	conflict	(shiV-reduce	or	
shiV-shV),	grammar	is	not	parsable	by	that	algorithm.	

	
Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	

Ringenburg	 103	

3/31/17	

53	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

More	Details	
•  Large	amount	of	literature	on	parsing	algorithms,	but	
this	is	mostly	a	solved	problem	now	
– We	will	could	spend	the	next	few	lectures	going	over	this	–	
but	will	instead	refer	the	curious	to	any	compiler	textbook	

–  And	will	have	a	short	reading	and	homework	problem	to	
let	you	try	it	out	

•  Parser	generators	like	yacc/bison	(C)	and	CUP	(Java)	
work	well	in	many	cases.	
–  Specify	grammar,	acCons	to	take	to	build	AST	
– Will	detect	ambiguiCes,	problems	
– Make	it	easy	to	specify	precedence	(so	don’t	need	to	build	
more	complicated	grammars	to	encode)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 104	

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2011

Discussion	

•  Today	will	be	short	(we	can	go	home	early!),	
since	you	haven’t	read	any	papers	yet.	

•  Briefly	introduce	yourself:	
– Name	
– Where	you	work	
– What	you	do	
– Why	you	are	interested	in	this	course	
– Any	other	interesCng	facts	about	yourself/
relevant	background	you	bring/jokes/etc.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 105	

