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Markov Models and Hidden
Markov Models



http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat



Dosage Compensation
and X-Inactivation

2 copies (mom/dad) of each chromosome [-23

Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of | gene

Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:
* One X randomly inactivated in each cell
How!?
* Choice maintained in daughter cells

Calico: a major coat color gene is on X



Reminder: Proteins ‘““Read” DNA

recognition
helix
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Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)




Down
in the

Groove

Different
patterns of
hydrophobic
methyls,
potential H
bonds, etc. at
edges of
different base
pairs. They're
accessible,
esp. in major
groove
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DNA Methylation

CH.  NH,

CpG - 2 adjacent nts, same strand

R
N
(not Watson-Crick pair; “p” mnemonic for the | /g
phosphodiester bond of the DNA backbone) H O

C of CpG is often (70-807%) methylated in

mammals i.e., CH, group added (both strands) cytosine
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DNA Methylation—VVhy

CH.  NH,

In vertebrates, it generally silences transcription ﬁN

N

H

(Epigenetics) X-inactivation, imprinting, repression of mobile
elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated .
to be liver, other kidney, need to Cytosine
(@) turn off liver genes in kidney & vice versa,
(b) remember that through subsequent divisions
How! One way:

(@) Methylate genes, esp. promoters, to silence them

(b) after +, DNA methyltransferases convert hemi- to fully-methylated
(& deletion of methyltransferase is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes

O



“CpG Islands™

CH.  NH,
Methyl-C mutates to T relatively easily N
Net: CpG is less common than H/go
expected genome-wide: |
f(CPG) < f(C)*f(G) C)’tOSIﬂG
BUT in some regions (e.g. active 5 NH
promoters), CpG remain CH
unmethylated, so CpG — TpG less | /E
likely there: makes “CpG Islands”; N

often mark gene-rich regions thymine



CpG Islands

CpG Islands
More CpG than elsewhere (say, CpG/GpC>50%)
More C & G than elsewhere, too (say, C+G>50%)
Typical length: few 100 to few 1000 bp
Questions

Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, 10-100kb), find CpG islands?



Markov & Hidden
Markov Models

References (see also online reading page):

Eddy, "What is a hidden Markov model?”" Nature
Biotechnology, 22, #10 (2004) 1315-6.

Durbin, Eddy, Krogh and Mitchison, “Biological
Sequence Analysis”, Cambridge, 1998 (esp. chs 3, 5)

Rabiner, "A Tutorial on Hidden Markov Models and
Selected Application in Speech Recognition,”
Proceedings of the IEEE, v 77 #2,Feb 1989,
257-286



Independence

A key issue: Previous models we’ve talked about
assume independence of nucleotides in different
positions - definitely unrealistic.



Markov Chains

A sequence I1, X2, ... of random variables is a
k-th order Markov chain if, for all i, i value is
independent of all but the previous k values:

P(xz‘ | L1, L2,y .. 7332'—1) — P(l‘z‘ | Tikoy Ti—kt1s - - - 737@'—1)
<< > <€ =
i-i k typically « i-I
Example |: Uniform random ACGT Qth
order

Example 2: Weight matrix model

Example 3: ACGT, but | Pr(G following C) } |5t
order




A Markov Model (Ist order)

States: ACG,T
Emissions: corresponding letter
Transitions: a_, = P(x, =t|x_;=5) «~—Istorder



A Markov Model (Ist order)

States: ACGT

Emissions: corresponding letter
Transitions: a, =P(x. =t|x_,=s)
Begin/tnd states



Pr of emitting sequence x
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Training

Max likelihood estimates for transition
probabilities are just the frequencies of
transitions when emitting the training
sequences

E.g., from 48 CpG islands in 60k bp:
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Discrimination/Classification

Log likelihood ratio of CpG model vs background model

S(x)

L
P(Almodel +) a.:;_l.r,
log = Z]og — =
P(x|model —) _ Ax. . x
i=1 i—14
B A C G T
A —0.740 0419 0.580 —0.803
c —-0913 0302 1.812 —0.685
G —0.624 0461 0331 -0.730
T —1.169 0.573- 0.393 —0.679

L
Zﬂ-xl—lxi
1=1

From DEKM



CpG Island Scores

10[ I

. CpG islands
Non-CpG

04 -03 02 -01 0 0.1 02 03 04
Bits

Figure 3.2 Histogram of length-normalized scores.
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What does a 2nd order
Markov Model look like?

3rd order?



Questions

Q1: Given a short sequence, is it more likely from
feature model or background model? Above

Q2: Given a long sequence, where are the
features in it (if any)
Approach |: score 100 bp (e.g.) windows
Pro: simple
Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.



Combined Model
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Emphasis is “Which (hidden) state?” not “Which model?”



Hidden Markov Models

(HMMs; Claude Shannon, 1948)

States: 1,2,3,...

Paths: sequences of states m = (7, 7o, ...)
Transitions: ax; = P(m=1|m_1=k)
Emissions: ex(b) =P(x; =b | m =k)

Observed data: emission sequence
Hidden data: state/transition sequence



The Occasionally
Dishonest Casino

1 fair die, 1

“loaded” die, occasional

y swapped

.95(:::

1:1/6
2:1/6
3:1/6
4:1/6
5:1/6
6:1/6

.05

_
—

10

OO~ WON =

:1/10
:1/10
:1/10
:1/10
:1/10
:1/2
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Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM



Inferring hidden stuff

Joint probability of a given path t & emission

sequence Xx:
n

P(:U? 71') = Q0,7 H €, (:EZ) "y mig
1=1

But 7t is hidden; what to do! Some alternatives:
Most probable single path
7" = arg max P(x, )

Sequence of most probable states

Ty = argm]?xP(m =k | x)

Etc.



The Viterbi Algorithm:
The most probable path

Viterbi finds: T = arg max P(z,n)

Possibly there are 107 paths of prob 10-%
(If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants)
dominate others; Viterbi finds that

Key problem: exponentially many paths 7t



Unrolling an HMM

00900 3 6 6 2
ssiad [LiabiaLbL
speer FHFHFHF
0
2 t=0 t=| t=2 t=3

Conceptually, sometimes convenient
Note exponentially many paths



Viterbi

v(1) = probability of the most probable path

emitting z1, 2, ...,z; and ending in state /
Initialize: o
01(0) = 1 if ] = Begin state — (1) - ()
‘Y771 0 otherwise @) - )
O

General case:

v(i+1) =e(xit1) - ml?x('vk(z') ak.1)

i.
—

ONCXOXC



HMM Casino Example

HMM Parameters Show Viterbi: [ FALSE |
L F p(6)
B|0.52 0.48
L 10.60 0.4010.50
F|10.17 0.8310.17
Q Rolls:| 316664 3 1 6
O 0.052 x 0.60 x 0.10 = 0.0031 0.0031 x 0.60 x 0.50 = 9.36E-04
(=i(=)1{=]=}(=]
TESTT O L: @ 0.52 x 0.10 = 0.052 Max = 0.0031 Max = 9.41E-04
NGB Y6 O 0.080 x 0.17 x 0.10 = 0.0014 0.0111 x 0.17 x 0.50 = 9.41E-04
3 )e B
0.052 x 040 x 0.17 = 0.0035 0.0031 x 0.40 x 0.17 = 2.08E-04
© 0000
PR TRIRTRDS F: 0.48 0.48 x 0.17 = 0.080 Max = 0.0111 Max = 1.53E-03
0.080 x 0.83 x 0.17 = 0.0111 0.011 x 0.83 x 0.17 = 1.53E-03

95 ("

) ) 1 ) 1

Begin Transition Emission Previous  Transition Emission

(Excel spreadsheet on web; download & play...)

T

Previous

) )

Transition Emission




HMM Parameters
L F p(6)

B|0.52 0.48

L |0.60 0.40|0.50

F|10.17 0.83]0.17

“).90

1:1/10
2:1/10
4:1/10
5:1/10
6:1/2

[ —
10

3:1/6 —|3:1/10

2:1/6 05

1:1/6
4:1/6
5:1/6
6:1/6

.95 C

HMM Casino Example

Show Viterbi: TRUE

(Excel spreadsheet on web; download & play...)

Rolls:| 316664 3 1 6
0.052 x 0.60 x 0.10 = 0.0031 0.0031 x 0.60 x 0.50 = 9.36E-04
L: @ 0.52 x 0.10 = 0.052 Max = 0.0031 Max = 9.41E-04
0.080 x 0.17 x 0.10 = 0.0014 0.0111 x 0.17 x 0.50 = 9.41E-04
B
0.052 x 0.40 x 0.17 = 0.0035 40.0031 x 0.40 x 0.17 = 2.08E-04
F: 0.48 0.48 x 0.17 = 0.080 Max = 0.0111 Max = 1.53E-03
0.080 x 0.83 x 0.17 = 0.0111 \40.011 x 0.83 x 0.17 = 1.53E-03
7 T t t 1 ? ) 7
Begin Transition Emission Previous  Transition Emission Previous Transition Emission
Viterbi Path: 1 1 0




Viterbi Traceback

Above finds probability of best path

To find the path itself, trace backward to the
state k attaining the max at each stage

!

v

v(i+1) = e@i+1) - max(vi(i) a,1)
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.
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Most probable path # Sequence
of most probable states

Another example, based on casino dice again

Suppose p(fair—loaded) transitions are 10-°? and
roll sequenceis | |1 11...66666; then fair state is
more likely all through I’s & well into the run of
6’s, but eventually loaded wins, and the

improbable F—L transitions make Viterbi = all L.

* = max prob

e

e




Is Viterbi “‘best’’?

Viterbi finds #* = argmax P(x, )

Most probable (Viterbi) path goes through 5, but
most probable state at 2nd step is 6
(l.e., Viterbi is not the only interesting answer.)



An HMM (unrolled)

States

|

QL0
N BN\ i\ i V%
NAT N N N N

{

Qirane v g

X1 X2 X3 X4

Emissions/sequence positions —.



Viterbi: best path to each state

Viterbi score:

Viterbi pathR:

Y a YRR/,

: 2 e ko
WYX 0L el
KRR X

"“‘ "“‘
FAVAVAVAVA

X1 X2 X3 X4

() (Z + 1) = el(xiﬂ) - mgx(vk(z) ak,z)

back;(i + 1) = arg m]?x(vk () ak.1)




For each
state/time,
want total
probability
of all paths
leading to
it, with
given
emissions

The Forward Algorithm

YA A
&%9}\'%’} _/.}\'Il/..t\,
P
SO G

/.
e
oA Ry

fli+1) = elwiv1) )y fe(t)ak,
P(z) = 2 Plz,m) = ) fr(n)ako



The Backward Algorithm

Similar: @ ()

for each W‘\\ I/ \

state/time, ‘@g’%’!@.“’!@.\. &

want tc.>t.al ?%’?%’?’%‘Q{: Q,“

ity DA

of all paths

from it, with /,‘\\./,‘\\'/,\\'/

illrwei:sions, a2 A2 x5 xi

conditional bi (%) = P(xiy1-  xn | m = k)
that

cate. (i) = Y ars er(@in) bi(i +1)

br(n) = ako



In state k at step i ?

P(CE, T, — I{J)
— P(iL‘l ..... Liy, Mg — k) . P(SL‘i_}_l ..... Ln | L1y, Li, Ty — k)
— P(CEl ..... L, WiZk)-P(LEi_H ..... L, Wi:k)

= fr(2) - bx(2)




Posterior Decoding, |

Alternative 1: what’s the most likely state at step i?

T = argmgxP(m =k | x)

Note: the sequence of most likely states # the most
likely sequence of states. May not even be legal!




The Occasionally
Dishonest Casino

1 fair die, 1

“loaded” die, occasional

y swapped

.95(:::

1:1/6
2:1/6
3:1/6
4:1/6
5:1/6
6:1/6

.05

_
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.
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Posterior Decoding

P(fair)

0 50 100 150 200 250 300

Figure 3.6 The posterior probability of being in the state
corresponding to the fair die in the casino example. The x axis
shows the number of the roll. The shaded areas show when the

roll was generated by the loaded die.

From DEKM



Posterior Decoding, I

Alternative 1: what’s most likely state at step i ?

A

T = argm]?xP('/ri =k | x)

Alternative 2: given some function g(k) on states,

what’s its expectation. E.g., what’s probability of “+”
model in CpG HMM (g(k)=1 iff k is “+” state)?

G(i | z) ZP i=k| ) g(k)



CpG Islands again

Data: 41 human sequences, totaling 60kbp,
including 48 CpG islands of about | kbp each

Viterbi: Post-process:
Found 46 of 48 46/48
plus 121 “false positives” 67 false pos
Posterior Decoding:
same 2 false negatives 46/48
plus 236 false positives 83 false pos

Post-process: merge within
500; discard < 500



Training

Given model topology & training sequences,
learn transition and emission probabilities

If Tt known, then MLE is just frequency observed

in training data

count of k — [ transitions
count of £ — anywhere transitions

+ pseudocounts!

A =

€L (b) =
If T hidden, then use EM:
given T, estimate O; given O estimate m; repeat } 2 ways



Viterbi Training

given 7, estimate 0; given 0 estimate m; repeat

Make initial estimates of parameters 0

Find Viterbi path & for each training sequence

Count transitions/emissions on those paths,
getting new 0

Repeat

Not rigorously optimizing desired likelihood, but

still useful & commonly used.
(Arguably good if you’re doing Viterbi decoding.)



AKA “the forward-

Baum-Welch Training “wii

EM: given 0, estimate 7t ensemble; then re-estimate 0

P(m; =k, mip1 =1 z,0)

fk(z | 9) Q.1 el(a:Hl) bl(’l, +1 | 9)
P(z | 6)

Estimated # of kK — [ transitions flk,l

— Ztraining seqs x’ Zz P(ﬂ-z = k, Ti+1 = l | $j7 9)
Ak

> Ak

New estimate ai; =

Emissions: similar



True Model B-W Learned Model
0.95 0.9 0.73 (300 r'°”5) 0.71

1/6
1/6
1/6
1/6
1/6
1/6

Fair Loaded

0.19
0.19
0.23
0.08
0.23
0.08

o -
s

Fair

B-W Learned Model
ses (30,000 rolls)

Log-odds (vs all F) per roll
True model 0.101 bits

300-roll est. 0.097 bits
30k-roll est. 0.100 bits

(NB: overestimated)

From DEKM



HMMes in Action: Pfam

http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within
species
Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...

|dentifying family very useful: suggests function,
etc.

So, search & alignment are both important

One very successful approach: profile HMMs



Helix AAAAAAAAAAAAAARA BBEBBBBBBBBBBBBBCCCCCCCCCCC

HBA_HUMAN ----—----—- VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN -------—- VHLTPEEKSAVTALWGKV--~--NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA ----—-—-—-- VLSEGEWQLVLHVWAKVEA-~-DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP -----—-=-—--- LSADQISTVQASFDKVKG--~---~— DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU --=--=---- GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI --=--=—---—- GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... vawWwWkv. . g . L.. £ . P. F F
Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF

HBA_HUMAN -DLS----- HGSAQVKGHGKKVADALTNAVAHV---D~-DMPNALSALSDLHAHKIL, -
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-

GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLBS5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPONNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-

GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus . t .. « V..Hg kv. a a...1l d .al. 1 H
Helix FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH

HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS_PETMA
LGB2_LUPLU
GLB1_GLYDI
Consensus

Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?



Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

Mj: Match states (20 emission probabilities)
i Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

From DEKM



Silent States

Example: chain of
states, can skip
some

Problem: many parameters.

A solution: chain
of “silent” states; - O

g N
fewer parameters K\( T \r ?

(but less detailed control)
Algorithms: basically the same.




Using Profile HMM's

Search
Forward or Viterbi

Scoring
Log likelihood (length adjusted)
Log odds vs background next slides

Z scores from either

Alignment
Viterbi



LL/length

Likelihood vs Odds Scores

0 T T T T T
non-globins -
training data ©

1 other globins + ]

2t . _

3t +;$g ]

-4}

-5t

-6 . .".;: Il 1 1

0 50 100 150 200 250

protein length

300

500

400

300

200

log-odds

-100

-200

T

1

T

T T

non-globins
training data
other globins

<

+

150 200 250 300
protein length

Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.
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Z-Scores

Z-score from LL
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
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Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)

Automatic classification/alignment of all other
protein sequences

Pfam 25.0 (March 2011, 12273 families; covers
~75% of human proteins)

Pfam 27.0 (March 2013, 14831 families; = 90%)



<" Model-building

@Q\Q
refinements
Pseudocounts (count = 0 common when training
with 20 aa’s)
L Cz',a + A- da L
e;(a) = SN Crat A A ~ 20, q, = background

(~50 training sequences)

Pseudocount “mixtures’, e.g. separate
pseudocount vectors for various contexts
(hydrophobic regions, buried regions,...)

(~10-20 training sequences)



Weig
simi
sam

More refinements

nting: may need to down weight highly
ar sequences to reflect phylogenetic or

bling biases, etc.

Match/insert assignment: Simple threshold, e.g.
“> 50% gap = insert”, may be suboptimal.
Can use forward-algorithm-like dynamic
programming to compute max a posteriori
assignment.



Numerical Issues

Products of many probabilities = 0
For Viterbi: just add logs

For forward/backward: also work with logs, but
you need sums of products, so need
“log-of-sum-of-product-of-exp-of-logs”,

e.g., by table/interpolation

Keep high precision and perhaps scale factor
Working with log-odds also helps.



Model structure

Define it as well as you can.

In principle, you can allow all transitions and
hope to learn their probabilities from data, but
it usually works poorly — too many local
optima



6

#*Duration Modeling

Self-loop duration: P@
geometric p"(1-p)

min, then geometric ( >
“negative binomial” ( 2( Z( )CJC)

More general: possible (but slower)

48




joint vs
conditional probs

HMM Summary

Inference
Viterbi — best single path (max of products)
Forward — sum over all paths (sum of products)

Backward — similar
Posterior decoding
Model building

Semi-supervised — typically fix architecture (e.g. profile
HMM), then learn parameters

Baum-Welch — training via EM and forward/backward
(aka the forward/backward algorithm)

Viterbi training — also “EM”, but Viterbi-based



HMM Summary (cont.)

Search:
Viterbi or forward
Scoring:
Odds ratio to background
Z-score
E-values, etc., too
Excellent tools available (SAM, HMMer, Pfam, ...)

A very widely used tool for biosequence analysis



Caenorhabditis elegans
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Cell Fate /
Differentiation
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Differentiation

Once a cell differentiates, how does it know to
stay that way!?
“Epigenetics”
Methylation is a large part of the story

Chromatin modification is another part



Chromatin

(A)

(B)

Figure 4-22 Molecular Biology of the Cell 5/e (© Garland Science 2008)






side view bottom view

© histoneH2A () histone H2B ) histone H3 @ histone H4

Figure 4-24 Molecular Biology of the Cell 5/e (© Garland Science 2008)
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Differentiation

Once a cell differentiates, how does it know to
stay that way!?
Methylation is a large part of the story
Chromatin modification is another part
Positive autoregulation of genes is another
TF A turns self on (+ others) maintaining A identity
Consequences:

Can’t regrow body parts (but salamanders can...)

Can’t clone (easily)



Stem Cells

Reservoirs of partially undifferentiated cells in
many tissues in the body

Replenish/replace dead/damaged cells
Huge therapeutic potential

Best source! Embryonic tissue

=> ethical issues

What about cell cultures

=> many are basically tumors



Cloning

Need to “undo” all the epigenetic marking added
during differentiation, quench the feedback
markers, etc.

Dolly the sheep



OCT 3/4 (Octamer binding transcription factor 3/4)

Transcription factor that binds to the octamer motif (5'-
ATTTGCAT-3"). Forms a trimeric complex with SOX2 on
DNA and controls the expression of a number of genes
involved in embryonic development such as YESI, FGF4,
UTFI and ZFP206. Critical for early embryogenesis and for
embryonic stem cell pluripotency.

http://www.uniprot.org/uniprot/Q01860




SOX2 (SRY-related high-mobility-group (HMG)-box protein 2)

Transcription factor that forms a trimeric complex with
OCT4 on DNA and controls the expression of a number of
genes involved in embryonic development such as YESI,

FGF4, UTFI and ZFP206. Ciritical for early embryogenesis
and for embryonic stem cell pluripotency

http://www.uniprot.org/uniprot/P4843 |
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KIf4 (kruppel-like factor 4) t 11 kruppel

Zinc-finger transcription factor. Contains 3 C2H2-type zinc
fingers. May act as a transcriptional activator. Binds the
CACCC core sequence. May be involved in the
differentiation of epithelial cells and may also function in the
development of the skeleton and kidney.

http://www.uniprot.org/uniprot/O43474




MYC (Myc proto-oncogene)
Basic helix-loop-helix transcription factor. Binds DNA both
in 2 non-specific manner and also specifically recognizes the
core sequence 5'-CAC[GA]TG-3". Seems to activate the
transcription of growth-related genes. Efficient DNA
binding requires dimerization with another bHLH protein.
Binds DNA as a heterodimer with MAX. Interacts with
TAFIC, SPAGY9, PARPI10, JARIDIA and JARIDIB.

http://www.uniprot.org/uniprot/PO1 106




Stem Cells Again

Great recent progress in making equiv of
embryonic stem cells from adult tissues

Takahashi & Yamanaka, Cell, 2006

Key? Transfect genes for those 4 transcription
factors!



Issues

Myc is a proto-oncogene

Long term stability of derived cells with
unnatural expression of these genes is unclear

Delivery: Retro virus

may do damage during integration



Recent Progress

2007: Some other gene combinations work,
without Myc

2008: Can use adenoviruses

E.g., Stadtfeld, Nagaya, Utikal, Weir, Hochedlinger, Science,
Sept 2008.



F.a2e K FEP 231

Coat color pattern reflects “chimeric™ animals —
otherwise normal, but mosaic of “induced
pluripotent stem cells” & normal cells, grown
from embryonic fusion

Stadtfeld, et al.,
2008



Ditto in brain section  stadtfeld et a., 2008




