
�

Introduction
Moore’s Law� states that the number of transistors that can be
placed on a microchip at a reasonable price will double ap-
proximately every two years. For the last few decades, com-
putational throughput has tracked this growth. There are a few
reasons why this will not continue to be the case. As transistor
density grows, heat becomes an increasing issue. Also, as the
complexity of interactions between transistors grows, latency
between computational units becomes a factor. Importantly,
as the number of transistors grows, the latency of transistor
switching has not improved at nearly the same rate.

In order to continue to improve the total throughput of compu-
tational machines, one solution class is to increase the parallel-
ism of that computation. Hardware engineers are still able to
grow the size of multi-core machines, and the calculating com-
ponents of individual cores can be distributed across the chip
for the same exponential theoretical processing growth. Taking
advantage of the ability to perform portions of a calculation at
the same time requires different hardware approaches, and may
require increasing changes to software. Intel’s founder Andrew
Grove thinks this is the inflection point2 – “the time in the life
of a business when its fundamentals are about to change”.

We don’t really know how to program parallel computers ef-
ficiently - not even after decades of experience. They are much
more difficult to design and implement for than for sequential
ones. The kind of bugs that are common in parallel programs
are nondeterministic, difficult to find and fix. With multiple
processing units operating simultaneously, there isn’t even a
clear definition of “stopping” a computation before it’s com-
plete. There is also lack of good, scalable parallel algorithms.
Many parallel algorithms scale up to 8 cores, then there are no
more improvements – or the algorithm performs worse when
the number of cores increases.

Current Hardware Solutions
Hardware manufacturers have kept pace with Moore’s Law
in transistor density through 20043, but the limits of existing
technology for transistor density have caused the clock speed
to fall significantly off the curve4. The result is that proces-
sor architects have more aggressively started exploiting thread
level parallelism (TLP) by replicating cores, rather than trying
to find additional instruction level parallelism, or continue to
increase clock speed.

Application-Specific Integrated Circuits(ASICs)
An end-user’s experience of the speed of their computation is
based on the overall performance of the machine. An ASIC is a
custom-designed circuit that performs a specific function, such
as implementing a complete cellular telephone on a single chip.
With custom hardware, lower power consumption and explicit
hardware parallelism can be gained, and software developers
typically write only a hardware driver, which itself may be
purely sequential, or event-driven.

Instruction-Level Parallelism (ILP)
Instruction-level parallelism is the process of executing exist-
ing instruction code faster by executing it partially in parallel.
This is done using a handful of techniques:

Pipelining
Executing a single instruction requires fetching the instruc-
tion from cache or main memory, evaluting the instruction,
possibly determining a branch point, and possibly accessing
data from cache or main memory. The individual tasks of this
execution can be done concurrently by different transistors on a
single core. Like assembling a sandwich at Subway6, there are
multiple “stations” that each perform a portion of the operation
before passing it on to another worker. Although an individual
instruction won’t be executed any faster with this method,
the total throughput increase at the limit is porportional to the
number of stations.

Superscalar
Instead of starting one new instruction on each clock cycle, a
superscalar processor allows up to n instructions to be issued at
a time. Logically you can think of multiple pipelines all pull-
ing instuctions from the same isntruction stream. It is actually
quite rare that n instructions can all be initiated at a time, but
it isn’t uncommon to get more than one instruction issued per
clock.

Out-of-order Execution
Individual instructions can be reordered to take advantage of
their independence. If a particular instruction doesn’t have
a dependency on logically “previous” instructions, it can be
executed in tandem. This result can often be accomplished by
the compiler during its optimization phase.

Speculative Execution
While instruction reordering provides some benefits, there are

Parallel Processing

Chris Davis, Sonja Keserovic, Bryce Morsello, Sachin Patel, Colin Reid, Erick Smith

2

limits. Additional performance can be gleaned by executing
code speculatively, before the branch decision has been made.

Hardware Architecture
As the logical limits of optimizing single cores are approached,
hardware manufacturers are already creating multiprocessor
machines.
Shared vs. Distributed Memory
The hardware architecture of parallel computers can fall under
either of two categories: shared memory or distributed memory.
Shared memory refers to computers in which all processors
have access to all of the memory in a global address space.
Changes made to memory by one processor are visible to all of
the other processors. This requires cache coherency protocols
to ensure that all of the caches have a consistent view of mem-
ory. Shared memory computers can be further divided into two
categories: Uniform Memory Access (UMA) and Non-Uniform
Memory Access (NUMA). UMA machines are also know as
Symmetric Multiprocessor (SMP) machines, and are the typi-
cal architecture in today’s commercial multi-core machines,
such as Intel’s Core2 Duo. In these computers, processors have
equal access times to memory. In NUMA machines, there is
still a global address space, but access to a processor’s local
memory is faster than access to remote memory of another
processor.

The other category of parallel computers is distributed memory
systems. In distributed memory, processors have their own
local memory and there is no global address space. Instead,
in order to communicate with other processors, the program-
mer must explicitly define send and receive messages. The
network that allows communication between processors can
vary widely. For example, a cluster can be thought of as a
distributed memory system, where the method of communica-
tion is over Ethernet and commodity processors are used. Many
supercomputers use distributed memory, such as the Cray T3E
and IBM SP2.

Each type of system carries it advantages and disadvantages.
Shared memory provides the simplest programming model,
since there is a global address space. This is consistent with
uniprocessor machines, and the programmer does not have
to worry about data locality and sharing between processors.
However, the disadvantage is that it doesn’t scale well for a
large number of processors because access to memory becomes
a bottleneck and cache coherency protocols do not scale well.
In order to avoid memory bus contention, the processor to
memory communication can be implemented as a crossbar
switch, where every processor is connected to every memory
unit. However, there are still scaling issues because the size
of the crossbar switch increases proportionally to the number
of processors multiplied by the number of memory units. This
can lead to increased costs, the need to lower clock frequency,
and/or power issues.

The distributed memory systems solve these scalability issues,
as they can scale to thousands of processors. Each proces-

sor can access its own local memory without having to worry
about contention with other processors. However, the disad-
vantage is that it requires a new programming model, such as
the Message Passing Interface (MPI). So far, this has been the
main hindrance from wide-spread adoption.

In order to try to get the benefit of both approaches, a hybrid
approach called distributed/shared memory systems (DSM) has
been implemented. In this case, a block of CPUs are imple-
mented with shared memory and then multiple blocks are con-
nected through a network. The number of CPUs per block and
the network topology can vary between systems. Computing
clusters are a popular form of this, where each SMP is loosely
coupled with its own OS image, and the SMPs are connected
through a standard network. Supercomputers, such as the IBM
SP3, are now often implemented as a cluster that is highly
tuned and contains custom interconnects.

Multithreaded Processors
Historically, processor architects have investigated various
approaches for increasing the throughput of their machines.
One scheme for increasing utilization is to have more than one
instruction stream ready for execution at a given time; thereby
taking advantage of thread level parallelism (TLP). From the
operating systems perspective, more than one thread can be
scheduled for execution at a time. Early processors which
implemented this idea would switch threads if there was a
high latency operation running on one thread. This is known a
course grained multithreading.

Fine grained multithreading takes this idea a bit further. It
essentially switches between threads in a round robin fashion.
This hides instruction latencies of all kinds. The throughput
of the machine as a whole is increased at the expense of any
particular thread. The Cray/Tera MTA machine made extensive
use of this machine. In fact, they believed that this approach
could hide so much latency that they could even forgo the use
of processor side data caches.

Simultaneous Multithreading (SMT), an idea originating at the
University of Washington, extends this idea a bit more. Just as
out of order execution attempts to increase the pool of instruc-
tions available for execution by looking ahead in the instruc-
tion stream, SMT processors attempt to increase the size of this
pool of instructions by producing a set of available instructions
from multiple threads at the same time. The processor holds the
state for two or more threads at the same time. The operating
system will have scheduled both of the threads for execution,
and the processor itself will now find instructions ready for ex-
ecution from either instruction stream. With a relatively small
increase in transistors and complexity, you can theoretically
improve the throughput of the processor significantly. This
technique has been used in practice in a number of processors.
Digital Equipment Corp. built a version of the Alpha processor
with SMT support and the chip area only increased �5%, yet
the performance throughput for some applications was 3-4x.
Intel has shipped versions of the Pentium IV and Xeon proces-
sors with SMT support. The Intel brand name for this technol-

3

ogy is Hyperthreading. Sun and IBM also include SMT support
in their Niagara and Power processor brands.

Although SMT provides a number of performance benefits
with a minimal complexity overhead, it does have some short-
comings. For example, the performance of any one thread will
typically be lower, although throughput overall is increased.
Additionally, there are some scenarios were performance as a
whole can suffer. For example, because SMT processors don’t
duplicate most of the chip, but instead share the functional
units – similar to an ordinary out of order processor – the
threads may compete with each other. Consider a spin lock for
example? One thread spins doing useless work taking up pro-
cessor resources, while the other thread tries to get useful work
done. In this case throughput suffers. Another pitfall is cache
conflict. Intel had a problem in early HT processors where
the caches backing the stack for each thread would conflict
with each other, leading to high cache miss rates. These types
of problems can and have been mitigated, but are never fully
solved.

Single Instruction Multiple Data (SIMD)/Vector
Processors
In addition to increasing parallelism by finding instructions
which can execute at the same time, processor architects have
introduced special instructions known as SIMD instructions
which allow some level of explicit parallelism to be expressed
within a sequential instruction stream. For example, a single
SIMD instruction would operate on more than one piece of
data at a time. Imagine adding two long vectors together.
Instead of iterating through a loop once for each data item, you
could iterate fewer times, because at each iteration a SIMD in-
struction would let you perform the operation on multiple data
elements. This explicit parallelism (encoded in a sequential
instruction stream) allows for significant speed boosts in some
applications. Most modern processors support some form of
SIMD under the title of “Multimedia” instructions.

Supercomputers of the past also relied heavily on the vector
processing idea to increase parallelism – and thus performance.

Intel vs. AMD
Although IBM was first to manufacture a multicore design with
its PowerPC 970 in 2002, it is Intel and AMD’s products we
hear the most about. Both are similar in speed but with some
significant design differences.

AMD introduced a dual core Opteron chip in May 2005. This
was significant as it was the first mainstream offering of a dual
core chip in a consumer grade machine. Intel did not have a
dual core offering for over six months.

The Opteron chip contains two 32/64 bit cores on a single chip.
Each processor has a 64k L� cache (both data and instruc-
tion). There is also a separate � MB L2 cache per processor.
Fast on-chip communication between the two processors is

achieved through the system request interface (SRI). The SRI
handles the memory coherency responsibilities, ensuring both
processors see a single memory image. Requests to RAM (or
other processors) are implemented using the industry standard
HyperTransport technology (HT).

Intel introduced its Core Duo Pentium in early 2006. It contains
two 32-bit cores on a single chip. Each core has its own 32k
L� data and instruction cache. There is a single 2 MB (or 4MB
depending on chip interation) L2 cache that is shared between
processors. Fast on-chip communication between processors
occurs through shared memory (not using SRI). The Front Side
Bus (FSB) controller mediates transfers between the L2 cache
and RAM.

Why Can’t Sequential Processor
Performance Continue to Scale?
There are three main obstacles currently impeding this
continued growth:

�. The ILP Wall

2. The Power Wall

3. The Memory Wall

It is becoming increasingly hard to find additional In-
struction Level Parallelism (ILP) in a sequential instruc-
tion stream. Techniques such as Out of order execu-
tion, register renaming, branch prediction, speculation,
pipelining, superscalar, and vector operations have been
extremely beneficial in general. All of these schemes,
however, break down in some situations. For example,
control-dependent computation (with lots of branches) or
data-dependent memory addressing (ie, pointer chasing)
do not perform well with these schemes. In practice we
are limited to just a few instructions per clock cycle.

In the past, it was possible to keep power usage roughly
constant. However, this was typically accomplished
by reducing voltage as transistor sizes got smaller. The
voltage can’t be lowered much further, however. The
threshold voltage of the transistor is impeding further
reduction in voltage, and the result is increase power
usage per unit area. Static (leakage) power is also getting
worse as the voltages go down.

Processor performance has been growing much faster
than memory subsystem performance. If the proces-
sor can’t access memory fast enough, then the proces-
sor spends all its time waiting on memory. Techniques
have been employed to hide memory latencies, but as
the memory latencies increase these techniques are not
enough. Increasing cache sizes can help, but the increas-
es have to be significant to maintain throughput.

4

The designs of the AMD and Intel chips seem similar. The
main difference between both designs is the position of the L2
cache. In the AMD chip, the L2 is private to the owning pro-
cessor, while the Intel chip shares the L2 cache. For the AMD
chip, managing SRI on the “back” of L2 gives processors more
private memory but more importantly, the coherence informa-
tion can be easily combined with that of other processors, lead-
ing to a global architecture known as symmetric multiprocessor
(SMP). This also helps the AMD design scale better to larger
numbers of cores over the Intel design. Intel’s FSB causes a
bottleneck that decreases performance as the numbers of cores
grow.

While many of us are familiar with the hardware currently of-
fered by Intel and AMD, it is important to note the work done
by other companies. Sun, IBM and Cray have created various
configurations of multi-processor systems. These systems are
similar in that they both have large numbers of cores/proces-
sors, yet their shared memory and layout configurations are
significantly different.

Sun Microsystems
The most notable multi-processor system produced by Sun is
the Sun Fire E25K. The system has a total of 72 processors
spread across �8 boards (4 per board). Each board is connected
by 3 �8x�8 crossbars, each dedicated to addresses, data and
responses. It is these crossbars that provide the communication
capabilities of the system. Crossbar implementations provide
great communication performance for multi-processor systems
up to a point. This is because each node in the system has to be
connected to every other node. In SUN’s system, each board
needs to be connected to the �7 other boards. Thus, there are
�8x�8 connections. Beyond this point, the performance de-
grades due to communication on the crossbar.

IBM
Another significant chip made by IBM is the Cell processor.
It first appeared on the market in 2005 and had its first official
use in the Sony Playstation 3. The Cell is composed of a 64-bit
PowerPC core as well as 8 specialized cores. These 8 special-
ized cores are known as Synergistic Processing Elements
(SPEs). These are typically used to perform vector operations
with high floating point performance. This is one of the reasons
the Cell is attractive as a gaming and scientific computing
platform. What truly makes the Cell unique is its Element
Interconnect Bus (EIB). The EIB is used to perform commu-
nication between the main core, SPEs and other components
(total of �2 components in all). This differs greatly from Intel’s
Front Side Bus and AMDs crossbar. The EIB is implemented
as a circular ring. Each component on the ring is at most 6 hops
away from its furthest neighboring component. The architects
originally had planned on implementing a crossbar, but chose
the EIB due to space constraints on the chip. Also of note is the
memory model used by the Cell. The chip uses a co-processor
model where the primary PowerPC core has access to all global
memory and is responsible for managing the read/write streams
to the 8 SPEs. This master core bottleneck as well as the cir-

cular implementation of the EIB suggests that the Cell will not
scale further beyond its current implementation.

IBM BlueGene
A review of parallel computing would not be complete without
mentioning the BlueGene. This system dwarfs those previ-
ously mentioned as it has 65,536 dual core nodes. Each of
these nodes has two 440 PowerPC processors which contain
32k in private L� cache. The processors also have an L3 cache
of size 3MB which they share. It is also important to note that
each processor has a fairly humble speed: 770 MHz. Yet, the
BlueGene makes up for this by sheer number of processors.
The most unique feature of the BlueGene other than its size is
the arrangement of the processors. These are arranged in a 3-di-
mensional torus network. Each node is connected to its 6 clos-
est neighbors. If a processor needs to communicate with a node
other than one of those 6, the data needs to be sent through
the network of the torus mesh. Also, each node in the system
can only access a portion of the overall memory (5�2MB per
node). Thus, if a node requires more memory it will have to be
shared among the other nodes and the data communicated. This
is known as a distributed address space memory model.

As is illustrated by differences in the the described hardware,
there are great differences from one parallel architecture to an-
other. Developers of parallel applications need to take this into
account when architecting their software as different memory
models and inter-core communication can have a great impact
on their runtime performance.

Implications on Software
While the hardware continues to advance and the availability
of implicit parallelism gets consumed with optimizations, what
is the impact on software. Runtime libraries may provide some
of the answer, where existing sequential programs that call into
libraries can be partially parallelized by improving the runtimes
themselves. The remainder will have to be taken up by new
programming language paradigms.

Operating Systems
As multiple CPU architectures become more commonplace, the
operating system scheduler must become more intelligent in
how it schedules threads and processes to the available CPUs.
In addition, each of the CPUs in the system may have an
unequal relationship with each other. For example, there could
be a CPU topology where the bottom layer consists of a single
Simultaneous Multithreading (SMT) physical processor which
exposes two logical processors. At the next level, there could
be two SMT cores grouped into a Symmetric Multiprocessing
(SMP) domain, where each SMT core has equal access time to
local memory. At the highest level, there could be two SMPs
grouped together which make up a Non-Uniform Memory Ac-
cess (NUMA) domain (see Figure �). Moving threads or pro-
cess load within a SMT physical processor is cheap, because
both logical processors within the physical processor share the
same memory, cache, and execution units. However, mov-
ing threads or processes from one NUMA node to another is

5

expensive, since the memory access time is longer for remote
memory.

Linux handles balancing the load across all of the CPUs in an
efficient manner by defining scheduling domains. In the ex-
ample above, three domains would be defined: SMT, SMP, and
NUMA. These domains contain the policy for how scheduling
decisions are made. Within the SMT domain, the balancing
attempts occur often, even when the imbalance in load is small.
For example, if a sleeping thread is awakened, normally the
thread would stay on the same processor since its data is likely
to be cached on that processor. However, if another proces-
sor shares the same cache, then it is fine to move it to another
processor if it is idle. Within the NUMA domain, balancing
attempts are made very rarely, since the cost of moving a pro-
cess between nodes is very high. Most of the time, a process
will only be scheduled to another NUMA node when creating a
new process. In addition, there is the option to further tune the
system through the use of processor affinity. This can be used
to specify an ideal processor to run a particular process on.

While there is significant support in today’s commercial
operating systems for multiprocessor execution, there is more
work that can be done. For example, task scheduling can be
improved to adapt to the workload. Typically, tasks that share
the same data, such as threads that belong to the same process,
will be scheduled across cores that share the same last-level
cache in order to minimized resource contention. However,
if the tasks share primarily read-only data, it may be better to
replicate the data across the caches and distribute the tasks to
all idle processors. There is currently research being done,
called Micro Architectural Scheduling Assist, to use perfor-

mance counters to track the shared resource usage and better
predict the optimal scheduling. Another area of future research
is in cache-fair thread scheduling. If a thread happens to get
scheduled with another thread that uses up a majority of the
cache, then it will end up running much slower than normal,
even if it is at a higher priority than the other thread. Cache-
fair thread scheduling attempts to address this by estimating
the cache miss rate that the thread would incur under normal or
fair conditions and compensating the thread by giving it more
thread quantum to run if the actual miss rate falls lower than
the fair miss rate.

In order to scale into the thousands of processors, many re-
searchers have advocated a radically different operating system
architecture. One example is the Wisdom parallel operating
system, where virtual processors are used to abstract away the
knowledge of the real physical processor topology. In this sys-
tem, there can be an infinite number of virtual processors that
can be multiplexed onto real processors. Each virtual proces-
sor handles the executing of one task and message passing is
used to communicate between virtual processors. In addition,
the code that makes up the traditional kernel, such as the sched-
uler, is distributed across many processors so that there isn’t a
bottleneck. Overall, there is a lot of room for operating system
innovation to address massively parallel computers.

Emerging Programming Models and Runtimes
Highly parallel machines are programmed differently than clas-
sical von Neumann computers. The notion of a simple, linear
program flow mutating the system from one state to another
is no longer sufficient. Rather, parallel applications exhibit
markedly different characterictics than conventional software.

Figure 1

6

They are typically event- or I/O-driven, highly asynchronous,
and expressed in terms of small units of work that can be intel-
ligently scheduled according to the resources available on a
given system at a given time.

Event- and I/O-driven programming models are nothing new.
Graphical user interfaces and commodity web servers provide
classic examples of each, and neither need be developed using
emerging parallel methodologies. But these models can be used
in much more powerful ways on emerging, massively parallel
hardware. Program components can be engineered as aggregat-
ing functions over multiple concurrent input sources, and the
software can intelligently arbitrate between these inputs to effi-
ciently process data that arrives at roughly the same time. Work
can be cancelled if a concurrent computation determines that
it is no longer necessary, and conversely, it can be performed
eagerly in antipation of speeding up other concurrent tasks.
These principles are demonstrated well in the Microsoft Robot-
ics Concurrency and Coordination Runtime, which is designed
to arbitrate concurrent streaming inputs from multiple ports.

As an example of a more conventional application of this kind
of a runtime, consider a client application that pulls stock
information from the web in near real time. Clearly the user’s
mouse clicks are an input to the system, and in a conventional
architecture it might be acceptable to drive all computations
directly from a UI message pump. However, this architecture
begins to crumble if the computations need information from
the web that must be loaded on demand with latencies in the
tens or hundreds of milliseconds. If the user asked for a custom
analysis of a particular mutual fund, for instance, the applica-
tion might dispatch dozens of requests to the web in parallel
to investigate the component equities, and then generate even
more requests as a result of the equity information. On a con-
ventional runtime it would be challenging for the developer to
do anything more sophisticated than wait for all the requests to
return, processing them nearly sequentially. A typical multi-
threaded application today would parallelize the work only to
the extent that each response could be preprocessed on its own
thread before aggregating the results.

It is easy to see how complex the application would have to be
if the user expected it to fully utilize their 32-core laptop CPU.
They might expect it to be responsive, so that they could click
around, triggering concurrent computations and web requests
and rendering graphs as data arrives and as calculations com-
plete. The application data cache, for example, would have to
cope with high contention on individual cache entries. If one
computation has just requested a particular resource, a second
computation that also needs the same resource should wait
for the first request to complete instead of dispatching another
request. A developer could choose to design the system so that
the second thread would block, but then a large number of
threads could rapidly emerge and coordinating them to can-
cel or share redundant work would become difficult. Serious
deadlocks and race conditions could also arise, and blocking is
therefore often avoided in this type of parallel application.

So to avoid blocking, an asynchronous, callback-oriented cache
would likely lie at the heart of this stock application. And to
keep the callbacks from blocking, the asynchrony ultimately
driven by the long Internet I/O latencies would rapidly propa-
gate throughout the code. This would be a difficult application
to write today, and the relative cost of speed-of-light latencies
on the web is only getting worse. Throw in a natural interface
that accepts voice, gaze, multitouch and device mesh inputs,
and the problem becomes orders of magnitude more complex.
Add a rich, animated, framerate-oriented graphical UI as an
output, and the problem becomes horrific since large amounts
of work could be wasted preparing frames that are never even
rendered. The many-core CPUs of the future will have lots to
do; our challenge is to keep them working on the right things.

Parallel runtimes and models help developers simplify this kind
of heavily parallel application by inverting the architecture and
concentrating on functions over asynchronous inputs rather
than on steps necessary to produce outputs. This is a much
more resilient approach in light of the massive asynchrony we
can expect of our applications in the future. The functional ap-
proach has been long proven in products like SQL Server, Ex-
cel, Matlab and Photoshop: these successful applications were
designed with asynchronous functions as their internal building
blocks in order to keep them responsive. But the complexity of
these applications reflect how hard it can be to design and use
custom, parallelizable patterns and practices for every project.

Thankfully, emerging parallel runtimes are designed to factor
out the common features of these popular asynchronous and
functional approaches, so that they can be used by a broader
population of software developers. Yet source code based on
these runtimes can be barely recognizable. For
example, the following snippet of code from an excellent
MSDN article7 demonstrates the asynchronous, I/O driven
structure of a highly parallel sample application:

Port<WebResponse> responsePort = null;
Port<Exception> failurePort = null;
Port<DateTime> timeoutPort = new Port<DateTime>();

for (Int32 n = 0; n < c_ImageUrls.Length; n++)
{
 WebRequest webReq = WebRequest.Create(c_ImageUrls[n]);
 ApmToCcrAdapters.GetResponse(webReq, ref responsePort, ref
failurePort);
}

dq.EnqueueTimer(TimeSpan.FromMilliseconds(2000), timeoutPort);

Arbiter.Activate(dq,
 Arbiter.Choice(
 Arbiter.Receive(false, failurePort, delegate(Exception
e)
 {
 Msg(“At least 1 GetResponse failed”);
 }
),

 Arbiter.Receive(false, timeoutPort, delegate(DateTime dt)
 {
 Msg(“Some requests did not complete within 2 sec-
onds.”);
 }
),

 Arbiter.MultipleItemReceive(false, responsePort, c_ImageUrls.

7

Length,
 delegate(WebResponse[] responses) {
 foreach (WebResponse response in responses)
 {
 Byte[] data = new Byte[response.ContentLength];
 response.GetResponseStream().Read(data, 0,
data.Length);
 Msg(“ResponseUrl={0}”, response.ResponseUri);
 }
 }
))
);

This type of structure has almost no relation to traditional
imperative control flow, yet it is built using familiar C#/.NET
primitives, such as delegates, anonymous methods and itera-
tors. And even iterators themselves can assume a new form in a
highly concurrent asynchronous program:

private static IEnumerator<ITask> SaveWebSiteToFile() {
 WebResponse webResponse = null;

 yield return Arbiter.Choice(ApmToCcrAdapters.GetResponse(
 WebRequest.Create(“http://Wintellect.com”)),
 delegate(WebResponse wr) {
 Msg(“Got web data”); webResponse = wr; },
 delegate(Exception e) { Msg(“Failed to get web data”); });

 if (webResponse == null) yield break;

 FileStream fs = new FileStream(@”WebData.html”, FileMode.Cre-
ate,
 FileAccess.Write, FileShare.Write, 8 * 1024,
 FileOptions.Asynchronous);
 using (fs) {
 Byte[] webData = new Byte[10000];
 Int32 numbytes = webResponse.GetResponseStream().Read(
 webData, 0, webData.Length);
 Array.Resize(ref webData, numbytes);

 yield return Arbiter.Choice(ApmToCcrAdapters.Write(fs,
 webData, 0, webData.Length),
 delegate(EmptyValue ev) {
 Msg(“Wrote web data to file”); },
 delegate(Exception e) {
 Msg(“Failed to write web data to file”); });
 }
}

A complete dissection of these code samples cannot be accom-
modated within this paper’s space constraints, yet the essential
elements of a parallel runtime are readily apparent from these
examples. Tasks are expressed as small units of work without
an explicit parallel execution plan, yet the runtime is able to
generate chores and tasks that can be optimally executed at
runtime according to the system’s available resources. Execu-
tion is deferred until necessary, and an intelligent implementa-
tion could actively identity opportunities to eagerly execute or
terminate tasks based on runtime profiling, high level branch
prediction, and computation based on concurrent inputs.

The runtime clearly requires software developers to undertake
extreme contortions in their coding styles, and these examples
show the strain that parallel programs exert on conventional
programming languages. This is why programming languages
are themselves are changing so profoundly in response to these
hardware trends.

Computer Language Implications
The growth of parallel processing hardware has led to the

necessity for programmers to write code that utilizes the avail-
able parallelization. While instruction level parallelization has
provided some implicit benefit, and compilers and runtimes can
solve problems without explicit participation of the end-level
programmer, this has only limited benefit. Compilers are not
able to deduce the intention of a program and rewrite it in a
new way.

Major programming languages today have mechanisms for
using the threads paradigm for explicitly parallelizing applica-
tions. Starting and stopping threads, and sychronizing them
with mutexes, locks, and critical sections is the job of the
coder, with no help from the language itself or runtime librar-
ies. There are dozens of new programming languages today
for writing parallel programs that are based on languages with
significant code bases. These are “sequential-like” languages,
with added keywords and mechanisms built in, to allow com-
piler and runtime-level support for parallelization.

Another approach to creating parallel programs is to use
functional programming languages. Functional languages were
primarily developed for modeling mathematics. Functional
languages define computation in terms of mathematical func-
tions. A happy side effect of this design is that, since functions
are stateless and have no side effects, any evaluations can be
done where function inputs are known. Analogous to these
languages is Google’s MapReduce, which is an implicitly par-
allelizable paradigm for creating programs that is dissimilar to
sequential programming.

Farther out is the possibility of the dominance of intentional
programming languages6. The purported advantage of this
design is to reduce code size, minimize the consequences of
system-wide code changes, and reduce programmer-induced
bugs. A consequence is that, since the intention of the algo-
rithms is captured at the highest level, the compiler is exposed
to the parallelism of the algorithms.

Transactional Memory
Transactional memory (TM) is an alternative way to coordinate
access to shared data. It’s not a “silver bullet” for addressing
parallel programming complexity – it just shifts much of the
burden of synchronizing and coordinating parallel computa-
tions from a programmer to a compiler, runtime, and/or hard-
ware. The main challenge is to build efficient TM infrastructure
either in software or hardware (or both). This area is still under
active research and there are no mainstream implementations
yet.

The idea of TM comes from database systems, which were suc-
cessful at exploiting concurrency for years (e.g. many queries
can execute at the same time and programmer doesn’t need to
know about this). The secret lies in database transactions.

In the database world, a transaction is indivisible sequence of
actions. It has four properties (ACID):

Atomicity – either all actions are performed or none of them

8

are executed.
Consistency – after transaction succeeds it leaves data in con-
sistent state. Consistency property is application specific.
Isolation – each transaction produces a correct result, regard-
less of any other transactions executing at the same time.
Durability – once a transaction commits, its results are perma-
nent and available to other transactions. Note that this property
is not useful for TM since memory states don’t need to be
permanent.

ACI properties of transactions provide a useful abstraction for
synchronization of access to shared data. If a set of instructions
can be executed in context of a transaction, then atomicity en-
sures all instructions will execute (or fail) and isolation ensures
there will be no interference between multiple transactions
even if they operate on the same shared data. These two proper-
ties have potential to greatly simplify concurrent programming.

Here is an example of a simple transaction:

atomic
{
 account1.Credit(amount);
 account2.Debit(amount);
}

An atomic block ensures atomicity and isolation, while the pro-
grammer needs to ensure consistency. There is no explicit lock-
ing and synchronization required and the programmer doesn’t
need to know if there are any other parts of code that access
any of the objects modified inside an atomic block. There is
also no need to know anything about implementation of meth-
ods called from an atomic block (e.g. what other objects might
be modified as side effects). All those details can be safely
abstracted from a programmer while underlying runtime and/or
hardware track various interactions and ensure correctness.

The main challenges in implementing a TM system are coming
up with good semantics that fit naturally with existing lan-
guages, libraries, OSs, etc and making its performance accept-
able. There are many aspects of TM semantics that need further
research. For example, what’s the best way to deal with non-
reversible operations like IO? Should they be allowed inside
atomic blocks? Allowing them would make TM blend naturally
with existing code but consequences are severe – TM systems
would need to guarantee that any atomic block with IO opera-
tions will always succeed (i.e. there will be no rollback). This
would affect performance of course – another area that requires
lots of research to find the right balance of guarantees given by
TM and amount of overhead required to keep those promises.

TM is a promising technology that could simplify development
of parallel software but there are still lots of questions that need
to be answered.

Conclusion
Is parallelism the solution to the growing sequential hardware
constraints? There have been significant advances in new

approaches to creating algorithms, such as Google’s MapRe-
duce�0; significant improvements in instruction-level paral-
lism; improvements to compiler optimizations to find available
parallelism in existing programs. Symmetric parallelism can
increase the speed of a computation which has available paral-
lelism, at rates potentially even faster than the density growth
of transistors on a chip, and operating systems can implement
efficiency mechanisms to assure that ready threads can be run.

But Craig Zilles of the University of Illinois says “It’s very
hard to write a correct sequential program. It will be only
harder to write a correct parallel program.” And it’s true that
many of the current developments are bounded by the amount
of implicit parallelism in sequentially-written programs.

It’s clear that massively parallel computational hardware is in
our future, and it seems evident that software designers will
have to offer parallelism to the hardware in a new way. The
open questions are: How big a change will developers have to
make, will those changes be extensions to predominant current
languages, and how much help from runtimes and “smart”
hardware will we get?

References
�. Moore’s Law: Electronics Magazine �9 April �965

2. Andrew Grove, Only the Paranoid Survive �999

3. Intel Product introductions

4. The Free Lunch is Over, Herb Sutter

5. James Larus, Ravi Rajwar: Transactional Memory (Synthesis Lectures on
Computer Architecture), Morgan & Claypool Publishers

6. Charles Simonyi, Intentsoft.com

7. Craig Zilles, University of Illinois

8. John L. Hennessy, David A. Patterson: Computer Architecture - A quantita-
tie Approach, Fourth Edition, Morgan Kaufmann

9. Burton Smith, “Mainstream Parallel Computing”, Microsoft Research Talk

�0. MapReduce, Jeff Dean, Sanjay Ghemawat, Google Research

��. (http://msdn.microsoft.com/en-us/magazine/cc�63556.aspx)
Jeffrey Richter on the Concurrency and Coordination Runtime

�2. Suresh Siddha, Venkatesh Pallipadi, Asit Mallick. Process Scheduling
Challenges in the Era of Multi-Core Processors. http://download.intel.com/
technology/itj/2007/v��i4/9-process/9-Process_Scheduling_Challenges.pdf

�3. Paul Austin, Kevin Murray, Andy Wellings. The Design of an Operating
System for a Scalable Parallel Computing Engine. http://www.cs.ubc.ca/lo-
cal/reading/proceedings/spe9�-95/spe/vol2�/issue�0/spe052pa.pdf

�4. Parallel Computing on Wikipedia. http://en.wikipedia.org/wiki/Paral-
lel_computing

