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Introduction 
Moore’s Law� states that the number of transistors that can be 
placed on a microchip at a reasonable price will double ap-
proximately every two years. For the last few decades, com-
putational throughput has tracked this growth. There are a few 
reasons why this will not continue to be the case. As transistor 
density grows, heat becomes an increasing issue. Also, as the 
complexity of interactions between transistors grows, latency 
between computational units becomes a factor.   Importantly, 
as the number of transistors grows, the latency of transistor 
switching has not improved at nearly the same rate.

In order to continue to improve the total throughput of compu-
tational machines, one solution class is to increase the parallel-
ism of that computation. Hardware engineers are still able to 
grow the size of multi-core machines, and the calculating com-
ponents of individual cores can be distributed across the chip 
for the same exponential theoretical processing growth. Taking 
advantage of the ability to perform portions of a calculation at 
the same time requires different hardware approaches, and may 
require increasing changes to software.  Intel’s founder Andrew 
Grove thinks this is the inflection point2 – “the time in the life 
of a business when its fundamentals are about to change”. 

We don’t really know how to program parallel computers ef-
ficiently - not even after decades of experience. They are much 
more difficult to design and implement for than for sequential 
ones. The kind of bugs that are common in parallel programs 
are nondeterministic, difficult to find and fix.  With multiple 
processing units operating simultaneously, there isn’t even a 
clear definition of “stopping” a computation before it’s com-
plete.  There is also lack of good, scalable parallel algorithms.  
Many parallel algorithms scale up to 8 cores, then there are no 
more improvements – or the algorithm performs worse when 
the number of cores increases. 

Current Hardware Solutions
Hardware manufacturers have kept pace with Moore’s Law
in transistor density through 20043,  but the limits of existing 
technology for transistor density have caused the clock speed 
to fall significantly off the curve4.  The result is that proces-
sor architects have more aggressively started exploiting thread 
level parallelism (TLP) by replicating cores, rather than trying 
to find additional instruction level parallelism, or continue to 
increase clock speed.

Application-Specific Integrated Circuits(ASICs)
An end-user’s experience of the speed of their computation is 
based on the overall performance of the machine.  An ASIC is a 
custom-designed circuit that performs a specific function, such 
as implementing a complete cellular telephone on a single chip.  
With custom hardware, lower power consumption and explicit 
hardware parallelism can be gained, and software developers 
typically write only a hardware driver, which itself may be 
purely sequential, or event-driven.

Instruction-Level Parallelism (ILP) 
Instruction-level parallelism is the process of executing exist-
ing instruction code faster by executing it partially in parallel. 
This is done using a handful of techniques: 

Pipelining 
Executing a single instruction requires fetching the instruc-
tion from cache or main memory, evaluting the instruction, 
possibly determining a branch point, and possibly accessing 
data from cache or main memory.  The individual tasks of this 
execution can be done concurrently by different transistors on a 
single core.  Like assembling a sandwich at Subway6, there are 
multiple “stations” that each perform a portion of the operation 
before passing it on to another worker.  Although an individual 
instruction won’t be executed any faster with this method, 
the total throughput increase at the limit is porportional to the 
number of stations.

Superscalar 
Instead of starting one new instruction on each clock cycle, a 
superscalar processor allows up to n instructions to be issued at 
a time.  Logically you can think of multiple pipelines all pull-
ing instuctions from the same isntruction stream.  It is actually 
quite rare that n instructions can all be initiated at a time, but 
it isn’t uncommon to get more than one instruction issued per 
clock.

Out-of-order Execution 
Individual instructions can be reordered to take advantage of 
their independence.  If a particular instruction doesn’t have 
a dependency on logically “previous” instructions, it can be 
executed in tandem.  This result can often be accomplished by 
the compiler during its optimization phase.

Speculative Execution 
While instruction reordering provides some benefits, there are 
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limits. Additional performance can be gleaned by executing 
code speculatively, before the branch decision has been made. 

Hardware Architecture
As the logical limits of optimizing single cores are approached, 
hardware manufacturers are already creating multiprocessor 
machines.
Shared vs. Distributed Memory 
The hardware architecture of parallel computers can fall under 
either of two categories: shared memory or distributed memory. 
Shared memory refers to computers in which all processors 
have access to all of the memory in a global address space. 
Changes made to memory by one processor are visible to all of 
the other processors. This requires cache coherency protocols 
to ensure that all of the caches have a consistent view of mem-
ory. Shared memory computers can be further divided into two 
categories: Uniform Memory Access (UMA) and Non-Uniform 
Memory Access (NUMA). UMA machines are also know as 
Symmetric Multiprocessor (SMP) machines, and are the typi-
cal architecture in today’s commercial multi-core machines, 
such as Intel’s Core2 Duo. In these computers, processors have 
equal access times to memory. In NUMA machines, there is 
still a global address space, but access to a processor’s local 
memory is faster than access to remote memory of another 
processor. 

The other category of parallel computers is distributed memory 
systems. In distributed memory, processors have their own 
local memory and there is no global address space. Instead, 
in order to communicate with other processors, the program-
mer must explicitly define send and receive messages. The 
network that allows communication between processors can 
vary widely. For example, a cluster can be thought of as a 
distributed memory system, where the method of communica-
tion is over Ethernet and commodity processors are used. Many 
supercomputers use distributed memory, such as the Cray T3E 
and IBM SP2. 

Each type of system carries it advantages and disadvantages. 
Shared memory provides the simplest programming model, 
since there is a global address space. This is consistent with 
uniprocessor machines, and the programmer does not have 
to worry about data locality and sharing between processors. 
However, the disadvantage is that it doesn’t scale well for a 
large number of processors because access to memory becomes 
a bottleneck and cache coherency protocols do not scale well. 
In order to avoid memory bus contention, the processor to 
memory communication can be implemented as a crossbar 
switch, where every processor is connected to every memory 
unit. However, there are still scaling issues because the size 
of the crossbar switch increases proportionally to the number 
of processors multiplied by the number of memory units. This 
can lead to increased costs, the need to lower clock frequency, 
and/or power issues. 

The distributed memory systems solve these scalability issues, 
as they can scale to thousands of processors. Each proces-

sor can access its own local memory without having to worry 
about contention with other processors. However, the disad-
vantage is that it requires a new programming model, such as 
the Message Passing Interface (MPI). So far, this has been the 
main hindrance from wide-spread adoption. 

In order to try to get the benefit of both approaches, a hybrid 
approach called distributed/shared memory systems (DSM) has 
been implemented. In this case, a block of CPUs are imple-
mented with shared memory and then multiple blocks are con-
nected through a network. The number of CPUs per block and 
the network topology can vary between systems. Computing 
clusters are a popular form of this, where each SMP is loosely 
coupled with its own OS image, and the SMPs are connected 
through a standard network. Supercomputers, such as the IBM 
SP3, are now often implemented as a cluster that is highly 
tuned and contains custom interconnects. 

Multithreaded Processors 
Historically, processor architects have investigated various 
approaches for increasing the throughput of their machines. 
One scheme for increasing utilization is to have more than one 
instruction stream ready for execution at a given time; thereby 
taking advantage of thread level parallelism (TLP). From the 
operating systems perspective, more than one thread can be 
scheduled for execution at a time. Early processors which 
implemented this idea would switch threads if there was a 
high latency operation running on one thread. This is known a 
course grained multithreading. 

Fine grained multithreading takes this idea a bit further. It 
essentially switches between threads in a round robin fashion. 
This hides instruction latencies of all kinds. The throughput 
of the machine as a whole is increased at the expense of any 
particular thread. The Cray/Tera MTA machine made extensive 
use of this machine. In fact, they believed that this approach 
could hide so much latency that they could even forgo the use 
of processor side data caches. 

Simultaneous Multithreading (SMT), an idea originating at the 
University of Washington, extends this idea a bit more. Just as 
out of order execution attempts to increase the pool of instruc-
tions available for execution by looking ahead in the instruc-
tion stream, SMT processors attempt to increase the size of this 
pool of instructions by producing a set of available instructions 
from multiple threads at the same time. The processor holds the 
state for two or more threads at the same time. The operating 
system will have scheduled both of the threads for execution, 
and the processor itself will now find instructions ready for ex-
ecution from either instruction stream. With a relatively small 
increase in transistors and complexity, you can theoretically 
improve the throughput of the processor significantly. This 
technique has been used in practice in a number of processors. 
Digital Equipment Corp. built a version of the Alpha processor 
with SMT support and the chip area only increased �5%, yet 
the performance throughput for some applications was 3-4x. 
Intel has shipped versions of the Pentium IV and Xeon proces-
sors with SMT support. The Intel brand name for this technol-
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ogy is Hyperthreading. Sun and IBM also include SMT support 
in their Niagara and Power processor brands.

Although SMT provides a number of performance benefits 
with a minimal complexity overhead, it does have some short-
comings. For example, the performance of any one thread will 
typically be lower, although throughput overall is increased. 
Additionally, there are some scenarios were performance as a 
whole can suffer. For example, because SMT processors don’t 
duplicate most of the chip, but instead share the functional 
units – similar to an ordinary out of order processor – the 
threads may compete with each other. Consider a spin lock for 
example? One thread spins doing useless work taking up pro-
cessor resources, while the other thread tries to get useful work 
done. In this case throughput suffers. Another pitfall is cache 
conflict. Intel had a problem in early HT processors where 
the caches backing the stack for each thread would conflict 
with each other, leading to high cache miss rates. These types 
of problems can and have been mitigated, but are never fully 
solved. 

Single Instruction Multiple Data (SIMD)/Vector 
Processors 
In addition to increasing parallelism by finding instructions 
which can execute at the same time, processor architects have 
introduced special instructions known as SIMD instructions 
which allow some level of explicit parallelism to be expressed 
within a sequential instruction stream. For example, a single 
SIMD instruction would operate on more than one piece of 
data at a time. Imagine adding two long vectors together. 
Instead of iterating through a loop once for each data item, you 
could iterate fewer times, because at each iteration a SIMD in-
struction would let you perform the operation on multiple data 
elements. This explicit parallelism (encoded in a sequential 
instruction stream) allows for significant speed boosts in some 
applications. Most modern processors support some form of 
SIMD under the title of “Multimedia” instructions. 

Supercomputers of the past also relied heavily on the vector 
processing idea to increase parallelism – and thus performance. 

Intel vs. AMD 
Although IBM was first to manufacture a multicore design with 
its PowerPC 970 in 2002, it is Intel and AMD’s products we 
hear the most about. Both are similar in speed but with some 
significant design differences. 

AMD introduced a dual core Opteron chip in May 2005. This 
was significant as it was the first mainstream offering of a dual 
core chip in a consumer grade machine. Intel did not have a 
dual core offering for over six months. 

The Opteron chip contains two 32/64 bit cores on a single chip. 
Each processor has a 64k L� cache (both data and instruc-
tion). There is also a separate � MB L2 cache per processor. 
Fast on-chip communication between the two processors is 

achieved through the system request interface (SRI). The SRI 
handles the memory coherency responsibilities, ensuring both 
processors see a single memory image. Requests to RAM (or 
other processors) are implemented using the industry standard 
HyperTransport technology (HT). 

Intel introduced its Core Duo Pentium in early 2006. It contains 
two 32-bit cores on a single chip. Each core has its own 32k 
L� data and instruction cache. There is a single 2 MB (or 4MB 
depending on chip interation) L2 cache that is shared between 
processors. Fast on-chip communication between processors 
occurs through shared memory (not using SRI). The Front Side 
Bus (FSB) controller mediates transfers between the L2 cache 
and RAM. 

Why Can’t Sequential Processor 
Performance Continue to Scale?
There are three main obstacles currently impeding this 
continued growth: 

�. The ILP Wall 

2. The Power Wall 

3. The Memory Wall 

It is becoming increasingly hard to find additional In-
struction Level Parallelism (ILP) in a sequential instruc-
tion stream.  Techniques such as Out of order execu-
tion, register renaming, branch prediction, speculation, 
pipelining, superscalar, and vector operations have been 
extremely beneficial in general. All of these schemes, 
however, break down in some situations.  For example, 
control-dependent computation (with lots of branches) or 
data-dependent memory addressing (ie, pointer chasing) 
do not perform well with these schemes. In practice we 
are limited to just a few instructions per clock cycle.

In the past, it was possible to keep power usage roughly 
constant. However, this was typically accomplished 
by reducing voltage as transistor sizes got smaller. The 
voltage can’t be lowered much further, however. The 
threshold voltage of the transistor is impeding further 
reduction in voltage, and the result is increase power 
usage per unit area. Static (leakage) power is also getting 
worse as the voltages go down.

Processor performance has been growing much faster 
than memory subsystem performance. If the proces-
sor can’t access memory fast enough, then the proces-
sor spends all its time waiting on memory. Techniques 
have been employed to hide memory latencies, but as 
the memory latencies increase these techniques are not 
enough. Increasing cache sizes can help, but the increas-
es have to be significant to maintain throughput. 
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The designs of the AMD and Intel chips seem similar. The 
main difference between both designs is the position of the L2 
cache. In the AMD chip, the L2 is private to the owning pro-
cessor, while the Intel chip shares the L2 cache. For the AMD 
chip, managing SRI on the “back” of L2 gives processors more 
private memory but more importantly, the coherence informa-
tion can be easily combined with that of other processors, lead-
ing to a global architecture known as symmetric multiprocessor 
(SMP). This also helps the AMD design scale better to larger 
numbers of cores over the Intel design. Intel’s FSB causes a 
bottleneck that decreases performance as the numbers of cores 
grow. 

While many of us are familiar with the hardware currently of-
fered by Intel and AMD, it is important to note the work done 
by other companies. Sun, IBM and Cray have created various 
configurations of multi-processor systems. These systems are 
similar in that they both have large numbers of cores/proces-
sors, yet their shared memory and layout configurations are 
significantly different. 

Sun Microsystems
The most notable multi-processor system produced by Sun is 
the Sun Fire E25K. The system has a total of 72 processors 
spread across �8 boards (4 per board). Each board is connected 
by 3 �8x�8 crossbars, each dedicated to addresses, data and 
responses. It is these crossbars that provide the communication 
capabilities of the system. Crossbar implementations provide 
great communication performance for multi-processor systems 
up to a point. This is because each node in the system has to be 
connected to every other node. In SUN’s system, each board 
needs to be connected to the �7 other boards. Thus, there are 
�8x�8 connections. Beyond this point, the performance de-
grades due to communication on the crossbar. 

IBM 
Another significant chip made by IBM is the Cell processor. 
It first appeared on the market in 2005 and had its first official 
use in the Sony Playstation 3. The Cell is composed of a 64-bit 
PowerPC core as well as 8 specialized cores. These 8 special-
ized cores are known as Synergistic Processing Elements 
(SPEs). These are typically used to perform vector operations 
with high floating point performance. This is one of the reasons 
the Cell is attractive as a gaming and scientific computing 
platform. What truly makes the Cell unique is its Element 
Interconnect Bus (EIB). The EIB is used to perform commu-
nication between the main core, SPEs and other components 
(total of �2 components in all). This differs greatly from Intel’s 
Front Side Bus and AMDs crossbar. The EIB is implemented 
as a circular ring. Each component on the ring is at most 6 hops 
away from its furthest neighboring component. The architects 
originally had planned on implementing a crossbar, but chose 
the EIB due to space constraints on the chip. Also of note is the 
memory model used by the Cell. The chip uses a co-processor 
model where the primary PowerPC core has access to all global 
memory and is responsible for managing the read/write streams 
to the 8 SPEs. This master core bottleneck as well as the cir-

cular implementation of the EIB suggests that the Cell will not 
scale further beyond its current implementation. 

IBM BlueGene
A review of parallel computing would not be complete without 
mentioning the BlueGene. This system dwarfs those previ-
ously mentioned as it has 65,536 dual core nodes. Each of 
these nodes has two 440 PowerPC processors which contain 
32k in private L� cache. The processors also have an L3 cache 
of size 3MB which they share. It is also important to note that 
each processor has a fairly humble speed: 770 MHz. Yet, the 
BlueGene makes up for this by sheer number of processors. 
The most unique feature of the BlueGene other than its size is 
the arrangement of the processors. These are arranged in a 3-di-
mensional torus network. Each node is connected to its 6 clos-
est neighbors. If a processor needs to communicate with a node 
other than one of those 6, the data needs to be sent through 
the network of the torus mesh. Also, each node in the system 
can only access a portion of the overall memory (5�2MB per 
node). Thus, if a node requires more memory it will have to be 
shared among the other nodes and the data communicated. This 
is known as a distributed address space memory model. 

As is illustrated by differences in the the described hardware, 
there are great differences from one parallel architecture to an-
other. Developers of parallel applications need to take this into 
account when architecting their software as different memory 
models and inter-core communication can have a great impact 
on their runtime performance. 

Implications on Software
While the hardware continues to advance and the availability 
of implicit parallelism gets consumed with optimizations, what 
is the impact on software.  Runtime libraries may provide some 
of the answer, where existing sequential programs that call into 
libraries can be partially parallelized by improving the runtimes 
themselves.  The remainder will have to be taken up by new 
programming language paradigms.

Operating Systems
As multiple CPU architectures become more commonplace, the 
operating system scheduler must become more intelligent in 
how it schedules threads and processes to the available CPUs.   
In addition, each of the CPUs in the system may have an 
unequal relationship with each other.  For example, there could 
be a CPU topology where the bottom layer consists of a single 
Simultaneous Multithreading (SMT) physical processor which 
exposes two logical processors.  At the next level, there could 
be two SMT cores grouped into a Symmetric Multiprocessing 
(SMP) domain, where each SMT core has equal access time to 
local memory.  At the highest level, there could be two SMPs 
grouped together which make up a Non-Uniform Memory Ac-
cess (NUMA) domain (see Figure �).  Moving threads or pro-
cess load within a SMT physical processor is cheap, because 
both logical processors within the physical processor share the 
same memory, cache, and execution units.  However, mov-
ing threads or processes from one NUMA node to another is 
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expensive, since the memory access time is longer for remote 
memory. 

Linux handles balancing the load across all of the CPUs in an 
efficient manner by defining scheduling domains.  In the ex-
ample above, three domains would be defined:  SMT, SMP, and 
NUMA.  These domains contain the policy for how scheduling 
decisions are made.   Within the SMT domain, the balancing 
attempts occur often, even when the imbalance in load is small.  
For example, if a sleeping thread is awakened, normally the 
thread would stay on the same processor since its data is likely 
to be cached on that processor.  However, if another proces-
sor shares the same cache, then it is fine to move it to another 
processor if it is idle.  Within the NUMA domain, balancing 
attempts are made very rarely, since the cost of moving a pro-
cess between nodes is very high.  Most of the time, a process 
will only be scheduled to another NUMA node when creating a 
new process.  In addition, there is the option to further tune the 
system through the use of processor affinity.  This can be used 
to specify an ideal processor to run a particular process on. 

While there is significant support in today’s commercial 
operating systems for multiprocessor execution, there is more 
work that can be done.  For example, task scheduling can be 
improved to adapt to the workload.  Typically, tasks that share 
the same data, such as threads that belong to the same process, 
will be scheduled across cores that share the same last-level 
cache in order to minimized resource contention.  However, 
if the tasks share primarily read-only data, it may be better to 
replicate the data across the caches and distribute the tasks to 
all idle processors.  There is currently research being done, 
called Micro Architectural Scheduling Assist, to use perfor-

mance counters to track the shared resource usage and better 
predict the optimal scheduling.  Another area of future research 
is in cache-fair thread scheduling.  If a thread happens to get 
scheduled with another thread that uses up a majority of the 
cache, then it will end up running much slower than normal, 
even if it is at a higher priority than the other thread.  Cache-
fair thread scheduling attempts to address this by estimating 
the cache miss rate that the thread would incur under normal or 
fair conditions and compensating the thread by giving it more 
thread quantum to run if the actual miss rate falls lower than 
the fair miss rate.

In order to scale into the thousands of processors, many re-
searchers have advocated a radically different operating system 
architecture.  One example is the Wisdom parallel operating 
system, where virtual processors are used to abstract away the 
knowledge of the real physical processor topology.  In this sys-
tem, there can be an infinite number of virtual processors that 
can be multiplexed onto real processors.  Each virtual proces-
sor handles the executing of one task and message passing is 
used to communicate between virtual processors.  In addition, 
the code that makes up the traditional kernel, such as the sched-
uler, is distributed across many processors so that there isn’t a 
bottleneck.  Overall, there is a lot of room for operating system 
innovation to address massively parallel computers.

Emerging Programming Models and Runtimes 
Highly parallel machines are programmed differently than clas-
sical von Neumann computers. The notion of a simple, linear 
program flow mutating the system from one state to another 
is no longer sufficient. Rather, parallel applications exhibit 
markedly different characterictics than conventional software. 

Figure 1
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They are typically event- or I/O-driven, highly asynchronous, 
and expressed in terms of small units of work that can be intel-
ligently scheduled according to the resources available on a 
given system at a given time. 

Event- and I/O-driven programming models are nothing new. 
Graphical user interfaces and commodity web servers provide 
classic examples of each, and neither need be developed using 
emerging parallel methodologies. But these models can be used 
in much more powerful ways on emerging, massively parallel 
hardware. Program components can be engineered as aggregat-
ing functions over multiple concurrent input sources, and the 
software can intelligently arbitrate between these inputs to effi-
ciently process data that arrives at roughly the same time. Work 
can be cancelled if a concurrent computation determines that 
it is no longer necessary, and conversely, it can be performed 
eagerly in antipation of speeding up other concurrent tasks. 
These principles are demonstrated well in the Microsoft Robot-
ics Concurrency and Coordination Runtime, which is designed 
to arbitrate concurrent streaming inputs from multiple ports.

As an example of a more conventional application of this kind 
of a runtime, consider a client application that pulls stock 
information from the web in near real time. Clearly the user’s 
mouse clicks are an input to the system, and in a conventional 
architecture it might be acceptable to drive all computations 
directly from a UI message pump. However, this architecture 
begins to crumble if the computations need information from 
the web that must be loaded on demand with latencies in the 
tens or hundreds of milliseconds. If the user asked for a custom 
analysis of a particular mutual fund, for instance, the applica-
tion might dispatch dozens of requests to the web in parallel 
to investigate the component equities, and then generate even 
more requests as a result of the equity information. On a con-
ventional runtime it would be challenging for the developer to 
do anything more sophisticated than wait for all the requests to 
return, processing them nearly sequentially. A typical multi-
threaded application today would parallelize the work only to 
the extent that each response could be preprocessed on its own 
thread before aggregating the results. 

It is easy to see how complex the application would have to be 
if the user expected it to fully utilize their 32-core laptop CPU. 
They might expect it to be responsive, so that they could click 
around, triggering concurrent computations and web requests 
and rendering graphs as data arrives and as calculations com-
plete. The application data cache, for example, would have to 
cope with high contention on individual cache entries. If one 
computation has just requested a particular resource, a second 
computation that also needs the same resource should wait 
for the first request to complete instead of dispatching another 
request. A developer could choose to design the system so that 
the second thread would block, but then a large number of 
threads could rapidly emerge and coordinating them to can-
cel or share redundant work would become difficult. Serious 
deadlocks and race conditions could also arise, and blocking is 
therefore often avoided in this type of parallel application. 

So to avoid blocking, an asynchronous, callback-oriented cache 
would likely lie at the heart of this stock application. And to 
keep the callbacks from blocking, the asynchrony ultimately 
driven by the long Internet I/O latencies would rapidly propa-
gate throughout the code. This would be a difficult application 
to write today, and the relative cost of speed-of-light latencies 
on the web is only getting worse. Throw in a natural interface 
that accepts voice, gaze, multitouch and device mesh inputs, 
and the problem becomes orders of magnitude more complex. 
Add a rich, animated, framerate-oriented graphical UI as an 
output, and the problem becomes horrific since large amounts 
of work could be wasted preparing frames that are never even 
rendered. The many-core CPUs of the future will have lots to 
do; our challenge is to keep them working on the right things. 

Parallel runtimes and models help developers simplify this kind 
of heavily parallel application by inverting the architecture and 
concentrating on functions over asynchronous inputs rather 
than on steps necessary to produce outputs. This is a much 
more resilient approach in light of the massive asynchrony we 
can expect of our applications in the future. The functional ap-
proach has been long proven in products like SQL Server, Ex-
cel, Matlab and Photoshop: these successful applications were 
designed with asynchronous functions as their internal building 
blocks in order to keep them responsive. But the complexity of 
these applications reflect how hard it can be to design and use 
custom, parallelizable patterns and practices for every project. 

Thankfully, emerging parallel runtimes are designed to factor 
out the common features of these popular asynchronous and 
functional approaches, so that they can be used by a broader 
population of software developers. Yet source code based on 
these runtimes can be barely recognizable. For
example, the following snippet of code from an excellent 
MSDN article7 demonstrates the asynchronous, I/O driven 
structure of a highly parallel sample application:

Port<WebResponse> responsePort = null;
Port<Exception> failurePort = null;
Port<DateTime> timeoutPort = new Port<DateTime>();

for (Int32 n = 0; n < c_ImageUrls.Length; n++)
{
 WebRequest webReq = WebRequest.Create(c_ImageUrls[n]);
 ApmToCcrAdapters.GetResponse(webReq, ref responsePort, ref 
failurePort);
}

dq.EnqueueTimer(TimeSpan.FromMilliseconds(2000), timeoutPort);

Arbiter.Activate(dq, 
 Arbiter.Choice(
  Arbiter.Receive(false, failurePort, delegate(Exception 
e)
   { 
    Msg(“At least 1 GetResponse failed”);
   }
  ),

 Arbiter.Receive(false, timeoutPort, delegate(DateTime dt)
  { 
   Msg(“Some requests did not complete within 2 sec-
onds.”);
  }
 ),

 Arbiter.MultipleItemReceive(false, responsePort, c_ImageUrls.
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Length, 
  delegate(WebResponse[] responses) {
   foreach (WebResponse response in responses)
   {
    Byte[] data = new Byte[response.ContentLength];
    response.GetResponseStream().Read( data, 0, 
data.Length);
    Msg(“ResponseUrl={0}”, response.ResponseUri);
   }
  }
 ))
);

This type of structure has almost no relation to traditional 
imperative control flow, yet it is built using familiar C#/.NET 
primitives, such as delegates, anonymous methods and itera-
tors. And even iterators themselves can assume a new form in a 
highly concurrent asynchronous program:

private static IEnumerator<ITask> SaveWebSiteToFile() {
    WebResponse webResponse = null;

    yield return Arbiter.Choice(ApmToCcrAdapters.GetResponse(
        WebRequest.Create(“http://Wintellect.com”)),
        delegate(WebResponse wr) { 
            Msg(“Got web data”); webResponse = wr; },
        delegate(Exception e) { Msg(“Failed to get web data”); });

    if (webResponse == null) yield break;

    FileStream fs = new FileStream(@”WebData.html”, FileMode.Cre-
ate,
        FileAccess.Write, FileShare.Write, 8 * 1024, 
            FileOptions.Asynchronous);
    using (fs) {
        Byte[] webData = new Byte[10000];
        Int32 numbytes = webResponse.GetResponseStream().Read(
            webData, 0, webData.Length);
        Array.Resize(ref webData, numbytes);

        yield return Arbiter.Choice(ApmToCcrAdapters.Write(fs, 
             webData, 0, webData.Length),
            delegate(EmptyValue ev) { 
                Msg(“Wrote web data to file”); },
            delegate(Exception e) { 
                Msg(“Failed to write web data to file”); });
    }
}

A complete dissection of these code samples cannot be accom-
modated within this paper’s space constraints, yet the essential 
elements of a parallel runtime are readily apparent from these 
examples. Tasks are expressed as small units of work without 
an explicit parallel execution plan, yet the runtime is able to 
generate chores and tasks that can be optimally executed at 
runtime according to the system’s available resources. Execu-
tion is deferred until necessary, and an intelligent implementa-
tion could actively identity opportunities to eagerly execute or 
terminate tasks based on runtime profiling, high level branch 
prediction, and computation based on concurrent inputs.

The runtime clearly requires software developers to undertake 
extreme contortions in their coding styles, and these examples 
show the strain that parallel programs exert on conventional 
programming languages. This is why programming languages 
are themselves are changing so profoundly in response to these 
hardware trends.

Computer Language Implications
The growth of parallel processing hardware has led to the 

necessity for programmers to write code that utilizes the avail-
able parallelization. While instruction level parallelization has 
provided some implicit benefit, and compilers and runtimes can 
solve problems without explicit participation of the end-level 
programmer, this has only limited benefit. Compilers are not 
able to deduce the intention of a program and rewrite it in a 
new way.

Major programming languages today have mechanisms for 
using the threads paradigm for explicitly parallelizing applica-
tions.  Starting and stopping threads, and sychronizing them 
with mutexes, locks, and critical sections is the job of the 
coder, with no help from the language itself or runtime librar-
ies.  There are dozens of new programming languages today 
for writing parallel programs that are based on languages with 
significant code bases.  These are “sequential-like” languages, 
with added keywords and mechanisms built in, to allow com-
piler and runtime-level support for parallelization.

Another approach to creating parallel programs is to use 
functional programming languages. Functional languages were 
primarily developed for modeling mathematics. Functional 
languages define computation in terms of mathematical func-
tions. A happy side effect of this design is that, since functions 
are stateless and have no side effects, any evaluations can be 
done where function inputs are known.  Analogous to these 
languages is Google’s MapReduce, which is an implicitly par-
allelizable paradigm for creating programs that is dissimilar to 
sequential programming.

Farther out is the possibility of the dominance of intentional 
programming languages6. The purported advantage of this 
design is to reduce code size, minimize the consequences of 
system-wide code changes, and reduce programmer-induced 
bugs. A consequence is that, since the intention of the algo-
rithms is captured at the highest level, the compiler is exposed 
to the parallelism of the algorithms.

Transactional Memory 
Transactional memory (TM) is an alternative way to coordinate 
access to shared data. It’s not a “silver bullet” for addressing 
parallel programming complexity – it just shifts much of the 
burden of synchronizing and coordinating parallel computa-
tions from a programmer to a compiler, runtime, and/or hard-
ware. The main challenge is to build efficient TM infrastructure 
either in software or hardware (or both). This area is still under 
active research and there are no mainstream implementations 
yet. 

The idea of TM comes from database systems, which were suc-
cessful at exploiting concurrency for years (e.g. many queries 
can execute at the same time and programmer doesn’t need to 
know about this). The secret lies in database transactions. 

In the database world, a transaction is indivisible sequence of 
actions. It has four properties (ACID): 

Atomicity – either all actions are performed or none of them 
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are executed. 
Consistency – after transaction succeeds it leaves data in con-
sistent state. Consistency property is application specific. 
Isolation – each transaction produces a correct result, regard-
less of any other transactions executing at the same time. 
Durability – once a transaction commits, its results are perma-
nent and available to other transactions. Note that this property 
is not useful for TM since memory states don’t need to be 
permanent. 

ACI properties of transactions provide a useful abstraction for 
synchronization of access to shared data. If a set of instructions 
can be executed in context of a transaction, then atomicity en-
sures all instructions will execute (or fail) and isolation ensures 
there will be no interference between multiple transactions 
even if they operate on the same shared data. These two proper-
ties have potential to greatly simplify concurrent programming. 

Here is an example of a simple transaction: 

atomic
{
  account1.Credit(amount);
  account2.Debit(amount);
}
 
An atomic block ensures atomicity and isolation, while the pro-
grammer needs to ensure consistency. There is no explicit lock-
ing and synchronization required and the programmer doesn’t 
need to know if there are any other parts of code that access 
any of the objects modified inside an atomic block. There is 
also no need to know anything about implementation of meth-
ods called from an atomic block (e.g. what other objects might 
be modified as side effects). All those details can be safely 
abstracted from a programmer while underlying runtime and/or 
hardware track various interactions and ensure correctness. 

The main challenges in implementing a TM system are coming 
up with good semantics that fit naturally with existing lan-
guages, libraries, OSs, etc and making its performance accept-
able. There are many aspects of TM semantics that need further 
research. For example, what’s the best way to deal with non-
reversible operations like IO? Should they be allowed inside 
atomic blocks? Allowing them would make TM blend naturally 
with existing code but consequences are severe – TM systems 
would need to guarantee that any atomic block with IO opera-
tions will always succeed (i.e. there will be no rollback). This 
would affect performance of course – another area that requires 
lots of research to find the right balance of guarantees given by 
TM and amount of overhead required to keep those promises. 

TM is a promising technology that could simplify development 
of parallel software but there are still lots of questions that need 
to be answered. 

Conclusion 
Is parallelism the solution to the growing sequential hardware 
constraints? There have been significant advances in new 

approaches to creating algorithms, such as Google’s MapRe-
duce�0; significant improvements in instruction-level paral-
lism; improvements to compiler optimizations to find available 
parallelism in existing programs. Symmetric parallelism can 
increase the speed of a computation which has available paral-
lelism, at rates potentially even faster than the density growth 
of transistors on a chip, and operating systems can implement 
efficiency mechanisms to assure that ready threads can be run.

But Craig Zilles of the University of Illinois says “It’s very 
hard to write a correct sequential program. It will be only 
harder to write a correct parallel program.” And it’s true that 
many of the current developments are bounded by the amount 
of implicit parallelism in sequentially-written programs.

It’s clear that massively parallel computational hardware is in 
our future, and it seems evident that software designers will 
have to offer parallelism to the hardware in a new way.  The 
open questions are:  How big a change will developers have to 
make, will those changes be extensions to predominant current 
languages, and how much help from runtimes and “smart” 
hardware will we get?
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