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Fun with Public-Key 
 

Tonight we’ll … 

 

 Introduce some basic tools of public-key crypto 

 

 Combine the tools to create more powerful tools 

 

 Lay the ground work for substantial applications 
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Challenge-Response Protocols 
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Challenge-Response Protocols 
 

One party often wants to convince another 
party that something is true … 
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Challenge-Response Protocols 
 

One party often wants to convince another 
party that something is true … 

 

 … without giving everything away. 
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Proof of Knowledge 
 

“I know the secret key 𝑘.” 
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PoK:  Method 1 
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PoK:  Method 1 
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Here is 𝑘. 



PoK:  Method 2 
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PoK:  Method 2 
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Here is a nonce 𝑐. 



PoK:  Method 2 
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Here is a nonce 𝑐. 

Here is the hash 𝑕(𝑐, 𝑘). 



Traditional Proofs 
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Traditional Proofs 
 

I want to convince you that something is true. 
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Traditional Proofs 
 

I want to convince you that something is true. 

 

I write down a proof and give it to you. 
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Interactive Proofs 
 
We engage in a dialogue at the conclusion of 

which you are convinced that my claim is true. 
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Graph Isomorphism 
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Graph Isomorphism 
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Graph Isomorphism 
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IP of Graph Isomorphism 
Generate, say, 100 additional graphs 

isomorphic to G1 (and therefore also 
isomorphic to G2). 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
 

Accept a single bit challenge “L/R” for each of 
the 100 additional graphs. 
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IP of Graph Isomorphism 
 

Accept a single bit challenge “L/R” for each of 
the 100 additional graphs. 

 

Display the indicated isomorphism for each of 
the additional graphs. 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
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IP of Graph Isomorphism 
 

If graphs G1 and G2 were not isomorphic, then 
the “prover” would not be able to show any 
additional graph to be isomorphic to both G1 
and G2. 
 

February 17, 2011 Practical Aspects of Modern Cryptography 30 



IP of Graph Isomorphism 
 

If graphs G1 and G2 were not isomorphic, then 
the “prover” would not be able to show any 
additional graph to be isomorphic to both G1 
and G2. 
 

A successful false proof would require the 
prover to guess all 100 challenges in advance:  
probability 1 in 2100. 
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Fiat-Shamir Heuristic 
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Fiat-Shamir Heuristic 
 

Instead of challenge bits being externally 
generated, they can be produced by applying a 
one-way hash function to the full set of 
additional graphs. 
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Fiat-Shamir Heuristic 
 

Instead of challenge bits being externally 
generated, they can be produced by applying a 
one-way hash function to the full set of 
additional graphs. 

 

This allows an interactive proof to be 
“published” without need for interaction. 
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IP of Graph Non-Isomorphism 
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IP of Graph Non-Isomorphism 
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IP of Graph Non-Isomorphism 
 

A verifier can generate 100 additional graphs, 
each isomorphic to one of G1 and G2 , and 
present them to the prover. 
 

February 17, 2011 Practical Aspects of Modern Cryptography 37 



IP of Graph Non-Isomorphism 
 

A verifier can generate 100 additional graphs, 
each isomorphic to one of G1 and G2 , and 
present them to the prover. 
 

The prover can then demonstrate that the 
graphs are not isomorphic by identifying which 
of G1 and G2 each additional graph is isomorphic 
to. 
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IP of Graph Non-Isomorphism 
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IP of Graph Non-Isomorphism 
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IP of Graph Non-Isomorphism 
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Proving Something is a Square 
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Proving Something is a Square 
Suppose I want to convince you that 𝑌 

is a square modulo 𝑁. 
[There exists an 𝑋 such that 𝑌 =  𝑋2  mod𝑁.] 
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Proving Something is a Square 
Suppose I want to convince you that 𝑌 

is a square modulo 𝑁. 
[There exists an 𝑋 such that 𝑌 =  𝑋2  mod𝑁.] 

 

First approach:  I give you 𝑋. 
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An Interactive Proof 
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An Interactive Proof 
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An Interactive Proof 
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An Interactive Proof 
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An Interactive Proof 
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An Interactive Proof 
 

In order for me to “fool” you, I would have to guess your 
exact challenge sequence. 
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An Interactive Proof 
 

In order for me to “fool” you, I would have to guess your 
exact challenge sequence. 

 

The probability of my successfully convincing you that 𝑌 is a 
square when it is not is 2−100. 
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An Interactive Proof 
 

In order for me to “fool” you, I would have to guess your 
exact challenge sequence. 

 

The probability of my successfully convincing you that 𝑌 is a 
square when it is not is 2−100. 

 

This interactive proof is said to be “zero-knowledge” because 
the challenger received no information (beyond the proof 
of the claim) that it couldn’t compute itself. 
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Applying Fiat-Shamir 

Once again, the verifier challenges can 
be simulated by the use of a one-way 
function to generate the challenge 
bits. 
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An Non-Interactive ZK Proof 

February 17, 2011 Practical Aspects of Modern Cryptography 

𝑌 

𝑌1 𝑌3 𝑌2 𝑌4 𝑌5 𝑌100 

54 



An Non-Interactive ZK Proof 
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where the bit string is computed as 

xxx = SHA-1(𝑌1, 𝑌2,…, 𝑌100) 



An Non-Interactive ZK Proof 
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0 0 1 1 0 1 
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An Non-Interactive ZK Proof 
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𝑌1 𝑌3 𝑌2 𝑌4 𝑌5 𝑌100 
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Proving Knowledge 
Suppose that we share a public key 

consisting of a modulus 𝑁 and an 
encryption exponent 𝐸 and that I want to 
convince you that I have the 
corresponding decryption exponent 𝐷. 

 

How can I do this? 
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Proving Knowledge 
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Proving Knowledge 
 I can give you my private key 𝐷. 
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Proving Knowledge 
 I can give you my private key 𝐷. 

 

 You can encrypt something for me and I decrypt it for 
you. 
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Proving Knowledge 
 I can give you my private key 𝐷. 

 

 You can encrypt something for me and I decrypt it for 
you. 

 

 You can encrypt something for me and I can engage in an 
interactive proof with you to show that I can decrypt it. 
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A Proof of Knowledge 
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A Proof of Knowledge 
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A Proof of Knowledge 
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A Proof of Knowledge 
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A Proof of Knowledge 
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A Proof of Knowledge 
 

By engaging in this proof, the prover has 
demonstrated its knowledge of 𝑌𝐷 – without 
revealing this value. 

 

If 𝑌 is generated by a challenger, this is 
compelling evidence that the prover possesses 𝐷. 

February 17, 2011 Practical Aspects of Modern Cryptography 68 



Facts About Interactive Proofs  

Anything in PSPACE can be proven with a 
polynomial-time interactive proof. 

 

Anything in NP can be proven with a 
zero-knowledge interactive proof. 
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Secret Sharing 
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Secret Sharing 
Suppose that I have some data that I want to share amongst 

three people such that 
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Secret Sharing 
Suppose that I have some data that I want to share amongst 

three people such that 

 

 any two can uniquely determine the data 
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Secret Sharing 
Suppose that I have some data that I want to share amongst 

three people such that 

 

 any two can uniquely determine the data 

 

 but any one alone has no information whatsoever about 
the data. 
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Secret Sharing 
Some simple cases: “AND” 

 

 I have a secret value 𝑧 that I would like to share with Alice 
and Bob such that both Alice and Bob can together 
determine the secret at any time, but such that neither has 
any information individually. 
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Secret Sharing – AND 
Let 𝑧 ∈ ℤ𝑚 = 0,1,… ,𝑚 − 1  be a secret value to be shared 

with Alice and Bob. 

Randomly and uniformly select values 𝑥 and 𝑦 from ℤ𝑚 
subject to the constraint that 

𝑥 + 𝑦 mod𝑚 = 𝑧. 
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Secret Sharing – AND 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 
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Me 

Secret Sharing – AND 
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𝑥 𝑦 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



 

Me 

Secret Sharing – AND 

 

Alice 
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𝑥 𝑦 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



Secret Sharing – AND 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



 

Bob 

Secret Sharing – AND 
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Me 

𝑦 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



Secret Sharing – AND 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



Secret Sharing – AND 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



Secret Sharing – AND 

 

Alice 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



 

Bob 

Secret Sharing – AND 

 

Alice 
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𝑥 𝑦 
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The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



 

Bob 

Secret Sharing – AND 

 

Alice 

February 17, 2011 Practical Aspects of Modern Cryptography 

𝑥 𝑦 

85 

The secret value is 𝑧 = (𝑥 + 𝑦)mod𝑚. 



Secret Sharing – AND  
 

This trick easily generalizes to more than two 
shareholders. 

 

February 17, 2011 Practical Aspects of Modern Cryptography 86 



Secret Sharing – AND  
 

This trick easily generalizes to more than two 
shareholders. 

 

A secret 𝑆 can be written as 
𝑆 = (𝑠1+ 𝑠2+⋯+ 𝑠𝑛) mod 𝑚 

for any randomly chosen integer values               
𝑠1, 𝑠2, …, 𝑠𝑛 in the range 0 ≤ 𝑠𝑖 < 𝑚. 
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Secret Sharing 
Some simple cases: “OR” 

 

 I have a secret value 𝑧 that I would like to share with Alice 
and Bob such that either Alice or Bob can determine the 
secret at any time. 
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Secret Sharing – OR 
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The secret value is 𝑧. 
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Me 

Secret Sharing – OR 
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𝑧 𝑧 
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The secret value is 𝑧. 



 

Me 

Secret Sharing – OR 

 

Alice 
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𝑧 𝑧 
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The secret value is 𝑧. 



Secret Sharing – OR 
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Me 

𝑧 
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The secret value is 𝑧. 



 

Me 

Secret Sharing – OR 
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Bob 

𝑧 
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The secret value is 𝑧. 



Secret Sharing – OR 
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Me 
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The secret value is 𝑧. 



Secret Sharing – OR 

 

Alice 
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The secret value is 𝑧. 



Secret Sharing – OR 
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The secret value is 𝑧. 



Secret Sharing – OR 
 
 

This case also generalizes easily to more than two 
shareholders. 
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Secret Sharing 
More complex access structures … 

 

I want to share secret value 𝑧 amongst Alice, Bob, and Carol 
such that any two of the three can reconstruct 𝑧. 

 
𝑆 = (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶) 
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Secret Sharing 
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Secret Sharing 

February 17, 2011 Practical Aspects of Modern Cryptography 

OR 

AND AND AND 
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𝑧 ∈ ℤ𝑚 



Secret Sharing 
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Secret Sharing 
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Threshold Schemes 
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Threshold Schemes 
 

I want to distribute a secret datum 
amongst 𝑛 trustees such that 
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Threshold Schemes 
 

I want to distribute a secret datum 
amongst 𝑛 trustees such that 

 

any 𝑘 of the 𝑛 trustees can uniquely 
determine the secret datum, 
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Threshold Schemes 
 

I want to distribute a secret datum 
amongst 𝑛 trustees such that 

 

any 𝑘 of the 𝑛 trustees can uniquely 
determine the secret datum, 

but any set of fewer than 𝑘 trustees 
has no information whatsoever about 
the secret datum. 
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Threshold Schemes 
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Shamir’s Threshold Scheme 
Any 𝑘 points 𝑠1, 𝑠2, …, 𝑠𝑘 in a field uniquely determine a 

polynomial 𝑃 of degree at most 𝑘 − 1 with 𝑃 𝑖 = 𝑠𝑖 for 
𝑖 = 1, 2, … , 𝑘. 

 

This not only works of the reals, rationals, and other infinite 
fields, but also over the finite field  

ℤ𝑝 = 0,1,… , 𝑝 − 1   

where 𝑝 is a prime. 
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Shamir’s Threshold Scheme 
To distribute a secret value 𝑠 ∈ ℤ𝑝 amongst a set of 𝑛 

Trustees 𝑇1, 𝑇2, … , 𝑇𝑛  such that any 𝑘 can determine 
the secret 
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Shamir’s Threshold Scheme 
To distribute a secret value 𝑠 ∈ ℤ𝑝 amongst a set of 𝑛 

Trustees 𝑇1, 𝑇2, … , 𝑇𝑛  such that any 𝑘 can determine 
the secret 

 

 pick random coefficients 𝑎1, 𝑎2, … , 𝑎𝑘−1 ∈ ℤ𝑝 
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Shamir’s Threshold Scheme 
To distribute a secret value 𝑠 ∈ ℤ𝑝 amongst a set of 𝑛 

Trustees 𝑇1, 𝑇2, … , 𝑇𝑛  such that any 𝑘 can determine 
the secret 

 

 pick random coefficients 𝑎1, 𝑎2, … , 𝑎𝑘−1 ∈ ℤ𝑝 

 let 𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑠 
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Shamir’s Threshold Scheme 
To distribute a secret value 𝑠 ∈ ℤ𝑝 amongst a set of 𝑛 

Trustees 𝑇1, 𝑇2, … , 𝑇𝑛  such that any 𝑘 can determine 
the secret 

 

 pick random coefficients 𝑎1, 𝑎2, … , 𝑎𝑘−1 ∈ ℤ𝑝 

 let 𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑠 

 give 𝑃(𝑖) to trustee 𝑇𝑖. 
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Shamir’s Threshold Scheme 
To distribute a secret value 𝑠 ∈ ℤ𝑝 amongst a set of 𝑛 

Trustees 𝑇1, 𝑇2, … , 𝑇𝑛  such that any 𝑘 can determine 
the secret 

 

 pick random coefficients 𝑎1, 𝑎2, … , 𝑎𝑘−1 ∈ ℤ𝑝 

 let 𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑠 

 give 𝑃(𝑖) to trustee 𝑇𝑖. 

The secret value is 𝑠 =  𝑃(0). 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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(0,9) 

Secret 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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(0,9) 

(1,7) 

(2,5) 

(3,3) 

Secret 

Share 1 

Share 2 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
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(1,7) 

(3,3) 
Share 1 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10 , Secret = 9 
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(1,7) 

(3,3) 
Share 1 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
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(0,9) 

(1,7) 

(3,3) 

Secret 

Share 1 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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(1,7) 

Share 1 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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(1,7) 

(3,4) 
Share 1 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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Share 1 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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(0,8.5) 

(1,7) 

(3,4) 

Secret 

Share 1 

Share 3 
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Shamir’s Threshold Scheme 

The threshold 2 case: 
Example:  Range = ℤ11 = 0,1,… , 10  
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(0,8.5) 

(1,7) 

(3,4) 

Secret 

Share 1 

Share 3 

In ℤ11, 8.5  
   ≡  17 ÷ 2 
   ≡  6 × 6 
   ≡  36 
   ≡   3 
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Shamir’s Threshold Scheme 
Two methods are commonly used to interpolate a 

polynomial given a set of points. 
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Shamir’s Threshold Scheme 
Two methods are commonly used to interpolate a 

polynomial given a set of points. 

 

 Lagrange interpolation 
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Shamir’s Threshold Scheme 
Two methods are commonly used to interpolate a 

polynomial given a set of points. 

 

 Lagrange interpolation 

 Solving a system of linear equations 
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Lagrange Interpolation 
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Lagrange Interpolation 
For each point (𝑖, 𝑠𝑖), construct a polynomial 𝑃𝑖  
with the correct value at 𝑖 and a value of zero at 
the other given points. 
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Lagrange Interpolation 
For each point (𝑖, 𝑠𝑖), construct a polynomial 𝑃𝑖  
with the correct value at 𝑖 and a value of zero at 
the other given points. 

𝑃𝑖 𝑥 = 𝑠𝑖 × (𝑥 − 𝑗)

𝑗≠𝑖

÷ (𝑖 − 𝑗)

𝑗≠𝑖

 

February 17, 2011 Practical Aspects of Modern Cryptography 135 



Lagrange Interpolation 
For each point (𝑖, 𝑠𝑖), construct a polynomial 𝑃𝑖  
with the correct value at 𝑖 and a value of zero at 
the other given points. 

𝑃𝑖 𝑥 = 𝑠𝑖 × (𝑥 − 𝑗)

𝑗≠𝑖

÷ (𝑖 − 𝑗)

𝑗≠𝑖

 

Then sum the 𝑃𝑖 𝑥  to compute 𝑃 𝑥 . 
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Lagrange Interpolation 
For each point (𝑖, 𝑠𝑖), construct a polynomial 𝑃𝑖  
with the correct value at 𝑖 and a value of zero at 
the other given points. 

𝑃𝑖 𝑥 = 𝑠𝑖 × (𝑥 − 𝑗)

𝑗≠𝑖

÷ (𝑖 − 𝑗)

𝑗≠𝑖

 

Then sum the 𝑃𝑖 𝑥  to compute 𝑃 𝑥 . 

𝑃(𝑥) = 𝑃𝑖 𝑥

𝑖
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Solving a Linear System 
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Solving a Linear System 
 

Regard the polynomial coefficients as 
unknowns. 
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Solving a Linear System 
 

Regard the polynomial coefficients as 
unknowns. 

Plug in each known point to get a linear 
equation in terms of the unknown coefficients. 
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Solving a Linear System 
 

Regard the polynomial coefficients as 
unknowns. 

Plug in each known point to get a linear 
equation in terms of the unknown coefficients. 

Once there are as many equations as 
unknowns, use linear algebra to solve the 
system of equations. 
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Verifiable Secret Sharing 
 

Secret sharing is very useful when the “dealer” of 
a secret is honest, but what bad things can 
happen if the dealer is potentially dishonest? 

 

Can measures be taken to eliminate or mitigate 
the damages? 
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Homomorphic Encryption 
 

Recall that with RSA, there is a multiplicative 
homomorphism. 

𝐸 𝑥 𝐸 𝑦 ≡ 𝐸(𝑥𝑦) 

 

Can we find an encryption function with an 
additive homomorphism? 
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An Additive Homomorphism 
 

Can we find an encryption function for which the 
sum (or product) of two encrypted messages is 
the (an) encryption of the sum of the two 
original  messages? 

 
𝐸(𝑥) ◦ 𝐸(𝑦) ≡ 𝐸(𝑥 + 𝑦) 
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An Additive Homomorphism 
 

Recall the one-way function given by 

 𝑓(𝑥)  =  𝑔𝑥 mod 𝑚. 

 

For this function, 
𝑓(𝑥)𝑓(𝑦) mod 𝑚 =  𝑔𝑥𝑔𝑦 mod 𝑚 =  

𝑔𝑥+𝑦 mod 𝑚 =  𝑓(𝑥 + 𝑦) mod 𝑚. 
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Verifiable Secret Sharing 
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Verifiable Secret Sharing 
 Select a polynomial with secret 𝑎0 as 

𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0. 
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Verifiable Secret Sharing 
 Select a polynomial with secret 𝑎0 as 

𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0. 

 Commit to the coefficients by publishing 

𝑔𝑎0, 𝑔𝑎1, 𝑔𝑎2, …, 𝑔𝑎𝑘−1. 
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Verifiable Secret Sharing 
 Select a polynomial with secret 𝑎0 as 

𝑃 𝑥 = 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0. 

 Commit to the coefficients by publishing 

𝑔𝑎0, 𝑔𝑎1, 𝑔𝑎2, …, 𝑔𝑎𝑘−1. 

 Compute a commitment to 𝑃(𝑖) from public values as 

  𝑔𝑃(𝑖) = 𝑔𝑎0𝑖
0
𝑔𝑎1𝑖
1
𝑔𝑎2𝑖
2
⋯𝑔𝑎𝑘−1𝑖

𝑘−1
. 
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Verifiable Secret Sharing  

An important detail 

 

Randomness must be included to 
prevent small spaces of possible 
secrets and shares from being 
exhaustively searched. 
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Secret Sharing Homomorphisms 
 

All of these secret sharing methods have an 
additional useful feature: 

 

If two secrets are separately shared amongst the 
same set of people in the same way, then the 
sum of the individual shares constitute shares 
of the sum of the secrets. 
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Secret Sharing Homomorphisms 
OR 

 

Secret:  𝑎  –  Shares:  𝑎, 𝑎, …, 𝑎 

Secret:  𝑏  –  Shares:  𝑏, 𝑏, …, 𝑏 

 

Secret sum:  𝑎 + 𝑏 

Share sums:  𝑎 + 𝑏, 𝑎 + 𝑏, …, 𝑎 + 𝑏 
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Secret Sharing Homomorphisms 
AND 

 

Secret:  𝑎  –  Shares:  𝑎1, 𝑎2, …, 𝑎𝑛 
Secret:  𝑏  –  Shares:  𝑏1, 𝑏2, …, 𝑏𝑛 
 

Secret sum:  𝑎 + 𝑏 

Share sums:  𝑎1+ 𝑏1, 𝑎2 + 𝑏2, …, 𝑎𝑛 + 𝑏𝑛 
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Secret Sharing Homomorphisms 
THRESHOLD 

 

Secret:  𝑃1(0)  –  Shares:  𝑃1(1), 𝑃1(2), …, 𝑃1(𝑛) 
Secret:  𝑃2(0)  –  Shares:  𝑃2(1), 𝑃2(2), …, 𝑃2(𝑛) 
 

Secret sum:  𝑃1(0) + 𝑃2(0) 

Share sums:  𝑃1(1) + 𝑃2(1), 𝑃1(2) + 𝑃2(2), …, 𝑃1(𝑛) + 𝑃2(𝑛) 
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Threshold Encryption 
 

I want to encrypt a secret message 𝑀 for a set of 
𝑛 recipients such that 

 

 any 𝑘 of the 𝑛 recipients can uniquely decrypt 
the secret message 𝑀, 

but any set of fewer than 𝑘 recipients has no 
information whatsoever about the secret 
message 𝑀. 
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Recall Diffie-Hellman 

February 17, 2011 Practical Aspects of Modern Cryptography 

Alice 

• Randomly select a 

large integer 𝑎 and 

send 𝐴 = 𝑔𝑎 mod 𝑝. 

• Compute the key       

𝐾 = 𝐵𝑎 mod 𝑝. 

Bob 

• Randomly select a 

large integer 𝑏 and 

send 𝐵 = 𝑔𝑏 mod 𝑝. 

• Compute the key       

𝐾 = 𝐴𝑏 mod 𝑝. 

 

𝐵𝑎  =  𝑔𝑏𝑎  =  𝑔𝑎𝑏  =  𝐴𝑏  
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ElGamal Encryption 
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ElGamal Encryption 
 Alice selects a large random private key 𝑎 and computes 

an associated public key       𝐴 = 𝑔𝑎 mod 𝑝. 
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ElGamal Encryption 
 Alice selects a large random private key 𝑎 and computes 

an associated public key       𝐴 = 𝑔𝑎 mod 𝑝. 

 To send a message 𝑀 to Alice, Bob selects a random value 
𝑟 and computes the pair 
 (𝑋, 𝑌)  =  (𝐴𝑟𝑀 mod 𝑝, 𝑔𝑟

 
mod 𝑝). 
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ElGamal Encryption 
 Alice selects a large random private key 𝑎 and computes 

an associated public key       𝐴 = 𝑔𝑎 mod 𝑝. 

 To send a message 𝑀 to Alice, Bob selects a random value 
𝑟 and computes the pair 
 (𝑋, 𝑌)  =  (𝐴𝑟𝑀 mod 𝑝, 𝑔𝑟

 
mod 𝑝). 

 To decrypt, Alice computes 

                     𝑋/𝑌𝑎 mod 𝑝 =  𝐴𝑟𝑀/𝑔𝑟𝑎 mod 𝑝 =  𝑀. 
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ElGamal Re-Encryption 
If 𝐴 = 𝑔𝑎 mod 𝑝 is a public key and the pair 

 (𝑋, 𝑌)  =  (𝐴𝑟𝑀 mod 𝑝, 𝑔𝑟
 
mod 𝑝) 

   is an encryption of message 𝑀, then for any value 𝑐, the 
pair 
(𝐴𝑐𝑋, 𝑔𝑐𝑌)  =  (𝐴𝑐+𝑟𝑀 mod 𝑝, 𝑔𝑐+𝑟

 
mod 𝑝) 

   is an encryption of the same message 𝑀, for any value 𝑐. 
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Group ElGamal Encryption 
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Group ElGamal Encryption 
 Each recipient selects a large random private key 𝑎𝑖 

and computes an associated public key                    
𝐴𝑖 =  𝑔

𝑎𝑖  mod 𝑝. 
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Group ElGamal Encryption 
 Each recipient selects a large random private key 𝑎𝑖 

and computes an associated public key                    
𝐴𝑖 =  𝑔

𝑎𝑖  mod 𝑝. 

 The group key is 𝐴 =   𝐴𝑖mod 𝑝 =  𝑔
 𝑎𝑖  mod 𝑝. 
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Group ElGamal Encryption 
 Each recipient selects a large random private key 𝑎𝑖 

and computes an associated public key                    
𝐴𝑖 =  𝑔

𝑎𝑖  mod 𝑝. 

 The group key is 𝐴 =   𝐴𝑖mod 𝑝 =  𝑔
 𝑎𝑖  mod 𝑝. 

 To send a message 𝑀 to the group, Bob selects a 
random value 𝑟 and computes the pair                     
(𝑋, 𝑌)  =  (𝐴𝑟𝑀 mod 𝑝, 𝑔𝑟

 
mod 𝑝). 
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Group ElGamal Encryption 
 Each recipient selects a large random private key 𝑎𝑖 

and computes an associated public key                    
𝐴𝑖 =  𝑔

𝑎𝑖  mod 𝑝. 

 The group key is 𝐴 =   𝐴𝑖mod 𝑝 =  𝑔
 𝑎𝑖  mod 𝑝. 

 To send a message 𝑀 to the group, Bob selects a 
random value 𝑟 and computes the pair                     
(𝑋, 𝑌)  =  (𝐴𝑟𝑀 mod 𝑝, 𝑔𝑟

 
mod 𝑝). 

 To decrypt, each group member computes                     
𝑌𝑖 = 𝑌

𝑎𝑖  mod 𝑝.  The message 𝑀 =  𝑋/ 𝑌𝑖mod 𝑝. 
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Threshold Encryption (ElGamal) 
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Threshold Encryption (ElGamal) 
 Each recipient selects 𝑘 large random secret coefficients 
𝑎𝑖,0, 𝑎𝑖,1, …, 𝑎𝑖,𝑘−2, 𝑎𝑖,𝑘−1 and forms the polynomial 

𝑃𝑖 𝑥 = 𝑎𝑖,𝑘−1𝑥
𝑘−1 + 𝑎𝑖,𝑘−2𝑥

𝑘−2 +⋯+ 𝑎𝑖,1𝑥 + 𝑎𝑖,0 
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Threshold Encryption (ElGamal) 
 Each recipient selects 𝑘 large random secret coefficients 
𝑎𝑖,0, 𝑎𝑖,1, …, 𝑎𝑖,𝑘−2, 𝑎𝑖,𝑘−1 and forms the polynomial 

𝑃𝑖 𝑥 = 𝑎𝑖,𝑘−1𝑥
𝑘−1 + 𝑎𝑖,𝑘−2𝑥

𝑘−2 +⋯+ 𝑎𝑖,1𝑥 + 𝑎𝑖,0 

 Each polynomial 𝑃𝑖(𝑥) is then verifiably shared with the 
other recipients by distributing each 𝑔𝑎𝑖,𝑗. 
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Threshold Encryption (ElGamal) 
 Each recipient selects 𝑘 large random secret coefficients 
𝑎𝑖,0, 𝑎𝑖,1, …, 𝑎𝑖,𝑘−2, 𝑎𝑖,𝑘−1 and forms the polynomial 

𝑃𝑖 𝑥 = 𝑎𝑖,𝑘−1𝑥
𝑘−1 + 𝑎𝑖,𝑘−2𝑥

𝑘−2 +⋯+ 𝑎𝑖,1𝑥 + 𝑎𝑖,0 

 Each polynomial 𝑃𝑖(𝑥) is then verifiably shared with the 
other recipients by distributing each 𝑔𝑎𝑖,𝑗. 

 The joint (threshold) public key is  𝑔𝑎𝑖,0. 
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Threshold Encryption (ElGamal) 
 Each recipient selects 𝑘 large random secret coefficients 
𝑎𝑖,0, 𝑎𝑖,1, …, 𝑎𝑖,𝑘−2, 𝑎𝑖,𝑘−1 and forms the polynomial 

𝑃𝑖 𝑥 = 𝑎𝑖,𝑘−1𝑥
𝑘−1 + 𝑎𝑖,𝑘−2𝑥

𝑘−2 +⋯+ 𝑎𝑖,1𝑥 + 𝑎𝑖,0 

 Each polynomial 𝑃𝑖(𝑥) is then verifiably shared with the 
other recipients by distributing each 𝑔𝑎𝑖,𝑗. 

 The joint (threshold) public key is  𝑔𝑎𝑖,0. 

 Any set of 𝑘 recipients can form the secret key  𝑎𝑖,0 to 
decrypt. 
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