
The WaveScalar Architecture

STEVEN SWANSON, ANDREW SCHWERIN, MARTHA MERCALDI,

ANDREW PETERSEN, ANDREW PUTNAM, KEN MICHELSON,

MARK OSKIN, and SUSAN J. EGGERS

University of Washington

Silicon technology will continue to provide an exponential increase in the availability of raw tran-
sistors. Effectively translating this resource into application performance, however, is an open
challenge that conventional superscalar designs will not be able to meet. We present WaveScalar
as a scalable alternative to conventional designs. WaveScalar is a dataflow instruction set and exe-
cution model designed for scalable, low-complexity/high-performance processors. Unlike previous
dataflow machines, WaveScalar can efficiently provide the sequential memory semantics impera-
tive languages require. To allow programmers to easily express parallelism, WaveScalar supports
pthread-style, coarse-grain multithreading and dataflow-style, fine-grain threading. In addition,
it permits blending the two styles within an application or even a single function.

To execute WaveScalar programs, we have designed a scalable, tile-based processor architecture
called the WaveCache. As a program executes, the WaveCache maps the program’s instructions
onto its array of processing elements (PEs). The instructions remain at their processing elements
for many invocations, and as the working set of instructions changes, the WaveCache removes
unused instructions and maps new instructions in their place. The instructions communicate
directly with one-another over a scalable, hierarchical on-chip interconnect, obviating the need for
long wires and broadcast communication.

This paper presents the WaveScalar instruction set and evaluates a simulated implementation
based on current technology. For single-threaded applications, the WaveCache achieves perfor-
mance on par with conventional processors, but in less area. For coarse-grain threaded applica-
tions the WaveCache achieves nearly linear speedup with up to 64 threads and can sustain 7-14
multiply-accumulates per cycle on fine-grain threaded versions of well-known kernels. Finally, we

apply both styles of threading to equake from spec2000 and speed it up by 9x compared to the
serial version.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture
Styles—Data-flow architectures; C.5.0 [Computer System Implementation]: General; D.4.1
[Operating Systems]: Process Management—Threads; Concurrency

General Terms: Performance, Experimentation, Design

Additional Key Words and Phrases: WaveScalar, Dataflow computing, Multithreading

1. INTRODUCTION

It is widely accepted that Moore’s Law will hold for the next decade. However,
although more transistors will be available, simply scaling up current architectures
will not convert them into commensurate increases in performance [Agarwal et al.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Steven Swanson et al.

2000]. This resulting gap between the increases in performance we have come to
expect and those that larger versions of existing architectures will be able to deliver
will force engineers to search for more scalable processor architectures.

Three problems contribute to this gap: (1) the ever-increasing disparity between
computation and communication performance – fast transistors but slow wires; (2)
the increasing cost of circuit complexity, leading to longer design times, schedule
slips, and more processor bugs; and (3) the decreasing reliability of circuit tech-
nology, caused by shrinking feature sizes and continued scaling of the underlying
material characteristics. In particular, modern superscalar processor designs will
not scale, because they are built atop a vast infrastructure of slow broadcast net-
works, associative searches, complex control logic, and centralized structures.

We propose a new instruction set architecture (ISA), called WaveScalar [Swanson
et al. 2003], that addresses these challenges by building on the dataflow execution
model [Dennis and Misunas 1975]. The dataflow execution model is well-suited to
running on a decentralized, scalable processor, because it is inherently decentralized.
In this model, instructions execute when their inputs are available, and detecting
this condition can be done locally for each instruction. The global coordination
that the von Neumann model relies on, in the form of a program counter, is not
required. In addition, the dataflow model allows programmers and compilers to
express parallelism explicitly, instead of relying on the underlying hardware (e.g.,
an out-of-order superscalar) to extract it.

WaveScalar exploits these properties of the dataflow model, and also addresses a
long standing deficiency of dataflow systems. Previous dataflow systems could not
efficiently enforce the sequential memory semantics that imperative languages, such
as C, C++, and Java, require. Instead they used special, dataflow languages that
limited their usefulness. A recent ISCA keynote address [Arvind 2005] noted that if
dataflow systems are to become a viable alternative to the von Neumann status quo,
they must enforce sequentiality on memory operations without severely reducing
parallelism among other instructions. WaveScalar addresses this challenge with a
memory ordering scheme, called wave-ordered memory, that efficiently provides the
memory ordering that imperative languages need.

Using this memory ordering scheme, WaveScalar supports conventional single-
threaded and pthread-style multithreaded applications. It also efficiently supports
fine-grain threads that can consist of only a handful of instructions. Programmers
can combine these different thread models in the same program or even in the
same function. Our data show that applying diverse styles of threading to a single
program can expose significant parallelism in code that would otherwise be difficult
to fully parallelize.

Exposing parallelism is only the first task. The processor must then translate
that parallelism into performance. We exploit WaveScalar’s decentralized dataflow
execution model to design the WaveCache, a scalable, decentralized processor ar-
chitecture for executing WaveScalar programs. The WaveCache has no central
processing unit. Instead, it consists of a sea of processing nodes in a substrate
that effectively replaces the central processor and instruction cache of a conven-
tional system. The WaveCache loads instructions from memory and assigns them
to processing elements for execution. The instructions remain at their processing
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 3

elements for a large number, potentially millions, of invocations. As the working
set of instructions for the application changes, the WaveCache evicts unneeded
instructions and loads the necessary ones into vacant processing elements.

This paper describes and evaluates the WaveScalar ISA and WaveCache archi-
tecture. First, we describe those aspects of WaveScalar’s ISA and the WaveCache
architecture that are required for executing single-threaded applications, including
the wave-ordered memory interface. We evaluate the performance of a small, sim-
ulated WaveCache on several single-threaded applications. Our data demonstrate
that this WaveCache performs comparably to a modern out-of-order superscalar
design, but requires 20% less silicon area.

Next, we extend WaveScalar and the WaveCache to support conventional pthread-
style threading. The changes to WaveScalar include light-weight dataflow synchro-
nization primitives and support for multiple, independent sequences of wave-ordered
memory operations. The multithreaded WaveCache achieves nearly linear speedup
on the six Splash2 parallel benchmarks that we use.

Finally, we delve into WaveScalar’s dataflow underpinnings, the advantages they
provide, and how programs can combine them with conventional multithreading.
We describe WaveScalar’s “unordered” memory interface and show how it can be
used with fine-grain threading to reveal substantial parallelism. Fully utilizing these
techniques requires a custom compiler which is not yet complete, so we evaluate
these two features by hand-coding three common kernels and rewriting part of the
equake benchmark to use a combination of fine- and coarse-grain threading styles.
The results demonstrate that these techniques speed up the kernels by between 16
and 240 times and equake by a factor of 9, compared to the serial versions.

The rest of this paper is organized as follows. Sections 2 and 3 describe the
single-threaded WaveScalar ISA and WaveCache architecture, respectively. Sec-
tion 4 then evaluates them. Section 5 describes WaveScalar’s coarse-grain threading
facilities and the changes to the WaveCache that support them. Section 6 presents
WaveScalar’s dataflow-based facilities that support fine-grain parallelism and illus-
trates how one can combine both threading styles to enhance performance. Finally,
Section 7 concludes.

2. SINGLE-THREADED WAVESCALAR

Although the dataflow model that WaveScalar uses is fundamentally different than
the von Neumann model that dominates conventional designs, both models accom-
plish many of the same tasks in order to execute single-threaded programs written
in conventional programming languages. For example, both must determine which
instructions to execute and provide a facility for conditional execution; they must
pass operands from one instruction to another and they must access memory.

For many of these tasks, WaveScalar borrows from previous dataflow machines.
Its interface to memory, however, is unique and is one of its primary contributions
to dataflow computing. The WaveScalar memory interface provides an efficient
method for encoding memory ordering information in a dataflow model, enabling
efficient execution of programs written in imperative programming languages. Most
earlier dataflow machines could not efficiently execute codes written in imperative
languages, because they could not easily enforce the memory semantics these pro-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Steven Swanson et al.

grams require.
To provide context for our description, we first describe how the von Neumann

model accomplishes the tasks outlined above and why the von Neumann model
is inherently centralized. Then we describe how WaveScalar’s model accomplishes
the same goals in a decentralized manner and how WaveScalar’s memory inter-
face works. WaveScalar’s decentralized execution model provides the basis for the
decentralized, general purpose hardware architecture, presented in Section 3.

2.1 The von Neumann model

Von Neumann processors represent programs as a list of instructions that reside
in memory. A program counter (PC) selects instructions for execution by step-
ping from one memory address to the next, causing each instruction to execute in
turn. Special instructions can modify the PC to implement conditional execution,
function calls, and other types of control transfer.

In modern von Neumann processors instructions communicate with one another
by writing and reading values in the register file. After an instruction writes a
value into the register file, all subsequent instructions that read the value are data
dependent on the writing instruction.

To access memory, programs issue Load and Store instructions. A key tenet of
the von Neumann model is the set of memory semantics it provides: that loads
and stores occur (or appear to occur) in the order in which the PC fetched them.
Enforcing this order is required to preserve read-after-write, write-after-write, and
write-after-read dependences between instructions. Modern, imperative languages,
such as C, C++, or Java, provide essentially identical memory semantics and rely
on the von Neumann architecture’s ability to implement those semantics efficiently.

At its heart, the von Neumann model describes execution as a linear, centralized
process. A single program counter guides execution and there is always exactly
one instruction that, according to the model, should execute next. This is both
a strength and a weakness. On one hand, it makes control transfer easy, tightly
bounds the amount of state the processor must maintain, and provides a simple set
of memory semantics. History has also demonstrated that constructing processors
based on the model is feasible (and extremely profitable!). On the other hand,
the model expresses no parallelism. While the performance of its processors has
improved exponentially for over three decades, continued scalability is uncertain.

2.2 WaveScalar’s ISA

The dataflow execution model has no PC to guide instruction fetch and memory
ordering and no register file to serve as a conduit of data values between dependent
instructions. Instead, it views instructions as nodes in a dataflow graph that only
execute after they have received their input values. Memory operations execute
in the same data-driven fashion, which may result in their being executed out of
the program’s linear order. However, although the model provides no total order-
ing of a program’s instructions, it does enforce the partial orders that a program’s
dataflow graph defines. Since individual partial orders are data-independent, they
can be executed in parallel, providing the dataflow model with an inherent means of
expressing parallelism of arbitrary granularity. In particular, the granularity of par-
allelism is determined by the length of a data-dependent path. For all operations,
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 5

D = (A + B) / (C - 2)

+ - 2

÷

A B C

D

.label begin

Add temp_1 ← A, B

Sub temp_2 ← C, #2

Div D ← temp_1, temp_2

(a) (b) (c)

Fig. 1. A Simple dataflow fragment: A simple program statement (a), its
dataflow graph (b), and the corresponding WaveScalar assembly (c). The order of
the WaveScalar assembly statements is unimportant, since they will be executed in
dataflow fashion.

data values are passed directly from producer instructions to consumer instructions
without intervening accesses to a register file.

Dataflow’s advantages are its explicit expression of parallelism among dataflow
paths and its decentralized execution model that obviates the need for a program
counter or any other centralized structure to control instruction execution. How-
ever, these advantages do not come for free. Control transfer is more expensive
in the dataflow model, and the lack of a total order on instruction execution
makes it difficult to enforce the memory ordering that imperative languages re-
quire. WaveScalar handles control using the same technique as previous dataflow
machines (described in Section 2.2.2), but overcomes the problem of memory access
order with a novel architectural technique called wave-ordered memory [Swanson
et al. 2003] (described in Section 2.2.5). Wave-ordered memory essentially creates
a “chain” of dependent memory operations at the architectural level; the hardware
then guarantees that the operations execute in the order the chain defines.

Below we describe the WaveScalar ISA in detail. Much of the information is
not unique to WaveScalar and reflects its dataflow heritage. We present it here for
completeness and to provide a thorough context for the discussion of memory order-
ing, which is WaveScalar’s key contribution to dataflow instructions sets. Readers
already familiar with dataflow execution could skim Sections 2.2.1, 2.2.2, and 2.2.4.

2.2.1 Program representation and execution. WaveScalar represents programs
as dataflow graphs. Each node in the graph is an instruction, and the arcs between
nodes encode static data dependences (i.e., dependences that are known to exist
at compile time) between instructions. Figure 1 shows a simple piece of code, its
corresponding dataflow graph, and the equivalent WaveScalar assembly language.

The mapping between the drawn graph and the dataflow assembly language is
simple: each line of assembly represents an instruction, and the arguments to the
instructions are dataflow edges. Outputs precede the ’←’. The assembly code
resembles RISC-style assembly but differs in two key respects. First, although the
dataflow edges syntactically resemble register names, they do not correspond to
a specific architectural entity. Consequently, like pseudo-registers in a compiler’s
program representation, there can be an arbitrary number of them. Second, the

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Steven Swanson et al.

if (A > 0)
D = C + B;

else
D = C - E;

F = D + 1; + -

S S

>0

S

+1

C B E

D D

A

F

+ ->0

C B EA

φ

+1

F

D

(A) (b) (c)

Fig. 2. Implementing control in WaveScalar: An If-Then-Else construct
(a) and equivalent dataflow representations. In (b) Steer instructions (triangles
labeled ‘s’) ensure that only one side of the branch executes, while (c) computes
both sides and a φ instruction selects the result to use.

order of the instructions does not affect their execution, since they will be executed
in dataflow fashion. Each instruction does have a unique address, however, used
primarily for specifying function call targets (see Section 2.2.4). As in assembly
languages for von Neumann machines, we can use labels (e.g., begin in the figure)
to refer to specific instructions. We can also perform arithmetic on labels. For
instance begin +1 would be the Subtract instruction.

Unlike the PC-driven von Neumann model, execution of the dataflow graph is
data-driven. Instructions execute according to the dataflow firing rule, which stipu-
lates that an instruction can fire at any time after values arrive on all of its inputs.
Instructions send the values they produce along arcs in the program’s dataflow
graph to their consumer instructions, causing them to fire in turn. In Figure 1,
once inputs A and B are ready, the Add can fire and produce the left-hand input
to the Divide. Likewise, once C is available, the Subtract computes the other
input to the Divide instruction. The Divide then executes and produces D.

The dataflow firing rule is inherently decentralized, because it allows each in-
struction to act autonomously, waiting for inputs to arrive and generating outputs.
Portions of the dataflow graph that are not explicitly data-dependent do not com-
municate at all.

2.2.2 Control flow. Dataflow’s decentralized execution algorithm makes control
transfers more difficult to implement. Instead of steering a single PC through
the executable, so the processor executes one path instead of the other, WaveScalar
steers values into one part of the dataflow graph and prevents them from flowing into
another. It can also use predication to perform both computations and later discard
the results on the wrong path. In both cases, the dataflow graph must contain a
control instruction for each live value, which is the source of some overhead in the
form of extra static instructions.

WaveScalar uses Steer instructions to steer values to the correct path and φ

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 7

sum = 0;
for(i = 0; i < 5; i++)

sum += i;

 const #0 const #0

+ +1

<5

S S

sum_first

sum_increment

sum_out

sum_backedge

i_first

i_increment

p

i_backedge

trigger

 const #0 const #0

+ +1

<5

S S

WAWA

WA

(a) (b) (c)

waves

Fig. 3. Loops in WaveScalar: A simple loop (a), a naive, slightly broken dataflow
implementation (b), and the correct WaveScalar implementation (c).

instructions for predication. The Steer [Culler et al. 1991] instruction takes an
input value and a boolean output selector. It directs the input to one of two possi-
ble outputs depending on the selector value, effectively steering data values to the
instructions that should receive them. Figure 2(b) shows a simple conditional im-
plemented with Steer instructions. Steer instructions correspond most directly
to traditional branch instructions, and they are required for implementing loops.
In many cases a Steer instruction can be combined with a normal arithmetic op-
eration. For example, Add-and-Steer takes three inputs: a predicate and two
operands, and steers the result depending on the predicate. WaveScalar provides a
steering version for all 1- and 2-input instructions.

The φ instruction [Cytron et al. 1991] takes two input values and a boolean selec-
tor input and, depending on the selector, passes one of the inputs to its output. φ
instructions are analogous to conditional moves and provide a form of predication.
They are desirable, because they remove the selector input from the critical path of
some computations and therefore increase parallelism. They are also wasteful, how-
ever, because they discard the unselected input. Figure 2(c) shows φ instructions
in action.

2.2.3 Loops and waves. The Steer instruction may appear to be sufficient for
WaveScalar to express loops, since it provides a basic branching facility. However, in
addition to branching, dataflow machines must also distinguish dynamic instances
of values from different iterations of a loop. Figure 3(a) shows a simple loop that
both illustrates the problem and WaveScalar’s solution.

Execution begins when data values arrive at the Const instructions, which inject
zeros into the body of the loop, one for sum and one for i (Figure 3(b)). On each
iteration through the loop, the left side updates sum and the right side increments
i and checks whether it is less than 5. For the first 5 iterations (i = 0 . . . 4), p is

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Steven Swanson et al.

true and the Steer instructions steer the new values for sum and i back into the
loop. On the last iteration, p is false, and the final value of sum leaves the loop via
the sum out edge. Since i is dead after the loop, the false output of the right-side
Steer instruction produces no output.

The problem arises because the dataflow execution model makes no guarantee
about how long it takes a data value to flow along a given dataflow arc. If sum first
takes a long time to reach the Add instruction, the right side portion of the dataflow
graph could run ahead of the left side, generating multiple values on i backedge
and p. How would the Add and Steer instructions on the left know which of
these values to use? In this particular case, the compiler could solve the problem
by unrolling the loop completely, but this is not always possible or wise.

Previous dataflow machines provided one of two solutions. In the first, static
dataflow [Dennis and Misunas 1975; Davis 1978], only one value is allowed on each
arc at any time. In a static dataflow system, the dataflow graph as shown works fine.
The processor would use back-pressure to prevent the Compare and Increment

instructions from producing a new value before the old values had been consumed.
While this restriction resolves the ambiguity between different value instances, it
also reduces parallelism by preventing multiple iterations of a loop from executing
simultaneously and makes recursion difficult to support.

A second model, dynamic dataflow [Shimada et al. 1986; Gurd et al. 1985; Kishi
et al. 1983; Grafe et al. 1989; Papadopoulos and Culler 1990], tags each data value
with an identifier and allows multiple values to wait at the input to an instruction.
The dataflow firing rule is modified so that an instruction fires only when tokens
with matching tags are available on all its inputs1. The combination of a data value
and its tag is called a token. WaveScalar is a dynamic dataflow architecture.

Dynamic dataflow architectures differ in how they manage and assign tags to
values. In WaveScalar the tags are called wave-numbers [Swanson et al. 2003].
We denote a WaveScalar token with wave-number w and value v as w.v. Instead
of assigning different wave-numbers to different instances of specific instructions
(as most dynamic dataflow machines did), WaveScalar assigns them to compiler-
delineated portions of the dataflow graph called waves. Waves are similar to hy-
perblocks [Mahlke et al. 1992], but they are more general, since they can contain
control-flow joins and can have more than one entrance. They cannot contain
loops. Figure 3(c) shows the example loop divided into waves (as shown by the
dotted lines). At the top of each wave is a set of Wave-Advance instructions
(the small diamonds), each of which increments the wave number of the value that
passes through it.

Assume the code before the loop is wave number 0. When the code executes, the
two Const instructions will produce 0.0 (wave number 0, value 0). The Wave-

Advance instructions will take these as input and each will output 1.0, which
will propagate through the body of the loop as before. At the end of the loop,
the right-side Steer instruction will produce 1.1 and pass it back to the Wave-

Advance at the top of its side of the loop, which will then produce 2.1. A similar

1The execution model does not specify where the data values are stored or how matching takes
place. Efficiently storing and matching input tokens is a key challenge in dynamic dataflow
architecture, and Section 3 discusses it.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 9

 const #foo const #ret

 ind_send #0 ind_send #1 ind_send #2

landing_pad

landing_pad

+

 ind_send #0

A B

landing_pad landing_pad

return_addr

A B

foo:

WA WAWA

result

WA

ret:

int foo(int A, int B) {
return A + B;

}
...
result = foo(A,B);

(a) (b)

Fig. 4. A function call: The dataflow graph (b) for a call to a simple function (a).
The left-hand side of the dataflow graph uses Indirect-Send instructions to call
function foo on the right. The dashed lines show data dependences that WaveScalar
must resolve at runtime. The immediate values on the trio of Indirect-Send

instructions are offsets from the first instruction in foo.

process takes place on the left side of the graph. After 5 iterations the left Steer

instruction produces the final value of sum: 5.10, which flows directly into the
Wave-Advance at the beginning of the follow-on wave. With the Wave-Advance

instructions in place, the right side can run ahead safely, since instructions will
only fire when the wave numbers in the operand tags match. More generally, wave
numbers allow instructions from different wave instances, in this case iterations, to
execute simultaneously.

In addition to allowing WaveScalar to extract parallelism, wave-numbers also
play a key role in enforcing memory ordering (Section 2.2.5).

2.2.4 Function calls. Function calls on a von Neumann processor are fairly sim-
ple – the caller saves “caller saved” registers, pushes function arguments and the
return address onto the stack (or stores them in specific registers), and then uses
a jump instruction to set the PC to the address of the beginning of the called
function, triggering its execution.

Being a dataflow architecture, WaveScalar must follow a slightly different conven-
tion. Since it has no registers, it does not need to preserve register values. It must,
however, explicitly pass arguments and a return address to the function and trig-
ger its execution. Passing arguments creates a data dependence between the caller
and the callee. For indirect functions, these dependences are not statically known
and therefore the static dataflow graph of the application does not contain them.
Instead, WaveScalar provides a mechanism to send a data value to an instruction
at a computed address. The instruction that allows this is called Indirect-Send.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Steven Swanson et al.

Load

A[i+k] = x;

y = A[i];

+

Store

+

+

A ikx

y

j

Fig. 5. Program order: The dashed line represents an implicit, potential data
dependence between the Store and Load instructions that conventional dataflow
instruction sets have difficulty expressing. Without the dependence, the dataflow
graph provides no ordering relationship between the memory operations.

Indirect-Send takes as input the data value to send, a base address for the des-
tination instruction (usually a label), and the offset from that base (as an immedi-
ate). For instance, if the base address is 0x1000, and the offset is 4, Indirect-Send

sends the data value to the instruction at 0x1004.
Figure 4 contains the dataflow graph for a small function and a call site. Dashed

lines in the graphs represent the dependences that exist only at run time. The
Landing-Pad instruction, as its name suggests, provides a target for a data value
sent via Indirect-Send. To call the function, the caller uses three Indirect-

Send instructions: two for the arguments A and B and one for the return address,
which is the address of the return Landing-Pad (label ret in the figure). Another
Indirect-Sendis used to return from the function.

When the values arrive at foo, the Landing-Pad instructions pass them to
Wave-Advance instructions that, in turn, forward them into the function body
(the callee immediately begins a new wave). Once the function is finished, perhaps
having executed many waves, foo uses a single Indirect-Send to return the result
to the caller’s Landing-Pad instruction. After the function call, the caller starts
a new wave using a Wave-Advance.

2.2.5 Memory ordering. Enforcing imperative language memory semantics is
one of the key challenges that have prevented dataflow processing from becoming a
viable alternative to the von Neumann model. Since dataflow ISAs only enforce the
static data dependences in a program’s dataflow graph, they have no mechanism
that ensures that memory operations occur in program order. Figure 5 shows a
dataflow graph that demonstrates the dataflow memory ordering problem. In the
graph the Load must execute after the Store to ensure correct execution should
the two memory addresses be identical. However, the dataflow graph does not
express this implicit dependence between the two instructions (the dashed line).
WaveScalar must provide an efficient mechanism to encode this implicit dependence
in order to support imperative languages.

Wave-ordered memory solves the dataflow memory ordering problem, using the
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 11

Load <.,0,1>
Store <0,1,2>
Load <1,2,.>

Sequence #

Predecessor

Successor

Fig. 6. Simple wave-ordered annotations: The three memory operations must
execute in the order shown. The predecessor, sequence, and successor numbers
encode the ordering constraints. The ’.’ symbols indicate that operations 0 and 2
are the first and last operations in the wave.

waves defined in Section 2.2.3. Within each wave, the compiler annotates memory
access instructions to encode the ordering constraints between them. Since wave
numbers increase as the program executes, they provide an ordering of the executing
waves. Taken together, the coarse-grain ordering between waves (via their wave
numbers), combined with the fine-grain ordering within each wave, provides a total
order on all the memory operations in the program.

This section presents wave-ordered memory. Once we have more fully described
waves and discussed the annotation scheme for operations within a wave, we de-
scribe how the annotations provide the necessary ordering. Then we briefly discuss
an alternative solution to the dataflow memory ordering problem.

2.2.5.1 Wave-ordering Annotations. Wave-ordering annotations order the mem-
ory operations within a single wave. The annotations must guarantee two proper-
ties. First, they must ensure that the memory operations within a wave execute
in the correct order. Wave-ordered memory achieves this by giving each memory
operation in a wave a sequence number. Sequence numbers increase on all paths
through a wave, ensuring that if one memory operation has a larger sequence num-
ber than another, the one with the larger number comes later in program order.
Figure 6 shows a very simple series of memory operations and their annotations.
The sequence number is the second of the three numbers in angle brackets.

Second, wave-ordered memory must detect when all previous memory operations
that will execute have done so. In the absence of branches, this detection is simple:
since all the memory operations in a wave will eventually execute, the memory
system simply waits for memory operations with all lower sequence numbers to
complete. Control flow complicates this, because it allows some of the memory
operations to execute (those on the taken paths) while others do not (those on the
non-taken paths). To accommodate this, wave-ordered memory must distinguish
between operations that take a long time to fire and those that never will. To ensure
that all the memory operations on the correct path are executed, each memory op-
eration also carries the sequence number of its previous and subsequent operations
in program order. Figure 6 includes these annotations as well. The predecessor
number is the first number between the brackets, and the successor number is the
last. For instance, the Store in the figure is preceded by a Load with sequence
number 0 and followed by the Load with sequence number 2, so its annotations are
< 0, 1, 2 >. The ’.’ symbols indicate that there is no predecessor of operation 0

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Steven Swanson et al.

Load <.,0,?>

Store <0,1,3> Store <0,2,3>

Load <?,3,.>

Load <.,0,?>

Store <0,2,3>

Load <?,3,.>

Matches forming
a chain

Fig. 7. Wave-ordering and control: Dashed boxes and lines denote basic blocks
and control paths. The right hand side of the figure shows the instructions that
actually execute when control takes the right-hand path (bold lines and boxes) and
the matches between their annotations that define program order.

and no successor of operation 2.
At branch (join) points the successor (predecessor) number is unknown at compile

time, because control may take one of two paths. In these cases a ’wildcard’ symbol,
’?’, takes the place of the successor (predecessor) number. The left-hand portion of
Figure 7 shows a simple if-then-else control flow graph that demonstrates how
the wildcard is applied; the right-hand portion depicts how memory operations on
the taken path are sequenced, described below.

Intuitively, the annotations allow the memory system to “chain” memory op-
erations together. When the compiler generates and annotates a wave, there are
many potential chains of operations through the wave, but only one chain (i.e.,
one control path) executes each time the wave executes (i.e., during one dynamic
instance of the wave). For instance, the right side of Figure 7 shows the sequence of
operations along one path through the code on the left. From one operation to the
next, either the predecessor and sequence numbers or the successor and sequence
numbers match (the ovals in the figure).

In order for the chaining to be successful, the compiler must ensure that there is a
complete chain of memory operations along every path through a wave. The chain
must begin with an operation whose sequence number is 0 and end with successor
number ‘.’, indicating there is no successor.

It is easy to enforce this condition on the beginning and the end of the chain of
operations, but ensuring that all possible paths through the wave are complete is
more difficult. Figure 8(a) shows an example. The branch and join mean that in-
struction 0’s successor and instructions 2’s predecessor are both ‘?’. As a result, the
memory system cannot construct the required chain between operations 0 and 2, if
control takes the right-hand path. To create a chain, the compiler inserts a special
Memory-Nop instruction between 0 and 2 on the right-hand path (Figure 8(b)).
The Memory-Nop has no effect on memory but does send a request to the mem-
ory interface to provide the missing link in the chain. Adding Memory-Nops
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 13

Load <.,0,?>

Store <0,1,2>

Load <?,2,.>

Load <.,0,?>

Store <0,1,3>

Load <?,3,.>

Nop <0,2,3>

(a) (b)

Fig. 8. Resolving ambiguity: In (a), chaining memory operations is impossible
along the right-side path. In (b), the addition of a Memory-Nop allows chaining.

introduces a small amount of overhead, usually less than 3% of static instructions.

2.2.5.2 Ordering Rules. We can now demonstrate how WaveScalar uses wave
numbers and the annotations described above to construct a total ordering over
all memory operations in a program. Figure 7 shows a simple example. Control
takes the right-hand path resulting in three memory operations executed. At right,
ovals show the links between the three operations that form them into a chain. The
general rule is that a link exists between two operations if the successor number
of the first operation matches the sequence number of the second or the sequence
number of the first matches the predecessor number of the second.

Since the annotations only provide ordering with a wave, WaveScalar uses wave
numbers to order the waves themselves. The WaveScalar processor must ensure
that all the operations from previous waves complete before the operations in a
subsequent wave can be applied to memory. Combining the global inter-wave or-
dering with the local intra-wave ordering provides a total ordering on all operations
in the program.

2.2.5.3 Expressing parallelism. The basic version of wave-ordered memory de-
scribed above can be easily extended to express parallelism between memory oper-
ations, allowing consecutive Loads to execute in parallel or out-of-order.

The annotations and rules define a linear ordering of memory operations, ignor-
ing potential parallelism between Loads. Wave-ordered memory can express this
parallelism by providing a fourth annotation called a ripple number. The ripple
number of a Store is equal to its sequence number. A Load’s ripple number points
to the Store that most immediately precedes it. To compute the ripple number for
a Load, the compiler collects the set of all Stores that precede the Load on any
path through the wave. The Load’s ripple number is the maximum of the Stores’
sequence numbers. Figure 9 shows a sequence of Load and Store operations with all

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Steven Swanson et al.

Store <.,0,1>.0

Load <0,1,2>.0

Load <1,2,3>.0

Store <2,3,4>.3

Store <4,5,.>.5

Load <3,4,5>.3
sequence number-

based links

Ripple-based
links

ripple number

Fig. 9. Simple ripples: A single wave containing a single basic block. The ripple
annotations allow loads 1 and 2 to execute in either order or in parallel, while the
stores must wait for all previous loads and stores to complete. Ovals depict the
links formed between operations.

four annotations. Note that the predecessor numbers are still necessary to prevent
a Store from executing before the preceeding Loads have completed.

To accommodate ripples in the ordering rules we allow a Load to execute if it is
next in the chain operations (as before), or if the ripple number of the Load is less
than or equal to the sequence number of a previously executed operation (a Load
or a Store). Memory-Nops are treated like Loads.

Figure 9 shows the two different types of links that can allow an operation to fire.
The solid oval between the bottom four operations are similar to those in Figure 7.
The top two dashed ovals depict ripple-based links that allow the two Loads to
execute in either order or in parallel.

Figure 10 contains a more sophisticated example. If control takes the right-side
branch, Loads 1 and 4-6 can execute in parallel once Store 0 has executed, because
they all have ripple numbers of 0. Load 7 must wait for one of Loads 4-6 execute,
because the ripple number of operation 7 is 2 and Loads 4-6 all have sequence
numbers greater than 2. If control takes the left branch, Loads 3 and 7 can execute
as soon as Store 2 has executed.

Wave-ordered memory can express parallelism among Load and Store operations
that a conventional out-of-order processor would discover by speculatively assum-
ing memory independence [Chrysos and Emer 1998]. The speculative approach
can also uncover some paralellism that wave-ordered memory cannot express (e.g.,
the compiler may be unable to prove that two Stores are independent when they
actually are). However, nothing in the WaveScalar instruction set or execution
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 15

Load <0,1,?>.0

Store <1,2,3>.2

Load <?,7,.>.2

Load <1,4,5>.0

Load <2,3,7>.2 Load <4,5,6>.0

Store <.,0,1>.0

Load <5,6,7>.0

Fig. 10. Ripples and control: Branches make ripple behavior more complicated.
If control takes the right-hand path, loads 1 and 4-6 can execute in any order, but
load 7 must wait for an operation with a sequence number greater than 2.

model prevents a WaveScalar processor from speculatively issuing memory opera-
tions and using the wave-ordering information to catch and correct mispeculations.
Our implementation does not currently speculate.

2.2.6 Other approaches. Wave-ordered memory is not the only way to provide
the required memory ordering. Researchers have proposed an alternative scheme
that makes implicit memory dependences explicit by adding a dataflow edge be-
tween each memory operation and the next [Beck et al. 1991; Budiu et al. 2004].
While this “token-passing” scheme is simple, it does not perform as well as wave-
ordered memory; our experiments have found that wave-ordered memory expresses
twice as much memory parallelism as token passing [Swanson 2006].

Despite this, token-passing is very useful in some situations, because it gives the
programmer or compiler complete control over memory ordering. If very good mem-
ory aliasing is available, the programmer or compiler can express parallelism directly
by judiciously placing dependences only between those memory operations that
must actually execute sequentially. WaveScalar provides a simple token-passing
facility for just this purpose (Section 6).

Previous dataflow machines have also provided two memory structures, I-structures
and M-structures, intended to support functional programming languages. These
structures combine memory ordering with synchronization.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Steven Swanson et al.

2.2.6.1 I-structures. Functional languages initialize variables when they are de-
clared and disallow modifying their values. This eliminates the possibility of read-
after-write data hazards. The variable always contains the correct value, so any
read is guaranteed to see it. Dataflow language designers recognized that this ap-
proach restricts parallelism, because an array must be completely initialized before
its elements can be accessed. Ideally, one thread could fill in the array, while another
thread accessed the initialized elements.

Dataflow languages such Id [Nikhil 1990] and SISAL [Feo et al. 1995] provide this
ability with I-structures [Arvind et al. 1989]. I-structures are write-once memory
structures. When a program allocates an I-structure it is empty and contains no
value. A program can write, or fill in, an I-structure at most once. Reading from an
empty I-structure blocks until the I-structure is full. Reading from a full I-structure
returns the value it holds. In the array example above, one thread allocates an array
of I-structures and starts filling them in. The second thread can attempt to read
entries of the array but will block if it tries to access an empty I-structure.

2.2.6.2 M-structures. M-structures [Barth et al. 1991] provide check-in/check-
out semantics for variables. Reading from a full M-structure removes the value,
and a write fills the value back in. Attempting to read from an empty M-structure
blocks until the value is returned.

A typical example of M-structures in action is a histogram. Each bucket is an M-
structure, and a group of threads add elements to the buckets concurrently. Since
addition is commutative, the order of the updates is irrelevant, but they must be
sequentialized. M-structures provide precisely the necessary semantics.

2.3 Discussion

The WaveScalar instruction set this section describes is sufficient to execute single-
threaded applications written in conventional imperative programming languages.
The instruction set is slightly more complex than a conventional RISC ISA, but
we have not found the complexity difficult for the programmer or the compiler to
handle.

In return for the complexity, WaveScalar provides three significant benefits. First,
wave-ordered memory allows WaveScalar to efficiently provide the semantics that
imperative languages require and to express parallelism among Load operations.
Second, WaveScalar can express instruction-level parallelism explicitly, while still
maintaining these conventional memory semantics. Third, WaveScalar’s execution
model is distributed. Only instructions that must pass each other data communi-
cate. There is no centralized control point.

In the next section we describe a microarchitecture that implements the WaveScalar
ISA. We find that, in addition to increasing instruction-level parallelism, the WaveScalar
instruction set allows the microarchitecture to be substantially simpler than a mod-
ern, out-of-order superscalar.

3. A WAVECACHE ARCHITECTURE FOR SINGLE-THREADED PROGRAMS

WaveScalar’s overall goal is to enable an architecture that avoids the scaling prob-
lems described in the introduction. With the decentralized WaveScalar dataflow
ISA in hand, our task is to develop a decentralized, scalable architecture to match.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 17

In addition to the scaling challenges, this architecture also must address additional
challenges specific to WaveScalar. In particular, it must efficiently implement the
dataflow firing rule and provide storage for multiple (perhaps many) instances of
data values with different tags. It must also provide an efficient hardware imple-
mentation of wave-ordered memory.

This section describes a tile-based WaveScalar architecture, called the Wave-
Cache, that addresses these challenges. The WaveCache comprises everything,
except main memory, required to run a WaveScalar program. It contains a scalable
grid of simple, identical dataflow processing elements that are organized hierarchi-
cally to reduce operand communication costs. Each level of the hierarchy uses a
separate communication structure: high-bandwidth, low-latency systems for local
communication, and slower, narrower communication mechanisms for long distance
communication.

As we will show, the resulting architecture directly addresses two of the challenges
we outlined in the introduction. First, the WaveCache contains no long wires.
In particular, as the size of the WaveCache increases, the length of the longest
wires do not. Second, the WaveCache architecture scales easily from small designs
suitable for executing a single thread to much larger designs suited to multithreaded
workloads (See Section 5). The larger designs contain more tiles, but the tile
structure, and therefore, the overall design complexity does not change. The final
challenge mentioned in the introduction, defect and fault tolerance, is the subject of
ongoing research. The WaveCache’s decentralized, uniform structure suggests that
it would be easy to disable faulty components to tolerate manufacturing defects.

We begin by summarizing the WaveCache’s design and operation at a high level
in Section 3.1. Next, Sections 3.2 to 3.6 provide a more detailed description of
its major components and how they interact. Section 3.7 describes a synthesizable
RTL model that we use, in combination with simulation studies, to provide the spe-
cific architectural parameters for the WaveCache we describe. Finally, Section 3.8
describes other processor designs that share many of WaveScalar’s goals. Section 4
evaluates the design in terms of performance and the amount of area it requires.

3.1 WaveCache architecture overview

Several recently proposed architectures, including the WaveCache, take a tile-based
approach to addressing the scaling problems outlined in the introduction [Nagarajan
et al. 2001a; 2001b; Lee et al. 1998; Mai et al. 2000; Goldstein and Budiu 2001;
Budiu et al. 2004]. Instead of designing a monolithic core that comprises the entire
die, tiled processors cover the die with hundreds or thousands of identical tiles,
each of which is a complete, though simple, processing unit. Since they are less
complex than the monolithic core and are replicated across the die, tiles more
quickly amortize design and verification costs. Tiled architectures also generally
compute under decentralized control, contributing to shorter wire lengths. Finally,
they can be designed to tolerate manufacturing defects in some portion of the tiles.

In the WaveCache, each tile is called a cluster (Figure 11). A cluster contains
four identical domains, each with eight identical processing elements (PEs). In addi-
tion, each cluster has a four-banked L1 data cache, wave-ordered memory interface
hardware, and a network switch for communicating with adjacent clusters.

From the programmer’s perspective, every static instruction in a WaveScalar bi-
ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Steven Swanson et al.

PE

C
luster

DomainPod

L2

L2
L2

L2

L2 L2

Net-
work

D$
S
B

D$

D$

D$

Fig. 11. The WaveCache: The hierarchical organization of the microarchitecture
of the WaveCache.

#0

#0

+

+1

<5 S

S

Fig. 12. Mapping instruction into the WaveCache: The loop in Figure 3(c)
mapped onto two WaveCache domains. Each large square is a processing element.

nary has a dedicated processing element. Clearly, building an array of clusters large
enough to give each instruction in an entire application its own PE is impractical
and wasteful, so, in practice, we dynamically bind multiple instructions to a fixed
number of PEs, each of which can hold up to 64 instructions. Then, as the working
set of the application changes, the WaveCache replaces unneeded instructions with
newly activated ones. In essence, the PEs cache the working set of the application,
hence the WaveCache moniker.

Instructions are mapped to and placed in PEs dynamically as a program exe-
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 19

cutes. The mapping algorithm has two often conflicting goals: to place dependent
instructions near each other (e.g., in the same PE) to minimize producer-consumer
operand latency, and to spread independent instructions out across several PEs to
exploit parallelism. Figure 12 illustrates how the WaveScalar program in Figure 3(c)
can be mapped into two domains in the WaveCache. To minimize operand latency,
the entire loop body (i.e., everything but the Const instructions that initiates the
loop) has been placed in a single domain.

A processing element’s chief responsibility is to implement the dataflow firing rule
and execute instructions. Each PE contains a functional unit, specialized memories
to hold operands, and logic to control instruction execution and communication. It
also contains buffering and storage for several different static instructions. A PE
has a five-stage pipeline, with bypass networks that allow back-to-back execution of
dependent instructions at the same PE. Two aspects of the design warrant special
notice. First, it avoids a large, centralized, associative tag matching store found
on some previous dataflow machines [Gurd et al. 1985]. Second, although PEs
dynamically schedule execution, the scheduling hardware is dramatically simpler
than a conventional dynamically scheduled processor. Section 3.2 describes the PE
design in more detail.

To reduce communication costs within the grid, PEs are organized hierarchically
along with their communication infrastructure (Figure 11). They are first coupled
into pods ; PEs within a pod snoop each others’ ALU bypass networks and share
instruction scheduling information, and therefore achieve the same back-to-back
execution of dependent instructions as a single PE. The pods are further grouped
into domains ; within a domain, PEs communicate over a set of pipelined buses.
The four domains in a cluster communicate over a local switch. At the top level,
clusters communicate over an on-chip interconnect built from the network switches
in the clusters.

PEs access memory by sending requests to the memory interface in their local
cluster. If possible, the local L1 cache provides the data. Otherwise, it initiates a
conventional cache coherence request to retrieve the data from the L2 cache (located
around the edge of the array of clusters, along with the coherence directory) or the
L1 cache that currently owns the data.

A single cluster, combined with an L2 cache and traditional main memory, is suf-
ficient to run any WaveScalar program, albeit with a possibly high WaveCache miss
rate as instructions are swapped in and out of the small number of available PEs.
To build larger and higher performing machines, multiple clusters are connected by
an on-chip network. A traditional directory-based MESI protocol maintains cache
coherence.

3.2 The PE

At a high level, the structure of a PE pipeline resembles a conventional five-stage,
dynamically scheduled execution pipeline. The biggest difference between the two
is that the PE’s execution is entirely data-driven. Instead of executing instructions
provided by a program counter, as you find on von Neumann machines, values (i.e.,
tokens) arrive at a PE destined for a particular instruction. The arrival of all of an
instruction’s input values triggers its execution – the essence of dataflow execution.

Our main goal in designing the PE was to meet our cycle-time goal while still
ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Steven Swanson et al.

Output
Queue

Reject
Buffer

PE0 .. PE7 Network Memory

Fire
Control

Unit

Tracker
Board

Op
Cache

1

Instruction
Store

Op
Cache

2

Op
Cache

3

Data
Routing

Rejects

Memory PE Data & Routing Network

Arbiter Arbiter Arbiter Arbiter

Tag Manipulation

Rejects

O
utput

E
xecute

M
atch/

D
ispatch

Input

ALU

Fig. 13. PE Block Diagram: The processing element’s structure by pipeline
stage. Note that the block at the end of Output is the same as the block at the
start of Input since wire delay is spread between the two stages.

allowing dependent instructions to execute on consecutive cycles. Pipelining was
relatively simple. Back-to-back execution, however, was the source of significant
complexity.

The PE’s pipeline has five stages (see Figure 13):

(1) Input: Operand messages arrive at the PE either from itself or another PE.
The PE may reject messages if more than three arrive in one cycle; the senders
then retry on a later cycle.

(2) Match: Operands enter the matching table. The matching table contains a
tracker board and operand caches. It determines which instructions are ready
to fire and issues eligible instructions by placing their matching table index into
the instruction scheduling queue.

(3) Dispatch: The PE selects an instruction from the scheduling queue, reads its
operands from the matching table, and forwards them to Execute. If the
destination of the dispatched instruction is local, this stage speculatively issues
the consumer instruction to the scheduling queue.

(4) Execute: Executes an instruction. Its result goes to the output queue and/or
the local bypass network.

(5) Output: An instruction output is sent to its consumer instructions via the
intra-domain network. Consumers may be at this PE or at a remote PE.

An instruction store holds the decoded instructions that reside at a PE. To keep
it single-ported, the RTL design divides it into several small SRAMs, each holding
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 21

decoded information needed at a particular stage of the pipeline. The instruction
store comprises about 33% of the PE’s area.

The matching table handles instruction input matching. Implementing this oper-
ation cost-effectively is essential to an efficient dataflow machine. The key challenge
in designing WaveScalar’s matching table is emulating a potentially infinite table
with a much smaller physical structure. This problem arises because WaveScalar is
a dynamic dataflow architecture with no limit on the number of dynamic instances
of a static instruction with unconsumed inputs. We use a common dataflow tech-
nique [Gurd et al. 1985; Shimada et al. 1986] to address this challenge: the matching
table is a specialized cache for a larger, in-memory matching table. New tokens are
stored in the matching cache. If a token resides there for a sufficiently long time,
another token may arrive that hashes to the same location. In this case, the older
token is sent to the matching table in memory.

The matching table is separated into three columns, one for each potential in-
struction input (certain WaveScalar instructions, such as data steering instructions,
can have three inputs2). Each column is divided into four banks to allow up to four
messages to arrive each cycle. Reducing the number of banks to two reduced per-
formance by 5% on average and 15% for ammp. Increasing the number of banks
to eight had negligible effect. In addition to the three columns, the matching table
contains a tracker board, which holds operand tags (wave number and consumer
instruction number) and tracks which operands are present in each row of the
matching table.

Since the matching table is a cache, we can apply traditional cache optimizations
to reduce its miss rate. Our simulations show that 2-way set associativity increases
performance over direct-mapped by 10% on average and reduces matching table
misses (situations when no row is available for an incoming operand) by 41%. 4-
way associativity provides less than 1% additional performance, hence the matching
table is 2-way. The matching table comprises about 60% of PE area.

To achieve good performance, PEs must be able to execute dependent instruc-
tions on consecutive cycles. When Dispatch issues an instruction with a local
consumer of its result, it speculatively schedules the consumer instruction to exe-
cute on the next cycle. The schedule is speculative, because Dispatch cannot be
certain that the dependent instruction’s other inputs are available. If they are not,
the speculatively scheduled consumer is ignored.

Figure 14 illustrates how instructions from a simple dataflow graph (on the left
side of the figure) flow through the WaveCache pipeline. It also illustrates how the
bypass network allows instructions to execute on consecutive cycles. In the diagram,
X [n] is the nth input to instruction X . Five consecutive cycles are depicted; before
the first of these, one input for each of instructions A and B has arrived and resides
in the matching table, and the corresponding bits are also set in the tracker board.
The tracker board also contains the tag (Thread-Id and Wave-Number) of the
values in each occupied row. The “clouds” in the dataflow graph represent operands
that were computed by instructions at other processing elements and have arrived

2The third column is special and supports only single-bit operands. This is because three-input
instructions in WaveScalar always have one argument which needs to be only a single bit. Other
columns hold full 64 bit operands.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Steven Swanson et al.

A

B

Z

A[0] A[1]

B[0]

B

B[0]

Z[0]

A[0] A[1]

B[1]

B[0]

B[1]=A[0]+A[1]

B[0]

sched. queue

In
pu

t
M

at
ch

D
is

pa
tc

h
E

xe
cu

te
O

ut
pu

t

A[0]

A

A[1]

B[0]

matching
table

A[0]

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

A[1]

BA

Fig. 14. The flow of operands through the PE pipeline and forwarding
networks: The figure is described in detail in the text.

via the input network.
Cycle 0: (at left in Figure 14) Operand A[0] arrives and Input accepts it.
Cycle 1: Match writes A[0] into the matching table and, because both its inputs
are present, places A into the scheduling queue.
Cycle 2: Dispatch chooses A for execution and reads its operands from the
matching table. At the same time, it recognizes that A’s output is destined for B.
In preparation for this producer-consumer handoff, B is inserted into the scheduling
queue.
Cycle 3: Dispatch reads B[0] from the matching table. Execute computes the
result of A, which becomes B[1].
Cycle 4: Execute computes the result of instruction B, using B[0] from Dis-

patch and B[1] from the bypass network.
Cycle 5 (not shown): Output will send B’s result to instruction Z.

The logic in Match and Dispatch is the most complex part of the entire Wave-
Cache architecture, and most of it is devoted to logic that executes back-to-back
dependent instructions within our cycle-time goal.

3.3 The WaveCache interconnect

The previous section described the execution resource of the WaveCache, the PE.
This section will detail how PEs on the same chip communicate. PEs send and
receive data using a hierarchical, on-chip interconnect (Figure 15). There are four
levels in this hierarchy: intra-pod, intra-domain, intra-cluster and inter-cluster.
While the purpose of each network is the same – transmission of instruction operands
and memory values – their designs vary significantly. We will describe the salient
features of these networks in the next four subsections.

3.3.1 PEs in a Pod. The first level of interconnect, the intra-pod interconnect,
enables two PEs to share scheduling hints and computed results. Merging a pair of
PEs into a pod consequently provides lower latency communication between them
than using the intra-domain interconnect (described below). Although PEs in a pod
snoop each others bypass networks, the rest of their hardware remains partitioned,
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 23

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

StoreBuffer
D$

Switch

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

North

South

East

West

domain

pod intra-cluster
interconnect

inter-cluster
switch

intra-domain
interconnect

pod bypassing

Fig. 15. The cluster interconnects: A high-level picture of a cluster illustrating
the interconnect organization.

i.e., they have separate matching tables, scheduling and output queues, etc.
The decision to integrate pairs of PEs together is a response to two competing

concerns: we wanted the clock cycle to be short and instruction-to-instruction
communication to take as few cycles as possible. To reach our cycle-time goal, the
PE and the intra-domain interconnect (described next) had to be pipelined. This
increased average communication latency and reduced performance significantly.
Allowing pairs of PEs to communicate quickly brought the average latency back
down without significantly impacting cycle time. However, their tightly integrated
design added significant complexity and took a great deal of effort to implement
correctly. Integrating more PEs would increase complexity further, and our data
showed that the additional gains in performance would be small.

3.3.2 The intra-domain interconnect. PEs communicate with PEs in other pods
over an intra-domain interconnect. In addition to the eight PEs in the domain, the
intra-domain interconnect also connects two pseudo-PEs that serve as gateways to
the memory system (the Mem pseudo-PE) and the other PEs on the chip (the Net

pseudo-PE). The pseudo-PEs’ interface to the intra-domain network is identical to
a normal PE’s.

The intra-domain interconnect is broadcast-based. Each of the eight PEs has
a dedicated result bus that carries a single data result to the other PEs in its
domain. Each pseudo-PE also has a dedicated output bus. PEs and pseudo-PEs
communicate over the intra-domain network using an Ack/Nack network.

3.3.3 The intra-cluster interconnect. The intra-cluster interconnect provides com-
munication between the four domains’ Net pseudo-PEs. It also uses an Ack/Nack

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Steven Swanson et al.

Ready
check

route to
partial store?

Data Cache

Input
arbitration

partial store
queues

Next-
Req

Ordering
Table

Issued reg.

Fig. 16. The store buffer:The microarchitecture of the store buffer.

network similar to that of the intra-domain interconnect.

3.3.4 The inter-cluster interconnect. The inter-cluster interconnect is responsi-
ble for all long-distance communication in the WaveCache. This includes operands
traveling between PEs in distant clusters and coherence traffic for the L1 caches.

Each cluster contains an inter-cluster network switch, each of which routes mes-
sages between six input/output ports: four of the ports lead to the network switches
in the four cardinal directions, one is shared among the four domains’ Net pseudo-
PEs, and one is dedicated to the store buffer and L1 data cache.

Each input/output port supports the transmission of up to two operands. Its
routing follows a simple protocol: the current buffer storage state at each switch
is sent to the adjacent switches, which receive this information a clock cycle later.
Adjacent switches only send information if the receiver is guaranteed to have space.
The inter-cluster switch provides two virtual channels that the interconnect uses to
prevent deadlock [Dally and Seitz 1987].

3.4 The store buffer

The hardware support for wave-ordered memory lies in the WaveCache’s store
buffers. The store buffers, one per cluster, are responsible for implementing the
wave-ordered memory interface that guarantees correct memory ordering. To ac-
cess memory, processing elements send requests to their local store buffer via the
Mem pseudo-PE in their domain. The store buffer will either process the request or
direct it to another buffer via the inter-cluster interconnect. All memory requests
for a single dynamic instance of a wave (for example, an iteration of an inner loop),
including requests from both local and remote processing elements, are managed
by the same store buffer.

To simplify the description of the store buffer’s operation, we denote pred(R),
seq(R), and succ(R) as the wave-ordering annotations for a request R. We also
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 25

define next(R) to be the sequence number of the operation that actually follows
R in the current instance of the wave. next(R) is determined either directly from
succ(R) or is calculated by the wave-ordering hardware, if succ(R) is ’?’.

The store buffer (Figure 16) contains four major microarchitectural components:
an ordering table, a next-request table, an issued register, and a collection of partial
store queues. Store buffer requests are processed in three pipeline stages: Memory-

Input writes newly-arrived requests into the ordering and next-request tables.
Memory-Schedule reads up to four requests (one from each of four banks) from
the ordering table and checks to see if they are ready to issue. Memory-Output

dispatches memory operations that can fire to the cache or to a partial store queue
(described below). We detail each pipeline stage of this memory interface below.

Memory-Input accepts up to four new memory requests per cycle. It writes
the address, operation and data (if available in the case of Stores) into the ordering
table at the index seq(R). If succ(R) is defined (i.e., not ’?’), the entry in the
next-request table at location seq(R) is updated to succ(R). If pred(R) is defined,
the entry in the next-request table at location pred(R) is set to seq(R).

Memory-Schedule maintains the issued register, which points to the next mem-
ory operations to be dispatched to the data cache. It uses this register to read four
entries from the next-request and ordering tables. If any memory ordering links
can be formed (i.e., next-request table entries are not empty), the memory oper-
ations are dispatched to Memory-Output and the issued register is advanced.
The store buffer supports the decoupling of store-data from store-addresses. This
is done with a hardware structure called a partial store queue, described below. The
salient point for Memory-Schedule, however, is that Stores are sent to Memory-

Output even if their data has not yet arrived.
Partial store queues take advantage of the fact that store addresses can arrive

significantly before their data. In these cases, a partial store queue stores all op-
erations to the same address. These operations must wait for the data to arrive,
but operations to other addresses may proceed. When their data finally arrives,
all operations in the partial store queue can be applied in quick succession. Each
WaveScalar store buffer contains two partial store queues.

Memory-Output reads and processes dispatched memory operations. Four
situations can occur. (1) The operation is a Load or a Store with its data present.
The memory operation proceeds to the data cache. (2) The operation is a Load or
a Store and a partial store queue exists for its address. The memory operation is
sent to the partial store queue. (3) The operation is a Store, its data has not yet
arrived, and no partial store queue exists for its address. A free partial store queue
is allocated and the Store is sent to it. (4) The operation is a Load or a Store, but
no free partial store queue is available or its partial store queue is full. The memory
operation remains in the ordering table and the issued register is rolled back. The
operation will reissue later.

3.5 Caches

The rest of the WaveCache’s memory hierarchy comprises a 32KB, four-way set
associative L1 data cache at each cluster, and a 16MB L2 cache that is distributed
along the edge of the chip (16 banks in a 4x4 WaveCache). A directory-based, MESI
coherence protocol keeps the L1 caches consistent. All coherence traffic travels over

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Steven Swanson et al.

the inter-cluster interconnect.
The L1 data cache has a 3-cycle hit delay. The L2’s hit delay is 14-30 cycles, de-

pending upon the address and the distance to the requesting cluster. Main memory
latency is modeled at 200 cycles.

3.6 Placement

Placing instructions carefully into the WaveCache is critical to good performance,
because of the competing concerns we mentioned earlier. Instructions’ proximity
determines the communication latency between them, arguing for tightly packing
instructions together. On the other hand, instructions that can execute simultane-
ously should not end up at the same processing element, because competition for
the single functional unit will serialize them.

We continue to investigate the placement problem, and details of our investiga-
tion, the trade-offs involved, and placement’s effects on performance are available
in [Mercaldi et al. 2006b; 2006a]. Here, we describe the approach we used for the
studies in this paper.

The placement scheme has a compile-time and a run-time component. The com-
piler is responsible for grouping instructions into segments. At runtime a whole
segment of instructions will be placed at the same PE. Because of this, the com-
piler tries to group instructions into the same segment if those instructions are likely
not to execute simultaneously, but the instructions share operands, and therefor can
utilize the fast local bypass network available inside of each PE. The algorithm we
use to form segments is a depth first traversal of the dataflow graph.

At runtime, the WaveCache loads a segment of instructions when an instruction
that is not mapped into the WaveCache needs to execute. As previously discussed,
the entire segment is mapped to a single PE. Because of the ordering the compiler
used to generate the segments, they will usually be dependent on one another. As
a result, they will not compete for execution resources, but instead will execute
on consecutive cycles. The algorithm fills all the PEs in a domain, and then all
the domains in a cluster, before moving on to the next cluster. It fills clusters by
“snaking” across the grid, moving from left to right on the even rows and right to
left on the odd rows.

This placement scheme does a good job of scheduling for minimal execution
resource contention and communication latency. However, a third factor, the so-
called “parallelism explosion”, can also have a strong effect on performance in
dataflow systems. The parallelism explosion occurs when part of an application
(e.g., the index computation of an inner loop) runs ahead of the rest of program,
generating a vast number of tokens that will not be consumed for a long time.
These tokens overflow the matching table and degrade performance. We use a well-
known dataflow technique, k-loop bounding [Culler 1990], to restrict the number
iterations, k, that can be executing at one time. We tune k for each application,
and for the applications we study, it is between two and five.

3.7 The RTL model

To explore the area, speed, and complexity implications of the WaveCache archi-
tecture, we have developed a synthesizable RTL model of the components described
above. We use the RTL model, combined with detailed architectural simulation, to
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 27

Component Fraction of
cluster area

PE stages

Input 0.9%

Match 43.3%

Dispatch 0.4%

Execute 1.8%

Output 1.3%

instruction store 23.2%

PE total 71%

Domain overhead 7.4%

Inter-cluster 0.9%
interconnect switch

Storebuffer 6.2%

L1 cache 14.5%

Table I. A cluster’s area budget: A breakdown of the area required for a cluster. Most of the
area is devoted to processing resources.

tune the WaveCache’s parameters and make trade-offs between performance, cycle
time, and silicon area. All the specific parameters of the architecture (e.g., cache
sizes, bus widths, etc.) reflect the results of this tuning process. The design we
present is a WaveCache appropriate for general purpose processing in 90nm tech-
nology. Other designs targeted at specific workloads or future process technologies
would differ in the choice of particular parameters, but the overall structure of the
design would remain the same. A thorough discussion of the RTL design and the
tuning process is beyond the scope of this paper (but can be found in [Swanson
et al. 2006]). Here, we summarize the methodology and the timing results.

We derive our results with the design rules and the recommended tool infras-
tructure of the Taiwan Semiconductor Manufacturing Company’s TSMC Reference
Flow 4.0 [TSMC], which is tuned for 130nm and smaller designs (we use 90nm).
By using these up-to-date specifications, we ensure, as best as possible, that our
results scale to future technology nodes. To ensure that our measurements are
reasonable, we follow TSMC’s advice and feed the generated netlist into Cadence
Encounter for floorplanning and placement, and then use Cadence NanoRoute for
routing [Cadence]. After routing and RC extraction, we measure the timing and
area values.

According to the synthesis tools, our RTL model meets our timing goal of a 20
FO4 cycle time (∼1GHz in 90nm). The cycle time remains the same regardless of
the size of the array of clusters. The model also provides detailed area measurements
for the WaveCache’s components. Table I shows a breakdown of area within a single
cluster. The ratios for an array of clusters are the same.

In the next section, we place the WaveCache in context relative to other tiled
architectures. Then, in Section 4 we evaluate the WaveCache’s performance on
single-threaded applications and compare its performance and area requirements
with a conventional superscalar processor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Steven Swanson et al.

3.8 Other tiled architectures

The WaveCache hardware design in Sections 3 and 5 is a tiled architecture. Broadly
speaking, a tiled architecture is a processor design that uses an array of basic
building blocks of silicon to construct a larger processor.

Tiled architectures provide three advantages over traditional monolithic designs.
First, they reduce design complexity by emphasizing design reuse. WaveScalar
exploits this principle at several levels (PE, domain, and cluster). Second, tiled
designs seek to avoid long wires. In modern technology, wire delay dominates the
cost of computation. Wires in most tiled architectures span no more than a single
tile, ensuring that wire length does not increase with the number of tiles. Finally,
tiled architectures seek to be scalable. An ideal tiled architecture would scale to any
number of tiles both in terms of functional correctness and in terms of performance.

Several research groups have proposed tiled architectures with widely varying
tile designs. Smart Memories [Mai et al. 2000] provides multiple types of tiles (e.g.,
processing elements and reconfigurable memory elements). This approach allows
greater freedom in configuring an entire processor, since the mix of tiles can vary
from one instantiation to the next, perhaps avoiding the difficulties in naive scaling
that we found in our study.

The TRIPS [Nagarajan et al. 2001a; 2001b] processor uses dataflow ideas to build
a hybrid von Neumann/dataflow machine. The TRIPS processor uses a program
counter to guide execution, but instead of moving from one instruction to the
next, the TRIPS PC selects frames (similar to hyperblocks [Mahlke et al. 1992])
of instructions for execution in an array of 16 processing elements that make up a
TRIPS processor.

Despite high-level similarities between waves and frames and the WaveScalar and
TRIPS PE designs, the two architectures are quite different. In TRIPS, a register
file at the top of the array holds values that pass from one frame to another.
Each TRIPS PE can hold multiple instructions, so each PE requires multiple input
buffers. However, execution follows the static dataflow model, making tag matching
logic unnecessary.

Using dataflow execution within a von Neumann processor is the same approach
taken by out-of-order superscalars, but the TRIPS design avoids the long wires and
broadcast structures that make conventional out-of-order processors non-scalable.
However, because it uses a program counter to select frames of instructions for
execution, TRIPS must speculate aggressively. Mapping a frame of instructions
onto the PE array takes several cycles, so the TRIPS processor speculatively maps
frames onto the PEs ahead of time. WaveScalar does not suffer from this problem,
because its dynamic dataflow execution model allows instructions to remain in the
grid for many executions, obviating the need for speculation. The disadvantage of
WaveScalar’s approach is the need for complex tag-matching hardware to support
dynamic dataflow execution

The two projects also have much in common. Both take a hybrid static/dynamic
approach to scheduling instruction execution by carefully placing instructions in an
array of processing elements and then allowing execution to proceed dynamically.
This places both architectures between dynamic out-of-order superscalar designs
and statically scheduled VLIW machines. Those designs have run into problems,
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 29

because dynamic scheduling hardware does not scale and by nature static scheduling
is conservative. A hybrid approach will be necessary, but it is as yet unclear whether
either WaveScalar or TRIPS strikes the optimal balance.

WaveScalar and TRIPS also take similar approaches to ordering memory oper-
ations. TRIPS uses load/store IDs (LSIDs) [Smith et al. 2006] to order memory
operations within a single frame. Like the sequence numbers in wave-ordered mem-
ory, LSIDs provide ordering among the memory operations. However, the TRIPS
scheme provides no mechanism for detecting whether a memory operation will ac-
tually execute during a specific dynamic execution of a frame. Instead, TRIPS
guarantees that memory operations that access the same address will execute in
the correct order and modifies the consistency model to treat frames of instructions
as atomic operations. LSID-based memory ordering requires memory disambigua-
tion hardware that increases the complexity of the design relative to WaveScalar’s
wave-ordering store buffer.

The RAW project [Taylor et al. 2004] uses a simple processor core as a tile and
builds a tightly-coupled multiprocessor. The RAW processor provides for several
different execution models. The compiler can statically schedule a single program
to run across all the tiles, effectively turning RAW into a VLIW-style processor. Al-
ternatively, the cores can run threads from a larger computation that communicate
using RAW’s tightly-integrated, inter-processor, message-passing mechanism.

4. SINGLE-THREADED WAVECACHE PERFORMANCE

This section measures the WaveCache’s performance on a variety of single-threaded
workloads. We measure the performance of a single-cluster WaveCache design us-
ing cycle-accurate simulation of the architecture in Section 3. This WaveCache
achieves performance that is similar to that of a conventional out-of-order super-
scalar processor, but does so in only 30% as much area.

Before we present the performance results in detail, we review the WaveCache’s
parameters and describe our workloads and toolchain.

4.1 Methodology

Table II summarizes the parameters for the WaveCache we use in this section.
To evaluate WaveCache performance, we use an execution-driven, cycle accurate

simulator that closely matches our RTL model. The performance we report here
is lower than that in the original WaveScalar paper [Swanson et al. 2003]. The
discrepancy is not surprising, since that work used an idealized memory system
(perfect L1 data caches), larger, 16-PE domains, and a non-pipelined design.

In the experiments in this section, we use nine benchmarks from three groups.
From SpecINT2000: gzip, mcf, twolf ; from SpecFP2000: ammp, art, equake [SPEC
2000]; and from Mediabench[Lee et al. 1997]: djpeg, mpeg2encode, rawdaudio. We
compiled each application with the DEC cc compiler using -O4 -fast -inline
speed optimizations. A binary translator-based toolchain was used to convert
these binaries into WaveScalar assembly and then into WaveScalar binaries. The
choice of benchmarks represents a range of applications as well as the limitations
of our binary translator. The binary translator cannot process some programming
constructs (e.g., compiler intrinsics that don’t obey the Alpha calling convention
and jump tables), but this is strictly a limitation of our translator, not a limitation

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Steven Swanson et al.

WaveCache Capacity 2K(WC1x1) or 8K(WC2x2) static instructions (64/PE)
PEs per Domain 8 (4 pods); 1 FPU/domain
PE Input Queue 16 entries, 4 banks (1KB total); 32 cycle miss penalty
PE Output Queue 4 entries, 2 ports (1r, 1w)
PE Pipeline Depth 5 stages
Domains / Cluster 4
Network Switch 2-port, bidirectional
Network Latency within Pod: 1 cycle

within Domain: 5 cycles
within Cluster: 9 cycles
inter-Cluster: 9 + cluster dist.

L1 Caches 32KB, 4-way set associative, 128B line,
4 accesses per cycle

L2 Cache 1MB (WC1x1) or 4MB (WC2x2) shared, 128B line,
16-way set associative, 10 cycle access

Main RAM 200 cycle latency

Table II. Microarchitectural parameters of the baseline WaveCache

of WaveScalar’s ISA or execution model. We are currently working on a full-fledged
compiler that will allow us to run a wider range of applications[Petersen et al. 2006].
Table III shows the configuration parameters for these workloads as well as the
multithreaded workloads we use in Section 5. We skip past the initialization phases
of all our workloads.

To make measurements comparable with conventional architectures, we mea-
sure performance in Alpha instructions per cycle (AIPC) and base our superscalar
comparison on a machine with similar clock speed [Hrishikesh et al. 2002]. AIPC
measures the number of non-overhead instructions (e.g., Steer, φ, etc.) executed
per cycle. The AIPC measurements for the superscalar architectures to which we
compare WaveScalar are in good agreement with other measurements [Mukherjee
et al. 2003].

After the startup portion of each application is finished, we run each application
for 100 million Alpha instructions, or to completion.

4.2 Single threaded performance

To evaluate WaveScalar’s single-threaded performance, we compare three different
architectures: two WaveCaches and an out-of-order processor. For the out-of-order
measurements, we use sim-alpha configured to model the Alpha EV7 [Desikan
et al. 2001; Jain and et al. 2001], but with the same L1, L2, and main memory
latencies we model for the WaveCache3. The two WaveCache configurations are
WC1x1, a 1x1 array of clusters, and WC2x2, a 2x2 array. The only other difference
between the two is the size of the L2 cache (1MB for WC1x1 vs 4MB for WC2x2).

Figure 17 compares all three architectures on the single-threaded benchmarks
using AIPC. Of the two WaveCache designs, WS1x1 has better performance on

3Note that the load-use penalty for the WaveCache is still longer: It takes 1-2 cycles for the
request to travel through wave-ordering store buffer and reach the L1 cache.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 31

Benchmark Parameters

Splash2 fft -m12

lu -n128

radix -n16384 -r32

ocean-noncont -n18

water-spatial 64 molecules

raytrace -m64 car.env

MediaBench mpeg options.par data/ out.mpg

djpeg -dct int -ppm -outfile testout.ppm testorig.jpg

adpcm < clinton.adpcm

SpecInt gzip /ref/input/input.source 60

twolf ref/input/ref

mcf ref/input/inp.in

SpecFP ammp < ref/input/ammp.in

art -scanfile ref/input/c756hel.in -trainfile1 ref/input/a10.img
-trainfile2 ref/input/hc.img -stride 2 -startx 470
-starty 140 -endx 520 -endy 180 -objects 10

equake < ref/input/inp.in

Table III. Workload configurations: Workloads and parameters used in this thesis.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

am
m
p

a
rt

eq
u
ak
e

g
zi
p

m
cf

tw
o
lf

d
jp
eg

m
p
eg
2
en
co
d
e

ra
w
d
au
d
io

av
er
ag
e

A
IP
C

WS1x1
WS2x2
OOO

'

Fig. 17. Single-threaded WaveCache vs. superscalar: On average, both
WaveCaches perform comparably to the superscalar.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Steven Swanson et al.

two floating point applications (ammp and equake). A single cluster is sufficient
to hold the working set of instructions for these applications, so moving to a 4-
cluster array spreads the instructions out and increases communication costs. The
costs take two forms. First, the WC2x2 contains four L1 data caches that must
be kept coherent, while WC1x1 contains a single cache, avoiding this overhead.
Second, the average latency of messages between instructions increases by 20%
on average, because some messages must traverse the inter-cluster network. The
other applications, except twolf and art, have very similar performance on both
configurations. Twolf and art do better on WC2x2; their working sets are large
enough to utilize either the additional instruction capacity (twolf) or the additional
memory bandwidth provided by the four L1 data caches (art).

The performance of the WS1x1 compared to OOO does not show a clear win-
ner in terms of raw performance. WS1x1 tends to do better for four applications,
outperforming OOO by 4.5× on art, 66% on equake, 34% on ammp, and 2.5× on
mcf. All these applications are memory-bound (OOO with a perfect memory sys-
tem performs between 3.6-32× better), and two factors contribute to WaveScalar’s
superior performance. First, WaveScalar’s dataflow execution model allows several
iterations to execute simultaneously. Second, since wave-ordered memory allows
many waves to be executing simultaneously, load and store requests can arrive at
the store buffer long before they are actually applied to memory. The store buffer
can then prefetch the cache lines that the requests will access, so when the requests
emerge from the store buffer in the correct order, the data they need is waiting for
them.

WaveScalar does less well on most integer computations, due to frequent function
calls. A function can only occur at the end of a wave, because called functions
immediately create a new wave. As a result, frequent function calls in the integer
applications reduce the size of the waves the compiler can create by 50% on average
compared to floating point applications, consequently reducing memory parallelism.
Twolf and gzip are hit hardest by this effect, and OOO outperform WS1x1 by 54%
and 32%, respectively. For the rest of the applications, WS1x1 is no more than
10% slower than OOO.

The performance differences between the two architectures are clearer if we take
into account the die area required for each processor. To estimate the size of OOO,
we examined a die photo of the EV7 in 180nm technology [Jain and et al. 2001;
Krewel 2002]. The entire die is 396mm2. From this, we subtracted the area devoted
to several components that our RTL model does not include (e.g., the PLL, IO pads,
and inter-chip network controller), but would be present in a real WaveCache. We
estimate the remaining area to be ∼291mm2, with ∼160mm2 devoted to 2MB of
L2 cache. Scaling all these measurements to 90nm technology yields ∼72mm2 total
and 40mm2 of L2. Measurements from our RTL model show that WC1x1 occupies
48mm2 (12mm2 of L2 cache) and WC2x2 occupies 247mm2 (48mm2 of L2 cache)
in 90nm. We speculate that the difference in L2 density is due to additional ports
in the EV7 needed to support snooping.

Figure 18 shows the area-efficiency of the WaveCaches measured in AIPC/mm2

compared to OOO. The WaveCache’s more compact design allows WS1x1 to extract
21% more AIPC per area as OOO, on average. The results for WS2x2 show that,
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 33

0

0.005

0.01

0.015

0.02

0.025

0.03

am
m
p

a
rt

eq
u
ak
e

g
zi
p

m
cf

tw
o
lf

d
jp
eg

m
p
eg
2
en
co
d
e

ra
w
d
au
d
io

av
er
ag
e

A
IP
C
/
m
m
2

WS1x1
WS2x2
OOO

Fig. 18. Performance per unit area: The 1x1 WaveCache is the clear winner in
terms of performance per area.

for these applications, quadrupling the size of the WaveCache does not have an
commensurate effect on performance.

Because OOO is configured to match the EV7, it has twice as much on-chip cache
as WS1x1. To measure the effect of the extra memory, we halved the amount of
cache in the OOO configuration (data not shown). This change reduced OOO’s
area by 41% and its performance by 17%. WS1x1 provides 20% more performance
per area than this configuration.

For most of our workloads, the WaveCache’s bottom-line single-threaded AIPC is
as good as or better than conventional superscalar designs, and it achieves this level
of performance with a less complicated design and in a smaller area. In the next
two sections we extend WaveScalar’s abilities to handle conventional pthread-style
threads and to exploit its dataflow underpinnings to execute fine-grain threads. In
these areas, the WaveCache’s performance is even more impressive.

5. RUNNING MULTIPLE THREADS IN WAVESCALAR

The WaveScalar architecture described so far can support a single executing thread.
Modern applications such as databases and web servers use multiple threads both
as a useful programming abstraction and to increase performance by exposing par-
allelism.

Recently, manufacturers have begun placing several processors on a single die to
create chip multiprocessors (CMPs). There are two reasons for this move: First,
scaling challenges will make designing ever-larger superscalar processors infeasi-
ble. Second, commercial workloads are often more concerned with the aggregate

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Steven Swanson et al.

performance of many threads rather than single-thread performance. Any architec-
ture intended as an alternative to CMPs must be able to execute multiple threads
simultaneously.

This section extends the single-threaded WaveScalar design to execute multi-
ple threads. The key issues that WaveScalar must address are managing multi-
ple, parallel sequences of wave-ordered memory operations, differentiating between
data values that belong to different threads, and allowing threads to communi-
cate. WaveScalar’s solution to these problems are all simple and efficient. For
instance, WaveScalar is the first architecture to allow programs to manage memory
ordering directly by creating and destroying memory orderings and dynamically
binding them to a particular thread. WaveScalar’s thread-spawning facility is ef-
ficient enough to parallelize small loops. Its synchronization mechanism is also
light-weight and is tightly integrated into the dataflow framework.

The required changes to the WaveCache to support the ISA extensions are sur-
prisingly small, and do not impact the overall structure of the WaveCache, because
executing threads dynamically share most WaveCache processing resources.

To evaluate the WaveCache’s multithreaded performance, we simulate an 64-
cluster design, representing an aggressive “big iron” processor built in next-generation
process technology and suitable for large-scale multithreaded programs. For most
Splash-2 benchmarks, the WaveCache achieves nearly linear speedup with up to
64 concurrent threads. To place the multithreaded results in context with contem-
porary designs, we compare a smaller, 16-cluster array that could be built today
with a range of multithreaded von Neumann processors from the literature. For
the workloads the studies have in common, the WaveCache outperforms the von
Neumann designs by a factor of between 2 and 16.

The next two sections describe the multihthreading ISA extensions. Section 5.3
presents the Splash-2 results and contains the comparison to multithreaded von
Neumann machines.

5.1 Multiple memory orderings

As previously introduced, the wave-ordered memory interface provides support for
a single memory ordering. Forcing all threads to contend for the same memory
interface, even if it were possible, would be detrimental to performance. Conse-
quently, to support multiple threads, we extend the WaveScalar architecture to
allow multiple independent sequences of ordered memory accesses, each of which
belongs to a separate thread. First, we annotate every data value with a Thread-

Id in addition to its Wave-Number. Then, we introduce instructions to associate
memory-ordering resources with particular Thread-Ids.

5.1.0.1 Thread-Ids:. The WaveCache already has a mechanism for distin-
guishing values and memory requests within a single thread from one another – they
are tagged with Wave-Numbers. To differentiate values from different threads,
we extend this tag with a Thread-Id and modify WaveScalar’s dataflow firing rule
to require that operand tags match on both Thread-Id and Wave-Number. As
with Wave-Numbers, additional instructions are provided to directly manipulate
Thread-Ids. In figures and examples throughout the rest of this paper, the nota-
tion <t, w>.d signifies a token tagged with Thread-Id t and Wave-Number w

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 35

and having data value d.
To manipulate Thread-Ids and Wave-Numbers, we introduce several instruc-

tions that convert Wave-Numbers and Thread-Ids to normal data values and
back again. The most powerful of these is Data-To-Thread-Wave, which sets
both the Thread-Id and Wave-Number at once; Data-To-Thread-Wave takes
three inputs, <t0, w0>.t1, <t0, w0>.w1, and <t0, w0>.d and produces as output
<t1, w1>.d. WaveScalar also provides two instructions (Data-To-Thread and
Data-To-Wave) to set Thread-Ids and Wave-Numbers separately, as well as
two instructions (Thread-To-Data and Wave-To-Data) to extract Thread-

Ids and Wave-Numbers. Together, all these instructions place WaveScalar’s tag-
ging mechanism completely under programmer control, and allow programmers to
write software such as threading libraries. For instance, when the library spawns
a new thread, it must relabel the inputs with the new thread’s Thread-Id and
the Wave-Number of the first wave in its execution. Data-To-Thread-Wave

accomplishes exactly this task.

5.1.0.2 Managing memory orderings:. Having associated a Thread-Id with
each value and memory request, we now extend the wave-ordered memory interface
to enable programs to associate memory orderings with Thread-Ids. Two new
instructions control the creation and destruction of memory orderings, in essence
creating and terminating coarse-grain threads: Memory-Sequence-Start and
Memory-Sequence-Stop.

Memory-Sequence-Start creates a new wave-ordered memory sequence for a
new thread. This sequence is assigned to a store buffer, which services all memory
requests tagged with the thread’s Thread-Id and Wave-Number; requests with
the same Thread-Id but a different Wave-Number cause a new store buffer to
be allocated.

Memory-Sequence-Stop terminates a memory ordering sequence. The wave-
ordered memory system uses this instruction to ensure that all memory operations
in the sequence have completed before its store buffer resources are released. Fig-
ure 19 illustrates how, using the new instructions, thread t creates a new thread s,
thread s executes and then terminates.

5.1.0.3 Implementation:. Adding support for multiple memory orderings re-
quires only small changes to the WaveCache’s microarchitecture. First, the widths
of the communication busses and operand queues must be expanded to hold Thread-

Ids. Second, instead of storing each static instruction from the working set of a
program in the WaveCache, one copy of each static instruction is stored for each
thread. This means that if two threads are executing the same static instructions,
each may map the static instructions to different PEs. Finally, the PEs must im-
plement the Thread-Id and Wave-Number manipulation instructions.

5.1.0.4 Efficiency:. The overhead associated with spawning a thread directly
affects the granularity of extractable parallelism. In the best case, it takes just a few
cycles to spawn a thread in the WaveCache, but the average cost depends on several
issues, including contention in the network and for store buffer resources. To assess
this overhead empirically, we designed a controlled experiment consisting of a simple
parallel loop in which each iteration executes in a separate thread. The threads have

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Steven Swanson et al.

<t:w>.u

MemorySequenceStart

<t:w>.s <t:w>.u
<t:w>.d

<t:w>.e
<t:w>.f

MemorySequenceStop

Ordered thread body
executes

<s:u>.finished

T
hread creation

T
hread destruction

DataToThread
Wave

<s:u>.e
<s:u>.d

<s:u>.f

Fig. 19. Thread creation and destruction: Thread t spawns a new thread s
by sending s’s Thread-Id (s) and Wave-Number (u) to Memory-Sequence-

Start, which allocates a store buffer to handle the first wave in the new thread. The
result of the Memory-Sequence-Start instruction helps trigger the three Data-

To-Thread-Wave instructions that set up s’s three input parameters. The inputs
to each Data-To-Thread-Wave instruction are a parameter value (d, e, or f), the
new Thread-Id (s) and the new Wave-Number (u). A token with u is produced
by Memory-Sequence-Start deliberately, to guarantee that no instructions in
thread s execute until Memory-Sequence-Start has finished allocating its store
buffer. Thread s terminates with Memory-Sequence-Stop, whose output token
<s, u>.finished guarantees that its store buffer area has been deallocated.

their own wave-ordered memory sequences but do not have private stacks, so they
cannot make function calls. We varied the size of the loop body, which affects the
granularity of parallelism, and the dependence distance between memory operands,
which affects the number of threads that can execute simultaneously. We then
measured speedup compared to a serial execution of a loop doing the same work.
The experiment’s goal was to answer the following question: Given a loop body
with a critical path length of N instructions and a dependence distance that allows
T iterations to run in parallel, can the WaveCache speed up execution by spawning
a new thread for every loop iteration?

Figure 20 is a contour plot of speedup of the loop as a function of its loop
size (critical path length in Add instructions, the horizontal axis) and dependence
distance (independent iterations, the vertical axis). Contour lines are shown for
speedups of 1× (no speedup), 2× and 4×. The area above each line is a region of
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 37

A

B C

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

Loop body length (instructions)

D
e
p

e
n

d
e
n

ce
 D

is
ta

n
ce

 (
it

e
ra

ti
o

n
s)

4x speedup

2x speedup

1x speedup

Fig. 20. Thread creation overhead: Contour lines for speedups of 1× (no
speedup), 2× and 4×. The area above the each line is a region of program speedup
at or above the stated value. Spawning wave-ordered threads in the WaveCache is
lightweight enough to profitably parallelize loops with as few as ten instructions in
the loop body if four independent iterations execute.

program speedup at or above the labeled value. The data show that the WaveScalar
overhead of creating and destroying threads is so low that for loop bodies of only 24
dependent instructions and a dependence distance of 3, it becomes advantageous to
spawn a thread to execute each iteration (‘A’ in the figure). A dependence distance
of 10 reduces the size of profitably parallelizable loops to only 4 instructions (‘B’).
Increasing the number of instructions to 20 quadruples performance (‘C’).

5.2 Synchronization

The ability to efficiently create and terminate pthread-style threads [Nichols et al.
1996], as described in the previous subsection, provides only part of the functionality
required to make multithreading useful. Independent threads must also synchronize
and communicate with one another. To this end, WaveScalar provides a memory
fence instruction that allows WaveScalar to enforce a relaxed consistency model
and a specialized instruction that models a hardware queue lock.

5.2.1 Memory fence. Wave-ordered memory provides a single thread with a
consistent view of memory, since it guarantees that the results of earlier memory
operations are visible to later operations. In some situations, such as before taking
or releasing a lock, a multithreaded processor must guarantee that the results of a

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Steven Swanson et al.

thread’s memory operations are visible to other threads. We add to the ISA an ad-
ditional instruction, Memory-Nop-Ack that provides this assurance by acting as
a memory fence. Memory-Nop-Ack prompts the wave-ordered interface to com-
mit the thread’s prior loads and stores to memory, thereby ensuring their visibility
to other threads and providing WaveScalar with a relaxed consistency model [Adve
and Gharachorloo 1996]. The interface then returns an acknowledgment, which the
thread can use to trigger execution of its subsequent instructions.

5.2.2 Interthread synchronization. Most commercially deployed multiprocessors
and multithreaded processors provide interthread synchronization through the mem-
ory system via primitives such as test-and-set, compare-and-swap, or load-

lock/store-conditional. Some research efforts also propose building complete
locking mechanisms in hardware [Goodman et al. 1989; Tullsen et al. 1999]. Such
queue locks offer many performance advantages in the presence of high lock con-
tention.

In WaveScalar, we add support for queue locks in a way that constrains nei-
ther the number of locks nor the number of threads that may contend for the
lock. This support is embodied in a synchronization instruction called Thread-

Coordinate, which synchronizes two threads by passing a value between them.
Thread-Coordinate is similar in spirit to other lightweight synchronization prim-
itives [Keckler et al. 1998; Barth et al. 1991], but is tailored to WaveScalar’s dataflow
framework.

As Figure 21 illustrates, Thread-Coordinate requires slightly different match-
ing rules.4 All WaveScalar instructions except Thread-Coordinate fire when the
tags of two input values match, and they produce outputs with the same tag (Fig-
ure 21, left). For example, in the figure, both the input tokens and the result have
Thread-Id t0 and Wave-Number w0.

In contrast, Thread-Coordinate fires when the data value of a token at its
first input matches the Thread-Id of a token at its second input. This is depicted
on the right side of Figure 21, where the data value of the left input token and the
Thread-Id of the right input token are both t1. Thread-Coordinate generates
an output token with the Thread-Id and Wave-Number from the first input
and the data value from the second input. In Figure 21, this produces an output
of <t0, w0>.d. In essence, Thread-Coordinate passes the second input’s value
(d) to the thread of the first input (t0). Since the two inputs come from different
threads, this forces the receiving thread (t0 in this case) to wait for the data from
the sending thread (t1) before continuing execution.

To support Thread-Coordinate in hardware, we augment the tag matching
logic at each PE. We add two counters at each PE to relabel the Wave-Numbers
of the inputs to Thread-Coordinate instructions so they are processed in FIFO
order. Using this relabeling, the matching queues naturally form a serializing queue
with efficient constant time access and no starvation.

4Some previous dataflow machines altered the dataflow firing rule for other purposes. For example,
Sigma-1 used “sticky” tags to prevent the consumption of loop-invariant data and “error” tokens
to swallow values of instructions that incurred exceptions [Shimada et al. 1984]. Monsoon’s M-
structure store units had a special matching rule to enforce load-store order [Papadopoulos and
Traub 1991].

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 39

tc

matchmatch

add

<t0:w0>. d0 + d1

<t0:w0>.d1<t0:w0>.d0

<t0:w0>.d

<t1:w1>.d<t0:w0>.t1

Fig. 21. Tag matching: Most instructions, like the Add shown here at left,
fire when the thread and wave numbers on both input tokens match. Inputs to
Thread-Coordinate (right) match if the Thread-Id of the token on the second
input matches the data value of the token on the first input.

<tm:u>.tm

Thread-
Coordinate

Data-to-
Thread

releases tmacquires tm

<t1:u>.tm

<t0:w>.tm

Memory-
Nop-Ack

<t1:u>.tm
(from critical section)

<t0:w>.tm

(to critical section)

Thread t0 Thread t1

t1 releases mutex

t0 requests mutex

Fig. 22. A mutex: Thread-Coordinate is used to construct a mutex, as de-
scribed in the text. The value tm identifies the mutex.

Although one can construct many kinds of synchronization objects using Thread-

Coordinate, for brevity we only illustrate a simple mutex (Figure 22), although
we have also implemented barriers and conditional variables. In this case, Thread-

Coordinate is the vehicle by which a thread releasing a mutex passes control to
another thread wishing to acquire it.

The mutex in Figure 22 is represented by a Thread-Id, tm, although it is not
a thread in the usual sense; instead, tm’s sole function is to uniquely name the
mutex. A thread t1 that has locked mutex tm releases it in two steps (right side of

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Steven Swanson et al.

figure). First, t1 ensures that the memory operations it executed inside the critical
section have completed by executing Memory-Nop-Ack. Then, t1 uses Data-

To-Thread to create the token <tm, u>.tm, which it sends to the second input
port of Thread-Coordinate, thereby releasing the mutex.

Another thread, t0 in the figure, can attempt to acquire the mutex by sending
<t0, w>.tm (the data is the mutex) to Thread-Coordinate. This token will
either find the token from t1 waiting for it (i.e., the lock is free) or await its arrival
(i.e., t1 still holds the lock). When the release token from t1 and the request
token from t0 are both present, Thread-Coordinate will find that they match
according to the rules discussed above, and it will then produce a token <t0, w>.tm.
If all instructions in the critical section guarded by mutex tm depend on this output
token (directly or via a chain of data dependences), thread t0 cannot execute the
critical section until Thread-Coordinate produces it.

5.3 Splash-2

In this section, we evaluate WaveScalar’s multithreading facilities by executing
coarse-grain, multithreaded applications from the Splash-2 benchmark suite (Ta-
ble III). We use the toolchain and simulator described in Section 4.1. We simulate
an 8x8 array of clusters to model an aggressive, future-generation design. Using the
results from the RTL model described in Section 3.7 scaled to 45nm, we estimate
that the processor occupies ∼290mm2, with an on-chip 16MB L2.

After skipping past initialization, we measure execution of the parallel phases of
the benchmarks. Our performance metric is execution-time speedup relative to a
single thread executing on the same WaveCache. We also compare the WaveScalar
speedups to those calculated by other researchers for other threaded architectures.
Component metrics help explain these bottom-line results, where appropriate.

5.3.0.1 Evaluation of a multithreaded WaveCache.. Figure 23 contains speedups
of multithreaded WaveCaches for all six benchmarks, as compared to their single-
threaded running time. On average, the WaveCache achieves near-linear speedup
(25×) for up to 32 threads. Average performance increases sub-linearly with 128
threads, up to 47× speedup with an average IPC of 88.

Interestingly, increasing beyond 64 threads for ocean and raytrace reduces per-
formance. The drop-off occurs because of WaveCache congestion from the larger
instruction working sets and L1 data evictions due to capacity misses. For exam-
ple, going from 64 to 128 threads, ocean suffers 18% more WaveCache instruction
misses than would be expected from the additional compulsory misses. In addi-
tion, the operand matching cache miss rate increases by 23%. Finally, the data
cache miss rate, which is essentially constant for up to 32 threads, doubles as the
number of threads scales to 128. This additional pressure on the memory system
increases ocean’s memory access latency by a factor of eleven. Since the applica-
tions scale almost linearly, these data demonstrate that the reduced performance
is due primarily to increased contention for WaveCache resources.

The same factors that cause the performance of ocean and raytrace to suffer when
the number of threads exceeds 64 also reduce the rate of speedup improvement for
other applications as the number of threads increases. For example, the WaveCache
instruction miss rate quadruples for lu when the number of threads increases from
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 41

0

10

20

30

40

50

60

70

80

90

fft lu ocean water raytrace radix average

S
p
e
e
d
u
p

1
2
4
8
16
32
64
128

2.0

168

1.8

111

1.4

40

1.2

72

0.8

51

0.4

25

1.2

88

Fig. 23. Splash-2 on the WaveCache.: We evaluate each of our Splash-2 bench-
marks on the baseline WaveCache with between 1 and 128 threads. The bars
represent speedup in total execution time. The numbers above the single-threaded
bars are IPC for that configuration. Two benchmarks, water and radix, cannot
utilize 128 threads with the input data set we use, so that value is absent.

64 to 128, curbing speedup. In contrast, FFT, with its relatively small per-thread
working set of instructions and data, does not tax these resources, and so achieves
better speedup with up to 128 threads.

5.3.0.2 Comparison to other threaded architectures. We compare the perfor-
mance of the WaveCache and a few other architectures on three Splash-2 kernels:
lu, fft and radix. We present results from several sources in addition to our own
WaveCache simulator. For CMP configurations we performed our own experiments
using a simple in-order core (scmp), as well as measurements from [Lo et al. 1997]
and [Ekman and Stenstrom 2003]. Comparing data from such diverse sources is
difficult, and drawing precise conclusions about the results is not possible; however,
we believe that the measurements are still valuable for the broad trends they reveal.

To make the comparison as equitable as possible, we use a smaller, 4x4 Wave-
Cache for these studies. Our RTL model gives an area of 253mm2 for this design
(we assume an off-chip, 16 MB L2 cache distributed in banks around the edge of
the chip and increase its access time from 10 to 20 cycles). While we do not have
precise area measurements for the other architectures, the most aggressive configu-
rations (i.e., most cores or functional units) are in the same ball park with respect
to size.

To facilitate the comparison of performance numbers from these different sources,
we normalized all performance numbers to the performance of a simulated scalar
processor with a 5-stage pipeline. The processor has 16KB data and instruction
caches, and a 1MB L2 cache, all 4-way set associative. The L2 hit latency is 12

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Steven Swanson et al.

0

2

4

6

8

10

12

14

16

18

20

ws
sc

m
p

sm
t8

cm
p4

cm
p2 ws

sc
m
p

sm
t8

cm
p4

cm
p2

ec
km

an ws
sc

m
p

ec
km

an

S
p

e
e
d

u
p

 v
s

1
-t

h
re

a
d

 s
ca

la
r

C
M

P
32 threads

16 threads

8 threads

4 threads

2 threads

1 thread

lu fft radix

Fig. 24. Performance comparison of various architectures.: Each bar rep-
resents performance of a given architecture for between 1 and 32 threads. We
normalize running times to that of a single-issue scalar processor with a high mem-
ory access latency, and compare speedups of various multithreaded architectures.
ws is a 4x4 WaveCache. scmp is a CMP of the aforementioned scalar processor on a
shared bus with MESI coherence. smt8, cmp4 and cmp2 are an 8-threaded SMT, a
4-core out-of-order CMP and a 2-core OOO CMP with similar resources, from [Lo
et al. 1997]. ekman [Ekman and Stenstrom 2003] is a study of CMPs in which the
number of cores is varied, but the number of execution resources (functional units,
issue width, etc.) is fixed.

cycles, and the memory access latency of 200 cycles matches that of the WaveCache.
Figure 24 shows the results. The stacked bars represent the increase in perfor-

mance contributed by executing with more threads. The bars labeled ws depict the
performance of the WaveCache. The bars labeled scmp represent the performance
of a CMP whose cores are the scalar processors described above with 1MB of L2
cache per processor core. These processors are connected via a shared bus between
private L1 caches and a shared L2 cache. Memory is sequentially consistent, and
coherence is maintained by a 4-state snoopy protocol. Up to 4 accesses to the
shared memory may overlap. For the CMPs the stacked bars represent increased
performance from simulating more processor cores. The 4- and 8-core bars loosely
model Hydra [Hammond et al. 2000] and a single Piranha chip [Barroso et al. 2000],
respectively.

The bars labeled smt8, cmp4 and cmp2 are the 8-threaded SMT and 4- and
2-core out-of-order CMPs from [Lo et al. 1997]. We extracted their running times
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 43

from data provided by the authors. Memory latency is low on these systems (dozens
of cycles) compared to expected future latencies, and all configurations share the
L1 data- and instruction caches.

To compare the results from [Ekman and Stenstrom 2003] (labeled ekman in the
figure), which are normalized to the performance of their 2-core CMP, we simulated
a superscalar with a configuration similar to one of these cores and halved the
reported execution time; we then used this figure as an estimate of absolute baseline
performance. In [Ekman and Stenstrom 2003], the authors fixed the execution
resources for all configurations, and partitioned them among an increasing number
of decreasingly wide CMP cores. For example, the 2-thread component of the
ekman bars is the performance of a 2-core CMP in which each core has a fetch
width of 8, while the 16-thread component represents the performance of 16 cores
with a fetch-width of 1. Latency to main memory is 384 cycles, and latency to the
L2 cache is 12 cycles.

The graph shows that the WaveCache can outperform the other architectures at
high thread counts. It executes 1.9× to 6.13× faster than scmp, 1.16× to 1.56×
faster than smt8, and 5.7× to 16× faster than the various out-of-order CMP configu-
rations. Component metrics show that the WaveCache’s performance benefits arise
from its use of point-to-point communication, rather than a system-wide broadcast
mechanism, and from the latency-tolerance of its dataflow execution model. The
former enables scaling to large numbers of clusters and threads, while the latter
helps mask the increased memory latency incurred by the directory protocol and
the high load-use penalty on the L1 data cache.

The performance of all systems eventually plateaus when some bottleneck re-
source saturates. For scmp this resource is shared L2 bus bandwidth. Bus sat-
uration occurs at 16 processors for LU, 8 for FFT and 2 for RADIX. It is likely
that future CMPs will address this limitations by moving away from bus-based
interconnects, and it would be interesting to compare the performance of those
systems with the WaveCache. For the other von Neumann CMP systems, the fixed
allocation of execution resources is the limit [Lo et al. 1997], resulting in a de-
crease in per-processor IPC. For example, in ekman, per-processor IPC drops 50%
as the number of processors increases from 4 to 16 for RADIX and FFT. On the
WaveCache, speedup plateaus when the working set of all the threads equals its
instruction capacity. This offers WaveCache the opportunity to tune the number of
threads to the amount of on-chip resources. With their static partitioning of execu-
tion resources across processors, this option is absent for CMPs; and the monolithic
nature of SMT architectures prevents scaling to large numbers of thread contexts.

5.4 Discussion

The WaveCache has clear promise as a multiprocessing platform. In the 90nm tech-
nology available today, we could easily build a WaveCache that would outperform
a range of von Neumann-style alternatives, and, as we mentioned earlier, scaling
the WaveCache to future process technologies is straightforward. Scaling multi-
threaded WaveScalar systems beyond a single die is also feasible. WaveScalar’s
execution model makes and requires no guarantees about communication latency,
so using several WaveCache processors to construct a larger computing substrate
is a possibility.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Steven Swanson et al.

In the next section we investigate the potential of WaveScalar’s core dataflow
execution model to support a second, finer-grain threading model. These fine-
grain threads utilize a simpler, unordered memory interface, and can provide huge
performance gains for some applications.

6. WAVESCALAR’S DATAFLOW SIDE

The WaveScalar instruction set we have described so far replicates the functionality
of a von Neumann processor or a CMP composed of von Neumann processors.
Providing these capabilities is essential if WaveScalar is to be a viable alternative
to von Neumann architectures, but it is not the limit of what WaveScalar can do.

This section exploits WaveScalar’s dataflow underpinning to achieve two things
that conventional von Neumann machines cannot. First, it provides a second,
unordered memory interface that is similar in spirit to the token-passing interface
in Section 2.2.6. The unordered interface is built to express memory parallelism. It
bypasses the wave-ordered store buffer and accesses the L1 cache directly, avoiding
the overhead of the wave-ordering hardware. Because the unordered operations do
not go through the store buffer, they can arrive at the L1 cache in any order or in
parallel. As we describe below, a programmer can restrict this ordering by adding
edges to a program’s dataflow graph.

Second, the WaveCache can support very fine-grain threads. On von Neumann
machines the amount of hardware devoted to a thread is fixed (e.g., one core on
a CMP or one thread context on an SMT machine), and the number of threads
that can execute at once is relatively small. On the WaveCache, the number of
physical store buffers limits the number of threads that use wave-ordered memory,
but any number of threads can use the unordered interface at one time. In addition,
spawning these threads is very cheap. As a result, it is feasible to break a program
up into 100s of parallel, fine-grain threads.

We begin by describing the unordered memory interface. Then we use it and fine-
grain threads to express large amounts of parallelism in three application kernels.
Finally, we combine the two styles of programming to parallelize equake from the
Spec2000 floating point suite, and demonstrate that by combining WaveScalar’s
ability to run both coarse-grain von Neumann-style threads and fine-grain dataflow-
style threads, we can achieve performance greater than utilizing either alone, in this
case, a 9× speedup.

6.1 Unordered memory

As described, WaveScalar’s only mechanism for accessing memory is the wave-
ordered memory interface. The interface is necessary for executing conventional
programs, but it can only express limited parallelism (i.e., by using ripple numbers).
WaveScalar’s unordered interface makes a different trade-off: it cannot efficiently
provide the sequential ordering that conventional programs require, but it excels
at expressing parallelism, because it eliminates unneeded ordering constraints and
avoids contention for the store buffer. Because of this, it allows programmers or
compilers to express and exploit memory parallelism when they know it exists.

Like all other dataflow instructions, unordered operations are only constrained
by their static data dependences. This means that if two unordered memory oper-
ations are not directly or indirectly data-dependent, they can execute in any order.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 45

Programmers and compilers can exploit this fact to express parallelism between
memory operations that can safely execute out of order; however, they need a
mechanism to enforce ordering among those that cannot.

To illustrate, consider a Store and a Load that could potentially access the same
address. If, for correct execution, the Load must see the value written by the
Store (i.e., a read-after-write dependence), then the thread must ensure that the
Load does not execute until the Store has finished. If the thread uses wave-ordered
memory, the store buffer enforces this constraint; however, since unordered mem-
ory operations bypass the wave-ordered interface, unordered accesses must use a
different mechanism.

To ensure that the Load executes after the Store, there must be a data dependence
between them. This means memory operations must produce an output token that
can be passed to the operations that follow. Loads already do this, because they
return a value from memory. We modify Stores to produce a value when they
complete. The value that the token carries is unimportant, since its only purpose
is to signal that the Store has completed. In our implementation it is always zero.
We call unordered Loads and Stores, Load-Unordered and Store-Unordered-

Ack, respectively.

6.1.1 Performance evaluation. To demonstrate the potential of unordered mem-
ory, we implemented three traditionally parallel but memory-intensive kernels –
matrix multiply (MMUL), longest common subsequence (LCS), and a finite input
response filter (FIR) – in three different styles and compared their performance. Se-
rial coarse-grain uses a single thread written in C. Parallel coarse-grain is a coarse-
grain parallelized version, also written in C, that uses the coarse-grain threading
mechanisms described in Section 5. Unordered uses a single coarse-grain thread
written in C to control a pool of fine-grain threads that use unordered memory,
written in WaveScalar assembly. We call these unordered threads.

For each application, we tuned the number of threads and the array tile size
to achieve the best performance possible for a particular implementation. MMUL
multiplies 128× 128 entry matrices, LCS compares strings of 1024 characters, and
FIR filters 8192 inputs with 256 taps. They use between 32 (FIR) and 1000 (LCS)
threads. Each version is run to completion.

Figure 25 depicts the performance of each algorithm executing on the 8x8 Wave-
Cache described in Section 5.3. On the left, it shows speedup over the serial imple-
mentation, and, on the right, average units of work completed per cycle. For MMUL
and FIR, the unit of work selected is a multiply-accumulate, while for LCS, it is
a character comparison. We use application-specific performance metrics, because
they are more informative than IPC when comparing the three implementations.

For all three kernels, the unordered implementations achieve superior perfor-
mance because they exploit more parallelism. The benefits stem from two sources.
First, the unordered implementations can use more threads. It would be easy to
write a pthread-based version that spawned 100s or 1000s of threads, but the Wave-
Cache cannot execute that many ordered threads at once, since there are not enough
store buffers. Secondly, within each thread the unordered threads’ memory opera-
tions can execute in parallel. As a result, the fine-grain, unordered implementation
exploit more inter- and intra-thread parallelism, allowing them to exploit many PEs

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · Steven Swanson et al.

0

50

100

150

200

250

300

mmul lcs fir

S
p

e
e
d

u
p

 v
s

si
n

g
le

-t
h

re
a
d

e
d

`

0

2

4

6

8

10

12

14

16

mmul lcs fir

A
p

p
li
ca

ti
o

n
 w

o
rk

 u
n

it
s

p
e
r

cy
cl

e

`

single-threaded
fine-grain

coarse-grain

Fig. 25. Fine-grain performance: These graphs compare the performance of our
three implementation styles. The graph on the left shows execution-time speedup
relative to the serial coarse-grain implementation. The graph on the right com-
pares the work per cycle achieved by each implementation measured in multiply-
accumulates for MMUL and FIR and in character comparisons for LCS.

at once. In fact, the numerous threads that each kernel spawns can easily fill and
utilize the entire WaveCache. MMUL is the best example; it executes 27 memory
operations per cycle on average (about one per every two clusters), compared to
just 6 for the coarse-grain version.

FIR and LCS are less memory-bound than MMUL, because they load values
(input samples for FIR and characters for LCS) from memory only once and then
pass them from thread to thread. For these two applications the limiting factor
is inter-cluster network bandwidth. Both algorithms involves a great deal of inter-
thread communication, and since the computation uses the entire 8x8 array of
clusters, inter-cluster communication is unavoidable. For LCS 27% of messages
travel across the inter-cluster network compared, to 0.4-1% for the single-threaded
and coarse-grain versions, and the messages move 3.6 times more slowly due to
congestion. FIR displays similar behavior. A better placement algorithm could
alleviate much of this problem and improve performance further by placing the
instructions for communicating threads near one another.

6.2 Mixing threading models

In Section 5, we explained the extensions to WaveScalar that support coarse-grain,
pthread-style threads. In the previous section, we introduced two lightweight mem-
ory instructions that enable fine-grain threads and unordered memory. In this
section, we combine these two models; the result is a hybrid programming model
that enables coarse- and fine-grain threads to coexist in the same application. We
begin with two examples that illustrate how ordered and unordered memory oper-
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 47

ThreadToData

MemorySequenceStop

<t:w>.finished

<t:w>.v

<t:w>.t

MemorySequenceStart

<t:w>.w

WaveToData
<t:w>.t

Arbitrary unordered
code

Ordered Code

Ordered Code

Fig. 26. Transitioning between memory interfaces: The transition from or-
dered to unordered memory and back again.

ations can be used together. Then, we exploit all of our threading techniques to
improve the performance of Spec2000’s equake by a factor of nine.

6.2.1 Mixing ordered and unordered memory. A key strength of our ordered and
unordered memory mechanisms is their ability to coexist in the same application.
Sections of an application that have independent and easily analyzable memory
access patterns (e.g., matrix manipulations and stream processing) can use the
unordered interface, while difficult to analyze portions (e.g., pointer-chasing codes)
can use wave-ordered memory. In this section, we take a detailed look at how this
is achieved.

We describe two ways to combine ordered and unordered memory accesses. The
first turns off wave-ordered memory, uses the unordered interface, and then rein-
states wave-ordering. The second, more flexible approach allows the ordered and
unordered interfaces to exist simultaneously.

6.2.1.1 Example 1:. Figure 26 shows a code sequence that transitions from
wave-ordered memory to unordered memory and back again. The process is quite
similar to terminating and restarting a pthread-style thread. At the end of the or-
dered code, a Thread-To-Data instruction extracts the current Thread-Id, and
a Memory-Sequence-Stop instruction terminates the current memory ordering.
Memory-Sequence-Stop outputs a value, labeled finished in the figure, after all
preceding wave-ordered memory operations have completed. The finished token
triggers the dependent, unordered memory operations, ensuring that they do not
execute until the earlier, ordered-memory accesses have completed.

After the unordered portion has executed, a Memory-Sequence-Start creates
a new, ordered memory sequence using the Thread-Id extracted previously. In
principle, the new thread need not have the same Thread-Id as the original ordered

ACM Journal Name, Vol. V, No. N, Month 20YY.

48 · Steven Swanson et al.

struct {
int x,y;

} point;

foo(point *v, int *p, int *q)
{

point t;
*p = 0;
t.x = v->x;
t.y = v->y;

 return *q;
}

 St *p, 0 <0,1,2>

MemoryNopAck <1,2,3>

Ld v->x Ld v->y

St t.x St t.y

MemoryNopAck <2,3,4>

+

pv

Wave-ordered

Unordered

 Ld *q <3,4,5>

q

Fig. 27. Using ordered and unordered memory together: A simple exam-
ple where Memory-Nop-Ack is used to combine ordered and unordered memory
operations to express memory parallelism.

thread. In practice, however, this is convenient, as it allows values to flow directly
from the first ordered section to the second (the curved arcs on the left side of the
figure) without Thread-Id manipulation instructions.

6.2.1.2 Example 2:. In many cases, a compiler may be unable to determine the
targets of some memory operations. The wave-ordered memory interface must re-
main intact to handle these hard-to-analyze accesses. Meanwhile, unordered mem-
ory accesses from analyzable operations can simply bypass the wave-ordering in-
terface. This approach allows the two memory interfaces to coexist in the same
thread.

Figure 27 shows how the Memory-Nop-Ack instruction from Section 5.2.1 al-
lows programs to take advantage of this technique. Recall that Memory-Nop-Ack

is a wave-ordered memory operation that operates like a memory fence instruction,
returning a value when it completes. We use it here to synchronize ordered and
unordered memory accesses. In function foo, the loads and stores that copy *v
into t can execute in parallel but must wait for the store to p, which could point
to any address. Likewise, the load from address q cannot proceed until the copy is
complete. The wave-ordered memory system guarantees that the store to p, the two
Memory-Nop-Acks, and the load from q fire in the order shown (top to bottom).
The data dependences between the first Memory-Nop-Ack and the unordered
loads at left ensure the copy occurs after the first store. The Add instruction
simply coalesces the outputs from the two Store-Unordered-Ack instructions
into a trigger for the second Memory-Nop-Ack that ensures the copy is complete
before the final load.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 49

6.2.2 A detailed example: equake. To demonstrate that mixing the two thread-
ing styles is not only possible but also profitable, we optimized equake from the
SPEC2000 benchmark suite. equake spends most of its time in the function smvp,
with the bulk of the remainder confined to a single loop in the program’s main
function. In the discussion below, we refer to this loop in main as sim.

We exploit both ordered, coarse-grain and unordered, fine-grain threads in equake.
The key loops in sim are data independent, so we parallelized them, using coarse-
grain threads that process a work queue of blocks of iterations. This optimization
improves equake’s overall performance by a factor of 1.6.

Next, we used the unordered memory interface to exploit fine-grain parallelism
in smvp. Two opportunities present themselves. First, each iteration of smvp’s
nested loops loads data from several arrays. Since these arrays are read-only, we
used unordered loads to bypass wave-ordered memory, allowing loads from sev-
eral iterations to execute in parallel. Second, we targeted a set of irregular cross-
iteration dependences in smvp’s inner loop that are caused by updating an array
of sums. These cross-iteration dependences make it difficult to profitably coarse-
grain-parallelize the loop. However, the Thread-Coordinate instruction lets us
extract fine-grain parallelism despite these dependences, since it efficiently passes
array elements from PE to PE and guarantees that only one thread can hold a
particular value at a time. This idiom is inspired by M-structures [Barth et al.
1991], a dataflow-style memory element. Rewriting smvp with unordered memory
and Thread-Coordinate improves overall performance by a factor of 7.9.

When both coarse-grain and fine-grain threading are used together, equake speeds
up by a factor of 9.0. This result demonstrates that coarse-grain, pthread-style
threads and fine-grain, unordered threads can be combined to accelerate a single
application.

7. CONCLUSION

The WaveScalar instruction set and WaveCache architecture demonstrate that
dataflow processing is a worthy alternative to the von Neumann model and con-
ventional scalar designs for both single- and multithreaded workloads.

Like all dataflow ISAs, WaveScalar allows programmers and compilers to ex-
plicitly express parallelism among instructions. Unlike previous dataflow models,
WaveScalar also includes a memory-ordering scheme, wave-ordered memory, that
allows it to efficiently execute programs written in conventional, imperative pro-
gramming languages.

WaveScalar’s multithreading facilities support a range of threading styles. For
conventional pthread-style threads, WaveScalar provides thread creation and ter-
mination instructions; multiple, independent wave-ordered memory orderings; a
lightweight, memoryless synchronization primitive; and a memory fence that pro-
vides a relaxed consistency model. For finer-grain threads, WaveScalar can disable
memory ordering for specific memory accesses, allowing the programmer or com-
piler to express large amounts of memory-parallelism, and enabling a very fine-grain
style of multithreading. Finally WaveScalar allows both types of threads to coexist
in a single application and interact smoothly.

The WaveCache architecture exploits WaveScalar’s decentralized execution model
ACM Journal Name, Vol. V, No. N, Month 20YY.

50 · Steven Swanson et al.

to eliminate broadcast communication and centralized control. Its tile-based de-
signs makes it scalable and significantly reduces the architecture’s complexity. Our
RTL model shows that a WaveCache capable of efficiently running real-world, mul-
tithreaded applications would occupy only 253mm2 in currently available process
technology, while a single-threaded version requires only 48mm2.

Our experimental results show that the WaveCache performs comparably to a
modern out-of-order design for single-threaded codes and provides 21% more perfor-
mance per area. For multithreaded, Splash2 benchmarks, the WaveCache achieves
30-83× speedup over a single-threaded versions, and outperforms a range of von
Neumann-style multithreaded processors. By exploiting our new unordered memory
interface, we demonstrated that hundreds of fine-grain threads on the WaveCache
can complete up to 13 multiply-accumulates per cycle for selected algorithm kernels.
Finally, we combined all of our new mechanisms and threading models to create
a multi-granular parallel version of equake which is faster than either threading
model alone.

REFERENCES

Adve, S. V. and Gharachorloo, K. 1996. Shared memory consistency models: A tutorial.
Computer 29, 12, 66–76.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W., and Burger, D. 2000. Clock rate versus ipc:

the end of the road for conventional microarchitectures. In Proceedings of the 27th International
Symposium on Computer Architecture. ACM Press, New York, NY, USA, 248–259.

Arvind. 2005. Dataflow: Passing the token. International Symposium on Computer Architecture
Keynote.

Arvind, Nikhil, R. S., and Pingali, K. K. 1989. I-structures: data structures for parallel com-
puting. ACM Trans. Program. Lang. Syst. 11, 4, 598–632.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B.,
Smith, S., Stets, R., and Verghese, B. 2000. Piranha: a scalable architecture based on
single-chip multiprocessing. In Proceedings of the 27th International Symposium on Computer
Architecture. ACM Press, New York, NY, USA, 282–293.

Barth, P. S., Nikhil, R. S., and Arvind. 1991. M-structures: Extending a parallel, non-strict,
functional languages with state. Tech. Rep. MIT/LCS/TR-327, MIT.

Beck, M., Johnson, R., and Pingali, K. 1991. From control flow to data flow. Journal of
Parallel and Distributed Computing 12, 2, 118–129.

Budiu, M., Venkataramani, G., Chelcea, T., and Goldstein, S. C. 2004. Spatial computation.
In Proceedings of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM Press, New York, NY, USA, 14–26.

Cadence. Cadence website. http://www.cadence.com.

Chrysos, G. Z. and Emer, J. S. 1998. Memory dependence prediction using store sets. In
Proceedings of the 25th International Symposium on Computer Architecture. IEEE Computer
Society, Washington, DC, USA, 142–153.

Culler, D. E. 1990. Managing parallelism and resources in scientific dataflow programs. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Culler, D. E., Sah, A., Schauser, K. E., von Eicken, T., and Wawrzynek, J. 1991. Fine-grain
parallelism with minimal hardware support: a compiler-controlled threaded abstract machine.
In Proceedings of the 4th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM Press, New York, NY, USA, 164–175.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. Tech. Rep. CS-91-
21, Providence, RI, USA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 51

Dally, W. J. and Seitz, C. L. 1987. Deadlock-free message routing in multiprocessor intercon-

nection networks. IEEE Trans. Comput. 36, 5, 547–553.

Davis, A. L. 1978. The architecture and system method of DDM1: A recursively structured data
driven machine. In Proceedings of the 5th International Symposium on Computer Architecture.
ACM Press, New York, NY, USA, 210–215.

Dennis, J. B. and Misunas, D. P. 1975. A preliminary architecture for a basic data-flow pro-
cessor. In Proceedings of the 2nd International Symposium on Computer Architecture. ACM
Press, New York, NY, USA, 126–132.

Desikan, R., Burger, D. C., Keckler, S. W., and Austin, T. M. 2001. Sim-alpha: a validated,
execution-driven alpha 21264 simulator. Tech. Rep. TR-01-23, UT-Austin Computer Sciences.

Ekman, M. and Stenstrom, P. 2003. Performance and power impact of issue-width in chip-
multiprocessor cores. In Proceedings of the International Conference on Parallel Processing.
IEEE Computer Society, Los Alamitos, CA, USA, 359.

Feo, J. T., Miller, P. J., and Skedzielewski, S. K. 1995. Sisal90. In Proceedings of the
Conference on High Performance Functional Computing. 35–47.

Goldstein, S. C. and Budiu, M. 2001. Nanofabrics: spatial computing using molecular elec-
tronics. In Proceedings of the 28th International Symposium on Computer Architecture. ACM
Press, New York, NY, USA, 178–191.

Goodman, J. R., Vernon, M. K., and Woest, P. J. 1989. Efficient synchronization primitives for
large-scale cache-coherent multiprocessors. In Proceedings of the 3rd International Conference
on Architectural Support for Programming Languages and Operating Systems. ACM Press,
New York, NY, USA, 64–75.

Grafe, V. G., Davidson, G. S., Hoch, J. E., and Holmes, V. P. 1989. The epsilon dataflow
processor. In Proceedings of the 16th International Symposium on Computer Architecture.
ACM Press, New York, NY, USA, 36–45.

Gurd, J. R., Kirkham, C. C., and Watson, I. 1985. The manchester prototype dataflow com-
puter. Communications of the ACM 28, 1, 34–52.

Hammond, L., Hubbert, B. A., Siu, M., Prabhu, M. K., Chen, M., and Olukotun, K. 2000.
The stanford hydra CMP. IEEE Micro 20, 2, 71–84.

Hrishikesh, M. S., Burger, D., Jouppi, N. P., Keckler, S. W., Farkas, K. I., and Shivaku-

mar, P. 2002. The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In
Proceedings of the 29th International Symposium on Computer Architecture. IEEE Computer
Society, Washington, DC, USA, 14–24.

Jain, A. and et al. 2001. A 1.2ghz alpha microprocessor with 44.8gb/s chip pin bandwidth.
In Proceedings of the IEEE International Solid-State Circuits Conference. IEEE Computer
Society, Los Alamitos, CA, USA, 240–241.

Keckler, S. W., Dally, W. J., Maskit, D., Carter, N. P., Chang, A., and Lee, W. S. 1998.
Exploiting fine-grain thread level parallelism on the mit multi-alu processor. In Proceedings of
the 25th International Symposium on Computer Architecture. IEEE Computer Society, Wash-
ington, DC, USA, 306–317.

Kishi, M., Yasuhara, H., and Kawamura, Y. 1983. DDDP-a distributed data driven proces-
sor. In Proceedings of the 10th International Symposium on Computer Architecture. IEEE
Computer Society Press, Los Alamitos, CA, USA, 236–242.

Krewel, K. 2002. Alpha ev7 processor: A high-performance tradition continues. Microprocessor
Report .

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons systems. In Proceedings of the 30th Inter-
national Symposium on Microarchitecture. IEEE Computer Society, Washington, DC, USA,
330–335.

Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., and Amarasinghe, S.

1998. Space-time scheduling of instruction-level parallelism on a raw machine. In Proceedings
of the 8th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM Press, New York, NY, USA, 46–57.

ACM Journal Name, Vol. V, No. N, Month 20YY.

52 · Steven Swanson et al.

Lo, J. L., Emer, J. S., Levy, H. M., Stamm, R. L., Tullsen, D. M., and Eggers, S. J.

1997. Converting thread-level parallelism to instruction-level parallelism via simultaneous mul-
tithreading. ACM Trans. Comput. Syst. 15, 3, 322–354.

Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and Bringmann, R. A. 1992. Effective
compiler support for predicated execution using the hyperblock. In Proceedings of the 25th
International Symposium on Microarchitecture. IEEE Computer Society Press, Los Alamitos,
CA, USA, 45–54.

Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W. J., and Horowitz, M. 2000. Smart
memories: a modular reconfigurable architecture. In Proceedings of the 27th International
Symposium on Computer Architecture. ACM Press, New York, NY, USA, 161–171.

Mercaldi, M., Swanson, S., Petersen, A., Putnam, A., Schwerin, A., Oskin, M., and Eg-

gers, S. J. 2006a. Instruction scheduling for a tiled dataflow architecture. In Proceedings of
the 12th International Conference on Architectural Support for Programming Languages and
Operating Systems.

Mercaldi, M., Swanson, S., Petersen, A., Putnam, A., Schwerin, A., Oskin, M., and Eg-

gers, S. J. 2006b. Modeling instruction placement on a spatial architecture. In Proceedings
of the 18th Annual Symposium on Parallelism in Algorithms and Architectures. ACM Press,
New York, NY, USA, 158–169.

Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K., and Austin, T. 2003. A systematic
methodology to compute the architectural vulnerability factors for a high-performance micro-
processor. In Proceedings of the 36th International Symposium on Microarchitecture. IEEE
Computer Society, Washington, DC, USA, 29.

Nagarajan, R., Sankaralingam, K., Burger, D., and Keckler, S. W. 2001a. A design space
evaluation of grid processor architectures. In Proceedings of the 34th International Symposium
on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 40–51.

Nagarajan, R., Sankaralingam, K., Burger, D., and Keckler, S. W. 2001b. A design space
evaluation of grid processor architectures. In Proceedings of the 34th International Symposium
on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 40–51.

Nichols, B., Buttlar, D., and Farrell, J. P. 1996. Pthreads programming. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA.

Nikhil, R. 1990. The parallel programming language id and its compilation for parallel ma-
chines. In Proceedings of the Workshop on Massive Parallelism: Hardware, Programming and
Applications.

Papadopoulos, G. M. and Culler, D. E. 1990. Monsoon: an explicit token-store architecture.
In Proceedings of the 17th International Symposium on Computer Architecture. ACM Press,
New York, NY, USA, 82–91.

Papadopoulos, G. M. and Traub, K. R. 1991. Multithreading: a revisionist view of dataflow

architectures. In Proceedings of the 18th International Symposium on Computer Architecture.
ACM Press, New York, NY, USA, 342–351.

Petersen, A., Mercaldi, M., Swanson, S., Putnam, A., Schwerin, A., Oskin, M., and Eg-

gers, S. 2006. Reducing control overhead in dataflow architectures. In Proceedings of the 19th
Parallel Architectures and Compilation Techniques.

Shimada, T., Hiraki, K., and Nishida, K. 1984. An architecture of a data flow machine and its
evaluation. In Digest of Papers, COMPCON Spring 84. IEEE, 486–490.

Shimada, T., Hiraki, K., Nishida, K., and Sekiguchi, S. 1986. Evaluation of a prototype data
flow processor of the SIGMA-1 for scientific computations. In Proceedings of the 13th Inter-
national Symposium on Computer Architecture. IEEE Computer Society Press, Los Alamitos,
CA, USA, 226–234.

Smith, A., Gibson, J., Maher, B., Nethercote, N., Yoder, B., Burger, D., McKinle, K. S.,
and Burrill, J. 2006. Compiling for edge architectures. In CGO ’06: Proceedings of the
International Symposium on Code Generation and Optimization. IEEE Computer Society,
Washington, DC, USA, 185–195.

SPEC. 2000. SPEC CPU 2000 benchmark specifications. SPEC2000 Benchmark Release.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The WaveScalar Architecture · 53

Swanson, S. 2006. The wavescalar architecture. Ph.D. thesis, University of Washington, Seattle,

WA, USA.

Swanson, S., Michelson, K., Schwerin, A., and Oskin, M. 2003. Wavescalar. In Proceedings of
the 36th International Symposium on Microarchitecture. IEEE Computer Society, Washington,
DC, USA, 291.

Swanson, S., Putnam, A., Mercaldi, M., Michelson, K., Petersen, A., Schwerin, A., Oskin,

M., and Eggers, S. J. 2006. Area-performance trade-offs in tiled dataflow architectures. In
Proceedings of the 33rd International Symposium on Computer Architecture. IEEE Computer
Society, Washington, DC, USA, 314–326.

Taylor, M. B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B., Hoffmann,

H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N., Strumpen, V., Frank, M.,
Amarasinghe, S., and Agarwal, A. 2004. Evaluation of the raw microprocessor: An exposed-
wire-delay architecture for ilp and streams. In Proceedings of the 31st International Symposium
on Computer Architecture. IEEE Computer Society, Washington, DC, USA, 2.

TSMC. Silicon design chain cooperation enables nanometer chip design. Cadence Whitepaper.
http://www.cadence.com/whitepapers/.

Tullsen, D. M., Lo, J. L., Eggers, S. J., and Levy, H. M. 1999. Supporting fine-grained
synchronization on a simultaneous multithreading processor. In Proceedings of the 5th Inter-
national Symposium on High Performance Computer Architecture. IEEE Computer Society,
Washington, DC, USA, 54.

ACM Journal Name, Vol. V, No. N, Month 20YY.

