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INTRODUCTION 

In 1950 Alan Turing first proposed the question “can 
machines think?”  Using a simple game of imitation, Turing 
presented a simple test of “machine intelligence” whereby 
one could answer his question. While the game is 
somewhat simplistic in nature, his musings gave rise to the 
birth of the field of Artificial Intelligence and soon found a 
community of researchers dedicated to the pursuit of 
creating intelligent machines (1).  Dartmouth College fed 
the research frenzy through the early years of AI through 
the aid of John McCarthy et al and the summer institutes of 
AI research started in 1955 (2). 

Soon however, the reality of Moravec's Paradox set in 
declaring that which is difficult for humans is easy for 
computers, and that which is easy for humans is difficult 
for computers (3).  Machines perform well on the most 
difficult of intelligence based problems such as differential 
calculus, while they fail to thrive at the simple tasks of 
human life such as facial recognition and mobility.  Couple 
this with   the explosion of the computational complexity 
and the hardware requirements needed to perform those 
computations, studies in artificial intelligence has proven 
to be most challenging (4). 

While still a blossoming field of study within computer 
science, artificial intelligence has experienced a roller 
coaster of popularity and is currently enjoying a renewed 
focus as modern technologies are opening the doors to 
new research. In this paper we will look at some of the 
popular and emerging fields of current AI research that are 
bringing intelligent computing to life both in hardware and 
software solutions, including statistical learning, 
evolutionary computing, and AI hardware. 

STATISTICAL LEARNING 

Intelligence can be classified as a series of decisions that 
are made based on a given set of inputs to achieve a 
desired output.  At base, each decision is chosen based on 
the likelihood of achieving success for the problem at 
hand.  To this end the broad category of statistical learning 
encompasses agents that attempt to mimic human 
intelligence by analyzing inputs, assigning probabilities 
and making intelligent decisions to reach success.  At a 
surface level, such problems may seem simplistic in nature 

but consider the following complications: a typical agent 
has only partial information about factors that affect the 
consequences of the decision; the measurement of these 
factors may be prone to error; and there will likely be 
additional unknown factors that affect the outcome of a 
given decision. Statistical learning addresses such 
problems and derives conclusions about complex 
environments which can only be partially observed by 
using principles of probability and statistical theory. 

The following discussion will provide a brief survey of 
three popular statistical learning approaches: Bayesian 
Networks, Markov Networks and Kernel Machines. 

BAYESIAN NETWORKS 

An 18th century English cleric, Thomas Bayes, derived a 
seminal rule for determining conditional probability that 
was later extended to a broader set of problems whereby 
the degree of confidence is more important in decision 
making than observing the actual occurrence of events (5).  
Bayesian networks, as they have become known, address 
statistical learning problems by modeling the semantics of 
an environment, capturing the subjective nature of the 
input information, and making intelligent decisions based 
on uncertain or difficult dependencies. 

Bayesian Networks model the interrelationship between 
variables by means of a Directed Acyclic Graph (DAG), 
where the nodes are the events of interest, and the 
conditional probabilities associated with edges are 
adjusted over time. The DAG in turn provides an efficient 
structure for calculating probabilities of choosing one node 
given another (6). In essence, Bayesian networks are 
similar to human's empirical study of laws of physical 
sciences (e.g. the correlation between smoking and cancer) 
before a theoretical causal relationship was established. 

The full specification is as follows (7): 

 A set of random variables make up the nodes of 
the network 

 A set of directed links connect node X and Y if, and 
only if X is said to be a parent of Y 

 Each node Xi has a conditional probability 
distribution P(Xi|Parents(Xi)) that quantifies the 
effect of the parents on the node 

 The graph as no directed cycles 



MARKOV NETWORKS 

A Markov network, named after Andrey Markov, is a 
stochastic process with the property that given the current 
state, all future states are independent of the past states 
(6). In other words, the description of the present state 
fully captures all the information that could influence the 
future evolution of the process. Future states will be 
reached through a probabilistic process instead of a 
deterministic one. Markov networks are classified on their 
Markov chain properties:   

 Reducibility: reachibility from one state to another  

 Periodicity: regular occurrence of states  

 Recurrence: repetition of states  

 Ergodicity: finite states with recurrence in no 
particular order 

Markov networks are an extension of the Bayesian 
networks in their representation of dependencies (7).  
While Markov networks can represent dependencies that a 
Bayesian network cannot, such as cyclic dependencies, 
they fail in representing other dependencies, such as 
induced dependencies. 

 

Sample Markov Networks. A node is independent of all other nodes given a 
special set of nodes, called its Markov Blanket 

A Markov network consists of an undirected graph where 
vertices represent variables and edge represent 
dependencies; a set of potential functions map possible 
joint assignments to non-negative real numbers. Similar to 
Bayesian networks, conditional distribution can be 
calculated by summing all possible assignments whose 
values are not given (8). 

Bayesian and Markov networks have broad applications 
from 3D scene creation to speech recognition. Recently, 
Domingos and Pazzani (1997) provided an explanation for 
the surprising success of simplified Bayesian reasoning 
even in domains where the independence assumptions are 
violated and thus offering a general framework for great 
simplification of complex environments. 

KERNEL MACHINES 

In the field of machine learning, the use of linear machines 
is usually the first approach used when facing pattern 
analysis problems. The simple mathematical form of linear 
methods allows for the development of simple training 
algorithms and the detailed study of individual properties. 
The extension of these linear machines to non-linear 
decision rules using the Kernel Trick is referred to as 
Kernel Machines. This trick only works for algorithms 
where all training sample vectors are in the form of 
Euclidean dot-products. The most popular algorithms 
which work with kernel methods are Support Vector 
Machines, Principal Component Analysis, and Fisher's 
Linear Discriminate Analysis (9). 

KERNEL TRICK 

The Kernel Trick is a method which enables the use of a 
linear classifier algorithm to solve a non-linear problem by 
mapping the original non-linear observations into a 
higher-dimensional space. The linear classifier can then be 
used to make an equivalent linear classification in the new 
higher dimension space.  All the dot products in the form 
x.y used in the linear algorithm are replaced by a Kernel 
Function K(x,y) if it satisfies the conditions specified in 
Mercer's Theorem (10). 

KERNEL FUNCTION 

A Kernel Function is the function of distance that is used to 
determine the weight of each training example with 
respect to the data which needs to be classified (11). In 
other words the kernel function is the function K such that, 
wi = K(d(xi, xq)). 

SUPPORT VECTOR MACHINES 

Many applications of machine learning address problems 
where both the size of sample data and the number of 
attributes for each example is large such as text 
classification. Linear Support Vector Machines are among 
the most popular machine learning techniques for such 
high-dimensional and sparse data (12). 

Support Vector Machines (SVN) view every sample in the 
training dataset as an n-dimensional vector and try to 
separate them in different classes using an n-1 
dimensional hyper-plane. Since there may be many hyper-
planes that classify the sample data correctly, SVMs try and 
maximize the separation between classes. This means 
picking the hyper-plane which maximizes the distance 
from the hyper-plane to the closest example data point, 
which also results in the simultaneous minimization of the 
classification error. In the figure H1 doesn't separate the 2 
classes. H2 and H3 both separate the 2 classes; however 
H3 does it with the maximum margin (13).  Support Vector 



Machines are being used to solve problems such as drug 
design, word-sense disambiguation and Web Searching.  

 

Figure: H1 doesn't separate the 2 classes. H2 and H3 both separate the 2 
classes, however H3 does it with the maximum margin. 

EVOLUTIONARY COMPUTING 

The natural world is replete with pictures of intelligence 
that emerges over time through the evolutionary process.  
Natural scientists study nature to determine how species 
change and grow over time, and have inspired computer 
scientists to attempt to model the evolutionary behaviors 
through software in an attempt to derive more intelligent 
solutions. 

In this section we will discuss two such modeling attempts: 
ant colony algorithms and genetic algorithms. 

ANT COLONY ALGORITHMS 

Ant Colony algorithms were first introduced by Marco 
Dorigo in 1992. Inspired by the scavenging behavior of 
ants which lead the colony to food, they provide a way of 
deriving optimal paths within a graph. 

When traveling from the colony to food sources, ants 
deposit chemicals called pheromones on the trails. The 
trail is used as a bread crumb trail of sorts that allow the 
ants to find the path back to the colony. As other ants find 
this marked path they are likely to follow it. This will cause 
more pheromones to be deposited on the trail, which in 
effect reinforces the strength of the trail. Over time, 
however, the pheromone starts to evaporate, and this 
reduces its attractiveness to other ants. Short paths have 
the advantage of being marched over faster and more 
often, therefore, the pheromone density remains high. 
Consequently, a short path will have more ants traveling 
on it, increasing the pheromone density, and eventually 
the majority of ants will follow it. 

Ant Colony algorithms mimic this behavior in order to find 
optimal paths within a graph. Initially, all paths have a 
random small amount of "pheromone" deposited on it. An 
"ant" departs from the starting node and starts the process 

of visiting the other nodes in the graph. At each node, the 
ant decides which node it should visit next. The 
attractiveness of the node is based on its derived 
pheromone level such that a nearby node with a large 
amount of pheromone will be have a higher probability of 
being chosen than a distant node with little pheromone 
(14). 

Ant Colony algorithms excel at producing strong results 
relatively fast. They can be run continuously in order to 
adapt to changes in real-time, an advantage compared to 
genetic algorithms (15). For instance, an obstacle such as a 
traffic jam would quickly lead an ant colony algorithm to 
discover a different good path, whereby a genetic 
algorithm would rely on the evolutionary process over 
time to adjust.  

Ant colony algorithms are of special interest in 
applications such as urban transportation and network 
routing 

GENETIC ALGORITHMS 

John Holland fathered the study of Genetic Algorithms 
(GA) in 1975 in the first paper published on the subject, 
"Adaptation in Natural and Artificial Systems."  
Conceptually genetic algorithms are simple, as they 
attempt to model the natural evolution. A population of 
individual solutions to a problem is either generated 
randomly or following certain rules to force a better initial 
sampling. A fitness function is then applied to each 
individual measuring the quality of the solution. Higher 
fitness values mean the individual is closer to the optimal 
solution. Next, one or more individuals are selected to 
mate and create new offspring. This process is called 
crossover, as it tries to simulate how DNA is broken and 
fused together to create new cells. By combining 
individuals, the hope is that the offspring will evolve and 
become better than their parents. Furthermore, 
individuals with higher fitness value are more likely to be 
chosen to mate. In addition to crossover, random 
mutations can also aid in introducing variance into the 
resultant population (16). 

Typical implementations of genetic algorithms model 
individual solutions in ways that can be easily broken and 
rejoined, such as arrays (17).  Algorithms then randomly 
select a place to break the individual into fragments and 
recombine with another individual that was also broken. 
More sophisticated algorithms exist and usually are 
tailored for a specific problem. For example, data mining 
GAs can decide to break a given rule where it generates 
most hits instead of purely random breaks (18). 

In developing an algorithm that closely models the 
evolution of the natural world, several factors can play into 
the quality of the resulting solutions and the length of time 
it takes to derive the solution. Common parameters 



include number of generations, population size, rate of 
evolution, etc. Just as the factors that affect natural 
reproduction are numerous, usually these parameters are 
used in conjunction with one another. 

Common application of genetic algorithms include: data 
mining, the traveling salesman problem, game theory, and 
protein folding (19). 

AI HARDWARE 

The shortcomings of hardware performance have often 
been blamed for the slow progress made in emulating 
human intelligence.  In fact, Hans Moravec predicts that it 
won't be until 2003 when regular (consumer) hardware 
will catch up to raw power of the human brain (20). 
Consider the numbers that must be closed between brain 
power and computing power.  The brain contains 100 
billion neurons with 1,015 synapses each on average, 
while the most powerful supercomputers operate at 1,015 
teraflops with 1,015 Petabytes of memory. There exists a 
virtual chasm of difference between the two and scientists 
are researching new hardware implementations that 
attempt to bridge this gap. 

In this section we will discuss two current topics of 
intelligent hardware research that are making strides 
toward realizing faster, more intelligent hardware: 
Neuromorphic Engineering and Artificial Life. 

NEUROMORPHIC ENGINEERING 

Currently, the successful computing machines that we 
know of are the brain and digital computers (21).  
However, unlike man made machines, the brain has 
significant advantages over its silicon counterpart, such as 
parallel processing, reliability (despite unreliable 
components) and self configurability.  Moreover, the brain 
is event-driven, stochastic and parallel while the 
computers are result-driven, deterministic and serial.  The 
differences as the stand currently are hard to fathom, from 
the molecular level to the more abstract conceptual level, 
but the nascent field of Neuromorphic Engineering is very 
promising and can take Artificial Intelligence in new 
domains not yet explored through previous technologies 
and concepts. 

The term neuromorphic was coined by Carver Mead, in the 
late 1980s to describe Very Large Scale Integration (VLSI) 
systems containing electronic analog circuits that mimic 
neuro-biological architectures present in the nervous 
system (22).  Neuromorphic Engineering is the emulation 
of the brain in hardware, along with its neuro-biological 
architecture of the nervous system (23).   It differs from 
biomorphic engineering in that it only attempts to model 
the control and sensory systems rather than an entire 
biological system.  It attempts to mimic the basic 

interactions of individual neurons and proper 
implementations must have the following properties: 

 Carrying out Computations: Using sensory data 
input to come up with the appropriate series of 
actions. 

 Information Representation: Creating a model of 
the environment. 

 Robustness to Damage: Working around 
breakdown of certain cells or paths so that the 
system as a whole continues to function. 

 Learning and Development: Interpreting 
information temporally to yield a better 
understanding of the environment. 

 Evolutionary Change: To alter the interconnection 
of components to evolve current behavior and 
come up with new solutions. 

In Neuromorphic Engineering, models of neural systems 
are implemented as analog, digital or mixed-mode 
analog/digital VLSI systems. Analog technology appears to 
be the most appropriate (both in terms of power and 
behavior) for implementing artificial neurons that behave 
in a biologically plausible way.  Field programmable analog 
arrays (FPAAs) are another option that can enable rapid 
prototyping of chips, and make training and use a lot 
easier.  There is an important distinction between two 
areas in Neuromorphic Engineering:  Neuromorphic 
Computation and Neuromorphic Modeling.  While the 
former is concerned with using a subset of neuronal 
properties to build neuron-like computing hardware 
(membrane ion channel, firing behavior, conductance), the 
latter is involved in the more abstract concept i.e. 
reproducing the neurophysiologic phenomenon to 
increase our understanding of nervous systems. 

The term Neuromorphic hardware is used for full custom 
designed integrated circuits that are the product of 
neuromorphic engineering. Currently, most examples of 
this type of hardware are constructed using analog circuits 
in complementary metal-oxide-semiconductor technology. 
The correspondence between these circuits and neurons 
(or networks of neurons) can exist at a number of levels. 
At the lowest level, the correspondence is between field 
effect transistors and membrane ion channels. At higher 
levels, the correspondence can be between 
filters/amplifiers and whole conductances/firing behavior. 
Similarly, neuromorphic engineers can choose to design 
Hodgkin-Huxley model neurons, or reduced models, such 
as integrate-and-fire neurons. In addition to the choice of 
level, there is also choice within the design technique 
itself; for example, resistive and capacitive properties of 
the neuronal membrane can be constructed with extrinsic 
devices, or using the intrinsic properties of the materials 
from which the transistors themselves are composed. 

This growing area covers topics such as sensory systems 
that can compete with human senses and pattern 
recognition systems that can run in real time.  



Neuromorphic engineering commonly finds its usages in 
vision, hearing, sonar, speech processing, robotics and 
learning. 

ARTIFICIAL LIFE 

AI traditionally focused on machines that perform complex 
multi-function problems (chess playing, medical diagnosis, 
etc), while Artificial Life (Alife) is preoccupied by natural 
behaviors, evolution and dynamic environments. Alife is a 
field that explores natural life by attempting to artificially 
create biological phenomena from scratch within 
computers and other nonliving media. Alife has three 
branches, named for their approaches: soft (software); 
hard (hardware) and wet (biochemistry) (24). 

ORIGINS OF ALIFE 

While many have contributed to the study of Alife, Chris 
Longton is considered to have brought theoretical 
coherence in this field and was the first to organize a 
workshop for Alife in 1987 entitled “Interdisciplinary 
Workshop on the Synthesis and Simulation of Artificial 
Life”. The workshop manifesto stated that the ultimate 
goal of artificial life is to mimic the logical form of living 
systems (25). 

CARBON VS NON-CARBON BASED LIFE 

While life on earth has carbon as its primary chemical 
element, the question is asked that if we have silicon, 
germanium or any other element as the base element, 
what would life look like?  Scientists, like Charles Tayler 
(UCLA) and David Jefferson (LLNL), believe that Alife 
models could demonstrate how cellular organization 
begins, interacts between genotypes, and creates parasites 
etc. Speculation is limitless but Alife supporters believe 
that digital simulation of non-carbon life can present 
answers to that question (25). 

WEAK VS STRONG ALIFE 

There is a major difference in Alife community between 
"weak" and "strong" Alife. Weak Alife advocates claim that 
simulation of evolving systems may help them understand 
real biological life natural systems. This group of people, 
and especially experimental biologists, are reluctant to 
consider computer based experiments as valid approaches. 
At the opposite pole there are “strong” Alife supporters. 
They consider that replicating life using computer 
programs is as equally valuable as natural life 
experiments. Rob Knight (biologist, University of 
Colorado) believes strong Alife views are controversial 

considering biological life is complex and the similarities 
with biological evolution tend to be abstract (25). 

EXAMPLES OF ALIFE PROJECTS 

Projects that have gained traction within the field of Alife 
are: 

 Golem (Genetically Organized Lifelike Electro 
Mechanics - Brandeis University):  a good example 
of engineered virtual life involving robots that can 
design and build other robots.  The computer is 
running an evolutionary algorithm producing a 
design based on natural selection (25). 

 The Tierra Project (Tom Roy - University of 
Oklahoma): simulates in a virtual world how life 
started during Cambrian Era. The “organisms” 
were represented by assembly language programs 
that were competing for CPU time and memory 
(25). 

 Avida Project (C. Adami  - CalTech):  similar to the 
Tierra project with the main difference being that 
particular types of mutations were inserted in 
program and observing what happened in 
following generations (25). 

THE FUTURE OF ALIFE 

As one would expect, artificial life is very controversial.   
John M. Smith (biologist) stated that Alife is a “fact-free 
science”. Lately, it seems that Alife techniques are 
becoming more accepted as method of studying evolution. 
At the same time scientists such as Francis Collins (head of 
Human Genome Project) think that chances of creating life 
from scratch in a lab are implausible; he believes that life is 
a product of intelligent design (26). 

IN SUMMARY 

As the explosion of complexity continues in modern 
computing it is apparent that new approaches must be 
employed to solve problems that are beyond human 
comprehension and reach the limits of our current 
computational power.  Whether through intelligent 
software or life-like hardware, artificial intelligence 
provides an ideal alternative to modern approaches in that 
it empowers machines to adjust the approach for solving a 
problem.  The ability to build intelligence into machines in 
such a way that they can analyze and optimize a solution 
expands our current computational limits beyond 
comprehension.
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