Dynamic Searchable
Symmetric Encryption

Tom Roeder
eXtreme Computing Group
Microsoft Research

Joint work with Seny Kamara

Encrypted Cloud Backup

» Cloud backup
- Users want to back up their data
- The cloud provides storage

» Privacy, integrity, and confidentiality
> But servers learn much about users this way
- Honest-but-curious server can read everything
- Malicious server can make arbitrary changes

» Naive solution: store all data encrypted

- User keeps key and decrypts locally
- Problems: key management, search, cloud
computation

Searchable Symmetric Encryption
(SSE)

» SSE solves the search problem
> Encrypt an index
- User keeps key and generates search tokens
> Server can use tokens to search encrypted index
» Practical implementations need update
> Current impls do not have efficient update
- Either no supported update operations
> Or each word has size linear in all documents
» We provide two schemes with efficient update
1. Update (add or delete) per word/doc pair
2. Update (add or delete) per doc

Overview

4

» Dynamic SSE Protocols
» Security Proofs

» Implementation

The Encrypted Search Problem

» User has collection dq, d,, ...,d,,, of documents
> d is a document identifier
- Each document d has set of unique words W,
- Set of all unique words: wy,w,, ..., wy,

» Goal: Produce an encrypted index with ops
- Search(w): returns encrypted doc ids
- Add(d, Wy): adds the doc id with word set

o Delete(d): deletes the doc id and all words
- Expand(): expands the index

server

The Encrypted Search Problem

» User has collection dq, d,, ...,d,,, of documents
> d is a document identifier
- Each document d has set of unique words W,
- Set of all unique words: wy,w,, ..., wy,

» Goal: Produce an encrypted index with ops
- Search(w): returns encrypted doc ids
- Add(d, Wy): adds the doc id with word set

o Delete(d): deletes the doc id and all words
- Expand(): expands the index

tokens

server

The Encrypted Search Problem

» User has collection dq, d,, ...,d,,, of documents
> d is a document identifier
- Each document d has set of unique words W,
- Set of all unique words: wy,w,, ..., wy,

» Goal: Produce an encrypted index with ops
- Search(w): returns encrypted doc ids
- Add(d, Wy): adds the doc id with word set

o Delete(d): deletes the doc id and all words
- Expand(): expands the index

tokens

server

response

CGKO

» SSE scheme without update operations

» Main idea:
- Each word is mapped to a token (under PRF)
- Tokens map to an initial position in encrypted array
- Each position points to next element in list

» The large encrypted, randomized array hides
the document count for each word

» In original form, only secure against non-
adaptive adversaries

» Assume honest-but—-curious server

Modified CGKO

» index : fi (w) - (start) @ fi, (W)
» list entry : Ency, (next), Ency, (d)

'
]
list
entries

¥

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

index

list

entries

.

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

.

list

entries

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

f

fkb (w)

.

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

f

fkb (w)

.

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

.
o G e —8

list
entries Dec,,
w

Modified CGKO: Search

» Given
° W, ke, ky, kg. ky = KDF (W)
> construct token fre. W), fie, W), ky,

list
entries

List Patching

» To delete an entry (x), need
- Location of entry to delete
- Location of next (n) and prev (p) entries (if any)

» Use XOR encryption for list pointers

- 8 86

r, (%) @ fio, (1) v (p,n) @ fi, () ', (%, 0) @ fio,)

List Patching

» To delete an entry (x), need
- Location of entry to delete
- Location of next (n) and prev (p) entries (if any)

» Use XOR encryption for list pointers

- 8 86

r,(u,x) D fx, (@) r,(p,n) D fi, () ', (x,v) ® fi, @)
@ (0, x D n) @ {(xDp,0)

List Patching

» To delete an entry (x), need
- Location of entry to delete
- Location of next (n) and prev (p) entries (if any)

» Use XOR encryption for list pointers

r, () @ fio, () v, (p,n) @ fio,) (0,0 @ fio,)

Deletion indeXx

» To patch the data structure

- E.g., pulling a document out of a list
- And need a structure to index directly into the lists

» Add deletion index
> Index: f (d) - (start) @ f, (d)
o 1,1, 1" (ng, dny, dpy) @ fi, (1), (x,p,n) D fi, ("),
fre,(W) @ fi, (")
list structure uses ny to point to next word for d

dn, and dp, point to del index entries for n and p
1-1 correspondence between list entries

(0]

o

o

Doc-Based Index

.
]
list
entries

¥

Doc-Based Index

del list entries

'
]
list
entries

¥

Doc-Based Index

del list entries

list
entries

Doc-Based Index

del list entries

list
entries

Doc-Based Index

list
entries

Free List

» Add and delete must track unused space
> revealing unused would reveal word * doc
- user must keep track of freelist count

main
index

Free List

» Add and delete must track unused space
> revealing unused would reveal word * doc
- user must keep track of freelist count

fr.(freelist)

Free List

» Add and delete must track unused space
> revealing unused would reveal word * doc
- user must keep track of freelist count

fr.(freelist)

Free List

» Add and delete must track unused space
> revealing unused would reveal word * doc
- user must keep track of freelist count

fr.(freelist)

Free List

» Add and delete must track unused space
> revealing unused would reveal word * doc
- user must keep track of freelist count

(lizq, 1d;) @ fie, (D)

fr.(freelist)

(i 1di—1) @ fie, (i = 1)

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

main
index

del
index

.

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fi (@)

del

index

main
index

.

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fi (@)

del

index

fr.(freelist)

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fi (@)

del

index

fr.(freelist)

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fi (@)

del

index

fr.(freelist)

.

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fi (@)

fr.(freelist)

.

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fiec (W1) fiee ()

fr.(freelist)

Add a Document

» (doc tokens), (freelist tokens), word count
- per word: (word tokens), (freelist mask), templates

fie, (W1) fiee ()

fr.(freelist)

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

main
index

del
index

.

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

fi(d)

del

.

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

fi(d)

del

.

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

fi(d)

del
index

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

Delete a Document

» (doc tokens), doc key, (freelist tokens), count
- per word: (freelist mask)

fi(d)

Index Extension

» Index size is fixed at generation time
- So, add to free list for expansion

fr.(freelist)

.

Index Extension

» Index size is fixed at generation time
- So, add to free list for expansion

fr.(freelist)

.

Index Extension

» Index size is fixed at generation time
- So, add to free list for expansion

fr.(freelist)

A Small Example: Indexes

Index

w2

Main Index M Deletion Index [

feo(wi) — (4[| 1) @ fk, (w1) fe.(di) — 1@ fi,(d1)
free(w2) — (0[] 2) & [, (w2) fro(d2) — 5@ fi, (d2)
Jree(ws) — (5][0) & f, (ws) fre(ds) — 4@ fx, (d3)

fr.(free) — 6 & fi, (free)

A Small Example: Arrays

Main Index M Deletion Index [

fre(wr) — (4 |[1) & fr, (w1) fre(dr) — 1@ fi,(dr)
Jie(w2) — (0 |[2) & fr, (w2) fre(d2) — 5@ fr,(d2)
fre(wz) — (5][0) & fr, (ws) fre(ds) — 4@ fr,(ds)

fi.(free) — 6 @ fi, (free)

0 1 2 3 4 5 6 7
w2 w3 free w1 w1 w3 free w1 . .
Main List L
d2 ds D~ ds dl dl D3 ds
T » """""""""""""" A
dg d1 dz d3 d2 d3 . .
r r Deletion List D
w3 w1 wa ws w1 w1

Word-Based Deletion

» Deletion index uses doc/word pairs:
- No lists of words per doc

* fre (dw) = 111" (x,p,n) @ fi,, 0 fi (dpywy) @
fkd,W (r'), fkc (dn, wn) D fkd,w (r'")
» Algorithms similar
> Search identical

- Add puts new word on front of list
- Delete patches to pull word out of list
- Extension identical

Tradeoffs

» Word-Based Update

- Update token linear in number of word changes

- Hides number of unique words in document

- Uses less space for index

- But requires keeping track of diffs on disk
» Doc-Based Update

- Stateless for client (except freelist count)

- But reveals the unique words in old and new docs
» We currently use Doc-Based Update

- Cost of keeping diffs outweighs value of hiding

Overview

4

4

» Security Proofs
» Implementation

.

Security Proofs

» Adaptive Simulatability

> ¥ = (Gen, Index, TrapsS, Search, Retrieve, TrapA,
Add, TrapD, Delete, Extendlndex) is a dynamic SSE

scheme

.

Leakage

» Searchable Symmetric Encryption leaks info
- Query pattern: unique terms and result counts
- Access pattern: which documents are retrieved

» Our algorithm leaks a little more
- unique ID for words in added and deleted docs
- Update pattern: add to existing, pos of delete
> tail of the free list
- amount of index expansion
- when the index is full

Proof QOutline

» Index Generation and Expansion: random

» Search: given number of results
- |f seen search (+ any updates), then repeat
- Otherwise, choose a random index entry
> Provide random unused location for first element
- Choose unused locations for other elements
> Program random oracle to “decrypt” list (k,,)

Proof QOutline

» Index Generation and Expansion: random

» Search: given number of results
- |f seen search (+ any updates), then repeat
- Otherwise, choose a random index entry
> Provide random unused location for first element
- Choose unused locations for other elements
> Program random oracle to “decrypt” list (k,,)

fe, () = (p) ® 7 Q-Q
P fi,) =1 () B =

p,n)

Proof Outline: Add and Delete

» Add: given unique IDs of added words
- Find random locations and setup freelist tokens
- Choose random index entry and get word tokens
> Set masks to XOR to chosen pattern

» Delete: given unique IDs of deleted words
> Choose deletion locations (from prev or random)
> Choose index entry to delete (from prev or random)
> Program random oracle to decrypt chosen pattern (k)

Overview
4
>
4
>

Implementation

.

Performance

» Prototype doc-based scheme in C++

» Intel Xeon x64 2.26 GHz with Win 2008 R2
- Zipf, Docs, Email datasets
- 500k to 1.5M doc/word pairs
» Results
- Generation (doc/word pair): 40 ps (c)
> Search (doc): 8 ps (s)
- Add (word): 35 ps (c), 2 ps (s)
> Delete (word): 3 ps (c), 24 ps (s)

Related SSE Schemes

» [CGKOO6]

- Efficient search
- Provides an adaptive scheme in plain model
- Doesn’t provide any update properties

» [SLDHO9]

- Efficient update via XOR encryption
- Uses padded lists: linear in number of docs
> Large storage cost: O(|w| |d])

Conclusions

» Dynamic SSE algorithms

» Add and Delete use XOR encryption to modify
index

» Practical for real-world applications
» Can trade off leakage for server operations

