Towards SHA-3

Christian Rechberger, KU Leuven
Fundamental questions in CS theory

Do one-way functions exist?

Do collision-intractable functions exist?

We don't know.
Do we care?

What we care about: computational properties

For cryptographic hash functions, it should be sufficiently hard to

• find preimages
• find collisions
• ...

© CC BY-SA 2.0
Secure? What properties?

Collision resistance
Preimage resistance
2nd preimage resistance
Near-collision resistance
Pseudorandom generator
Pseudorandom function
Key derivation function
Random oracle

…
Hash functions as a fundamental primitive
MD4 family

MD4

- MD5
- SHA
- HAVAL
- RIPEMD

SHA

- SHA-1
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512

RIPEMD

- RIPEMD-128
- RIPEMD-160
Collisions for reduced SHA-1

40 rounds: Biham, Chen, 2005
58 rounds: Wang, Yu, Yin, 2005
64 rounds: De Cannière, R., 2006
70 rounds: De Cannière, Mendel, R., 2007
Full 80 rounds?
What are the problems

- Too fast?
- Designers too optimistic
- New powerful variants of differential cryptanalysis
Road towards SHA-3

SHA-3 (selected in an open competition)
Design challenges for SHA-3

Faster than SHA-2 on many platforms
More secure than SHA-2, confidence
All the properties that you could think of now and in the years to come
Design challenges for SHA-3

Faster than SHA-2 on many platforms
More secure than SHA-2, confidence
All the properties that you could think of now and in the years to come
Outline

• Motivation
• SHA-3 competition
• Grøstl and the rebound attack
• SHA-3 candidates through the rebound lens
• Concluding discussions
SHA-3 competition

- 2006/2007: NIST drafts requirements and calls for submissions
- 10/2008: 64 submissions, >200 designers
- 12/2008: 51 round-1 candidates announced
- 07/2009: 14 round-2 candidates announced
- 12/2010: Five finalists announced
- Q2 2012: Final selection
The candidates

Slides credits: Christophe De Cannière
Preliminary cryptanalysis
The SHA-3 Zoo

The SHA-3 Zoo (work in progress) is a collection of cryptographic hash functions (in alphabetical order) submitted to the SHA-3 contest (see also here). It aims to provide an overview of design and cryptanalysis of all submissions. A list of all SHA-3 submitters is also available. For a software performance related overview, see eBASH. At a separate page, we also collect hardware implementation results of the candidates. Another categorization of the SHA-3 submissions can be found here.

The idea of the SHA-3 Zoo is to give a good overview of cryptanalytic results. We try to avoid additional judgement whether a submission is broken. The answer to this question is left to NIST. However, we categorize the cryptanalytic results by their impact from very theoretic to practical attacks. A detailed description is given in Cryptanalysis Categories.

At this time, 56 out of 64 submissions to the SHA-3 competition are publicly known and available. 51 submissions have advanced to round 1 and 14 submissions have made it into round 2.

The following table should give a first impression on the remaining SHA-3 candidates. It shows only the best known attack, more detailed results are collected at the individual hash function pages. A description of the main table is given here.

Recent updates of the SHA-3 Zoo

The 5 finalists of the SHA-3 competition are:

<table>
<thead>
<tr>
<th>Hash Name</th>
<th>Principal Submitter</th>
<th>Best Attack on Main NIST Requirements</th>
<th>Best Attack on other Hash Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAKE</td>
<td>Jean-Philippe Aumasson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grostl</td>
<td>Lars R. Knudsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JH</td>
<td>Hongjun Wu</td>
<td>preimage</td>
<td></td>
</tr>
<tr>
<td>Keccak</td>
<td>The Keccak Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skein</td>
<td>Bruce Schneier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Round-2 candidates
How to categorize them?
How to categorize them?

Credits to Dai Watanabe
How to compare them?

- Security
- Performance/Implementation costs
 - Software (code size, speed, ...)
 - Hardware (lowest gate count, highest throughput, power consumption characteristics, ...)
 - Side-Channel countermeasures
- Confidence?
Grøstl is inspired by
• Rijndael/AES (Daemen, Rijmen, 1997)
• SMASH (Knudsen, 2005)
• Grindahl (Knudsen, R., Thomsen, 2007)

Proofs against differential attacks
Proofs against generic shortcut attacks
Rebound attack

New variant of differential cryptanalysis, FSE 2009
Developed during the design of Grøstl
Origins of the rebound attack

Differential attack, Biham and Shamir, 1989

Truncated differential, Knudsen, 1994

Original Goal:
Get a good estimate of the security margin of Grøstl
Example of a rebound attack

Within a few months, others became a “victim”:

- Twister (round-1 SHA-3 candidate)
- LANE (round-1 SHA-3 candidate)
- Whirlpool (ISO standard, unbroken since 2001)
- …
Further technical developments

The

- Linear solving variant (SAC 2009)
- Start-in-the-middle variant (SAC 2009)
- Super(S)box variant (Asiacrypt 2009 and FSE 2010)
- Multiple-inbound phase variant (Asiacrypt 2009)
- Rotational variant (Asiacrypt 2010)

...of the rebound attack
SHA-3 finalists

SHA3 finalists:
- CubeHash
- Fugue
- Skein
- Keccak
- Shabash
- ECHO
- SHA
t3
- BLAKE
- SIMD
- Hamsi
- Grostl
- BMW

24/7/2009
SHA-3 round-2 candidates through the rebound lens

4 or 8-bit S-box based

- Grøstl
- ECHO
- JH
- Luffa
- Shavite-3
- Fugue
- Hamsi

Others

- Skein
- BMW
- Blake
- CubeHash
- Keccak
- SIMD
- Shabal
SHA-3 round-2 candidates through the rebound lens

<table>
<thead>
<tr>
<th>4 or 8-bit S-box based</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grøstl</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️</td>
</tr>
<tr>
<td>ECHO</td>
<td>✔️ ✔️ ✔️ ✔️</td>
</tr>
<tr>
<td>JH</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Luffa</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Shavite-3</td>
<td>✔️</td>
</tr>
<tr>
<td>Fugue</td>
<td></td>
</tr>
<tr>
<td>Hamsi</td>
<td></td>
</tr>
<tr>
<td>Skein</td>
<td>✔️</td>
</tr>
<tr>
<td>BMW</td>
<td></td>
</tr>
<tr>
<td>Blake</td>
<td></td>
</tr>
<tr>
<td>Cubehash</td>
<td></td>
</tr>
<tr>
<td>Keccak</td>
<td></td>
</tr>
<tr>
<td>SIMD</td>
<td></td>
</tr>
<tr>
<td>Shabal</td>
<td></td>
</tr>
</tbody>
</table>
Most recent case: Skein

- Recent analysis by Khovratovich, Nikolic, R. in 2010
- Rebound idea for the first time applied to ARX construction
- Results in perspective:
 - 2009: Related-key differential attack: 34 rounds
 - 2010: Rotational attack: 42 rounds
 - **New:** Rebound rotational attack: 57 rounds
SHA-3 finalists through the rebound lens

<table>
<thead>
<tr>
<th>4 or 8-bit S-box based</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grøstl</td>
<td>✔✔✔✔✔✔</td>
</tr>
<tr>
<td>ECHO</td>
<td>✔✔✔✔</td>
</tr>
<tr>
<td>JH</td>
<td>✔✔</td>
</tr>
<tr>
<td>Luffa</td>
<td>✔✔</td>
</tr>
<tr>
<td>Shavite-3</td>
<td>✔</td>
</tr>
<tr>
<td>Fugue</td>
<td></td>
</tr>
<tr>
<td>Hamsi</td>
<td></td>
</tr>
<tr>
<td>Skein</td>
<td>✔</td>
</tr>
<tr>
<td>BMW</td>
<td></td>
</tr>
<tr>
<td>Blake</td>
<td></td>
</tr>
<tr>
<td>Cubehash</td>
<td></td>
</tr>
<tr>
<td>Keccak</td>
<td></td>
</tr>
<tr>
<td>SIMD</td>
<td></td>
</tr>
<tr>
<td>Shabal</td>
<td></td>
</tr>
</tbody>
</table>
SHA-3 finalists in numbers

Geography:
 3 from Europe, 1 from Asia, 1 from America

Tweaks:
 |all 5 got tweaked, 2 got tweaked twice

Team members also AES finalist: 3
Teams that designed a hash function before: 2
How to categorize them?
SHA-3 finalists

Compression strategy:

Single Permutation: Blake (with finalization), JH, Keccak
Two Permutations: Grøstl
Large family of permutations (block cipher): Skein

Source of non-linearity:

64-bit: Skein
32/64-bit: Blake
8-bit: Grøstl
4/5-bit: JH
3-bit: Keccak
Conclusion (1/2) Assurance?

Very complicated attacks against MD5 and SHA-1
(1) Differential trail with complicated carry interactions
(2) Degrees of freedom utilization for speedup

Level of assurance provided by finalists against this class of attacks:

Blake, Skein: ARX, issues similar to SHA-1/SHA-2
Grøstl: both (1) and (2) done by rebound attacks
JH: (1) and (2) may be possible, open problem
Keccak: seems infeasible
Building confidence in a new cryptographic primitive takes time

A lot remains to be done for a final SHA-3 selection by 2012

Upcoming: ECRYPT Hash Workshop 2011, May 19-20, Tallinn
The road ahead

• Application of new cryptanalytic techniques to other areas, examples
 – Internal fixed points:
 • Collision and preimage attack on GOST hash: 2008
 • Key recovery attack on GOST block cipher: 2011
 – Local collisions:
 • Collisions in SHA-0: 1998
 • Related-key attacks on AES: 2009

• New lightweight algorithms, where designers cut corners
Towards SHA-3

Q&A

Christian Rechberger, KU Leuven
Backup slides
Addendum: Grøstl?
Call for input

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gröstl</td>
<td>Austria</td>
</tr>
<tr>
<td>Hash</td>
<td>USA</td>
</tr>
<tr>
<td>Bubble and squeak</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Rumbledethumps/Stovies</td>
<td>Scotland</td>
</tr>
<tr>
<td>Colcannon</td>
<td>Ireland</td>
</tr>
<tr>
<td>Bauernfrühstück</td>
<td>Germany</td>
</tr>
<tr>
<td>Stamppot</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Pyttipanna</td>
<td>Finland, Norway, Sweden</td>
</tr>
<tr>
<td>Biksemad</td>
<td>Denmark</td>
</tr>
<tr>
<td>Roupa Velha</td>
<td>Portugal</td>
</tr>
<tr>
<td>Bergerdil</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Ha'DIBaH 'ay'mey 'oQqar je</td>
<td>Qo'noS (Klingon)</td>
</tr>
</tbody>
</table>