CSEP 590 A
Computational Biology

Genes and Gene Prediction
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Gene Finding: Motivation

Sequence data flooding in

What does it mean?

protein genes, RNA genes, mitochondria,
chloroplast, regulation, replication, structure,
repeats, transposons, unknown stuff, ...

More generally, how do you: learn from
complex data in an unknown language,
leverage what’s known to help discover

what’s not



Protein Coding Nuclear DNA

Focus of this lecture
Goal: Automated annotation of new seq data

State of the Art:

In Eukaryotes:
predictions ~ 60% similar to real proteins
~80% if database similarity used

Prokaryotes
better, but still imperfect

Lab verification still needed, still expensive
Largely done for Human; unlikely for most others
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Biological Basics

Central Dogma:
DNA franscription. RNA franslation Protein

Codons: 3 bases code one amino acid
Start codon

Stop codons
3, 5" Untranslated Regions (UTR's)
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Darnell, p120

Figure 3-7. Coupled transcription/translation in bacteria is visualized. Oscar Miller and
colleagues lysed E. coli cells and immediately collected the cell contents on electron micro-
scope grids. They saw threads of mRNA still associated with DNA (thin lines), and ribo-
somes—several at a time—were already translating protein along the mRNA. Thus, in
bacterial cells, the picture of information recovery and use, at least in broad outline, was
complete: mRNA was made on demand; ribosomes recognized the 5’ end of the
mRNA, bound, and began protein synthesis even before the mRNA had been completely
synthesized. (In this photo, the arrow indicates a presumptive RNA polymerase [the faint
disk to the left of the first ribosome]. The DNA thread at the top is being copied into
mRNA, but the one at the bottom is not. Both are presumably double stranded.)
(Reprinted, with permission, from Miller et al. 1970 [(©)AAAS].)
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Translation: mRBNA — Protein

Watson, Gilman, Witkowski, & Zoller, 1992
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Codons & The Genetic C

Second Base

U C A G
Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G
Leu Pro His Arg U
Leu Pro His Arg C
o Leu Pro GIn Arg Alg
§ Leu Pro GIn Arg G| o
Bl e Thr Asn Ser u| £
S e Thr Asn Ser c|”
lle Thr Lys Arg A
Met/Start [Thr Lys Arg G
Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Arg
Asn

Asp
Cys
GIn
Glu
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

ode
: Alanine
: Arginine
: Asparagine
: Aspartic acid
: Cysteine
: Glutamine
: Glutamic acid
: Glycine
. Histidine
. Isoleucine
: Leucine
: Lysine
: Methionine
: Phenylalanine
: Proline
: Serine
: Threonine
: Tryptophane
: Tyrosine
: Valine 16



ldea #1: Find Long ORF’s

Reading frame: which of the 3 possible
sequences of triples does the
ribosome read?

Open Reading Frame: No stop codons

In random DNA
average ORF ~ 64/3 = 21 triplets
300bp ORF once per 36kbp per strand

But average protein ~ 1000bp
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A Simple ORF finder

start at left end

scan triplet-by-non-overlapping triplet for AUG
then continue scan for STOP
repeat until right end

repeat all starting at offset 1

repeat all starting at offset 2

then do it again on the other strand
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Scanning for ORFs

UUAAUGUGUCAUUGAUUAAG
AAUUACA CAGUAACUAAUAC

* In bacteria, GUG is sometimes a start codon...
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ldea #2: Codon Frequency

In random DNA
Leucine : Alanine : Tryptophan =6 : 4 : 1

But in real protein, ratios ~6.9 : 6.5 : 1
So, coding DNA is not random

Even more: synonym usage is biased (in a

species dependant way)
examples known with 90% AT 39 base
Why? E.g. efficiency, histone, enhancer, splice interactions

20



Recognizing Codon Bias

Assume
Codon usage i.i.d.; abc with freq. f(abc)
a,a.a5a,...as,,» 1s coding, unknown frame
Calculate
p; = (a,a,a5)f(a,as8s)- .. 1(as, 283,183
p2 = f(a,a5a,)(as86a;)...1(as,.183, 831.1)
ps = (aza,as)f(asa,ag). .. @z, 83n.133n42)
P = pi/ (P1+P2+P3)
More generally: k-th order Markov model
k=5 or 6 is typical
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Codon Usage in ®x174
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Promoters, etc.

In prokaryotes, most DNA coding
E.g. ~70% in H. influenzae

Long ORFs + codon stats do well

But obviously won’t be perfect
short genes

5 &3 UTR'’s
Can improve by modeling promoters, etc.
e.g. via WMM or higher-order Markov models
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Eukaryotes

As In prokaryotes (but maybe more variable)
promoters
start/stop transcription
start/stop translation
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And then...

intron loop

D

-A tail

poly
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Icing

P. Sharp, 1993, Spl

Nobel Prize of the week



Mechanical Devices of the
Spliceosome: Motors, Clocks,
Springs, and Things

Jonathan P. Staley and Christine Guthrie

CELL Volume 92, Issue 3 , 6 February 1998, Pages 315-326
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Figure 2. Spliceosome
Assembly, Rearrangement,
and Disassembly Requires
ATP, Numerous DExD/H
box Proteins, and Prp24.
The snBRNPs are depicted
as circles. The pathway for
S. cerevisiae is shown.




Figure 3. Splicing Requires Numerous Rearrangements
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|"'. =~ :" : ',':] - .

5'exon ———UACUAC——YYYYY— 3' exon

3 "‘AUGAUG@

Figure 6. A Paradigm for Unwindase Specificity and Timing? The
DEXD/H box protein UAP56 (orange) binds U2AF65 (pink) through its
linker region (L). U2 binds the branch point. Y's indicate the
polypyrimidine stretch; RS, RRM as in Figure 5A. Sequences are

from mammals.
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Hints to Origins?

Tetrahymena thermophila
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Genes in Eukaryotes

As In prokaryotes (but maybe more variable)
promoters
start/stop transcription
start/stop translation

New Features:
Introns, exons, splicing
branch point signal
alternative splicing
polyA site/tall

5 3
exon  intron | exon intron

AG/GT yyy.AG/G AG/GT
donor acceptor donor
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Characteristics of human genes
(Nature, 2/2001, Table 21)

Median Mean Sample (size)
Internal exon 122 bp 145 bp RefSeq alignments to draft genome sequence, with
confirmed intron boundaries (43,317 exons)
Exon number 7 8.8 RefSeq alignments to finished seq (3,501 genes)
Introns 1,023 bp | 3,365 bp RefSeq alignments to finished seq (27,238 introns)
3'UTR 400 bp 770 bp Confirmed by mRNA or EST on chromo 22 (689)
5 UTR 240 bp 300 bp Confirmed by mRNA or EST on chromo 22 (463)

Coding seq 1,100 bp 1340 bp Selected RefSeq entries (1,804)*

(CDS) 367 aa 447 aa

Genomic span 14 kb 27 kb | Selected RefSeq entries (1,804)*

* 1,804 selected RefSeq entries were those with full-
length unambiguous alignment to finished sequence
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Big Genes

Many genes are over 100 kb long,
Max known: dystrophin gene (DMD), 2.4 Mb.

The variation in the size distribution of coding
sequences and exons is less extreme, although
there are remarkable outliers.

The titin gene has the longest currently known
coding sequence at 80,780 bp; it also has the
largest number of exons (178) and longest single
exon (17,106 bp).

RNApol rate: 1.2-2.5 kb/min = >16 hours to transcribe DMD45
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Figure 36 GC content
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a: Distribution of GC content
in genes and in the genome.
For 9,315 known genes mapped
to the draft genome sequence, the
local GC content was calculated in
a window covering either the
whole alignment or 20,000 bp
centered on midpoint of the
alignment, whichever was larger.
Ns in the sequence were not
counted. GC content for the
genome was calculated for
adjacent nonoverlapping 20,000-
bp windows across the sequence.
Both distributions normalized to
sum to one.
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b: Gene density as a
function of GC content
(= ratios of data in a. Less

accurate at high GC because
the denominator is small)

c: Dependence of mean
exon and intron lengths
on GC content.

The local GC content, based
on alignments to finished
sequence only, calculated
from windows covering the
larger of feature size or
10,000 bp centered on it
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Other Relevant Features

PolyA Tails
100-300 A'’s typically added to the 3’ end of the
MRNA after transcription—not templated by DNA

Processed pseudogenes

Sometimes mRNA (after splicing + polyA) is
reverse-transcribed into DNA and re-integrated into
genome

~14,000 in human genome

49



Alternative Splicing

Exon skipping/inclusion )

Alternative 3’ splice site 4

Alternative 5’ splice site
Mutually exclusive exons

Intron retention

.. Constitutive exon

These are regulated, not just errors

U 50 Alernatively spliced exon
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Other Features (cont)

Alternative start sites (5’ ends)
Alternative PolyA sites (near 3’ ends)
Alternative splicing

Collectively, these affect an estimated 95% of genes,
with ~5 (a wild guess) isoforms per gene
(but can be huge; fly Dscam: 38,016, potentially)

Trans-splicing and gene fusions
(rare in humans but important in some tumors)

52



Computational Gene Finding?

How do we algorithmically account for all
this complexity...
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A Case Study -- Genscan

C Burge, S Karlin (1997), "Prediction of
complete gene structures in human
genomic DNA", Journal of Molecular

Biology, 268: 78-94.
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Training Data

238 multi-exon genes
142 single-exon genes
total of 1492 exons
total of 1254 introns
total of 2.5 Mb

NO alternate splicing, none > 30kb, ...
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Performance Comparison

Accuracy
per nuc. per exon

Program Sn Sp Sn Sp Avg. ME WE

GENSCAN 0.93 0.93] 0.78 0.81 0.80 0.09 0.05
FGENEH 0.77 0.88] 0.61 0.64 0.64 0.15 0.12
GenelD 0.63 0.81] 0.44 0.46 0.45 0.28 0.24
Genie 0.76 0.77] 0.55 0.48 0.51 0.17 0.33
GenlLang 0.72 0.79] 0.51 0.52 0.52 0.21 0.22
GeneParser2 0.66 0.79] 0.35 0.40 0.37 0.34 0.17
GRAIL2 0.72 0.87] 0.36 0.43 0.40 0.25 0.11
SORFIND 0.71 0.85] 0.42 0.47 0.45 0.24 0.14
Xpound 0.61 0.87] 0.15 0.18 0.17 0.33 0.13
GenelD#* 0.91 0.91| 0.73 0.70 0.71 0.07 0.13
GeneParser3 0.86 0.91] 0.56 0.58 0.57 0.14 0.09

After Burge&Karlin, Table 1. Sensitivity, Sn = TP/AP; Specificity, Sp = TP/PP




Generalized Hidden

Markov Models C,pq
T Initial state distribution O/ i\ _ﬁ ;f?
a,. Transition probabilities é

One submodel per state

Outputs are strings gen’ed by submodel

Given length L
Pick start state q, (~m)
While Xd. <L
Pick d; & string s; of length d; ~ submodel for g;
Pick next state g, (~a;)

Output s,s....
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Decoding

A “parse” ¢ of s =5,S,...5, IS a pair

d= d1d2...dk y q — q1q2"'qk Wlth Edl = L

A forward/backward-like alg calculates, e.qg.:
Pr(generate s,s....S; & end in state q,)

(summing over possible predecessor states
qx.; and possible d, etc.)

Pr(g(s): B(445)
e
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Length Distributions
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Figure 4. Length distributions are shown for (a) 1254 introns; (b) 238 initial exons; (c) 1151 internal exons; and (d) 238
terminal exons from the 238 multi-exon genes of the learning set . Histograms (continuous lines) were derived with
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Effect of G+C Content

Group

C ¥ G% range

Number of genes

Est. proportion single-exon genes
Codelen: single-exon genes (bp)
Codelen: multi-exon genes (bp)
Introns per multi-exon gene
Mean intron length (bp)

Est. mean transcript length (bp)
Isochore

DNA amount in genome (Mb)
Estimated gene number

Est. mean intergenic length
Initial probabilities:
Intergenic (N)

Intron (I+, I-)

5' Untranslated region (F+, F-)
3" Untranslated region (T+, T-)

I

<43
65
0.16
1130
902
5.1
2069
10866
L1+L2
2074
22100
83000

0.892
0.095
0.008
0.005

I1
43-51
115
0.19
1251
908
4.9
1086
6504
H1+H2
1054
24700
36000

0.867
0.103
0.018
0.011

I1I
51-57
99
0.23
1304
1118
5.5
801
5781
H3
102
9100
5400

0.54
0.338
0.077
0.045

IV
>57
101

0.16
1137
1165
5.6
518
4833
H3
68
9100
2600

0.418
0.388
0.122

0.072
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Submodels

5 UTR
_ ~ geometric(769 bp), s ~ MM(5)
3 UTR
_ ~ geometric(457 bp), s ~ MM(5)
Intergenic

L ~ geometric(GC-dependent), s ~ MM(5)
Introns

L ~ geometric(GC-dependent), s ~ MM(5)
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Submodel: Exons

Inhomogenious 3-periodic 5th order
Markov models

Separate models for low GC (<43%),
high GC

Track “phase” of exons, i.e. reading
frame.
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Signal Models |: WMM'’s

Polyadenylation
6 bp, consensus AATAAA

Translation Start
12 bp, starting 6 bp before start codon

Translation stop
A stop codon, then 3 bp WMM

64



Signal Models II: more WMM's

Promoter

70% TATA
15 bp TATA WMM
s ~ null, L ~ Unif(14-20)
8 bp cap signal WMM
30% TATA-less
40 bp null
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Signal Models IlI: W/WAM's

Acceptor Splice Site (3’ end of intron)
[-20..+3] relative to splice site modeled by “1st
order weight array model”
Branch point & polypyrimidine tract
Hard. Even weak consensus like YYRAY found in
[-40..-21] in only 30% of training
“Windowed WAM”: 2nd order WAM, but averaged

over 5 preceding positions

“captures weak but detectable tendency toward YYY
triplets and certain branch point related triplets like TGA,
TAA, ..
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What do splice sites look like?
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Signal Models IV: Maximum
Dependence Decomposition

Donor splice sites (5’ end of intron) show
dependencies between non-adjacent
positions, e.g. poor match at one end

compensated by strong match at other
end, 6 bp away

Model is basically a decision tree
Uses 2 test to quantitate dependence
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v° test : Are events A& B
independent ?

not B Event
A 8 4 12 counts
(_
not A 2 6 8 plus
10 10| 20 marginals
2 (observed —expected. )
L = i expected.

“Expected” means expected assuming independence,
e.g. expect B 10/20; A 12/20; both 120/400*20 = 6, etc.

Significance: table look up (or approximate as normal)
69



v test for independence of
nucleotides in donor sites

ijCon j: -3 -2 -1 +3 +4 +5 +6( Sum
-3| c/a --- 61.8* 14.9 5.8 20.2* 11.2 18.0*| 131.8*
-2 A 115.6* --- 40.5* 20.3* 57.5*% 59.7* 42.9*%| 336.5%
-1] G 154 82.8*% --- 13.0 61.5*% 41.4* 96.6*| 310.8*
+3| a/g 8.6 17.5% 13.1 --- 19.3* 1.8 0.1 60.5*
+4| A 21.8* 56.0* 62.1* 64.1*  --- 56.8* 0.2 | 260.9%
+5| G 11.6 60.1* 41.9* 93.6* 146.6* ---  33.6*| 387.3*
+6| t 22.2* 40.7* 103.8* 26.5* 17.8* 32.6* --- 243.6%*
\

* means chi-squared p-value < .001

Technically — build a 2 x 4 table for each (i,j) pair:
Pos i does/does not match consensus vs posjisA,C, G, T
calculate 2 as on previous slide, e.g. x? for +6 vs -1 = 103.8
If independent, you’d expect x? < 16.3 all but one in a 1000 times.
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Pos

-2

+3
+4
+6

-2

+3
+4
+6

-3

+3
+4
+6

+3
+4

A% C%
33 36
56 15
9 4
44 3
75 4
14 18
34 37
59 10
40 4
70 4
17 21
37 42
39 5
62 5
19 20
32 40
27 4
51 5
All sites:
Base
A %
C%
G %
U%

Ul snRNA:

3'

G%

19

13
19

18
15
53
16
21

18
51
22
25

23
59
25

G

U%

13
15

49

19

(1254)

All donor splice sites

Position
+2

+4

A%

35
85

8]
51
22

29
43
56
93

29
42
80
14

39
46
69

5'

G % U%
16 6
i 5
0
2
9 12
30 28
21 18
17 11
43 0
3 3
10 76
18 23
56 |
8 8
16 49
15 2
46 3
20 7
Many
dependencies,
such as 5°/3’

compensation,
e.g. G, vs Gs/H;
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Summary of Burge & Karlin

Coding DNA & control signals are
nonrandom

Weight matrices, WAMSs, etc. for controls
Codon frequency, etc. for coding

GHMM nice for overall architecture
Careful attention to small details pays
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Problems with BK training set

1 gene per sequence

Annotation errors

Single exon genes over-represented?
Highly expressed genes over-represented?

Moderate sized genes over-represented?
(none > 30 kb) ...

Similar problems with other training sets, too

(Of course we can now do better for human, mouse, etc., but
what about cockatoos or cows or endangered frogs, or ...)
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Problems with all methods

Pseudo genes (~ 14,000 in human)
Short ORFs

Sequencing errors

Non-coding RNA genes & spliced UTR's
Overlapping genes

Alternative TSS/polyadenylation/splicing
Hard to find novel stuff — not in training

Species-specific weirdness — spliced leaders,
polycistronic transcripts, RNA editing...
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Other important ideas

Database search - does gene you're
predicting look anything like a known
protein?

Comparative genomics - what does this
region look like in related organisms?
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Assaying Gene Expression



Microarrays

Control Cells Test Cells

z’éﬂ@

Isolate RMNA "

Label {

- P, n oans ()
T T e i
p — . . . . . - - F S

Quantitation
and Analysis
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RNAseq

Control Cells Test Cells

q ©

Isolate RNA " *

RN
s 2 : 2

\ 4

map to genome, analyze
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RNAseq protocol (approx)

Extract RNA (maybe by polyA <> polyT)
Reverse-transcribe into DNA (“cDNA”)

Make double-stranded, maybe amplify

Cut into, say, ~300bp fragments

Sequence ~100-175bp from one or both ends

CAUTIONS: non-uniform sampling, sequence
(e.g. G+C), 5’-3’, and length biases
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Goals of RNAseq

#1: Which genes are being expressed?

How? assemble reads (fragments of
MRNAS) into (nearly) full-length mRNAs
and/or map them to a reference genome

#2: How highly expressed are they?

How? count how many fragments come

from each gene—expect more highly
expressed genes to yield more reads, after
correcting for biases like mRNA length
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RNAseq Data Analysis

De novo Assembly
mostly deBruijn-based, but likely to change with longer reads

more complex than genome assembly due to alt splicing,
wide diffs in expression levels; e.g. often multiple “k’s” used

pro: no ref needed (non-model orgs), novel discoveries
possible, e.g. very short exons

con: less sensitive to weakly-expressed genes

Reference-based (more later)
pro/con: basically the reverse

Both: subsequent bias correction, quantitation,
differential expression calls, fusion detection, etc.
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BWA

gu—

“TopHat” (Ref based example)

map reads to ref transcriptome (optional)
map reads to ref genome

unmapped reads remapped as 25mers
novel splices = 25mers anchored 2 sides
stitch original reads across these

Roughly: 10m reads/hr, 4Gbytes
(typical data set 100m—1b reads)
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(1) Transcriptome alignment (optional)
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(3) Spliced alignment b
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(3-1) Segment alignment to genome

(3-2) Identification of splice sites
(including indels and fusion break points)

(3-3) Segments aligned to junction :
flanking sequences b, SRRERET PRt ;

(3-4) Segment alignments stitched
togetherto form whaole read alignments
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(3-5) Re-alignment of reads minimally
DG Kitans [ N N

Pping
v
_—- =
I S
B Read

[ Exonsfrom annotated transcripts
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Figure 6 B Intron orintergenic region

e

| Read are aligned against transcriptome.

’- Transcriptome index

Reads are aligned against genome.

Genome index

e
Reads are split into smaller segments
which are then aligned to the genome.

Genome index
e

Segment mappings are used to find potential splice sites
usually when the distance between the mapped positions
of the left and the right segments are longer than the
length of the middle part of a read.

I

. i

Sequences flanking a splice site are concatenated

and segments are aligned to them.
i | —

Junction flanking index

L‘/
Mapped segments against either genome or flanking

sequences are gathered to produce whole read alignments.

b

Genome mapped reads with alignments extendinga few
basesinto introns are re-aligned to exons instead.

Kim,et al. 2013. “TopHat2: Accurate Alignment of
Transcriptomes in the Presence of Insertions,
Deletions and Gene Fusions.” Genome Biology 14 (4)
(April 25): R36. doi:10.1186/gb-2013-14-4-r36.



RNAseq Bias
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A new approach to bias correction in RNA-Seq
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Extract RNA. Fragment it. Sequence it. Map it. Count it.
More mRNA=more reads. A random sampling process.




Example

Scale 2 kbt 1 hgl9
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WWhat we expect:
Uniform Sampling

100 -
75 -
50 -
0- I I

! ! !
0 50 100 150 200

Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 * 4.7 per position, min = 9, max ~33




What we get: highly non-uniform coverage

Unadjusted
Counts

0- luma.J@MMJLLMM

3’ exon
Apoa2 >———>——>—>—>—> 200 nucleotides |
| | | |
chr1 173,156,174 173,156,274 173,156,374 173,156,474

Mortazavi data



What we get: highly non-uniform coverage

300 -
200 -

100 -

0- luma.A@MMJLLMM |

not perfect, but better:
38% reduction in LLR

Unadjusted
Counts

300 -
8 " of uniform model;
"(7') _E 200 - hugely more likely
=] =)
SR 100- ‘
< 0- LI] hﬁiuu.d.m b

Apoa2 >———>——>—>—>—> |

The Good News: we can (partially) correct the bias



Frequency

Kullback-Leibler
Divergence

Bias is sequence-dependent

ABI IHlumina
Dataset
M NAA—
J\‘AQ/\N I VY I— = Wetterbom
= Katze
_’_\A/\ﬁ/\’ == Mortazavi
— =V
*"'\ﬁm = — Bullard
Trapnell
N -
q;; AN
/\//\A‘\ — S M 1
| | | | | | | | ] ]
-40 20 0 20 40 -40 20 0 20 40
Position [ >
OoSItIo Reads

and platform/sample-dependent

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.
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Log10 Bias ~—

e

Adjusted Unadjusted

Counts

Counts

Apoa2 >—>——>—>—>—>—>—]

N Y =R
oo mo
1 1 1 1 1

400 -
300 -
200 -
100 -
0 -
400 -
300 -
200 -
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0 -

(@) sample foreground sequences

| —
| e—
—/——

c * ATCTAACTCT CCCTTGAGGGCCTAGT CCATAARAT @ ¢ ¢

T

(b) sample background sequences

c * ATCTAACTCT CCCTTGAGGGECCTAGT CCATARAAT @ ¢ ¢

T
(c) train Bayesian network
—_— .= . =
predict bias

A

adjust read counts

l'.. [ LMD'LMMLLA |
e

R2=0.38

I
chr1 173,156,174 173,156,274 173,156,374 173,156,474



Form of the models:

Directed Bayes nets

One “node” per nucleotide,
+20 bp of read start
‘Filled node means that
position is biased

*Arrow i = j means letter at
position i modifies bias at j
‘For both, numeric
parameters say how much

How—optimize:

Pr[s;|x;]1Pr[x;]

n n
Wetterbom £=> logPrlx[si]= log =
=1 =1

(282 parameters) refo.1y Prlsilx]Prlx]



Result — Increased Uniformity

Q 0.4-
c
0.3-
3_30 N
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> 0.1 - — Method
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Result — Increased Uniformity

—> BN-
MART =
GLM -
/mer =

—> BN-
MART -

GLM =

/mer =
I

Fractional improvement

Xk %k 3k
w0gJ3119/\\

*Q

| |
-0.6 -04 -02 0.0 02 04

. R2

in log-likelihood under
uniform model across

1000 exons (R2=1-L'/L)

*N
x (D
0.6

* = p-value < |03 «—

hypothesis test “Is
BN better than X?




some questions

What is the chance that we

will
mod

MOAQ

earn an incorrect
el? E.g,learn a biased
el from unbiased input!?

:’ @) ® “l
O] O3
=0 (@)
0 Oz
‘g‘ @) Q.°
“~0 O o
(AQOO OO \z\‘
. .~ Q0 OV, &
6‘1\0Z o oV
Wetterbom

(282 parameters)

Bullard
(696 parameters)

How does the amount of
training data effect accuracy
of the resulting model?
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Log10 Probability of Non-empty Model

o

6549 sec.

Probability of falsely

2667 sec.
225 sec.

inferring “bias” from - A

an unbiased sample |

declines rapidly with 3 If 10-50,000 reads are

size of training set ¢ used, training time is a
5 few minutes

(provably) ... l

1 U 1 U 4 U T
102 10%° 10° 10%% 10*° 10°

Number of Reads

Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with

T

... while accuracy and
<

If > 10,000 reads are used, the runtime rise (empirica”)')

probability of a falsely non-
empty model < 0.0004

10° 10 10° 10°

Log10 Number of reads u 13

the run time of the training procedure.




Availability

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 2.12 » Software Packages » segbias e
| %
segbias \\\&,

Estimation of per-position bias in high-throughput sequencing data \‘0

Bioconductor version: Release (2.12) \efb's ~ownload stats for Software package segbias

This package implements a model of per-position sequencing bias in high-thr This page was generated on 2013-04-23 10:28:43 -0700 (Tue, 23 Apr 2013).

using a simple Bayesian network, the structure and parameters of which are (e seqbias home page: release version, devel version.
reads and a reference genome sequence. 6

Author: Daniel Jones <dcjones at cs.washington.edu> segbias

Maintainer: Daniel Jones <dcjones at cs.washington.edu>

C @ Downloads
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To install this package, start R and enter: \
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To cite this package in a publica 0 _ater: Nov/2012 204 156
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) (\ Jan2013 168 119
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citation("~ < Mar/2013 282 140
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¢ \ 5 : All months 2191 1167
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In Progress

Isolator

Soon to be the world’s best isoform quantitation tool



