
A R TI FI CA L I NT EL I G E NC E

University of Washington – CSEP 590A Alternate Computing Paradigms - Spring 2008
Hammad Hashmi, Ovidiu Elenes, Shahid Razzaq, Mir Tariq, Troy Schneringer, Leonardo Viana, Fabricio Voznika

INTRODUCTION

In 1950 Alan Turing first proposed the question “can
machines think?” Using a simple game of imitation, Turing
presented a simple test of “machine intelligence” whereby
one could answer his question. While the game is
somewhat simplistic in nature, his musings gave rise to the
birth of the field of Artificial Intelligence and soon found a
community of researchers dedicated to the pursuit of
creating intelligent machines (1). Dartmouth College fed
the research frenzy through the early years of AI through
the aid of John McCarthy et al and the summer institutes of
AI research started in 1955 (2).

Soon however, the reality of Moravec's Paradox set in
declaring that which is difficult for humans is easy for
computers, and that which is easy for humans is difficult
for computers (3). Machines perform well on the most
difficult of intelligence based problems such as differential
calculus, while they fail to thrive at the simple tasks of
human life such as facial recognition and mobility. Couple
this with the explosion of the computational complexity
and the hardware requirements needed to perform those
computations, studies in artificial intelligence has proven
to be most challenging (4).

While still a blossoming field of study within computer
science, artificial intelligence has experienced a roller
coaster of popularity and is currently enjoying a renewed
focus as modern technologies are opening the doors to
new research. In this paper we will look at some of the
popular and emerging fields of current AI research that are
bringing intelligent computing to life both in hardware and
software solutions, including statistical learning,
evolutionary computing, and AI hardware.

STATISTICAL LEARNING

Intelligence can be classified as a series of decisions that
are made based on a given set of inputs to achieve a
desired output. At base, each decision is chosen based on
the likelihood of achieving success for the problem at
hand. To this end the broad category of statistical learning
encompasses agents that attempt to mimic human
intelligence by analyzing inputs, assigning probabilities
and making intelligent decisions to reach success. At a
surface level, such problems may seem simplistic in nature

but consider the following complications: a typical agent
has only partial information about factors that affect the
consequences of the decision; the measurement of these
factors may be prone to error; and there will likely be
additional unknown factors that affect the outcome of a
given decision. Statistical learning addresses such
problems and derives conclusions about complex
environments which can only be partially observed by
using principles of probability and statistical theory.

The following discussion will provide a brief survey of
three popular statistical learning approaches: Bayesian
Networks, Markov Networks and Kernel Machines.

BAYESIAN NETWORKS

An 18th century English cleric, Thomas Bayes, derived a
seminal rule for determining conditional probability that
was later extended to a broader set of problems whereby
the degree of confidence is more important in decision
making than observing the actual occurrence of events (5).
Bayesian networks, as they have become known, address
statistical learning problems by modeling the semantics of
an environment, capturing the subjective nature of the
input information, and making intelligent decisions based
on uncertain or difficult dependencies.

Bayesian Networks model the interrelationship between
variables by means of a Directed Acyclic Graph (DAG),
where the nodes are the events of interest, and the
conditional probabilities associated with edges are
adjusted over time. The DAG in turn provides an efficient
structure for calculating probabilities of choosing one node
given another (6). In essence, Bayesian networks are
similar to human's empirical study of laws of physical
sciences (e.g. the correlation between smoking and cancer)
before a theoretical causal relationship was established.

The full specification is as follows (7):

 A set of random variables make up the nodes of
the network

 A set of directed links connect node X and Y if, and
only if X is said to be a parent of Y

 Each node Xi has a conditional probability
distribution P(Xi|Parents(Xi)) that quantifies the
effect of the parents on the node

 The graph as no directed cycles

MARKOV NETWORKS

A Markov network, named after Andrey Markov, is a
stochastic process with the property that given the current
state, all future states are independent of the past states
(6). In other words, the description of the present state
fully captures all the information that could influence the
future evolution of the process. Future states will be
reached through a probabilistic process instead of a
deterministic one. Markov networks are classified on their
Markov chain properties:

 Reducibility: reachibility from one state to another

 Periodicity: regular occurrence of states

 Recurrence: repetition of states

 Ergodicity: finite states with recurrence in no
particular order

Markov networks are an extension of the Bayesian
networks in their representation of dependencies (7).
While Markov networks can represent dependencies that a
Bayesian network cannot, such as cyclic dependencies,
they fail in representing other dependencies, such as
induced dependencies.

Sample Markov Networks. A node is independent of all other nodes given a
special set of nodes, called its Markov Blanket

A Markov network consists of an undirected graph where
vertices represent variables and edge represent
dependencies; a set of potential functions map possible
joint assignments to non-negative real numbers. Similar to
Bayesian networks, conditional distribution can be
calculated by summing all possible assignments whose
values are not given (8).

Bayesian and Markov networks have broad applications
from 3D scene creation to speech recognition. Recently,
Domingos and Pazzani (1997) provided an explanation for
the surprising success of simplified Bayesian reasoning
even in domains where the independence assumptions are
violated and thus offering a general framework for great
simplification of complex environments.

KERNEL MACHINES

In the field of machine learning, the use of linear machines
is usually the first approach used when facing pattern
analysis problems. The simple mathematical form of linear
methods allows for the development of simple training
algorithms and the detailed study of individual properties.
The extension of these linear machines to non-linear
decision rules using the Kernel Trick is referred to as
Kernel Machines. This trick only works for algorithms
where all training sample vectors are in the form of
Euclidean dot-products. The most popular algorithms
which work with kernel methods are Support Vector
Machines, Principal Component Analysis, and Fisher's
Linear Discriminate Analysis (9).

KERNEL TRICK

The Kernel Trick is a method which enables the use of a
linear classifier algorithm to solve a non-linear problem by
mapping the original non-linear observations into a
higher-dimensional space. The linear classifier can then be
used to make an equivalent linear classification in the new
higher dimension space. All the dot products in the form
x.y used in the linear algorithm are replaced by a Kernel
Function K(x,y) if it satisfies the conditions specified in
Mercer's Theorem (10).

KERNEL FUNCTION

A Kernel Function is the function of distance that is used to
determine the weight of each training example with
respect to the data which needs to be classified (11). In
other words the kernel function is the function K such that,
wi = K(d(xi, xq)).

SUPPORT VECTOR MACHINES

Many applications of machine learning address problems
where both the size of sample data and the number of
attributes for each example is large such as text
classification. Linear Support Vector Machines are among
the most popular machine learning techniques for such
high-dimensional and sparse data (12).

Support Vector Machines (SVN) view every sample in the
training dataset as an n-dimensional vector and try to
separate them in different classes using an n-1
dimensional hyper-plane. Since there may be many hyper-
planes that classify the sample data correctly, SVMs try and
maximize the separation between classes. This means
picking the hyper-plane which maximizes the distance
from the hyper-plane to the closest example data point,
which also results in the simultaneous minimization of the
classification error. In the figure H1 doesn't separate the 2
classes. H2 and H3 both separate the 2 classes; however
H3 does it with the maximum margin (13). Support Vector

Machines are being used to solve problems such as drug
design, word-sense disambiguation and Web Searching.

Figure: H1 doesn't separate the 2 classes. H2 and H3 both separate the 2
classes, however H3 does it with the maximum margin.

EVOLUTIONARY COMPUTING

The natural world is replete with pictures of intelligence
that emerges over time through the evolutionary process.
Natural scientists study nature to determine how species
change and grow over time, and have inspired computer
scientists to attempt to model the evolutionary behaviors
through software in an attempt to derive more intelligent
solutions.

In this section we will discuss two such modeling attempts:
ant colony algorithms and genetic algorithms.

ANT COLONY ALGORITHMS

Ant Colony algorithms were first introduced by Marco
Dorigo in 1992. Inspired by the scavenging behavior of
ants which lead the colony to food, they provide a way of
deriving optimal paths within a graph.

When traveling from the colony to food sources, ants
deposit chemicals called pheromones on the trails. The
trail is used as a bread crumb trail of sorts that allow the
ants to find the path back to the colony. As other ants find
this marked path they are likely to follow it. This will cause
more pheromones to be deposited on the trail, which in
effect reinforces the strength of the trail. Over time,
however, the pheromone starts to evaporate, and this
reduces its attractiveness to other ants. Short paths have
the advantage of being marched over faster and more
often, therefore, the pheromone density remains high.
Consequently, a short path will have more ants traveling
on it, increasing the pheromone density, and eventually
the majority of ants will follow it.

Ant Colony algorithms mimic this behavior in order to find
optimal paths within a graph. Initially, all paths have a
random small amount of "pheromone" deposited on it. An
"ant" departs from the starting node and starts the process

of visiting the other nodes in the graph. At each node, the
ant decides which node it should visit next. The
attractiveness of the node is based on its derived
pheromone level such that a nearby node with a large
amount of pheromone will be have a higher probability of
being chosen than a distant node with little pheromone
(14).

Ant Colony algorithms excel at producing strong results
relatively fast. They can be run continuously in order to
adapt to changes in real-time, an advantage compared to
genetic algorithms (15). For instance, an obstacle such as a
traffic jam would quickly lead an ant colony algorithm to
discover a different good path, whereby a genetic
algorithm would rely on the evolutionary process over
time to adjust.

Ant colony algorithms are of special interest in
applications such as urban transportation and network
routing

GENETIC ALGORITHMS

John Holland fathered the study of Genetic Algorithms
(GA) in 1975 in the first paper published on the subject,
"Adaptation in Natural and Artificial Systems."
Conceptually genetic algorithms are simple, as they
attempt to model the natural evolution. A population of
individual solutions to a problem is either generated
randomly or following certain rules to force a better initial
sampling. A fitness function is then applied to each
individual measuring the quality of the solution. Higher
fitness values mean the individual is closer to the optimal
solution. Next, one or more individuals are selected to
mate and create new offspring. This process is called
crossover, as it tries to simulate how DNA is broken and
fused together to create new cells. By combining
individuals, the hope is that the offspring will evolve and
become better than their parents. Furthermore,
individuals with higher fitness value are more likely to be
chosen to mate. In addition to crossover, random
mutations can also aid in introducing variance into the
resultant population (16).

Typical implementations of genetic algorithms model
individual solutions in ways that can be easily broken and
rejoined, such as arrays (17). Algorithms then randomly
select a place to break the individual into fragments and
recombine with another individual that was also broken.
More sophisticated algorithms exist and usually are
tailored for a specific problem. For example, data mining
GAs can decide to break a given rule where it generates
most hits instead of purely random breaks (18).

In developing an algorithm that closely models the
evolution of the natural world, several factors can play into
the quality of the resulting solutions and the length of time
it takes to derive the solution. Common parameters

include number of generations, population size, rate of
evolution, etc. Just as the factors that affect natural
reproduction are numerous, usually these parameters are
used in conjunction with one another.

Common application of genetic algorithms include: data
mining, the traveling salesman problem, game theory, and
protein folding (19).

AI HARDWARE

The shortcomings of hardware performance have often
been blamed for the slow progress made in emulating
human intelligence. In fact, Hans Moravec predicts that it
won't be until 2003 when regular (consumer) hardware
will catch up to raw power of the human brain (20).
Consider the numbers that must be closed between brain
power and computing power. The brain contains 100
billion neurons with 1,015 synapses each on average,
while the most powerful supercomputers operate at 1,015
teraflops with 1,015 Petabytes of memory. There exists a
virtual chasm of difference between the two and scientists
are researching new hardware implementations that
attempt to bridge this gap.

In this section we will discuss two current topics of
intelligent hardware research that are making strides
toward realizing faster, more intelligent hardware:
Neuromorphic Engineering and Artificial Life.

NEUROMORPHIC ENGINEERING

Currently, the successful computing machines that we
know of are the brain and digital computers (21).
However, unlike man made machines, the brain has
significant advantages over its silicon counterpart, such as
parallel processing, reliability (despite unreliable
components) and self configurability. Moreover, the brain
is event-driven, stochastic and parallel while the
computers are result-driven, deterministic and serial. The
differences as the stand currently are hard to fathom, from
the molecular level to the more abstract conceptual level,
but the nascent field of Neuromorphic Engineering is very
promising and can take Artificial Intelligence in new
domains not yet explored through previous technologies
and concepts.

The term neuromorphic was coined by Carver Mead, in the
late 1980s to describe Very Large Scale Integration (VLSI)
systems containing electronic analog circuits that mimic
neuro-biological architectures present in the nervous
system (22). Neuromorphic Engineering is the emulation
of the brain in hardware, along with its neuro-biological
architecture of the nervous system (23). It differs from
biomorphic engineering in that it only attempts to model
the control and sensory systems rather than an entire
biological system. It attempts to mimic the basic

interactions of individual neurons and proper
implementations must have the following properties:

 Carrying out Computations: Using sensory data
input to come up with the appropriate series of
actions.

 Information Representation: Creating a model of
the environment.

 Robustness to Damage: Working around
breakdown of certain cells or paths so that the
system as a whole continues to function.

 Learning and Development: Interpreting
information temporally to yield a better
understanding of the environment.

 Evolutionary Change: To alter the interconnection
of components to evolve current behavior and
come up with new solutions.

In Neuromorphic Engineering, models of neural systems
are implemented as analog, digital or mixed-mode
analog/digital VLSI systems. Analog technology appears to
be the most appropriate (both in terms of power and
behavior) for implementing artificial neurons that behave
in a biologically plausible way. Field programmable analog
arrays (FPAAs) are another option that can enable rapid
prototyping of chips, and make training and use a lot
easier. There is an important distinction between two
areas in Neuromorphic Engineering: Neuromorphic
Computation and Neuromorphic Modeling. While the
former is concerned with using a subset of neuronal
properties to build neuron-like computing hardware
(membrane ion channel, firing behavior, conductance), the
latter is involved in the more abstract concept i.e.
reproducing the neurophysiologic phenomenon to
increase our understanding of nervous systems.

The term Neuromorphic hardware is used for full custom
designed integrated circuits that are the product of
neuromorphic engineering. Currently, most examples of
this type of hardware are constructed using analog circuits
in complementary metal-oxide-semiconductor technology.
The correspondence between these circuits and neurons
(or networks of neurons) can exist at a number of levels.
At the lowest level, the correspondence is between field
effect transistors and membrane ion channels. At higher
levels, the correspondence can be between
filters/amplifiers and whole conductances/firing behavior.
Similarly, neuromorphic engineers can choose to design
Hodgkin-Huxley model neurons, or reduced models, such
as integrate-and-fire neurons. In addition to the choice of
level, there is also choice within the design technique
itself; for example, resistive and capacitive properties of
the neuronal membrane can be constructed with extrinsic
devices, or using the intrinsic properties of the materials
from which the transistors themselves are composed.

This growing area covers topics such as sensory systems
that can compete with human senses and pattern
recognition systems that can run in real time.

Neuromorphic engineering commonly finds its usages in
vision, hearing, sonar, speech processing, robotics and
learning.

ARTIFICIAL LIFE

AI traditionally focused on machines that perform complex
multi-function problems (chess playing, medical diagnosis,
etc), while Artificial Life (Alife) is preoccupied by natural
behaviors, evolution and dynamic environments. Alife is a
field that explores natural life by attempting to artificially
create biological phenomena from scratch within
computers and other nonliving media. Alife has three
branches, named for their approaches: soft (software);
hard (hardware) and wet (biochemistry) (24).

ORIGINS OF ALIFE

While many have contributed to the study of Alife, Chris
Longton is considered to have brought theoretical
coherence in this field and was the first to organize a
workshop for Alife in 1987 entitled “Interdisciplinary
Workshop on the Synthesis and Simulation of Artificial
Life”. The workshop manifesto stated that the ultimate
goal of artificial life is to mimic the logical form of living
systems (25).

CARBON VS NON-CARBON BASED LIFE

While life on earth has carbon as its primary chemical
element, the question is asked that if we have silicon,
germanium or any other element as the base element,
what would life look like? Scientists, like Charles Tayler
(UCLA) and David Jefferson (LLNL), believe that Alife
models could demonstrate how cellular organization
begins, interacts between genotypes, and creates parasites
etc. Speculation is limitless but Alife supporters believe
that digital simulation of non-carbon life can present
answers to that question (25).

WEAK VS STRONG ALIFE

There is a major difference in Alife community between
"weak" and "strong" Alife. Weak Alife advocates claim that
simulation of evolving systems may help them understand
real biological life natural systems. This group of people,
and especially experimental biologists, are reluctant to
consider computer based experiments as valid approaches.
At the opposite pole there are “strong” Alife supporters.
They consider that replicating life using computer
programs is as equally valuable as natural life
experiments. Rob Knight (biologist, University of
Colorado) believes strong Alife views are controversial

considering biological life is complex and the similarities
with biological evolution tend to be abstract (25).

EXAMPLES OF ALIFE PROJECTS

Projects that have gained traction within the field of Alife
are:

 Golem (Genetically Organized Lifelike Electro
Mechanics - Brandeis University): a good example
of engineered virtual life involving robots that can
design and build other robots. The computer is
running an evolutionary algorithm producing a
design based on natural selection (25).

 The Tierra Project (Tom Roy - University of
Oklahoma): simulates in a virtual world how life
started during Cambrian Era. The “organisms”
were represented by assembly language programs
that were competing for CPU time and memory
(25).

 Avida Project (C. Adami - CalTech): similar to the
Tierra project with the main difference being that
particular types of mutations were inserted in
program and observing what happened in
following generations (25).

THE FUTURE OF ALIFE

As one would expect, artificial life is very controversial.
John M. Smith (biologist) stated that Alife is a “fact-free
science”. Lately, it seems that Alife techniques are
becoming more accepted as method of studying evolution.
At the same time scientists such as Francis Collins (head of
Human Genome Project) think that chances of creating life
from scratch in a lab are implausible; he believes that life is
a product of intelligent design (26).

IN SUMMARY

As the explosion of complexity continues in modern
computing it is apparent that new approaches must be
employed to solve problems that are beyond human
comprehension and reach the limits of our current
computational power. Whether through intelligent
software or life-like hardware, artificial intelligence
provides an ideal alternative to modern approaches in that
it empowers machines to adjust the approach for solving a
problem. The ability to build intelligence into machines in
such a way that they can analyze and optimize a solution
expands our current computational limits beyond
comprehension.

REFERENCES

1. Computing Machinery And Intelligence. Turing, Alan. 1950, Mind, pp. 433-460.
http://loebner.net/Prizef/TuringArticle.html.

2. McCarthy, J., et al. A Proposal For The Dartmouth Summer Research Project On Artifical Intelligence. August 31, 1955.

3. Moravec, Hans. Mind Children: The Future of Robot and Human Intelligence. s.l. : Harvard University Press, 1988.

4. Reducibility Among Combinatorial Problems. Karp, Richard M. 1972, Complexity of Computer Computations, pp. 85-103.

5. Wikipedia. Thomas Bayes. [Online] http://en.wikipedia.org/wiki/Thomas_Bayes.

6. Efficient Structure Learning of Markov Networks. Lee, Su-In, Ganapathi, Varun and Koller, Daphne. s.l. : Stanford
University.

7. Russell, Stuart and Norvig, Peter. Artifical Intelligence, A Modern Approach. s.l. : Prentice Hall, 1995.

8. Wikipedia. Markov Network. [Online] http://en.wikipedia.org/wiki/Markov_network.

9. Kernel-Machines.Org. [Online] http://www.kernel-machines.org/.

10. Pattern Recognition with Support Vector Machines. Lee, Seong-Whan and Verri, Alessandro. Niagara Falls, Canada : s.n.,
2002. First International Workshop, SVM.

11. Mitchell, Tom. Machine Learning. s.l. : McGraw Hill, 1997.

12. Training Linear SVMs in Linear Time. Joachims, Thorsten. s.l. : Cornell University.

13. Burges, Christopher J.C. A Tutorial on Support Vector Machines for Pattern. [Online]
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf.

14. Colin, Andrew. Dr. Dobb's journal. [Online]
http://www.ddj.com/article/printableArticle.jhtml;jsessionid=I3POWR5NA02ICQSNDLPSKH0CJUNN2JVN?articleID=1918001
78&dept_url=/hpc-high-performance-computing.

15. Wikipedia. Ant Colony Optimization. [Online] http://en.wikipedia.org/wiki/Ant_colony_optimization.

16. Koza, John R. Genetic Programming. s.l. : MIT Press, 1998.

17. Banzhaf, W., et al. Genetic Programming An Introduction. s.l. : Morgan Kaufmann Publishers, 1998.

18. Discovering fuzzy classification rules with genetic programming and co-evolution. Mendes, R.F., et al. s.l. : Springer, 2001.
Principles of Data Mining and Knowledge Discovery. pp. 314-325.

19. Freitas, A.A. Data Mining and Knowledge Discovery with Evolutionary Algorithms. s.l. : Springer-Verlag, 2002.

20. When will computer hardware match the human brain? Moravec, Hans. 1997.

21. Diorio, Chris. Why Neuromorphic Engineering? [Online]
http://www.cs.washington.edu/homes/diorio//Talks/InvitedTalks/Telluride99/sld001.htm.

22. Wikipedia. Neuromorphic. [Online] http://en.wikipedia.org/wiki/Neuromorphic.

23. Institue of Neuromorphic Engineering. [Online] http://www.ine-web.org/.

24. Wikipedia. Artificial Life. [Online] http://en.wikipedia.org/wiki/Artificial_life.

25. Forbes, Nancy. Imitation of Life – How Biology Is Inspiring Computing. s.l. : MIT Press, 2005.

26. Krulwich, Robert. Francis Collins Interview. [Online] http://www.pbs.org/wgbh/nova/sciencenow/3214/01-
collins.html.

	Introduction
	Statistical Learning
	Bayesian Networks
	Markov Networks
	Kernel Machines
	Kernel Trick
	Kernel Function
	Support Vector Machines

	Evolutionary Computing
	Ant Colony Algorithms
	Genetic Algorithms

	AI Hardware
	Neuromorphic Engineering
	Artificial Life
	Origins of Alife
	Carbon vs Non-Carbon based life
	Weak vs strong Alife
	Examples of Alife projects
	The Future of Alife

	In Summary
	References

