Assignment #4 – Solutions
Problem 1

- Scenario: two companies, A & B, each running Kerberos-based systems. Key Distribution Centers KDC_A and KDC_B
- A and B want to link their Kerberos networks together
 - Have shared secret key K_{AB}
- What modifications do we need to make to the standard Kerberos protocol?
- The interesting case is when a client in one company wants to access a server in another company.
 - No change needed for intra-company communications.
Problem 1

- Let’s assume a client C_A in A wants to communicate with a service S_B in B. So we want C_A to end up with a ticket to S_B.
- In order for C_A to get a ticket to S_B, C_A needs to talk to TGS_B (because TGS_B issues tickets to S_B).
- In order for C_A to get a TGT to talk to TGS_B, C_A needs to talk to KDC_B.
- But KDC_B can’t authenticate C_A directly, so we need to modify the protocol so that C_A can
 1. Authenticate to KDC_A, and
 2. Ask KDC_A to request a TGT for TGS_B from KDC_B on C_A’s behalf.
Problem 1

Following the notation used in class:

- C_A authenticates to KDC_A:

 $$C_A \rightarrow KDC_A: C_A, TGS_B, N_{CA}$$

- KDC_A forwards the request for a TGT for TGS_B to KDC_B using their shared secret K_{AB}

 $$KDC_A \rightarrow KDC_B: \{C_A, TGS_B, N_{KDC_A}\} K_{AB}$$

- KDC_B decrypts the request from KDC_A and returns a ticket for C_A to talk to TGS_B.

 $$KDC_B \rightarrow KDC_A: T_{CA,TGS_B}, \{K_{CA,TGS_B}\} K_{AB}$$

where $T_{CA,TGS_B} = TGS_B, \{C_A, \text{C-addr, lifetime, } K_{CA,TGS_B}\} K_{TGS_B}$
Problem 1

- KDC_A can then decrypt and re-encrypt the session key:
 $$KDC_A \rightarrow C_A: T_{CA,TGS_B}, \{K_{CA,TGS_B}\}K_{CA}$$

- C_A now knows K_{CA,TGS_B} and can use this session key along with T_{CA,TGS_B} to continue Phase 2 of Kerberos with TGS_B directly.
Problem 2

Relative costs of RSA and AES, given

- AES-128 encrypt/decrypt 1 block in time t
- AES-256 encrypt/decrypt 1 block in time $1.4t$.
- A single RSA encryption takes time an^2.
- A single RSA decryption takes time bn^3.
- A single RSA key generation step takes time cn^4.
Problem 2a

How many AES-128 encryption operations can you perform in the time it takes to do a single RSA-1024 encryption?

Time for a single RSA-1024 encryption: $a(1024^2) = a2^{20}$

Time for a single AES-128 encryption: t

$2^{20} \frac{a}{t}$
Problem 2b

- How many AES-128 decryption operations can you perform in the time it takes to do a single RSA-1024 decryption?
- Time for a single RSA-1024 decryption: \(b(1024^3) = b \cdot 2^{30} \)
- Time for a single AES-128 decryption: \(t \)

\[
2^{30} \frac{b}{t}
\]
Problem 2c

- Moving from AES-128 to AES-256
- AES-256 encryptions per RSA-1024 encryption

\[2^{20} \frac{a}{1.4t} = 748982.8571428... \frac{a}{t} \]
Problem 2d

- Moving from AES-128 to AES-256, RSA-1024 to RSA-2048
- AES-256 decryptions per RSA-2048 decryption
- One RSA-2048 decryption: $bn^3 = (2^{11})^3 b = 2^{33}b$
- One AES-256 decryption: $1.4t$

\[2^{33} \frac{b}{1.4t} = 6135667565.7142857... \frac{b}{t} \]
Problem 2e (for AES-128/RSA-1024)

- 2^{20} AES-128 encryptions = 1 RSA-1024 decryption.

Using AES-128 and RSA-1024, sending 16MB of data requires:

- 1 RSA keygen = $c (1024)^4 = c 2^{40}$
- 2 RSA encryptions = $2a (1024)^2 = 2a 2^{20} = a 2^{21}$
- 2 RSA decryptions = $2b (1024)^3 = 2b 2^{30} = b 2^{31}$
- Total time on RSA operations: $2^{21}(a + 2^{10}b + 2^{19}c)$

16MB of data = 1M (2^{20}) data blocks

- Need two* AES operations per block (1 encrypt, 1 decrypt)
- $2 2^{20}$ AES operations = $2 *$ (one RSA decryption)
 \[= 2 * b 2^{30} = 2^{31} b \]

*NOTE: Some students may have interpreted “If you send 16MB...” as meaning “only count 1 AES encryption/block.” We had intended for both the AES encrypt and decrypt to count, but we will accept answers that only count 1 AES encryption/block so long as they are internally consistent.
Problem 2e (AES-128/RSA-1024)

- Total time on RSA operations: $2^{21}(a + 2^{10}b + 2^{19}c)$
- Total time for AES operations: $2^{31}b$
- Total time for all operations: $2^{21}(a + 2^{10}b + 2^{19}c) + 2^{31}b$
 \[= 2^{21}(a + 2^{10}b + 2^{19}c)\]
- Fraction of overall time spent in RSA:
 \[
 \frac{2^{21}(a+2^{10}b+2^{19}c)}{2^{21}(a+2^{11}b+2^{19}c)} = \frac{(a+2^{10}b+2^{19}c)}{(a+2^{11}b+2^{19}c)}
 \]
Problem 2e (for AES-256/RSA-2048)

- 2^{20} AES-128 encryptions = 1 RSA-1024 decryption.

For RSA-2048:

- 1 RSA keygen = $c (2048)^4 = c \ 2^{44}$
- 2 RSA encryptions = $2a (2048)^2 = 2a \ 2^{22} = a \ 2^{23}$
- 2 RSA decryptions = $2b (2048)^3 = 2b \ 2^{33} = b \ 2^{34}$
- Total time on RSA operations: $2^{23} (a + 2^{11} b + 2^{19} c)$

16MB of data = 1M (2^{20}) data blocks

- Need two AES-256 operations per block (1 encrypt, 1 decrypt)
- $2 \ 2^{20}$ AES-256 operations = $2 \ast 1.4 \ast$ (one RSA-1024 decryption)
 = $2 \ast 1.4 \ast b \ 2^{30}$
 = $1.4 \ b \ 2^{31}$
Problem 2e (AES-256/RSA-2048)

- Total time on RSA operations: $2^{23} (a + 2^{11}b + 2^{19}c)$
- Total time for AES operations: $1.4b \ 2^{31}$
- Total time for all operations:
 \[
 2^{23} (a + 2^{11}b + 2^{19}c) + 1.4b \ 2^{31}
 \]
 \[
 = 2^{23} (a + 1.4b2^8 + 2^{11}b + 2^{19}c)
 \]
- Fraction of overall time spent in RSA:
 \[
 \frac{2^{23} (a + 2^{11}b + 2^{19}c)}{2^{23} (a + 1.4b2^8 + 2^{11}b + 2^{19}c)} = \frac{a + 2^{11}b + 2^{19}c}{a + 1.4b2^8 + 2^{11}b + 2^{19}c}
 \]
Problem 3

- First, let’s look at MD5 vs. SHA-1
- MD5 has a 128-bit output, so with a birthday attack we would expect to find a collision in 2^{64} hash operations.
- SHA-1 has a 160-bit output, so 2^{80} hash operations for a collision via birthday attack.

$$\frac{2^{80}}{2^{64}} = 2^{16},$$

so we need 16 Moore’s Law doublings

= 24 years
Problem 3

Now, RSA-768 vs RSA-1024. Let’s compute the formula for $n = 768$ and $n = 1024$.

$n = 768$:

$$e^{2 \cdot 768^{\frac{1}{3}} \cdot ((\log_2 768)^{\frac{2}{3}})} = 7.794344... \times 10^{35}$$

$n = 1024$:

$$e^{2 \cdot 1024^{\frac{1}{3}} \cdot ((\log_2 1024)^{\frac{2}{3}})} = 4.328252... \times 10^{40}$$

Ratio: approx 55530.67904...
Problem 3

Ratio: approx 55530.67904...
Now, $\log_2 55530.67904... = 15.76$
So we need 15.76 Moore’s Law doublings
 = 23.64 years

Bottom line: move from RSA-1024 to RSA-2048 first
Problem 4

- Alice and Bob live in different countries, exchange key K face-to-face, want to exchange a sequence of messages in the future.
 - At any point in time, Alice’s computer can be seized, giving an attacker all the information stored on her computer at the time of seizure.
- Let m_1, m_2, m_3, \ldots be the sequence of messages Alice and Bob exchange.
- How can we use K to secure each m_i, such that if Alice’s computer is seized at time t, none of the $m_1, m_2, \ldots, m_{t-1}$ are compromised?
Problem 4

- At any point in time, we want Alice’s machine to contain only information necessary for encrypting future messages, and not anything that could be used to decrypt past messages.
- So, some things that don’t work:
 - Encrypt each \(m_i \) with \(K \) directly (would have to keep \(K \) around, and when the computer is seized it exposes all prior \(m_i \)).
 - Encrypt each \(m_i \) with \(K_i = H(i \parallel K) \) where \(H \) is a hash function (would still have to keep \(K \) around, and once seized would reveal past messages.)
Problem 4

- One possible approach:
 - Let $K_0 = K$.
 - Let $K_i = H(K_{i-1})$
 - Store only the K_i for the next message to send.
 - Encrypt m_i with K_i.
 - Once m_i is sent, compute K_{i+1} and destroy K_i.

- Other solutions are possible...
Problem 5

- Modifying SSL/TLS to support session restart
 - Proposal: Whenever a session is established, the pre-master secret is used to derive a session identifier that can be retained by the client and server.
 - This session identifier is then cached along with the original pre-master secret, and the client can request restart by sending the identifier along with the rest of the session details (including the ciphersuite).
 - How can an attacker exploit this protocol modification?
Problem 5

- An attacker can play man-in-the-middle between a client requesting restart and the server.
- The attacker can’t change the pre-master secret, but because the client sends the session details to the server, the adversary can change any of those details.
 - In particular, the adversary can change the ciphersuite, making it something easier.
- This is called a *downgrade attack* – it causes the client and server to use a ciphersuite that neither would negotiate to absent interference from the adversary.