
VON NEUMANN
COMPUTING

Past and Future

What is not VN

1944, Harvard Mark I: hard-wired calculator
for ballistic firing calculations

Think of this as an ASIC

What is not VN

1944, Harvard Mark I: hard-wired calculator
for ballistic firing calculations

Think of this as an ASIC

The first bug

From Grace Hopper’s notebook, 1945

What do we mean by VN
computing?

Stored program / data

Fetch / Execute

Conditional branch

VN

1942, ENIAC: 18K vacuum tubes, 180Kw
power, base-10 arithmetic, clock-cycle ~ 5KHz

A VN Execution Algorithm

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

Topics for the next two hours

How do you make VN execution efficient?

exploit locality, parallelism, predictability

What constrains VN execution?

limits on locality, parallelism, and predictability

Where do we go in a post-VN world?

Multiprocessors

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

To save on cost,
memory is slow

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

To save on cost,
memory is slow

This interface is too general

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

To save on cost,
memory is slow

This interface is too general
This process is sequential!

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

To save on cost,
memory is slow

Caches: Making memory
appear dense and fast

Why is it slow? - The Memory Wa!

Memory technologies:
1T memory cell: DRAM
6T memory cell: SRAM
12-15T memory cell: FF

others:
3,4,5T SRAM-ish cells

Dense
Slow

Sparse
Fast

Memory/CPU
communication technologies

On-chip
Pro: Fast, wide, “controllable”
Con: Limited

Off-chip wide:
Pro: well understood, lots of pins for communication
Con: hard to keep in sync, thus slow per-pin speed

Off-chip narrow:
Pro: less pins (pins are expensive), high per-pin speed
Con: more difficult to engineer, IP heavy landscape

The memory wall

Historically,
processor speed

increased 60%/year

Memory “speed” ~ 9%

Favored solution: caching

SRAM DRAM

Caches, are small fast memories
that hold copies of data from larger,

slow devices

Favored solution: caching

SRAM DRAMSRAM

Caches, are small fast memories
that hold copies of data from larger,

slow devices

Favored solution: caching

SRAM DRAMSRAMSRAM

Caches, are small fast memories
that hold copies of data from larger,

slow devices

What goes in a cache?

Items that are accessed, and items around those just
accessed

Why does this work?

Temporal locality: we’! likely see this thing again

Spatial locality: we’! likely need something nearby

CPU

Instruction
Cache

Data
Cache

L2
Cache

Memory

PC
PC+4
PC+8
PC+12
PC
PC+4
...

A[1]
B[400]
A[2]
B[500]
...

What limits caching?

The three C’s: Capacity, Conflicts, and Cold misses

Capacity: need more cache

Conflicts: need different cache geometry

Cold: need to guess what to put into the cache
before it is requested

What limits caching

Cache size: ultimately, a larger cache is a slower cache
(wire delay)

Conflict misses just happen: even the best hash
functions in the world collide on something

Cold misses can’t be totally eliminated: A [B[n]]

Summary: memory

People need a dense fast storage technology

It doesn’t exist. Thus, we try and approximate it
with a caching system

Caching is highly effective for small-footprint
applications (read: not databases!)

Caching has its limitations: inherent non-locality left in
instruction and data streams

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

This interface is too general

In the beginning...
In the beginning there
was the accumulator

ALU

ACC Addr

Mem

ADD
; ACC <- ACC + M[Addr]

MOVE-TO-ADDR
; Addr = Acc

MEM-TO-ACC
; Acc = M[Addr]

CONSTANT-TO-ADDR #
; Addr = #

ACC-TO-MEM
; M[Addr] = Acc

Then they thought two
would be nice

ALU

AX BX

Mem

CX DX

And maybe a few more

ALU

AX BX

Mem

CX DX SI DI

And some generality

CISC
Complex Instruction Set Computing

What were they thinking?

Assembly programmers would like a rich, expressive
instruction set. Something that would let them type:

ADD R1, R2, R3

ADD A, B, C

etc

CISC

In reality, almost all code is written in a high-level
language.

Compilers do a poor job of assigning instructions to
expressions => no wonder, its NP hard!

Complex instructions are rarely used, yet need to be
supported for legacy binary compatibility => bear to
support!

RISC

Reduced instruction set architecture

Few basic operands: add, nand, xor, load, store

Many general-purpose registers with no special-case
semantics => semantics can be done in software only

In the extreme, expose complexities of hardware to
software: branch delay slots, load interlocks

CISC or RISC?

Many academics will argue RISC is better

Simpler hardware => easier to build

Simpler hardware => tune for speed

Truth is, people don’t buy processors for their elegance

CISC can, with effort, be made just as fast as RISC

Binary compatibility matters

Summary: execution
interface

Constrain operation semantics to simplify and speedup
software

Register files: software managed caches

RISC vs. CISC: the market decides the winner, not the
technology

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

This process is sequential!

Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:
instruction overlap in a pipeline
executing instructions in parallel (later, with multiple instruction
issue)

In contrast to:
loop-level parallelism (medium-grained)
process-level or task-level or thread-level parallelism (coarse-
grained)

Classic 5-Stage MIPS

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD

W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Not that simple!
pipeline hazards (structural, data, control)

place a soft “limit” on the number of stages

increase instruction latency (a little)
write & read pipeline registers for data that is computed in a stage

time for clock & control lines to reach all stages

all stages are the same length which is determined by the longest stage

stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer

Pipelining

Structural hazards

Data hazards

Control hazards

What happens on a hazard
instruction that caused the hazard & previous instructions
complete
all subsequent instructions stall until the hazard is removed
(in-order execution)
instructions that depend on that instruction stall
(out-of-order execution)

Hazards

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Cause:
an instruction early in the pipeline needs the result produced by an
instruction farther down the pipeline before it is written to a register
would not have occurred if the implementation was not pipelined

Types
RAW (data: flow), WAR (name: antidependence), WAW (name: output)

HW solutions
forwarding hardware (eliminate the hazard)
stall via pipelined interlocks

Compiler solution
code scheduling (for loads)

Data Hazards

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Forwarding

Forwarding unit checks to see if values must be forwarded:
between instructions in ID and EX

compare the R-type destination register number in EX/MEM pipeline
register to each source register number in ID/EX

between instructions in ID and MEM
compare the R-type destination register number in MEM/WB to each
source register number in ID/EX

If a match, then forward the appropriate result values to an
ALU source

bus a value from EX/MEM or MEM/WB to an ALU source

Forwarding Implementation

Control Hazards

Cause: condition & target determined after next fetch

Early HW solutions
stall
assume an outcome & flush pipeline if wrong
move branch resolution hardware forward in the pipeline

Compiler solutions
code scheduling
static branch prediction

Today’s HW solutions
dynamic branch prediction

38

Pipeline Performance
Pipeline CPI = Ideal pipeline CPI + Structural Stalls +
Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI: measure of the maximum performance
attainable by the implementation

–Structural hazards: HW cannot support this combination of
instructions

–Data hazards: Instruction depends on result of prior instruction
still in the pipeline

–Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches, jumps, exceptions)

Review: Types of Data Hazards

Consider executing a sequence of
 rk ← (ri) op (rj)
type of instructions

Data-dependence
r3 ← (r1) op (r2) Read-after-Write
r5 ← (r3) op (r4) (RAW) hazard

Anti-dependence
r3 ← (r1) op (r2) Write-after-Read
r1 ← (r4) op (r5) (WAR) hazard

Output-dependence
r3 ← (r1) op (r2) Write-after-Write
r3 ← (r6) op (r7) (WAW) hazard

Complex Pipelining

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Pipelining becomes complex when we want high
performance in the presence of:

• Long latency or partially pipelined floating-point units
• Multiple function and memory units
• Memory systems with variable access time
• Precise exceptions

Complex In-Order Pipeline

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed (one
inst. in & one inst. out every cycle)

– Instructions commit in order, simplifies
precise exception implementation Commit

Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed (one
inst. in & one inst. out every cycle)

– Instructions commit in order, simplifies
precise exception implementation Commit

Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased
writeback latency from
slowing down single cycle
integer operations?

Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed (one
inst. in & one inst. out every cycle)

– Instructions commit in order, simplifies
precise exception implementation Commit

Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased
writeback latency from
slowing down single cycle
integer operations?

Bypassing

Complex In-Order Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the instructions in all the
functional units

The following checks need to be made before the Issue stage can dispatch an
instruction

Is the required function unit available?
Is the input data available? ⇒ RAW?
Is it safe to write the destination? ⇒ WAR? WAW?

Is there a structural conflict at the WB stage?

Scoreboard for In-Order Issue

Busy[FU#] : a bit-vector to indicate FU’s availability.
 (FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for
which writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

In-Order Issue Limitations

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

(underline indicates cycle when instruction writes back)

In-Order Issue Limitations

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-order restriction prevents instruction 4
from being dispatched

(underline indicates cycle when instruction writes back)

Out-of-Order Issue

Issue stage buffer holds multiple instructions waiting to issue.

Decode adds next instruction to buffer if there is space and the instruction does not
cause a WAR or WAW hazard.

Any instruction in buffer whose RAW hazards are satisfied can be issued (for now at
most one dispatch per cycle). On a write back (WB), new instructions may get
enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

In-Order Issue Limitations Again

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-Order Issue Limitations Again

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

How many instructions can be in the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

How many instructions can be in the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Number of Registers

How many instructions can be in the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Number of Registers

Control transfers

How many instructions can be in the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement !

Number of Registers

Control transfers

Overcoming the Lack of Register Names

Floating Point pipelines often cannot be kept filled
with small number of registers.
 IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

ILP via Renaming

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

34

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware?

ILP via Renaming

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

34

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

Register Renaming

• Decode does register renaming and adds instructions to the issue stage
reorder buffer (ROB)

 ⇒ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been satisfied can be
dispatched.

 ⇒ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Dataflow Execution

Instruction slot is candidate for execution when:
•It holds a valid instruction (“use” bit is set)
•It has not already started execution (“exec” bit is clear)
•Both operands are available (p1 and p2 are set)

Reorder buffer

t1

t2

.

.

.

tn

ptr2
next to

deallocate

 prt1

next
available

Ins# use exec op p1 src1 p2 src2

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

v1

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

v1

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

v1

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 1 1 0 LD

v1

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
 1 1 0 LD

v1

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
v1

 1 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
v1

 0

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

v1
v1

 0

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2

 2 1 0 LD
v1

v1
 0

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2

v1
v1

 0
 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2
 3 1 0 MUL 0 t2 1 v1

t3

v1
v1

 0
 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

v1
v1

 0
 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2

t4

 3 1 0 MUL 0 t2 1 v1

t3

v1
v1

 0

 4 1 1 SUB 1 v1 1 v1

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t2
 5 1 0 DIV 1 v1 0 t4

t4

 3 1 0 MUL 0 t2 1 v1

t3

v1
v1

 0

 4 1 1 SUB 1 v1 1 v1

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 5 1 0 DIV 1 v1 0 t4

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 0

 4 1 1 SUB 1 v1 1 v1

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 5 1 0 DIV 1 v1 0 t4

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 0

 4 0

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 5 1 0 DIV 1 v1 0 t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 0

 4 0

v4

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 0

 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 0

 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 0

Renaming and Out-of-Order Issue

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1

t2

t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t3

t5

v1
v1

 0

 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 0
 3 1 0 MUL 1 v2 1 v1

Simplifying Allocation & Deallocation

Instruction buffer is managed circularly
•“exec” bit is set when instruction begins execution
• When an instruction completes, its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1

t2

.

.

.

tn

ptr2
next to

deallocate

 prt1

next
available

Ins# use exec op p1 src1 p2 src2

Effectiveness?

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.
 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.
 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

VN execution inefficiencies

while (1) {
 instruction = memory [state.PC];
 state = exec(instruction, state);
}

Branch Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

How many instructions
need to be killed on a
misprediction?

Modern processors may
have > 10 pipeline stages
between next pc calculation
and branch resolution !

Average Run-Length Between Branches

Average dynamic instruction mix from SPEC92:
 SPECint92 SPECfp92
 ALU 39 % 13 %
 FPU Add 20 %
 FPU Mult 13 %
 load 26 % 23 %
 store 9 % 9 %
 branch 16 % 8 %
 other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between

branches?

Control Flow Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch
Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

Control Flow Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

Reducing Control Flow Penalty

Software solutions
• Eliminate branches - loop unrolling
 Increases the run length
• Reduce resolution time - instruction scheduling
 Compute the branch condition as early
 as possible (of limited value)

Hardware solutions
• Find something else to do - delay slots
 Replaces pipeline bubbles with useful work
 (requires software cooperation)
• Speculate - branch prediction

Speculative execution of instructions beyond the
branch

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to state following branch

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:

JZ

backward
90%

forward
50%

JZ

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

JZ

backward
90%

forward
50%

JZ

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

JZ

backward
90%

forward
50%

JZ

Dynamic Branch Prediction:
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

Branch Prediction Bits

Assuming 2-bit predictor (saturating counter)

Branch History Table

0 0Fetch PC

Branch History Table

0 0Fetch PC

I-Cache

Opcode offset
Instruction

Branch History Table

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

Branch History Table

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[i] < 7) then
 y += 1;
if (x[i] < 5) then
 c -= 4;

If first condition false, second condition also false

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last
N branches executed by the processor

if (x[i] < 7) then
 y += 1;
if (x[i] < 5) then
 c -= 4;

If first condition false, second condition also false

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in Taken/
¬Taken results of
each branch

2-bit global branch
history shift register

Taken/¬Taken?

What About Target Address?

What About Target Address?

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPbpredicted

target BP

 target

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

k entries
(typically k=8-16)

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

Push call address when
function call executed

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

k entries
(typically k=8-16)

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

&fc()

Push call address when
function call executed

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

k entries
(typically k=8-16)

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

&fc()

Push call address when
function call executed

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

Subroutine Address Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

Putting It Together

RAS
T/NT

Predictor
BTB +4 ALU

PCOpcode

AND

Misprediction Recovery

In-order execution machines:
– Assume no instruction issued after branch can write-back before

branch resolves
– Kill all instructions in pipeline behind mispredicted branch

Misprediction Recovery

In-order execution machines:
– Assume no instruction issued after branch can write-back before

branch resolves
– Kill all instructions in pipeline behind mispredicted branch

Out-of-order execution?

Misprediction Recovery

In-order execution machines:
– Assume no instruction issued after branch can write-back before

branch resolves
– Kill all instructions in pipeline behind mispredicted branch

–Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

Limits of ILP

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data-Level Parallelism
• MIMD ⇒ Thread-Level Parallelism
• MIMD popular because

–Flexible: N programs or 1 multithreaded program
–Cost-effective: same MPU in desktop & MIMD machine

Single Instruction, Single Data
(SISD)
(Uniprocessor)

Single Instruction, Multiple
Data SIMD
(single PC: Vector, CM-2)

Multiple Instruction, Single
Data (MISD)
(Stream?)

Multiple Instruction, Multiple
Data MIMD
(Clusters, SMP servers)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

MIMD Multiprocessors

Centralized Shared Memory Distributed Shared Memory

Centralized-Memory Machines

• Also “Symmetric Multiprocessors” (SMP)
• “Uniform Memory Access” (UMA)

–All memory locations have similar latencies
–Data sharing through memory reads/writes
–P1 can write data to a physical address A,
P2 can then read physical address A to get that data

• Problem: Memory Contention
–All processor share the one memory
–Memory bandwidth becomes bottleneck
–Used only for smaller machines

»Most often 2,4, or 8 processors

Distributed-Memory Machines

• Two kinds
–Distributed Shared-Memory (DSM)

»All processors can address all memory locations
»Data sharing like in SMP
»Also called NUMA (non-uniform memory access)
»Latencies of different memory locations can differ

(local access faster than remote access)
–Message-Passing

»A processor can directly address only local memory
»To communicate with other processors,

must explicitly send/receive messages
»Also called multicomputers or clusters

• Most accesses local, so less memory contention
(can scale to well over 1000 processors)

Message-Passing Machines

• A cluster of computers
–Each with its own processor and memory
–An interconnect to pass messages between them
–Producer-Consumer Scenario:

»P1 produces data D, uses a SEND to send it to P2
»The network routes the message to P2
»P2 then calls a RECEIVE to get the message

–Two types of send primitives
»Synchronous: P1 stops until P2 confirms receipt of message
»Asynchronous: P1 sends its message and continues

–Standard libraries for message passing:
Most common is MPI – Message Passing Interface

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model

» global shared address space
» not worry about data locality but

get better performance when program for data placement
 lower latency when data is local

• but can do data placement if it is crucial, but donʼt have to
» hardware maintains data coherence

• synchronize to order processorʼs accesses to shared data
» like uniprocessor code so parallelizing by programmer or compiler is

easier
⇒ can focus on program semantics, not interprocessor communication

Shared Memory vs. Message Passing
Shared memory

+ low latency (no message passing software) but
overlap of communication & computation
latency-hiding techniques can be applied to message passing

machines
+ higher bandwidth for small transfers but

usually the only choice

Shared Memory vs. Message Passing

Message passing
+ abstraction in the programming model encapsulates the communication

costs but
more complex programming model
additional language constructs
need to program for nearest neighbor communication

+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?
+ more scalable (memory latency doesnʼt scale with the number of

processors) but
large-scale SM has distributed memory also
• hah! so youʼre going to adopt the message-passing model?

Shared Memory vs. Message Passing

Why there was a debate
• little experimental data
• not separate implementation from programming model
• can emulate one paradigm with the other

» MP on SM machine
message buffers in local (to each processor) memory
 copy messages by ld/st between buffers

» SM on MP machine
ld/st becomes a message copy
 sloooooooooow

Who won?

Challenges of Parallel Processing

• Big challenge is % of program that is inherently
sequential
– What does it mean to be inherently sequential?

• Suppose 80X speedup from 100 processors.
What fraction of original program can be
sequential?
a.10%
b.5%
c.1%
d.<1%

Symmetric Shared-Memory Architectures
• From multiple boards on a shared bus to

multiple processors inside a single chip
• Caches both

–Private data are used by a single processor
–Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data, memory
bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

u :5

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

u :5
1

u :5

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

u :5
1

u :5

2

u :5

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

u :5
1

u :5

2

u :5

3

u = 7

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Example Cache Coherence Problem

–Processors see different values for u after event 3
–With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
»Processes accessing main memory may see very stale
value

–Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

Cache Coherence Definition

• A memory system is coherent if
1. A read R from address X on processor P1 returns

the value written by the most recent write W to X
on P1 if no other processor has written to X
between W and R.

2. If P1 writes to X and P2 reads X after a sufficient
time, and there are no other writes to X in between,
P2’s read returns the value written by P1’s write.

3. Writes to the same location are serialized: two
writes to location X are seen in the same order by
all processors.

Cache Coherence Definition

• Property 1. preserves program order
–It says that in the absence of sharing, each processor behaves

as a uniprocessor would
• Property 2. says that any write to an address

must eventually be seen by all processors
–If P1 writes to X and P2 keeps reading X,

P2 must eventually see the new value
• Property 3. preserves causality

–Suppose X starts at 0. Processor P1 increments X and
processor P2 waits until X is 1 and then increments it to 2.
Processor P3 must eventually see that X becomes 2.

–If different processors could see writes in different order, P2 can
see P1’s write and do its own write, while P3 first sees the write
by P2 and then the write by P1. Now we have two processors
that will forever disagree about the value of A.

Maintaining Cache Coherence

• Hardware schemes
–Shared Caches

»Trivially enforces coherence
»Not scalable (L1 cache quickly becomes a bottleneck)

–Snooping
»Needs a broadcast network (like a bus) to enforce

coherence
»Each cache that has a block tracks its sharing state on its

own
–Directory

»Can enforce coherence even with a point-to-point network
»A block has just one place where its full sharing state is kept

Snooping
• Typically used for bus-based (SMP) multiprocessors

– Serialization on the bus used to maintain coherence property 3

• Two flavors
–Write-update (write broadcast)

» A write to shared data is broadcast to update all copies
» All subsequent reads will return the new written value (property 2)
» All see the writes in the order of broadcasts

One bus == one order seen by all (property 3)
–Write-invalidate

» Write to shared data forces invalidation of all other cached copies
» Subsequent reads miss and fetch new value (property 2)
» Writes ordered by invalidations on the bus (property 3)

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on the shared medium
(bus or switch)
–relevant transaction if for a block it contains
–take action to ensure coherence

»invalidate, update, or supply value
–depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or
update all copies on write

State

Address

Data

Snooping Implementation

How the bus is used
• broadcast medium (total ordering, yay)
• entire coherency operation is atomic wrt other processors

» keep-the-bus protocol: master holds the bus until the entire operation
has completed

» split-transaction buses:
• request & response are different phases
• state value that indicates that an operation is in progress
• do not initiate another operation for a cache block that has one in

progress

Update vs. Invalidate
• A burst of writes by a processor to one addr

– Update: each sends an update
– Invalidate: possibly only the first invalidation is sent

• Writes to different words of a block
– Update: update sent for each word
– Invalidate: possibly only the first invalidation is sent

• Producer-consumer communication latency
– Update: producer sends an update,

consumer reads new value from its cache
– Invalidate: producer invalidates consumer’s copy,

consumer’s read misses and has to request the block

• Which is better depends on application
– But write-invalidate is simpler and implemented in most MP-capable

processors today

MSI Snoopy Protocol

• State of block B in cache C can be
–Invalid: B is not cached in C

»To read or write, must make a request on the bus
–Modified: B is dirty in C

»C has the block, no other cache has the block,
and C must update memory when it displaces B

»Can read or write B without going to the bus
–Shared: B is clean in C

»C has the block, other caches have the block,
and C need not update memory when it displaces B

»Can read B without going to bus
»To write, must send an upgrade request to the bus

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Cache state in
processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

 Read
 miss

Cache state in
processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

 Read
 miss

Read by any
 processor Cache state in

processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

 Read
 miss

Other processor
intent to write

Read by any
 processor Cache state in

processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor Cache state in

processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Other processor
intent to write

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
P1 writes back

Two Processor Example
(Reading and writing the same cache line)

M

S I

P1

M

S I

P2

Two Processor Example
(Reading and writing the same cache line)

M

S I

P1

M

S I

P2

P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1

M

S I

P2

P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1

M

S I

P2

P1 reads
P1 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P1

M

S I

P2

P1 reads
P1 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P1 reads
or writes

P1

M

S I

P2

P1 reads
P1 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P1 reads
or writes

P1

M

S I

P2

P1 reads
P1 writes
P2 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P1 reads
or writes

P1

M

S I
 Read
 miss

P2

P1 reads
P1 writes
P2 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2

P1 reads
P1 writes
P2 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2

P1 reads
P1 writes
P2 reads
P2 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2

P1 reads
P1 writes
P2 reads
P2 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P2

P1 reads
P1 writes
P2 reads
P2 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes
P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes
P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I
 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P1

M

S I

Write miss

 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

Two Processor Example
(Reading and writing the same cache line)

M

S I
 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

 Read
 miss

P1 i
nten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P2 i
nten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

Observation

• If a line is in the M state then no other cache can
have a copy of the line!

– Memory stays coherent, multiple differing copies
 cannot exist

M

S I

Write miss

Other processor
intent to write

 Read
 miss

P1 i
nte

nt
to

write

Other processor
intent to write

Read by any
 processor

P1 reads
or writesOther processor reads

P1 writes back

Serialization is Important

Snooper Snooper Snooper Snooper

Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
• small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
 invalidation in L2 ⇒ invalidation in L1
• Snooping on L2 does not affect CPU-L1 bandwidth

 What problem could occur?

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Coherency Misses
1. True sharing misses arise from the communication of

data through the cache coherence mechanism
• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into
• Invalidation does not cause a new value to be communicated,

but only causes an extra cache miss
• Block is shared, but no word in block is actually shared

 ⇒ miss would not occur if block size were 1 word

Example: True v. False Sharing v. Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache block.
 P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

Coherence is not enough

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses to

different locations issued by a given process
–to preserve orders among accesses to same location by different

processes
• Coherence is not enough!

–pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P1
Pn

Conceptual

Picture

Implicit Memory Model
• Sequential consistency (SC) [Lamport]

–Result of an execution appears as if
• All operations executed in some sequential order
• Memory operations of each process in program order

• No caches, no write buffers

MEMORY

P1 P3P2 Pn

Implicit Memory Model
• Sequential consistency (SC) [Lamport]

–Result of an execution appears as if
• All operations executed in some sequential order
• Memory operations of each process in program order

• No caches, no write buffers

MEMORY

P1 P3P2 Pn

Two aspects:
Program order

Atomicity

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

If y is 11 then x cannot be 0

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

additional SC requirements

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

additional SC requirements

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

additional SC requirements

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor program
dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2
(X’= X)

additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

Sequential Consistency
• SC constrains all memory operations:

»Write → Read

»Write → Write

»Read → Read, Write

- Simple model for reasoning about parallel programs

- But, intuitively reasonable reordering of memory operations in a
uniprocessor may violate sequential consistency model

• Modern microprocessors reorder operations all the time to obtain
performance (write buffers, overlapped writes,non-blocking
reads…).

• Question: how do we reconcile sequential consistency model with
the demands of performance?

Blocking caches
One request at a time + CC ⇒ SC

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
 ⇒ Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address

Out-of-Order Loads/Stores & CC

Cache
Memorypushout (Wb-rep)

load/store
buffers

CPU

(S-req, E-req)

(S-rep, E-rep)

Wb-req, Inv-req, Inv-rep
snooper

(I/S/E)

CPU/Memory
Interface

SC is fragile
• Many common optimizations break it…
• Write Buffer
• Out-of-order execution
• Forwarding

Notes
- Sequential consistency is not really about memory

operations from different processors (although we do
need to make sure memory operations are atomic).

- Sequential consistency is not really about dependent
memory operations in a single processor’s instruction
stream (these are respected even by processors that
reorder instructions).

- The problem of relaxing sequential consistency is
really all about independent memory operations in a
single processor’s instruction stream that have some
high-level dependence (such as locks guarding data)
that should be respected to obtain correct results.

Relaxing Program Orders
- Weak ordering:

- Divide memory operations into data operations and synchronization
operations

- Synchronization operations act like a fence:

- All data operations before synch in program order must complete
before synch is executed

- All data operations after synch in program order must wait for synch to
complete

- Synchs are performed in program order

- Implementation of fence: processor has counter that is incremented when
data op is issued, and decremented when data op is completed

- Example: PowerPC has SYNC instruction (caveat: semantics somewhat
more complex than what we have described…)

Another model: Release consistency
- Further relaxation of weak consistency

- Synchronization accesses are divided into
- Acquires: operations like lock
- Release: operations like unlock

- Semantics of acquire:
- Acquire must complete before all following memory accesses

- Semantics of release:
- all memory operations before release are complete
- but accesses after release in program order do not have to wait

for release
- operations which follow release and which need to wait must be

protected by an acquire

Some Current System-Centric Models

SYNCPowerPC

various MEMBARsRMO

MB, WMBAlpha

release, acquire,
nsync, RMW

RCpc

release, acquire,
nsync, RMW

RCsc

synchronizationWO

RMW, STBARPSO

RMWPC

RMWTSO

serialization
instructions

IBM 370

Safety NetRead Own
Write Early

Read Others’
Write Early

R →RW
Order

W →W
Order

W →R
Order

Relaxation:

It is all about the interfaces

Synchronization
• Shared counter/sum update example

–Use a mutex variable for mutual exclusion
–Only one processor can own the mutex

»Many processors may call lock(), but
only one will succeed (others block)

»The winner updates the shared sum,
then calls unlock() to release the mutex

»Now one of the others gets it, etc.
–But how do we implement a mutex?

»As a shared variable (1 – owned, 0 –free)

Locking
• Releasing a mutex is easy

–Just set it to 0
• Acquiring a mutex is not so easy

–Easy to spin waiting for it to become 0
–But when it does, others will see it, too
–Need a way to atomically

see that the mutex is 0 and set it to 1

Atomic Read-Update Instructions

• Atomic exchange instruction
–E.g., EXCH R1,78(R2) will swap content of register
R1 and mem location at address 78+R2

–To acquire a mutex, 1 in R1 and EXCH
»Then look at R1 and see whether mutex acquired
»If R1 is 1, mutex was owned by somebody else

and we will need to try again later
»If R1 is 0, mutex was free and we set it to 1,

which means we have acquired the mutex

• Other atomic read-and-update instructions
–E.g., Test-and-Set

LL & SC Instructions

• Atomic instructions OK, but specialized
–E.g., SWAP can not atomically inc a counter

• Idea: provide a pair of linked instructions
• A load-linked (LL) instruction

–Like a normal load, but also remembers the address
in a special “link” register

• A store-conditional (SC) instruction
–Like a normal store, but fails if its address is not the
same as that in the link register

–Returns 1 if successful, 0 on failure
• Writes by other processors snooped

–If address matches link address, clear link register

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

• increases bus utilization (and reduces
 processor stall time), especially in split-
 transaction buses

• reduces cache ping-pong effect because
 processors trying to acquire a semaphore do
 not have to perform a store each time

Using LL & SC

swap: mov R3, R4

 ll R2,0(R1)

 sc R3,0(R1)

 beqz R3,swap

 mov R4,R2

Atomic Exchange

upd: ll R2,0(R1)

 add R3,R2,R4

 sc R3,0(R1)

 beqz R3,upd

Atomic Add to Shared Variable

t&s: mov R3,1

 ll R2,0(R1)

 sc R3,0(R1)

 bnez R2,t&s

 beqz R3,t&s

Atomic Test&Set
Swap R4 w/ 0(R1) Test if 0(R1) is zero, set to one

Implementing Locks
• A simple swap (or test-and-set) works

–But causes a lot of invalidations
»Every write sends an invalidation
»Most writes redundant (swap 1 with 1)

• More efficient: test-and-swap
–Read, do swap only if 0

»Read of 0 does not guarantee success (not
atomic)

»But if 1 we have little chance of success
–Write only when good chance we will succeed

Large-Scale Systems: Locks
• Contention even with test-and-test-and-set

–Every write goes to many, many spinning procs
–Making everybody test less often reduces contention for high-

contention locks but hurts for low-contention locks
–Solution: exponential back-off

» If we have waited for a long time, lock is probably high-contention
» Every time we check and fail, double the time between checks

• Fast low-contention locks (checks frequent at first)
• Scalable high-contention locks (checks infrequent in long waits)

–Special hardware support
–Queuing locks

What Are the Problems With Locks?
• Mapping between data->locks

–Deadlocks
–Races
–Composability?

• Mmm, DB?
–Optimistic concurrency

What If you Had Multi-Word LL-SC?
• Plus the ability to execute stores speculatively
• => Transactional Memory

–Speculative execution + monitor CC trafic

Barrier Synchronization
• All must arrive before any can leave

–Used between different parallel sections
• Uses two shared variables

–A counter that counts how many have arrived
–A flag that is set when the last processor arrives

Simple Barrier Synchronization

lock(counterlock);

 if(count==0) release=0; /* First resets release */

 count++; /* Count arrivals */

unlock(counterlock);

if(count==total){ /* All arrived */

 count=0; /* Reset counter */

 release = 1; /* Release processes */

}else { /* Wait for more to come */

 spin(release==1); /* Wait for release to be 1 */

}

• Problem: not really reusable
– Two processes: fast and slow
– Slow arrives first, reads release, sees 0
– Fast arrives, sets release to 1, goes on to execute other code,

comes to barrier again, resets release, starts spinning
– Slow now reads release again, sees 0 again
– Now both processors are stuck and will never leave

Correct Barrier Synchronization
localSense=!localSense; /* Toggle local sense */

lock(counterlock);

 count++; /* Count arrivals */

 if(count==total){ /* All arrived */

 count=0; /* Reset counter */

 release=localSense; /* Release processes */

 }

unlock(counterlock);

spin(release==localSense); /* Wait to be released */

• Release in first barrier acts as reset for second
–When fast comes back it does not change release,

it just waits for it to become 0
–Slow eventually sees release is 1, stops spinning,

does work, comes back, sets release to 0, and both go forward.

init: localSense = 0, release = 0

Large-Scale Systems: Barriers
• Barrier with many processors

–Have to update counter one by one – takes a long time
–Solution: use a combining tree of barriers

» Example: using a binary tree
» Pair up processors, each pair has its own barrier

• E.g. at level 1 processors 0 and 1 synchronize on one barrier, processors
2 and 3 on another, etc.

» At next level, pair up pairs
• Processors 0 and 2 increment a count a level 2, processors 1 and 3 just

wait for it to be released
• At level 3, 0 and 4 increment counter, while 1, 2, 3, 5, 6, and 7 just spin

until this level 3 barrier is released
• At the highest level all processes will spin and a few “representatives” will

be counted.
» Works well because each level fast and few levels

• Only 2 increments per level, log2(numProc) levels
• For large numProc, 2*log2(numProc) still reasonably small

Summary

No more ideas for ILP, must go TLP

To first order, no one understands how to program
multithreaded code (approximately nobody)

Brave new world for VN computing

