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TPR  = True Positive Rate  
        = Sensitivity 

 = Recall 
 = TP/(TP+FN) 

FPR  = False Positive Rate 
 = 1 – Specificity 
 = FP/(FP+TN) 

Precision, aka PPV 
  = TP/(TP+FP) 
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RNA Search and ���
Motif Discovery	



CSEP 590 A���
Computational Biology	
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Approaches to Structure 
Prediction	



Maximum Pairing���
	

+ works on single sequences���
	

+ simple���
	

-  too inaccurate	



Minimum Energy���
	

+ works on single sequences���
	

-  ignores pseudoknots ���
	

-  only finds “optimal” fold	



Partition Function���
	

+ finds all folds���
	

-  ignores pseudoknots	





“Optimal pairing of ri ... rj”���
 Two possibilities	



j Unpaired: ���
  Find best pairing of ri ... rj-1	



j Paired (with some k): ���
  Find best ri ... rk-1 + ���
  best rk+1 ... rj-1 plus 1	



Why is it slow? ���
Why do pseudoknots matter?	



j!

i!

j-1!

j!

k-1!

k!

i!

j-1! k+1!



Nussinov: ���
A Computation Order	


	



B(i,j) = # pairs in optimal pairing of ri ... rj	



B(i,j) = 0 for all i, j with i ≥ j-4; otherwise	



B(i,j) = max of:	



B(i,j-1)	



max { B(i,k-1)+1+B(k+1,j-1) | ���
  i ≤ k < j-4 and rk-rj may pair}	

 Time: O(n3) 

K=2 
3 

4 
5 

Or energy 

Loop-based energy version is better; recurrences similar, slightly messier 



Today	



Structure prediction via comparative analysis	


Covariance Models (CMs) represent  ���
    RNA sequence/structure motifs	


Fast CM search	


Motif Discovery	



Applications in prokaryotes & vertebrates	
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Approaches, II	



Comparative sequence analysis���
	

+ handles all pairings (potentially incl. pseudoknots) ���
	

-  requires several (many?) aligned, ���
	

   appropriately diverged sequences	



Stochastic Context-free Grammars���
Roughly combines min energy & comparative, but 
no pseudoknots	



Physical experiments (x-ray crystalography, NMR)	



To
da

y 



21 Covariation is strong evidence for base pairing 
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Mutual Information	



	


	



Max when no seq conservation but perfect pairing	



MI = expected score gain from using a pair state (below)	



Finding optimal MI, (i.e. opt pairing of cols) is hard(?)	



Finding optimal MI without pseudoknots can be done by 
dynamic programming	



€ 

Mij = fxi,xjxi,xj∑ log2
fxi,xj
f xi f xj

; 0 ≤ Mij ≤ 2

23 
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Computational Problems	



How to predict secondary structure	


How to model an RNA “motif” ���

(I.e., sequence/structure pattern)	


Given a motif, how to search for instances	


Given (unaligned) sequences, find motifs	



How to score discovered motifs	


How to leverage prior knowledge	
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Motif Description	





RNA Motif Models	



“Covariance Models” (Eddy & Durbin 1994)	


aka profile stochastic context-free grammars	


aka hidden Markov models on steroids	



Model position-specific nucleotide 
preferences and base-pair preferences	


	


Pro: accurate	


Con: model building hard, search slow	
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Eddy & Durbin 1994: What	



A probabilistic model for RNA families	


The “Covariance Model”	


≈ A Stochastic Context-Free Grammar	


A generalization of a profile HMM	



Algorithms for Training	


From aligned or unaligned sequences	


Automates “comparative analysis”	


Complements Nusinov/Zucker RNA folding	



Algorithms for searching	
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Main Results	



Very accurate search for tRNA	


(Precursor to tRNAscanSE - current favorite)	



Given sufficient data, model construction 
comparable to, but not quite as good as, ���
human experts	


Some quantitative info on importance of 
pseudoknots and other tertiary features	
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Probabilistic Model Search	



As with HMMs, given a sequence, you calculate 
likelihood ratio that the model could generate the 
sequence, vs a background model	


You set a score threshold	


Anything above threshold → a “hit”	


Scoring:	



“Forward” / “Inside” algorithm - sum over all paths	


Viterbi approximation - find single best path���
(Bonus: alignment & structure prediction)	
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Example: 
searching for 
tRNAs���
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Mj: 	

Match states (20 emission probabilities)	


Ij: 	

Insert states (Background emission probabilities)	


Dj: 	

Delete states (silent - no emission)	



Profile Hmm Structure	
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How to model an RNA “Motif”?	


Conceptually, start with a profile HMM:	



from a multiple alignment, estimate nucleotide/ insert/delete 
preferences for each position	


given a new seq, estimate likelihood that it could be generated by 
the model, & align it to the model	



	


	



	



all G mostly G 

del ins 
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How to model an RNA “Motif”?	



Add “column pairs” and pair emission probabilities 
for base-paired regions	


	


	



	



paired columns <<<<<<<                         >>>>>>> 
   …                               … 



Mj: 	

Match states (20 emission probabilities)	


Ij: 	

Insert states (Background emission probabilities)	


Dj: 	

Delete states (silent - no emission)	



Profile Hmm Structure	
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CM Structure	



A: Sequence + structure	



B: the CM “guide tree”	



C: probabilities of 
letters/ pairs & of indels	



Think of each branch 
being an HMM emitting 
both sides of a helix (but 
3’ side emitted in 
reverse order)	





Overall CM 
Architecture	


One box (“node”) per node 
of guide tree	


BEG/MATL/INS/DEL just 
like an HMM	



MATP & BIF are the key 
additions: MATP emits pairs 
of symbols, modeling base-
pairs; BIF allows multiple 
helices	
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CM Viterbi Alignment���
(the “inside” algorithm)	



€ 

€ 

xi = ith letter of input
xij = substring i,..., j of input
Tyz = P(transition y→ z)

Exi ,x j
y = P(emission of xi,x j from state y)

Sij
y =maxπ logP(xij gen'd starting in state y via path π )

49 



CM Viterbi Alignment���
(the “inside” algorithm)	



€ 

50 
€ 

Sij
y =maxπ logP(xij generated starting in state y via path π )

Sij
y =

maxz[Si+1, j−1
z + logTyz + logExi ,x j

y ] match pair
maxz[Si+1, j

z + logTyz + logExi
y ] match/insert left

maxz[Si, j−1
z + logTyz + logEx j

y ] match/insert right
maxz[Si, j

z + logTyz] delete
maxi<k≤ j[Si,k

yleft + Sk+1, j
yright ] bifurcation

% 

& 

' 
' ' 

( 

' 
' 
' 

Time O(qn3), q states, seq len n Time O(qn3), q states, seq len n 
compare: O(qn) for profile HMM 



An Important Application: ���
Rfam	





Rfam – an RNA family DB���
Griffiths-Jones, et al., NAR ’03, ’05, ’08, ’11, ’12	



Was biggest scientific comp user in Europe - 
1000 cpu cluster for a month per release	



Rapidly growing:	


Rel   1.0, 1/03:    25 families,     55k instances	



Rel   7.0, 3/05:   503 families,  363k instances	



Rel   9.0, 7/08:   603 families,  636k instances	



Rel   9.1, 1/09: 1372 families, 1148k instances	



Rel 10.0, 1/10: 1446 families, 3193k instances	



Rel 11.0, 8/12: 2208 families, 6125k instances	
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DB size: 

~8GB 
 
 
 
 
 

~160GB 
~320GB 



IRE (partial seed alignment):	


 
Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC 
Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA 
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU 

Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG 
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG 
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU 
Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC 
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG 
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC 

Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC 
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG 
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC 
SS_cons   <<<<<...<<<<<......>>>>>.>>>>> 

RF00037: ���
Example Rfam Family	


Input (hand-curated):	



MSA “seed alignment”	



SS_cons	


Score Thresh T	



Window Len W	



Output:	


CM	


scan results & “full 
alignment”	



phylogeny, etc.	
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An Important Need: ���
Faster Search	





Homology search	



“Homolog” – similar by descent from common ancestor	


Sequence-based	



Smith-Waterman	



FASTA	



BLAST	


	



For RNA, sharp decline in sensitivity at ~60-70% identity	


	

	



So, use structure, too	
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Impact of RNA homology search	



B. subtilis!

L. innocua!

A. tumefaciens!

V. cholera!

M. tuberculosis!
(and 19 more species)!

operon!
glycine 
riboswitch!

(Barrick, et al., 2004)!
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Impact of RNA homology search	



B. subtilis!

L. innocua!

A. tumefaciens!

V. cholera!

M. tuberculosis!

(Barrick, et al., 2004)!

(and 19 more species)!

operon!
glycine 
riboswitch!

(and 42 more species)!

(Mandal, et al., 2004)!

BLAST-based                  CM-based 
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Faster Genome Annotation ���
of Non-coding RNAs ���

Without Loss of Accuracy	


Zasha Weinberg 	



& W.L. Ruzzo	


Recomb ‘04, ISMB ‘04, Bioinfo ‘06	





RaveNnA: Genome Scale ���
RNA Search	



Typically 100x speedup over raw CM, w/ no loss in accuracy: 	


	

 	

Drop structure from CM to create a (faster) HMM	



	

Use that to pre-filter sequence; 	


	

Discard parts where, provably, CM score < threshold;	



	

Actually run CM on the rest (the promising parts)	



	

Assignment of HMM transition/emission scores is key 	


	

 	

(a large convex optimization problem)	



Weinberg & Ruzzo, Bioinformatics, 2004, 2006 
78 



CM’s are good, but slow ���
	



EMBL 

CM 

hits 
junk 

Rfam Goal 

1 month, 
1000 computers 

Our Work 

~2 months, 
1000 computers 

EMBL 

CM 

hits 

Ravenna 

Rfam Reality 

EMBL 

hits junk 

BLAST 

CM 
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10 years, 
1000 computers 



Oversimplified CM���
(for pedagogical purposes only)	



A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

81 



CM to HMM	



A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

CM HMM 

82 
25 emisions per state      5 emissions per state, 2x states 



	


	


	


	


Need: log Viterbi scores CM ≤ HMM	


	



Key Issue: 25 scores → 10	



P 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

L 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

R 

CM HMM 
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Key Issue: 25 scores → 10	



	


	


	


	



Need: log Viterbi scores CM ≤ HMM	


	

 PCA ≤ LC + RA 

PCC ≤ LC + RC 
PCG ≤ LC + RG 
PCU ≤ LC + RU 
PC–  ≤ LC + R– 

… 
… 
… 
… 
… 

PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– N

B
: H

M
M

 n
ot

 a
 p

ro
b.

 m
od

el
 

P 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

L 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

R 

CM HMM 
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Rigorous Filtering	



Any scores satisfying the linear inequalities 
give rigorous filtering���
���
Proof: ���
  CM Viterbi path score    ���
    ≤ “corresponding” HMM path score���
    ≤  Viterbi HMM path score ���
              (even if it does not correspond to any CM path)	



PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– … 
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Minimizing E(Li, Ri) ���
(subject to linear constraints)	



Calculate E(Li, Ri) 
symbolically, in terms of 
emission scores, so we 
can do partial derivatives 
for numerical convex 
optimization algorithm	



€ 

∂E (L1 , L2 , ...)
∂Li

Forward: 

Viterbi: 

90 
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Assignment of scores/ “probabilities”	



Convex optimization problem	


Constraints: enforce rigorous property	


Objective function: filter as aggressively as 
possible	



Problem sizes: 	


1000-10000 variables	



10000-100000 inequality constraints	





“Convex” Optimization	



Convex: ���
local max = global max;	



simple “hill climbing” works	



Nonconvex: ���
can be many local maxima,    
≪ global max;���
“hill-climbing” fails	
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Estimated Filtering Efficiency���
(139 Rfam 4.0 families)	



Filtering 
fraction	



# families 
(compact)	



# families 
(expanded)	



< 10-4	

 105	

 110	



10-4 - 10-2	

 8	

 17	



.01 - .10	

 11	

 3	



.10 - .25	

 2	

 2	



.25 - .99	

 6	

 4	



.99 - 1.0	

 7	

 3	



~100x 
speedup 

Averages 283 times faster than CM!

≈ 
br

ea
k 

ev
en
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Motif Discovery	





RNA Motif Discovery	



Would be great if: given 100 complete 
genomes from diverse species, we could 
automatically find all the RNAs.	



State of the art: that’s hopeless	


Hope:  can we exploit biological knowledge 

to narrow the search space?	
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RNA Motif Discovery	



More promising problem: given a 10-20 
unaligned sequences of a few kb, most of 
which contain instances of one RNA motif 
of 100-200bp  -- find it.	



Example: 5’ UTRs of orthologous glycine 
cleavage genes from γ-proteobacteria	



Example: corresponding introns of 
orthogolous vertebrate genes	



131 

Orthologs = 
counterparts in 
different species 
 



Approaches	



Align-First: Align sequences, then look for 
common structure	


Fold-First: Predict structures, then try to align 
them	



Joint: Do both together	
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Pitfall for sequence-alignment- 
first approach	



Structural conservation ≠ Sequence conservation	


Alignment without structure information is unreliable	



CLUSTALW alignment of SECIS elements with flanking regions 

same-colored boxes should be aligned 
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Approaches	



Align-first: align sequences, then look for 
common structure	


Fold-first: Predict structures, then try to align 
them	



single-seq struct prediction only ~ 60% accurate; 
exacerbated by flanking seq; no biologically-
validated model for structural alignment	



Joint: Do both together	


Sankoff – good but slow	


Heuristic	
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Our Approach: CMfinder	



Simultaneous local alignment, folding and CM-
based motif description using an EM-style 
learning procedure	



Yao, Weinberg & Ruzzo, Bioinformatics, 2006 
143 
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CMFinder	


Simultaneous alignment, folding & motif description ���

Yao, Weinberg & Ruzzo, Bioinformatics, 2006	



Folding  
predictions 

Smart  
heuristics 

Candidate 
alignment CM 

Realign 

EM 

Mutual 
Information 

Combines folding & mutual 
information in a principled way. 
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CMfinder Accuracy���
(on Rfam families with flanking sequence)	



/CW 
/CW 



Discovery in Bacteria	
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Right Data: Why/How	



We can recognize, say, 5-10 good examples amidst 
20 extraneous ones (but not 5 in 200 or 2000) of 
length 1k or 10k (but not 100k)	


Regulators often near regulatees (protein coding 
genes), which are usually recognizable cross-species	


So, look near similar genes (“homologs”)	



Many riboswitches, e.g., are present in ~5 copies 
per genome	


(Not strategy used in vertebrates - 1000x larger genomes)	





Processing 
Times	



Input from ~70 
complete Firmicute 
genomes available in 
late 2005-early 2006, 
totaling ~200 
megabases	
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2946 CDD groups 

35975  motifs 

1740 motifs 

1466 motifs 

Retrieve upstream sequences 

Motif postprocessing 

Identify CDD group members < 10 CPU days 

Motif postprocessing 

Footprinter ranking < 10 CPU days 

 1 ~ 2 CPU months CMfinder 

RaveNnA  10 CPU months 

CMfinder refinement   < 1 CPU month 



Rank Score # CDD Rfam 
RAV CMF FP   RAV  CMF ID Gene  Descriptio n   

0 43 107 3400 367 11 9904 IlvB Thiamine pyrophosphate-requiring enzymes RF00230 T-box 

1 10 344 3115 96 22 13174 COG3859 Predicted membrane protein RF00059 THI 

2 77 1284 2376 112 6 11125 MetH Methionine synthase I specific DNA methylase RF00162 S_box 

3 0 5 2327 30 26 9991 COG0116 Predicted N6-adenine-specific DNA methylase RF00011 
RNaseP_bact_b 

4 6 66 2228 49 18 4383 DHBP  3,4-dihydroxy-2-butanone 4-phosphate synthase RF00050 RFN 

7 145 952 1429 51 7 10390 GuaA GMP synthase RF00167 Purine 

8 17 108 1322 29 13 10732 GcvP Glycine cleavage system protein P RF00504 Glycine 

9 37 749 1235 28 7 24631 DUF149 Uncharacterised BCR, YbaB family COG0718 RF00169 SRP_bact 

10 123 1358 1222 36 6 10986 CbiB Cobalamin biosynthesis protein CobD/CbiB  RF00174 Cobalamin 

20 137 1133 899 32 7 9895 LysA Diaminopimelate decarboxylase RF00168 Lysine 

21 36 141 896 22 10 10727 TerC Membrane protein TerC RF00080 yybP-ykoY 

39 202 684 664 25 5 11945 MgtE Mg/Co/Ni transporter MgtE RF00380 ykoK 

40 26 74 645 19 18 10323 GlmS Glucosamine 6-phosphate synthetase RF00234 glmS 

53 208 192 561 21 5 10892 OpuBB ABC-type proline/glycine betaine transport 
systems  

RF00005 tRNA1 

122 99 239 413 10 7 11784 EmrE Membrane transporters of cations and cationic 
drug 

RF00442 ykkC-yxkD 

255 392 281 268 8 6 10272 COG0398 Uncharacterized conserved protein RF00023 tmRNA 

 
Table 1: Motifs that correspond to Rfam families.  “Rank”: the three columns show ranks for refined motif clusters after genome scans (“RAV”), 
CMfinder motifs before genome scans (“CMF”), and FootPrinter results (“FP”).  We used the same ranking scheme for RAV and CMF.  “Score”: 

Table 1: Motifs that correspond to Rfam families	



180 



Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.  
Membership: # of seqs in overlap between our predictions and Rfam’s, the sensitivity (Sn) and 
specificity (Sp) of our membership predictions.  Overlap: the avg len of overlap between our 
predictions and Rfam’s (nt), the fractional lengths of the overlapped region in Rfam’s 
predictions (Sn) and in ours (Sp).  Structure: the avg # of correctly predicted canonical base 
pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of 
our predictions.  1After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 
76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%. 184 

Rfam Membership Overlap Structure 
    # Sn Sp nt Sn Sp bp Sn Sp 
RF00174 Cobalamin 183 0.741 0.97 152 0.75 0.85 20 0.60 0.77 
RF00504 Glycine 92 0.561 0.96 94 0.94 0.68 17 0.84 0.82 
RF00234 glmS 34 0.92 1.00 100 0.54 1.00 27 0.96 0.97 
RF00168 Lysine 80 0.82 0.98 111 0.61 0.68 26 0.76 0.87 
RF00167 Purine 86 0.86 0.93 83 0.83 0.55 17 0.90 0.95 
RF00050 RFN 133 0.98 0.99 139 0.96 1.00 12 0.66 0.65 
RF00011 RNaseP_bact_b 144 0.99 0.99 194 0.53 1.00 38 0.72 0.78 
RF00162 S_box 208 0.95 0.97 110 1.00 0.69 23 0.91 0.78 
RF00169 SRP_bact 177 0.92 0.95 99 1.00 0.65 25 0.89 0.81 
RF00230 T-box 453 0.96 0.61 187 0.77 1.00 5 0.32 0.38 
RF00059 THI 326 0.89 1.00 99 0.91 0.69 13 0.56 0.74 
RF00442 ykkC-yxkD 19 0.90 0.53 99 0.94 0.81 18 0.94 0.68 
RF00380 ykoK 49 0.92 1.00 125 0.75 1.00 27 0.80 0.95 
RF00080 yybP-ykoY 41 0.32 0.89 100 0.78 0.90 18 0.63 0.66 
mean   145 0.84 0.91 121 0.81 0.82 21 0.75 0.77 
median   113 0.91 0.97 105 0.81 0.83 19 0.78 0.78 
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boxed = confirmed riboswitch 
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Vertebrate ncRNAs	



Some Results	





Some details below 

Human Predictions	


Evofold	



S Pedersen, G Bejerano, A Siepel, K 
Rosenbloom, K Lindblad-Toh, ES Lander, J 
Kent, W Miller, D Haussler, "Identification 
and classification of conserved RNA 
secondary structures in the human 
genome." 
PLoS Comput. Biol., 2, #4 (2006) e33. 	



48,479 candidates (~70% FDR?)	


	



RNAz 
S Washietl, IL Hofacker, M Lukasser, A Hutenhofer, PF 
Stadler, "Mapping of conserved RNA secondary 
structures predicts thousands of functional noncoding 
RNAs in the human genome." 
Nat. Biotechnol., 23, #11 (2005) 1383-90. 
30,000 structured RNA elements  
  1,000 conserved across all vertebrates.  
~1/3 in introns of known genes, ~1/6 in UTRs  
~1/2 located far from any known gene 

 

FOLDALIGN 
E Torarinsson, M Sawera, JH 
Havgaard, M Fredholm, J Gorodkin, 
"Thousands of corresponding 
human and mouse genomic regions 
unalignable in primary sequence 
contain common RNA structure." 
Genome Res., 16, #7 (2006) 885-9. 
1800 candidates from 36970 (of 
100,000) pairs 

CMfinder 
Torarinsson, Yao, Wiklund, Bramsen, Hansen, 
Kjems, Tommerup, Ruzzo and Gorodkin. 
Comparative genomics beyond sequence based 
alignments: RNA structures in the ENCODE regions. 
Genome Research, Feb 2008, 18(2):242-251 PMID: 
18096747 
6500 candidates in ENCODE alone (better FDR, but 
still high) 



CMfinder Search in Vertebrates	



Extract ENCODE* Multiz alignments 	


Remove exons, most conserved elements.  	


56017 blocks, 8.7M bps.	



Apply CMfinder to both strands.	


10,106 predictions, 6,587 clusters. 	



High false positive rate, but still suggests 1000’s of RNAs. 	


	



(We’ve applied CMfinder to whole human genome: ���
  many 100’s of CPU years.   Analysis in progress.)	


	



* ENCODE: deeply annotated 1% of human genome	



	


	



	


	



Trust 17-way 
alignment for 
orthology, not for 
detailed 
alignment 
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between successive indels, measured as the number of
homologous nucleotides surviving in between, follows a
geometric distribution. Note that this conclusion holds
irrespective of the distribution of indel lengths themselves,
and of the relative incidence of insertions and deletions.

The fact that indel events often involve several nucleotides
simultaneously introduces co-dependencies in the survival
probabilities of nearby sites. In other words, the probability
that an ancestral nucleotide survives as a homologous
nucleotide in two descendant species is dependent on
whether neighbouring nucleotides survive. However, assum-
ing independence of indel events, survival probabilities do
become independent conditional on the survival of the left
(or right) neighbour. Indeed, if p is the uniform conditional
survival probability for a single nucleotide, the (conditional)
survival probability of a sequence of L nucleotides is pL

because of the assumption of independence. In this paper, we
refer to q ¼ 1"p as the indel probability per site, or less
precisely, the indel rate.

Although indels cannot be observed directly, for the low
indel rates observed in mammals they closely correspond to
gaps in the alignment. It thus may be predicted that, under
neutrality, the lengths of ungapped sequence between
successive alignment gaps—intergap segments (IGS)—would
be distributed similarly to the geometric distribution
predicted for the distance between successive indels. A
whole-genome histogram of IGS lengths, obtained from
BlastZ human–mouse alignments [13] indeed shows a re-
markably close fit to the geometric distribution (a straight
line in log-linear coordinates) within the length range 20–50
bp, with the model explaining 99.996% of the variance
(Figure 1A). To show that this close fit is not caused by
alignment artefacts, human Chromosome 21 was realigned to
orthologous sequence in mouse using a simple probabilistic
aligner and three sets of parameters. The resulting histograms
show similarly close fits within the range 20–50 bp, with the q
parameters within 95% confidence intervals of one another
(see Materials and Methods).

Outside of the range of 20–50 bp, histogram counts deviate
from the neutral model predictions, with IGS of less than 20
bp being underrepresented, and IGS longer than 50 bp being
overrepresented. The underrepresentation of short intergap
distances is caused by a systematic alignment artefact termed
gap attraction [14], by which two nearby indel events give rise
to a single alignment gap when this more parsimoniously
explains the observed sequence data. This phenomenon does
not reflect an evolutionary process, and thus, in what follows,
ungapped segments shorter than 20 bp were ignored.

To investigate whether the overrepresentation of long
ungapped segments is, to a large extent, caused by indel-
purifying selection, a similar histogram was constructed using
only alignments of ARs (see Materials and Methods). These
elements are thought to evolve predominantly neutrally
[15,16], and the histogram obtained indeed closely followed
the predictions of the neutral model, with only a slight
overrepresentation of long ungapped segments (Figure 1B).
These observations are further quantified below.

Accounting for Indel Rate Variation
To quantify the extent of any deviation of the intergap

histogram from the neutral model, we introduced a param-
eter r. This parameter measures the fraction of nucleotides

in ungapped segments that are overrepresented in the
genome (or among ARs) compared to the prediction of the
neutral model (see Materials and Methods), and is visually
represented in green in Figure 1A. For the whole-genome and
AR histograms, r was determined to be 0.1234 and 0.0074,
respectively. (Note that r is not an estimate of the proportion

Figure 1. Genomic Distribution of Intergap Distances

Histogram of intergap distance counts (log10 scale) in human–mouse
alignments, (A) within the whole genome and (B) within ARs. Blue lines
indicate predictions of the neutral model (central line, geometric
distribution; the slope is related to the per-site indel probability q),
and expected sampling errors (outer curves; 95% confidence intervals for
a binomial distribution per length bin). Insets show a blow-up of the
deviation from the model (log10 scale). Parameters were obtained by
linear regression to the log-counts, weighted by the expected binomial
sampling error. The indel distribution on AR data shows an excellent
model fit, in particular in the range 20–80 bp, with 92% of counts (56/61)
lying within 95% confidence limits. The whole-genome histogram shows
a similarly tight fit in the range 20–50 bp, and a large excess of long
intergap distances over neutral model predictions (green) beyond ;50
bp. The intercept of the geometric prediction occurs at a length L¼ 300.
This implies that less than one ungapped sequence of any length L .
300 is expected genome-wide under the neutral model; however the
model does predict a small but nonzero probability for any such
sequence, even under neutrality.
DOI: 10.1371/journal.pcbi.0020005.g001

PLoS Computational Biology | www.ploscompbiol.org January 2006 | Volume 2 | Issue 1 | e50003

Using Indels to Identify Functional DNA

Genomic 
Intergap 
Distances���
(Human-Mouse)	



Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model 
Gerton Lunter, Chris P. Ponting, Jotun Hein, PLoS Comput Biol 2006, 2(1): e5. 

Lo
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) 

Length 



G+C data P N Expected Observed P-value %
0-35 igs 0.062 380 23 24.5 0.430 5.8%
35-40 igs 0.082 742 61 70.5 0.103 11.3%
40-45 igs 0.082 1216 99 129.5 0.00079 18.5%
45-50 igs 0.079 1377 109 162.5 5.16E-08 20.9%
50-100 igs 0.070 2866 200 358.5 2.70E-31 43.5%
all igs 0.075 6581 491 747.5 1.54E-33 100.0%

Overlap w/ Indel Purified Segments	



IPS presumed to signal purifying selection	


Majority (64%) of candidates have >45% G+C	


Strong P-value for their overlap w/ IPS 	
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Realignment	



Average pairwise sequence similarity 
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Alignment Matters	
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The original MULTIZ alignment without flanking regions. RNAz Score: 0.132 (no RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGT----CTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGTGAAGCCAAGAGCT----ATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGGGAGCT----CTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAACCAAGGGCT----CTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGT-----------AATAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAGAACT----CTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGTAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......(((((((...(((..........)))..))))....)))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))

The local CMfinder re-alignment of the MULTIZ block. RNAz Score: 0.709 (RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCA-----AGAGGTCTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCCA-----AGAGCTATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAA-CCG-----GGAGCTCTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAA-CCA-----AGGGCTCTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGTAA-----------TAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCA-----AGAACTCTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAAGAGG-TAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......((((((((..(((...........)))......))))))))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))
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10 of 11 top (differentially) expressed	





ncRNA Summary	



ncRNA is a “hot” topic	


For family homology modeling: CMs	


Training & search like HMM (but slower)	



Dramatic acceleration possible	


Automated model construction possible 	


New computational methods yield new discoveries	



Many open problems	
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Course Wrap Up	





What is DNA?  RNA? 
How many Amino Acids are there? 
Did human beings, as we know them, develop 
from earlier species of animals? 
What are stem cells? 
What did Viterbi invent? 
What is dynamic programming? 
What is a likelihood ratio test? 
What is the EM algorithm? 
How would you find the maximum of f(x) = ax3 + 
bx2 + cx +d in the interval -10<x<25? 
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“High-Throughput ���
BioTech”	



Sensors	


DNA sequencing	


Microarrays/Gene expression	


Mass Spectrometry/Proteomics	


Protein/protein & DNA/protein interaction	



Controls	


Cloning	


Gene knock out/knock in	


RNAi	


	



Floods of data���
���

 “Grand Challenge” problems	
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Exciting Times	



Lots to do 	


Highly multidisciplinary	



You’ll be hearing a lot more about it 	


I hope I’ve given you a taste of it	





Thanks!	




